
Taming Aspect Composition: A Functional Approach

Roberto E. Lopez-Herrejon and Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{rlopez, batory}@cs.utexas.edu

Abstract We take this approach further by modeling crosscuts, aspect
Aspect Oriented Programing is a promising paradigm that
challenges traditional notions of program modularity.
Despite its increasing acceptance, aspects have been docu-
mented to suffer limited reuse, unpredictable behavior, and
difficult modular reasoning. We develop an algebraic model
that treats aspects as program transformations and uncovers
aspect composition as the source of the problems mentioned.
We propose an alternative model of composition that elimi-
nates these problems, preserves the power of aspects, and
lays out an algebraic foundation on which to build and
understand AOP tools.

1 Introduction

Aspect Oriented Programming (AOP) is a promising para-
digm that challenges and enhances traditional notions of pro-
gram modularity [11]. It has been widely applied to different
languages but the most influential implementation is AspectJ
[5][11][18]. AspectJ has sophisticated and powerful modu-
larization mechanisms that bring clear benefits over tradi-
tional modules but also has equally significant drawbacks.
Aspects have been documented to suffer limited reuse [12],
unpredictable behavior [22], and difficult modular reasoning
[9][1]. All these factors hinder useful software engineering
practices such as step-wise development [10] and its natural
materialization in Component-Based Software Engineering
(CBSE) [27], where programs are developed incrementally
by composing components one at a time.

Aspect semantics are defined by an event-based model [28].
We take an unconventional perspective in this paper by
viewing aspects as program transformations [23]. A program
transformation is a function that maps programs. Transfor-
mations provide an alternative but equally valid semantics
for aspects as it shifts the focus from a programmers per-
spective to that of the compiler, where all crosscuts (both
static and dynamic) are seen as transformations. Adopting
this perspective raises aspects from code artifacts to mathe-
matical entities (functions from programs to programs) and
enables the development of mathematically-based models of
aspects and their composition. Doing so allows us to show
that the primary source of complexity in AspectJ is how
aspects are composed.

composition, and weaving as an algebra. We propose an
alternative model of aspect composition that eliminates the
above-mentioned problems while preserving the power of
AspectJ. We believe this model lays an algebraic foundation
on which to build and understand emerging modularization
technologies and tools.

2 AspectJ Overview

AspectJ1 is an extension of Java. Its goal is to modularize
aspects, concerns that crosscut traditional module bound-
aries such as classes and interfaces, that would otherwise be
scattered and tangled with the implementation of other con-
cerns [5]. AspectJ has two types of crosscuts, static and
dynamic, that we illustrate and interpret as transformations.

2.1 Static Crosscuts
Static crosscuts affect the static behavior of programs.
AspectJ supports several types of static crosscuts [5][18]. In
this paper we focus on introductions, also known as inter-
type declarations, that add fields, methods, and constructors
to existing classes and interfaces.

In AspectJ, standard Java classes and interfaces are referred
to as base code. Consider class Point defined below:

class Point {
int x;
void setX(int v) { x = v; }

} (1)

The following aspect TwoD adds (introduces) a second coor-
dinate value to class Point. It adds field y and method
setY to Point:

aspect TwoD {
int Point.y;
void Point.setY(int v) { y = v; }

}

When these two files are composed or woven by the AspectJ
compiler ajc using the command:

ajc Point.java TwoD.java

1. We used version 1.2.1 for this paper.
 1

don
Technical Report TR-05-27, May 2005

The result is a new class Point’ with the introduced mem-
bers underlined below:

class Point’ {
int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { y = v; }

} (2)

AspectJ generally uses more sophisticated rewrites than
those shown in this paper. The composed code snippets we
present simplify illustration and are behaviorally equivalent
to those produced by ajc.

Static crosscuts as transformations. From the program
transformation perspective, base code such as Point in
(1) represents a value to which a function (a program
transformation) or aspect is applied. For instance, class
Point’ in (2) can be written as the following expression:

Point’ = TwoD (Point)

That is, Point is a base program (or value) and TwoD is a
function that maps Point to Point’.

2.2 Dynamic Crosscuts
Dynamic crosscuts, in contrast, run additional code when
certain events occur during program execution. The seman-
tics of dynamic crosscuts are understood and defined in
terms of an event-based model [28]. As a program executes,
different events fire. These events are called join points.
Examples of join points are: variable reference, variable
assignment, execution of a method body, method call, etc.
A pointcut is a predicate that selects a set of join points.
Advice is code executed before, after, or around each join
point matched by a pointcut.

The following aspect is the familiar logging example. Its
interpretation is: run the advice code (underlined) after
(advice type) the execution of methods in class Point
whose name starts with ‘set’ (pointcut in italics).

aspect Logging {
after(): execution(* Point.set*(..))
{ println(“Logged”); }

} (3)

From a compiler perspective, an equivalent interpretation
is: insert the advice code after the body of any method in
class Point whose name starts with ‘set’. For example, if
aspect Logging is woven into class Point’ in (2) the
result is equivalent to:

class Point” {
int x;
void setX(int v) {x = v; println(“Logged”); }
int y;
void setY(int v){ y = v; println(“Logged”); }

} (4)

Dynamic crosscuts as transformations. Like static cross-
cuts, dynamic crosscuts are also transformations. For exam-
ple, class Point” in (4) can be written as the expressions:

Point” = Logging(Point’) = Logging(TwoD(Point))

That is, class Point” is the result of applying two transfor-
mations, or from an AOP perspective the result of weaving
two aspects, into class Point.

