Discovering Conditions for Intermediate
Reinforcement with Causal Models

Irvin Hwang

May 18, 2005

Abstract

Learning to perform a task in an environment with sparse feedback
is a difficult problem. While several approaches for increasing feedback
during learning have been taken, these methods suffer from the depen-
dency on human knowledge and engineering to find good solutions. We
propose using causal models to increase the amount of feedback that will
improve learning. This approach does not require domain-specific human
engineering because causal models can be constructed directly from the
environment using empirical data. Preliminary experiments and results
show causal models can be used to automatically discover conditions for
applying intermediate feedback that accelerate learning.

1 Introduction

Reinforcement learning (RL) is a field of artificial intelligence that deals with
the design and implementation of trial and error learning algorithms. Having
programs that can learn through interaction with an environment rather than
through explicit instruction reduces human effort required to solve problems and
also opens up the possibility of discovering better than human solutions [1, 2].
The lack of human interaction makes RL difficult because feedback during the
learning process can be very sparse and may not contain a lot information. Often
times tasks are formulated such that reward (a single numerical value indicating
correctness) is only received after successful completion of a complicated task.
Our approach to improving RL is to increase the amount of feedback received
during the learning process while keeeping the amount of human interaction to a
minimum. We increase the amount of feedback received in each episode of a task
by exploiting dependence relationships between environment variables. Human
engineering is minimized by having the agents automatically build graphical
models of the dependence relations through exploration and observation of their
environment.

The notion of increasing feedback during the learning process is not new
and has been shown to be beneficial for RL. Methods such as progress estima-
tors, heterogeneous rewards , and hierarchical task decomposition [3, 4] improve
learning through increased feedback, but require a priori knowledge of when and
how to apply intermediate reinforcement, which goes against the direction of RL
in minimizing human engineering. More recent work on increasing feedback ap-
proach this problem by finding critical bottleneck states that must be reached

before the goal state [5]. Our approach differs in that we focus on the relations
between individual variable values and reward, which is more appropriate for
certain tasks than using bottleneck states. Consider the domain of keepaway
soccer. A behavior that you might want to positively reinforce is having a ball-
keeper maximize her distance from the taker. In this case, there does not exist
a single particular sub-goal state for which intermediate reinforcement should
be applied upon reaching; instead the condition for feedback is dependent on
a single state feature (distance to the ball) and so a broad sub-space of the
entire state space contains good candidate ”sub-goal” states. The idea of using
environment variable values as conditions for applying feedback captures this
idea.

The use of graphical models for understanding the relationships between
variables has a rich background as evidenced by the prevalence of Bayesian
networks [6]. The structure and orientation of probabilistic graphical models can
be interpreted as reprsentation of causal relationships between variables [7, §].
Research into the field of causality has produced algorithms for automatically
determing graphical model structure from empirical data. The main difficulty
with learning in sparse feedback environments is described as the temporal credit
problem. The temporal credit problem deals with how to assign credit to critical
actions in achieving a task given an entire sequence of relevant and possibly
irrelevant actions. This problem can naturally be reframed as a question of
causality i.e. what actions cause success in a task.

The main issue explored in this work is whether applying causal models to
reinforcement learning is a promising approach to the temporal credit problem
and if so how might one implement a solution. Preliminary experimental results
show causal models can identify important dependence relationships between
variables in simple domains. The paper is structured as follows: we discuss
background material on reinforcement learning, graphical models, and statistical
testing in section 2. Section 3 describes the approach used for applying graphical
models in RL, we examine experiments and their results in section 4, and we
end with conclusions and discussion in section 5.

2 Background

In this section we present brief introductions to relevant techniques from the
fields of reinforcement learning, graphical models, and statistics. Each descrip-
tion consists of brief idea sketches for intuition along with references for further
understanding. Algorithms for the techniques actually used in this project have
been included in the appendix.

2.1 Reinforcement Learning

The purpose of reinforcement learning is to find a policy for choosing actions that
maximize the agent’s reward. A common description of reinforcement learning
is as follows:

o A set of states S

o A set of actions A

e A reward signal REWARD

Each state is defined by the values the environment variables (also called
state variables) take on in a given instance. The reward signal is a function,
REWARD : S — R, from the set of states to the reals. Our goal can be
defined as learning a policy, 7 : S — A, that determines what action an agent
should take given its current state. A common approach to learning such a 7 is
to assign values to state-action pairs based on the expected reward. So for each
state we give values to each of the actions that may be taken from the state,
with higher values given to actions that expect to produce a bigger reward and
lower values given to actions expected to return less of a reward. We denote
the state-action values as Q(s, a) and store them in what is known as a Q-table.
The policy function, 7(s), works by choosing the a that maximizes Q(s, a).

We use a fairly standard method of temporal-difference learning called SARSA
for assigning the Q(s, a) values. A description of the SARSA algorithm from [9]
can be found in the appendix. More information on this method and reinforce-
ment learning in general can be found in the excellent sources [10, 9], but will
not be gone into more detail here as it is not the focus of this work.

2.2 Graphical Models

We use graphical models in our approach to represent the dependence rela-
tions between variable values. A common probabilistic graphical model is the
Bayesian network. In a Bayesian network each node in the graph represents a
different variable and the directed edges between nodes denote what needs to be
factored into calculating the distribution of a variable. A simple example would
be the directed graph consisting of two nodes X and Y. If Y is the parent of X
then the directed edge tells us the distribution of X is dependent on Y i.e. we
have the conditional probability distribution P(X|Y). The utility of the graphs
comes from the Markov property between parent and child nodes. This means
that the distribution of each node is independent of all its non-descendents given
its parents and thus creates an abbreviated joint probability distribution over all
variables. In order to attain complete information about a single variable/node,
only the parent nodes need be examined as opposed to the whole graph.

The idea that a node in a probabilistic graphical model is only dependent
on its parents leads us to the causal interpretation of the graph structure and
orientation of edges. This interpretation allows us to apply properties of causal-
ity (e.g. transitive, asymmetric, non-reflexive) to help determine the structure
of a graphical model from empirical data. The causal properties constrain the
possible configurations of structure and orientation. These constraints com-
bined with conditional independence statements about the domain are used in
several algorithms to discover the causal structure between variables [7, 8, 11].
The general idea is to use pair-wise dependence tests between variables to iden-
tify neighboring nodes in the graph (if two variables are independent then they
should not be connected). Once this initial structure is laid down, the con-
straints of causality are used to orient edges and prune the structure. We use
the grow-shrink(GS) algorithm for constructing causal models in our applica-
tion to reinforcement learning. A description of the algorithm from [11] can be
found in the appendix and proofs of correctness