AspectJ provides an array of sophisticated mechanisms to
define powerful pointcuts and to perform complex rewrites
when weaving aspects into programs. We argue that all
dynamic crosscuts can be understood as transformations
including pointcut designators such as cflow, args, this,
and target, which expose context information of a join
point [5].

Consider cflow(Y) where Y is a pointcut. Suppose Y cap-
tures a specific method execution or method call.
cflow(Y) is the set of join points that occur during the
execution of Y, from the time that the method is called to the
time of the return [5]. An interesting question to ask is if a
join point X occurs within the control flow of Y? The point-
cut that expresses this is concisely written in AspectJ as:

cflow(Y) && pointcut_for_X

From a compiler’s perspective, control flow advice is a
transformation that is composed from four simple transfor-
mations: (i) introduce a control flow stack S, (ii) before
each Y join point, push a marker M on S, and (iii) after each
Y join point, pop M off S. For the duration that M is on S, any
join point that occurs does so within the control flow of Y.
And finally, (iv) at each X join point, check to see if M is on
S; if so, execute the advice code.

In general, aspect compilers, such as ajc, demonstrate that
aspects are transformations: ajc takes a base program and
aspects as input and produces a woven program as output.
Even so, regarding dynamic crosscuts, especially cflow, as
transformations remains controversial [15][13]. However,
when given proper consideration, optimization and weav-
ing techniques such as those presented in [4][14][21] are
examples of program transformations, sophisticated indeed,
but transformations nonetheless.

2.3 Advice Precedence
Recognizing aspects are transformations is a key first step
in understanding AspectJ. The next step is to understand
how aspects are composed.

Multiple pieces of advice can be applied to the same join
point. Advice precedence determines the order in which
advice is woven. AspectJ deals with precedence differently
depending on where the pieces of advice are defined, either
in the same aspect or in different aspects [5].
 2

Advice in different aspects. AspectJ programmers can
optionally specify a declare precedence statement in an
aspect such as:

declare precedence: Aspect3, Aspect2, Aspect1;

Aspects are listed from higher to lower precedence (prece-
dence order), and are woven in reverse order (weaving
order). In the above example, the advice of Aspect1 is
woven first, then the advice of Aspect2, and finally the
advice of Aspect3, the aspect with the highest precedence
in this declaration.2 If there is no declare precedence
statement, precedence of aspects is undefined. In such
cases, the AspectJ compiler chooses the order in which to
weave aspects; users do not know what order will be
selected.3

To understand the significance of this rule, consider an ele-
mentary question in mathematics: given a value (2) and
functions that double its input double(x), adds three to its
input add3(x), and subtracts two sub2(x), what is the
result of their composition? This question makes no sense
mathematically because the order in which functions are
composed matters (i.e., double(sub2(add3(2)) ≠
sub2(double(add3(2))). This is the reason why expres-
sions, not sets of operations, are evaluated. The counterpart
to this question from a program transformation perspective
is: given a value (BaseProgram) and functions
(aspect1(x), aspect2(x), aspect3(x)), what is the
result of their composition? This is the question that
AspectJ poses to its users, and it makes no sense mathemat-
ically for the same reasons given earlier. The situation is
actually worse because AspectJ decides the aspect compo-
sition order and hence determines the semantics of a pro-
gram. This means that the semantics of a program produced
by AspectJ can be unpredictable. This ordering rule is a
problem in AspectJ’s model of composition.

Advice within an aspect. The precedence of advice within
an aspect is governed by the following rules, copied verba-
tim from [5]:

If two pieces of advice are defined in the same aspect, then
there are two cases:

• If either are after advice, then the one that appears
later in the aspect has precedence over the one that
appears earlier.

• Otherwise, then the one that appears earlier in the
aspect has precedence over the one that appears later.

These rules present two problems: 1) they can lead to prece-
dence circularity, i.e., the compiler does not know in which
order to weave advice, and 2) they cannot express all com-
position (weaving) orders. The circularity problem is well-
known [5], but the latter is not. A single aspect with three
pieces of advice (identified by subscripts) illustrates both:

aspect Circular {
void around1():execution(void test.main(..))
 { println(“A1”); proceed(); println(“A1”); }
after3(): execution(void test.main(..))
{ println(“A3”); }

void around2():execution(void test.main(..))
{ println(“A2”); proceed();println(“A2”); }

} (5)

First, when the rules are applied, a
circular precedence is created, as
illustrated in the diagram to the
right. To resolve the problem, pro-
grammers must manually reorder
advice and ensure the resulting order eliminates circularity
and leads to a semantically appropriate weaving for the task
at hand, a non-trivial and lengthy process.

Second, some composition orderings are impossible to real-
ize. Suppose we want the following output sequence (A2,
A1, <main>, A1, A3, A2), which is achieved by weaving
around1 first, then after3, and then around2. In what
order should advice around1, after3, and around2 be
listed in an aspect to achieve this weaving order?

The above rules dictate that around2 must be listed before
around1 (because around1 must be woven first). Advice
after3 must also appear before around2 (to weave
after3 first). Thus, the ordering so far is: after3 then
around2 then around1. But after3 must also appear after
around1 (for around1 to be woven before after3). It is
impossible for after3 to be both before around2 and after
around1. Thus no linear ordering of the advice around1,
around2, and after3 can achieve the desired weaving
order. It is challenging to apply the rules. We invite readers
to try it.

The only way to realize such a weaving is to store each
advice in a separate aspect and use declare precedence:

declare precedence: Around2, After3, Around1;

Pragmatically this means that it is in general impossible to
compose individual aspect files to produce a compound
aspect file.

In summary, the current rules for precedence make reason-
ing with multiple aspects unnecessarily difficult. But prece-
dence is not the only problem with aspect composition.
Fundamental software engineering practices such as step-
wise development are not satisfactorily supported by
AspectJ, as the following section shows.

2. Note that the mathematical concept of precedence has exactly the
opposite meaning than precedence in AspectJ. AspectJ precedence means
apply last, whereas mathematical precedence means apply first.
3. A special case is when an aspect extends another aspect, advice from a
subaspect has higher precedence (i.e., is woven later) than that of its
superaspect. This can be changed with declare precedence [5][18].

around1 after3

around2

x yhas precedence over
 3

3 An Incremental Development Example

Incremental or step-wise development is a fundamental and
common programming practice [7][10][27]. It aims at
building complex programs from simpler ones by progres-
sively adding programmatic details. We use class Point of
Section 2 but here we see it from an incremental develop-
ment perspective. Our example consists of four steps. We
use subscripts to denote the version of Point at a given
step and underline the code that is added by each increment.

Base. Class Point0 defines a 1-dimensional point with an
x coordinate and corresponding setX method:

class Point0 {
int x;
void setX(int v) { x = v; }

} (6)

First increment. Adds coordinate y and its setY method to
Point0. The result is:

class Point1 {
int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { y = v; }

}

Second increment. Counts how many times the set meth-
ods are executed. Adding both increments to base yields:

class Point2 {
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int counter = 0;

}

Third increment. Adds a color field and its correspond-
ing set method to Point2:

class Point3 {
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int counter = 0;
int color;
void setColor(int c) { color = c; }

}

Now let us consider how to implement this example using
AspectJ.

Base. Identical to (6) because classes are the base code of
AspectJ applications.

First increment. We define aspect TwoD with two introduc-
tions to class Point, one to add field y and the other to add
method setY:

aspect TwoD {
int Point.y;
void Point.setY(int v) { y = v; }

}

The command that composes class Point0 and aspect TwoD
and achieves a program equivalent to Point1 is:

ajc Point0.java TwoD.java

Second increment. Aspect Counter introduces field
counter to class Point and advises the execution of all
set methods to increment this counter4:

aspect Counter {
int Point.counter = 0;

 after(Point p) : execution(* Point.set*(..))
&& target(p)

{ p.counter++; }
} (7)

The composition that produces a program equivalent to
Point2 is:

ajc Point0.java TwoD.java Counter.java

Third increment. Aspect Color adds a color field and a
setColor method:

aspect Color {
int Point.color;
void Point.setColor(int c) { color = c; }
}

The composition of the base with the three increments is
achieved by:

ajc Point0.java TwoD.java Counter.java Color.java

However, this time the result is not Point3, but instead:

class Point3’ {
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int counter;
int color;
void setColor(int c){ color=c; counter++; }

}

That is, the setColor method of Point3’ increments
counter (underlined above) unlike Point3. Pragmatically
this means that developers face the paradox that building a
program incrementally using AspectJ and manually may
yield different results. To produce Point3 using AspectJ,
we should have used a more constrained version of
Counter that captures execution join points only of setX
and setY methods:

4. In AspectJ there are other ways to define Counter. Shortly, we will
present the rationale behind this implementation decision.
 4

aspect Counter {
int Point.counter = 0;

 after(Point p) : (execution(* Point.setX(..))
|| execution(* Point.setY(..)))
&& target(p)

{ p.counter++; }
} (8)

An obvious question is: why was Counter not defined like
(8) in the first place? Doing that certainly would solve this
problem, but we must consider other properties of software
modules that are also desirable for aspects. Among them is
reusability, i.e., we want to treat aspects as components as
in CBSE and reuse them as is. For example, suppose
Counter is redefined as (8), but now we want to build
program Point3’ instead. We would have to revise
Counter back to (7) as the version in (8) cannot be used.
The question is: why can we not reuse the same aspect for
both cases? The problem is that aspect weaving does not
distinguish among development stages of a program. We
show how to solve this problem in the next section.

4 An Algebraic Model of Aspects

In this section, we develop an algebraic model that reveals
the complexity of AspectJ composition. We then propose an
alternative model of composition that is based on program
transformations, retains the power of AspectJ, supports
step-wise development, simplifies advice precedence, and
facilitates reasoning using aspects. Our model has three
operations that build upon the notions of introduction,
advice, and weaving. We start with a model of introduction
and its associated operation.

4.1 Introduction Addition
An introduction is a function that maps an input program to
an augmented output program. Recall aspect TwoD and
class Point0 whose composition was modeled algebra-
ically as:

Point1 = TwoD (Point0) (9)

where Point0 and Point1 are values, TwoD is a function
that maps class Point0 to class Point1. Appealing to intu-
ition, we can rewrite (9) as a summation of the introduc-
tions of TwoD with Point0:

Point1 = TwoD + Point0 (10)

Operation + is called introduction addition. It is a binary
operation that performs disjoint union on program frag-
ments, which are sets of variables and methods. The intro-
ductions of an aspect define a program fragment, as they
too form a set of variables and methods. Variable and
method names can be qualified to indicate their class or
interface membership; this is especially useful when deal-
ing with multiple classes and packages.

+ denotes disjoint set union. To simplify notation we omit
set brackets {}. For example, aspect TwoD is the program
fragment (set) containing y and setY, and class Point0 is
the fragment (set) containing x and setX. Their addition is:

Point1 = TwoD + Point0
= (setY + y) + (setX + x)
= setY + y + setX + x

meaning Point1 = {setY, y, setX, x }.

As + is disjoint set union, introduction addition has the fol-
lowing properties:

Identity. 0 is the empty program (i.e., a program fragment
that contains no members). If X is a program fragment:

X = X + 0 = 0 + X

Commutativity. + is commutative because set union is
commutative.

Associativity. + is associative because set union is associa-
tive. This is a useful property, as it allows us to substitute
definitions. For example, TwoD is the sum:

TwoD = setY + y

which we could substitute into (10) to produce an equiva-
lent definition of Point1:

Point1 = setY + y + Point0

Operation + differs from AspectJ introduction in two
regards: a) Introduction addition does not support member
overriding. We believe overriding is rarely used and can be
circumvented with a more structured design. b) Introduc-
tion addition supports the introduction of new classes. This
distinction is important as adding functionality to programs
often requires new classes [20].5 For example, suppose pro-
gram fragment F contains class Z with member r and class
W with member t. This is written as:

F = Z.r + W.t

Fragment G contains class Q with member u and class W
with member v is:

G = Q.u + W.v

The introduction summation of F and G is their union: class
Z with member r, class W with members t and v, and class Q
with member u:

F + G = (Z.r + W.t) + (Q.u + W.v)
= Z.r + (W.t + W.v) + Q.u

That is, the set of terms {W.t, W.v} with the same class
prefix W are members of class W. In general, + allows us to

5. Aspects can encapsulate nested classes and nested interfaces, but not
classes and interfaces that are not nested.
 5

add any number of new classes, interfaces, and new mem-
bers to existing program fragments.

4.2 Advice Addition
Recall the Logging aspect:

aspect Logging {
after(): execution(* Point.set*(..))
{ println(“Logged”); }

}

Such advice can be regarded as an implicit method intro-
duction and an implicit call to such method. For example,
when woven into class Point0 in (6), aspect Logging can
be regarded as the transformation that results in:

class Point {
int x;
void setX(int v) { x = v; printLog(); }
static void printLog(){ println(“Logged”);}

}

Method printLog is an explicit method that contains the
advice body (the log message) and it is called at the end of
the body of method setX (after the method execution).

Pure advice is a named advice that separates the two con-
cerns: method introduction and its corresponding method
call. With this separation, we can conceptually rewrite
aspect Logging as:

aspect Logging {
static void Point.printLog()
{ println(“Logged”); }

Log is after():execution(* Point.set*(..))
--> Point.printLog();

}

Log is the name given to the pure advice, printLog is the
method that contains the advice body, and the --> arrow
indicates the method call. We made this separation syntacti-
cally to help visualize our analysis.

We model an aspect as a vector of two entries. The first
entry, called the advice part, is the aspect’s advice and the
second entry, called the introduction part, is the aspect’s
introductions. The vector for Logging is:

Logging = [Log, printLog]

As another example, consider aspect Counter of (7). A
pure advice version of it is:

aspect Counter {
CounterP is after(Point p):

execution(* Point.set*(..)) && target(p)
--> Point.counterInc(p);

static void Point.counterInc(Point p)
 { p.counter++; }
int Point.counter = 0;

}

and its vector is:

Counter = [CounterP, counterInc + counter]

Note that the second entry of the vector adds two introduc-
tions counterInc (the method of the advice body) and
counter (the variable).

Consider the Circular aspect of (5) whose pure version
could be:

aspect Circular {
pointcut pcd() : execution(void test.main(..));
static void test.m1(){ ... }
static void test.m3() { ... }
static void test.m2(){ ... }
a1 is void around1(): pcd() --> test.m1();
a3 is after3(): pcd() --> test.m3();
a2 is void around2(): pcd() --> test.m2();

}

This aspect contains several pieces of advice. Its vector
requires another operation that we call advice addition.
Denoted by ⊕ , advice addition models advice precedence.
⊕ has simple semantics: a3⊕ a1 means apply advice a1
first and then a3. Suppose advice is woven in the textual
order listed in an aspect. Circular would have the vector:

Circular = [a2 ⊕ a3 ⊕ a1, m2 + m3 + m1]

Pure advice is a function and ⊕ denotes function composi-
tion. Advice addition has the following properties:

Identity. 1 is the null pure advice (i.e., pure advice that
does not capture any join points). Null advice corresponds
to the identity transformation; its application does not affect
a program. If a is pure advice:

a = a ⊕ 1 = 1 ⊕ a

Not Commutative. The order in which advice is applied
matters. ⊕ is not commutative, just as function composition
is not commutative.6

Associativity. ⊕ is associative as function composition is
associative. Let a1, a2, and a3 be pieces of pure advice.
The following equalities hold:

a3 ⊕ a2 ⊕ a1= (a3 ⊕ (a2 ⊕ a1))
= ((a3 ⊕ a2) ⊕ a1)

Associativity allows us to substitute definitions. For exam-
ple, if a21 = a2⊕ a1 then:

a3 ⊕ a21 = a3 ⊕ (a2 ⊕ a1)

4.3 Advice Weaving
Advice weaving, denoted by *, is the operation of trans-
forming an input program into a program with advice code

6. Two pieces of advice commute when they capture disjoint sets of join
points.
 6

inserted. Suppose a is pure advice and P is a program. The
result of applying (weaving) a into P is program P’:

P’ = a*P

Advice weaving has the following properties:

Identity. 1 is the null pure advice — again, pure advice that
does not capture any join points. If P is a program fragment,
P = 1*P. That is, P does not change when woven with 1.

Right Associative. * is right associative. Let a2 and a1 be
pure advice and P be a program. a2*a1*P means apply a1
to P first, then apply a2. Algebraically:

a2 * a1 * P = (a2 * (a1 * P))

Distributes over introduction addition. Advice weaving
distributes over introduction addition, i.e., * distributes
over +. Let P be a program, a be pure advice, and P’=a*P.
Now suppose P=X+Y+Z, where X, Y, and Z are arbitrary pro-
gram fragments. We have:

P’ = a*P
= a*(X + Y + Z)
= a*X + a*Y + a*Z

Advice applies to all join points in the program to which it
is woven. That is, advice is woven into all program frag-
ments (classes, interfaces, and introductions) that appear in
the right-hand operand of operation *. Thus it is immaterial
if the program fragment is viewed as a whole (P) or as the
summation of its parts (X+Y+Z). This distributivity property
is central to AOP.

Weaving Axiom. Let a1, a2, a3, and a4 be pure advice
and P be a program. The weaving axiom establishes that
advice is woven from right to left:

(a4 ⊕ a3 ⊕ a2 ⊕ a1) * P
= (a4 ⊕ a3 ⊕ a2)* a1 * P
= (a4 ⊕ a3)* a2 * a1 * P
= a4 * a3 * a2 * a1 * P

All aspect compilers implement the Weaving Axiom —
they all weave advice in weaving order.

Given the operations +, *, and ⊕ , we are now ready to
model aspect composition.

4.4 Aspect Composition
Let aspects A1 and A2 be modeled by the vectors
A1=[a1,i1] and A2=[a2,i2]. We denote the AspectJ
aspect composition operation by ◊. The AspectJ composi-
tion of A2 with A1 (with A1 being applied first) is:

A2 ◊ A1 = [a2,i2] ◊[a1,i1]
= [a2 ⊕ a1, i2 + i1]

◊ is similar to vector addition; the coordinates of vectors are
summed: + sums program fragments, ⊕ sums advice in
weaving order.

As another example, program P is modeled by the vector
[1,p]. 1 is null pure advice and p is the introduction sum
of the members of P. Weaving aspect A1 into P and then
weaving aspect A2 is:

A2 ◊ A1 ◊ P
= [a2,i2] ◊ [a1,i1] ◊ [1,p]
= [a2 ⊕ a1 ⊕ 1, i2 + i1 + p]
= [a2 ⊕ a1, i2 + i1 + p]

Continuing with the vector analogy, we denote the program
that results from weaving pure advice into program frag-
ments as the length of the vector. Let V be a vector, its
length |V| is computed by:

|V| = | [a,i] | = a*i

That is, the length of a vector is its advice part woven with
its introduction part. This follows from the fact that aspects
can advise all join points of a program7. Thus the program
that is produced by weaving A1 and then A2 into P is the
expression:

|A2 ◊ A1 ◊ P| = a2 * a1 * (i2 + i1 + p) (11)

More generally, for aspects A1...An to be woven in this
order into P, the result is:

|An ◊ An-1 ◊ ... ◊ A1 ◊ P|
= (an*an-1*...a1)*(in+in-1+...+i1+p) (12)

That is, the result of weaving a sequence of aspects into a
program equals the weaving of advice in weaving order into
the program that is the introduction sum of the program’s
members and aspect introductions. (12) represents the
“shape” or architecture of any program produced by
AspectJ. We refer to this model of composition as the Vec-
tor Model.

We can use this result to identify the source of the problems
noted earlier in Section 3 about incremental program devel-
opment using AspectJ. It can be seen in the expansion of
(11):

|A2 ◊ A1 ◊ P|
= a2 * a1 * (i2 + i1 + p)
= a2*a1*i2 + a2*a1*i1 + a2*a1*p

The offending term is underlined. It means that to apply
aspect A2, the programmer is required to know how an
advice from a previous development step (a1) affects an
introduction added in the current step (i2). More generally,
the products that cause problems in incremental develop-
ment are underlined below:

7. Readers familiar with advice that advises itself will recognize that the
pure advice part advises its introduction part.
 7

...*ak+2*ak+1*ak*ak-1*...*a2*a1*ik + ...

In other words, a programmer needs to know how previ-
ously applied pieces of pure advice aj affect later introduc-
tions ik where j < k. These are the terms that make step-
wise development difficult. This problem is aggravated
when a large number of aspects are composed and the
development involves multiple steps.

4.5 The Functional Model
An alternative way to compose aspects is to equate aspect
composition with function composition (hence the name of
the model). Let aspect A=[a,i]. We can model A as the
function:

A(x) = a * (i + x)

That is, A adds its introductions (i) to its program fragment
input (x) before weaving its advice (a). So applying aspect
A1 to program P and then applying aspect A2 is:

A2(A1(P)) = a2*(i2 + a1 * (i1 + p))
= a2*i2 + a2*a1*i1 + a2*a1*p (13)

Note that the offending pure advice a1 disappears from the
first summand (a2*i2). This generalizes to the composition
of any number of aspects: the products that make step-wise
development difficult are never generated.

We now have two different models of aspect composition:
the Functional Model (above) and the Vector Model of
AspectJ. An obvious question arises: which model is more
expressive?

Theorem. The Functional Model can synthesize more
programs than the Vector Model provided that aspects
are reused as is (i.e., pure advice and introductions are
not modified).

Proof. An arbitrary Vector Model expression can be
mechanically translated into an equivalent Functional
Model expression. The figure below shows how to do
this for the expression |A2◊A1◊P|.

A2 is decomposed into its pure advice and introduction
parts; the same for A1. Each part is a function, which
when composed with p, sums introductions first and
weaves advice last, yielding the program that would
have been produced by AspectJ. This is a mechanical
translation that can be applied to any Vector Model
expression. However, translating an arbitrary Function

Model expression into an Vector Model expression is
impossible reusing aspects as is. Expression (13) is a
program shape that cannot be produced by the Vector
Model, because pure advice affects all introductions
regardless of when and how they are added.♦

We can demonstrate the intuition behind the mathematics
by recalling the Point example of Section 3. Let us add a
third dimension to Point, which is defined by aspect
ThreeD that introduces a z variable and setZ method.
Assuming that the Counter aspect advises all set methods
as in (7), we can build at least 4 programs:

(a) Color(ThreeD(TwoD(Counter(Point0))))
(b) Color(ThreeD(Counter(TwoD(Point0))))
(c) Color(Counter(ThreeD(TwoD(Point0))))
(d) Counter(Color(ThreeD(TwoD(Point0))))

(a) is a program that counts the executions of setX. (b)
counts the executions of setX and setY. (c) counts the
executions of setX, setY, and setZ. (d) counts the execu-
tion of all set methods. Each of these programs is synthe-
sized by reusing and composing Counter as is. Using
AspectJ, these four specifications would produce the same
program — all would produce program (d). To build all
four programs would require four different versions of
Counter. This example illustrates the Functional Model to
be more expressive than the Vector Model for aspect reuse.

To summarize, problems in step-wise development arise
using AspectJ when pointcuts are not bounded to a set of
classes, methods, and variables at a specific stage of pro-
gram development. Common examples are pointcuts that
capture the set of all calls to one or more methods, and
wildcard patterns. Subsequent introductions that are cap-
tured by these pointcuts give rise to the problems discussed
here. These problems are avoided using the Functional
Model.

5 Perspective

We are now investigating how to generalize the Functional
Model to include other AspectJ capabilities such as
declare parents, abstract aspects, abstract pointcuts,
and aspect inheritance. Our goal is to build tools based on
our model and to evaluate their potential in an experimental
setting. To this end, we are collaborating with the Aspect
Bench Compiler (abc) research group to create a joint
project [6][3]. Even at this early stage, we can gauge the
utility of our results and its relationship to other work.

5.1 Significance of Results
Our research can improve aspect composition in AspectJ in
the following ways. First, the precedence rules for ordering
pieces of advice within an aspect (Section 2.3) can be elim-
inated. We propose a simpler rule: apply advice in order in

a2∗(0 + a1*(0 + 1*(i2 + 1*(i1+p))))=

|A2 ◊ A1 ◊ P|

[1,i2] [1,i1][a1,0][a2,0] [1, p]• • ••

(a2⊕ a1)*(i2+i1+p)=
 8

which it is listed in an aspect file. We believe this rule will
simplify the ordering algorithms currently utilized by
aspect compilers and will help AspectJ programmers by
reducing the effort to determine a composition order. As we
have shown, no tool can compose aspects into a single com-
pound aspect with the current set of precedence rules. With
our changes, the composition of aspect files is possible.

Second, the rules that AspectJ uses to assign precedence to
aspect files can also be eliminated. We propose that a prece-
dence be declared for all aspect files to define their compo-
sition order. Alternatively, the compiler could raise an error
when users fail to specify an order and where ordering mat-
ters. Again, we believe this change will simplify advice
ordering algorithms for multiple aspect files and will also
help AspectJ programmers because now compiler output
will be predictable.

AOP researchers have raised the issue that it should be
unnecessary to specify a composition ordering when
aspects are provably commutative. We agree. In cases
where pointcuts have disjoint sets of join points their corre-
sponding advice is commutative. Existing tool support can
help identify these situations [5]. However, it is still neces-
sary to specify when these pieces of advice are to be
applied. This may require an enhancement of existing tools.

5.2 Related Work
The relationship between program transformations and
aspects is not new. Lämmel studied the implementation of
aspects as programs transformations in the declarative para-
digm [19]. Kniesel et. al developed JMangler, a backend
tool to support AOP that relies in transformations at the
byte-code level [17][11]. We extend these ideas by showing
how a program transformation view can lead to an algebraic
model of aspect composition.

McEachen and Alexander address the problems caused by
weaving bytecode that already contains woven aspects [22].
A foreign aspect is an aspect that has been woven to a class
(or classes) and whose resulting bytecode is later imported
by a third party that has no access to the aspect’s source
code. Foreign aspects are problematic as they can: a) not
capture all intended join points, b) capture unintended join
points, c) inadvertently interact with other aspects. The
authors advocate developer guidelines to design carefully
the scope of pointcuts, use of abstract pointcuts to control
the set of join points advisable by foreign aspects, and pro-
mote adequate pointcut documentation. Our work provides
a foundation to understand the problems caused by foreign
aspects and a solution to eliminate them. The Functional
Model can be enforced by a compiler whereas enforcing
guidelines are the responsibility of programmers.

Modular reasoning with AOP has been a controversial issue
[9]. Kiczales and Mezini claim that in the presence of
aspects “the complete interface of a module can only be
determined once the complete configuration of modules in
the system is known” [16]. In other words, aspects entail
global reasoning that they define as “having to examine all
the modules in the system or subsystems”. The Vector
Model of AspectJ mathematically corroborates their claim
and shows the negative implications it has for incremental
development. The Functional Model of composition elimi-
nates the need of global reasoning without restricting the
power of AspectJ.

Rinard et al. propose a framework to classify aspects based
on their interactions with other aspects and base code [25].
They present program analysis tool that alerts users of cases
where modular reasoning (a user-defined property) could
be compromised so that they can take corrective action
when deemed necessary. Open modules proposes a module
system whereby an interface describes the pointcuts and
join points that are advisable by the pieces of advice of
other modules thus promoting modular reasoning about
aspects [1].

Complementary to our approach, there is work that aims to
improve aspect reuse by making significant language
changes. Gybels and Brichau propose a logic-based cross-
cut language to better decouple aspects from programs [12].
Rho and Kniesel propose aspect uniform genericity, appli-
cation of logic metavariables in language constructs, as a
way to promote reuse and to significantly expand the
generic capabilities of AspectJ [26]. Incidentally, they too
take a transformation view of aspects.

Classpects are an attempt at unifying aspects and classes
[24]. Classpects are classes enhanced with bindings. A
binding associates an advice type (before, after,
around) and a pointcut with a call to a list of methods.
These methods replace the advice body, similar to what we
did when we transformed advice into pure advice.

Feature Oriented Programming (FOP) is the study of fea-
ture modules for the synthesis of product-line programs [7].
A feature is an increment in program functionality. Features
in FOP are composed by function composition, yielding
programs whose semantics are predictable and unambigu-
ous. A question often raised in the AOP community is:
what is the difference between features and aspects? We
believe there was no clear answer until this work. Aspects
and features are both increments in program functionality.
What is different is their composition models: features use
the Functional Model, aspects use the Vector Model.
Because their composition models differ, FOP and AOP are
not directly comparable, that is FOP is not a subset of AOP,
and vice versa. However, we believe both are instances of a
 9

more general model, one that uses the full power of point-
cuts and uses function composition to compose aspects.

The full implementation of the Functional Model will
require advances in both aspect compilers and Java compil-
ers. One of the issues is separate compilation [8][2], which
is gaining attention in the programming languages commu-
nity. Our need for separate compilation comes from the
commutativity of operation +, which permits the introduc-
tion of a method before introducing other members on
which the former may depend. The validation of the Func-
tional Model does not require separate compilation of
aspects as we can assume the existence of source code.

6 Conclusions

Aspect Oriented Programming should be in the repertoire
of tools and techniques used by software developers. But
the current model and flagship tool of AOP, AspectJ, has
significant limitations: aspect reuse is hard, woven pro-
grams can have unpredictable behavior, modular reasoning
using aspects is difficult, and step-wise development of pro-
grams is error-prone. We explored these limitations and
found that the primary source of complexity in AspectJ is
its model of aspect composition.

To address these problems, we took an unconventional
approach that equates aspects with program transforma-
tions. Doing so allowed us to raise aspects from code arti-
facts to mathematical entities (functions from programs to
programs) and enabled us to develop an algebra that mod-
eled aspect composition. Our algebra not only exposed the
source of the problems in aspect composition, it also
revealed a solution. By equating aspect composition with
function composition, the problems were eliminated and
the power of AspectJ was preserved.

Our goal is to build tools to validate our algebra. While
there is considerable work ahead, from our experience in
program synthesis of product-lines [7], we are confident
this goal can be accomplished. Further, we believe that our
work lays an algebraic foundation on which to build and
understand AOP tools.

Acknowledgements. We thank Oege de Moor, Chris Len-
gauer, Axel Rauschmayer, Jim Cordy, and Dewayne Perry
for their comments on drafts of this paper.

This research is sponsored in part by NSF's Science of
Design Project #CCF-0438786.

7 References

[1] J. Aldrich. Open Modules: Modular Reasoning about Advice.
ECOOP 2005.

[2] D. Ancona, G. Lagorio, and E. Zucca, “True Separate Compi-
lation of Java Classes”, PPDP 2002.

[3] P. Avgustinov, et al., “abc: An Extensible AspectJ Compiler”,
AOSD 2005, Chicago, USA.

[4] P. Avgustinov, et. al. “Optimizing AspectJ”, PLDI 2005.
[5] AspectJ Manual, http://www.eclipse.org/aspectj/

doc/progguide/language.html.
[6] Aspect Bench Compiler. http://www.aspectbench.org
[7] D. Batory, J.N. Sarvela, A. Rauschmayer, “Scaling Step-Wise

Refinement”, IEEE TSE, June 2004.
[8] L. Cardelli, “Program Fragments, Linking, and Modulariza-

tion”, POPL 97.
[9] C. Clifton, G.T. Leavens. “Obliviousness, Modular Reason-

ing, and the Behavioral Subtyping Analogy”. SPLAT 2003.
[10] E.W. Dijkstra, A Discipline of Programming. Prentice Hall,

1976.
[11] R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented

Software Development. Addison-Wesley, 2004
[12] K. Gybels and J. Brichau, “Arranging Language Features for

More Robust Pattern-based crosscuts”, AOSD 2003.
[13] K Gybels and K. Ostermann, discussions at SPLAT 2005.
[14] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.

AOSD 2004.
[15] G. Kiczales, personal email communication, 2003.
[16] G. Kiczales, M. Mezini. “Aspect-Oriented Programming and

Modular Reasoning”. ICSE 2005.
[17] G. Kniesel, P. Costanza, M. Austermann. “JMangler - A

Framework for Load-Time Transformation of Java Class
Files”. SCAM 2001.

[18] R. Laddad. AspectJ in Action. Practical Aspect-Oriented
Programming. Manning, 2003.

[19] R. Laemmel, “Declarative Aspect-Oriented Programming”,
PEPM 1999.

[20] R.E. Lopez-Herrejon, D. Batory, W. Cook. “Evaluating Sup-
port for Features in Advanced Modularization Techniques”.
ECOOP 2005.

[21] H. Masuhara, G. Kiczales, “Modeling Crosscuting Aspect-
Oriented Mechanisms”. ECOOP 2003.

[22] M. McEachen, R.T. Alexander. Distributing Classes wth
Woven Concerns - An Exploration of Potential Fault Scenar-
ios. AOSD 2005.

[23] Partsch, H., Steinbrüggen, R.: Program Transformation Sys-
tems. ACM Computing Surveys, September (1983).

[24] H. Rajan, K.J. Sullivan, “Classpects: Unifying Aspect- and
Object-Oriented Programming”, ICSE 2005.

[25] M. Rinard, A. Salcianu, S. Bugrara. “A Classification System
and Analysis for Aspect-Oriented Programs”, FSE 2004.

[26] T. Rho, G. Kniesel. LogicAJ - A Uniformly Generic Aspect
Language. Submitted for publication.

[27] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 2002.

[28] M. Wand, G. Kiczales, C. Dutchyn, “A Semantics for Advice
and Dynamic Join Points in Aspect Oriented Programming”,
TOPLAS 2004.
 10

	Taming Aspect Composition: A Functional Approach
	Roberto E. Lopez-Herrejon and Don Batory Department of Computer Sciences University of Texas at A...
	Abstract
	1 Introduction
	2 AspectJ Overview
	2.1 Static Crosscuts
	class Point { ��int x; ��void setX(int v) { x = v; } } (1)
	class Point’ { ��int x; ��void setX(int v) { x = v; } ��int y; ��void setY(int v) { y = v; } } (2)

	2.2 Dynamic Crosscuts
	aspect Logging {�� ��after():��execution(* Point.set*(..)) ��{ println(“Logged”); } } (3)
	class Point” { ��int x; ��void setX(int v) {x = v; println(“Logged”);�} ��int y; ��void setY(int ...

	2.3 Advice Precedence
	aspect Circular { ��void around1():execution(void test.main(..)) �� { println(“A1”); proceed(); p...

	3 An Incremental Development Example
	class Point0 { ���int x; ���void setX(int v) { x = v; } } (6)
	aspect Counter { ��int Point.counter = 0; � after(Point p) : execution(* Point.set*(..)) ��������...
	aspect Counter { ��int Point.counter = 0; � after(Point p) : (execution(* Point.setX(..)) || exec...

	4 An Algebraic Model of Aspects
	4.1 Introduction Addition
	Point1 = TwoD (Point0) (9)
	Point1 = TwoD + Point0 (10)

	4.2 Advice Addition
	4.3 Advice Weaving
	4.4 Aspect Composition
	|A2 ‡ A1 ‡ P| = a2 * a1 * (i2 + i1 + p) (11)
	|An ‡ An-1 ‡ ... ‡ A1 ‡ P| �����= (an*an-1*...a1)*(in+in-1+...+i1+p) (12)

	4.5 The Functional Model
	A2(A1(P)) = a2*(i2 + a1 * (i1 + p)) = a2*i2 + a2*a1*i1 + a2*a1*p (13)

	5 Perspective
	5.1 Significance of Results
	5.2 Related Work

	6 Conclusions
	7 References
	[1] J. Aldrich. Open Modules: Modular Reasoning about Advice. ECOOP 2005.
	[2] D. Ancona, G. Lagorio, and E. Zucca, “True Separate Compilation of Java Classes”, PPDP 2002.
	[3] P. Avgustinov, et al., “abc: An Extensible AspectJ Compiler”, AOSD 2005, Chicago, USA.
	[4] P. Avgustinov, et. al. “Optimizing AspectJ”, PLDI 2005.
	[5] AspectJ Manual, http://www.eclipse.org/aspectj/ doc/progguide/language.html.
	[6] Aspect Bench Compiler. http://www.aspectbench.org
	[7] D. Batory, J.N. Sarvela, A. Rauschmayer, “Scaling Step-Wise Refinement”, IEEE TSE, June 2004.
	[8] L. Cardelli, “Program Fragments, Linking, and Modularization”, POPL 97.
	[9] C. Clifton, G.T. Leavens. “Obliviousness, Modular Reasoning, and the Behavioral Subtyping Ana...
	[10] E.W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.
	[11] R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software Development. Addison-We...
	[12] K. Gybels and J. Brichau, “Arranging Language Features for More Robust Pattern-based crosscu...
	[13] K Gybels and K. Ostermann, discussions at SPLAT 2005.
	[14] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. AOSD 2004.
	[15] G. Kiczales, personal email communication, 2003.
	[16] G. Kiczales, M. Mezini. “Aspect-Oriented Programming and Modular Reasoning”. ICSE 2005.
	[17] G. Kniesel, P. Costanza, M. Austermann. “JMangler - A Framework for Load-Time Transformation...
	[18] R. Laddad. AspectJ in Action. Practical Aspect-Oriented Programming. Manning, 2003.
	[19] R. Laemmel, “Declarative Aspect-Oriented Programming”, PEPM 1999.
	[20] R.E. Lopez-Herrejon, D. Batory, W. Cook. “Evaluating Support for Features in Advanced Modula...
	[21] H. Masuhara, G. Kiczales, “Modeling Crosscuting Aspect- Oriented Mechanisms”. ECOOP 2003.
	[22] M. McEachen, R.T. Alexander. Distributing Classes wth Woven Concerns - An Exploration of Pot...
	[23] Partsch, H., Steinbrüggen, R.: Program Transformation Systems. ACM Computing Surveys, Septem...
	[24] H. Rajan, K.J. Sullivan, “Classpects: Unifying Aspect- and Object-Oriented Programming”, ICS...
	[25] M. Rinard, A. Salcianu, S. Bugrara. “A Classification System and Analysis for Aspect-Oriente...
	[26] T. Rho, G. Kniesel. LogicAJ - A Uniformly Generic Aspect Language. Submitted for publication.
	[27] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison-Wesley, 2002.
	[28] M. Wand, G. Kiczales, C. Dutchyn, “A Semantics for Advice and Dynamic Join Points in Aspect ...

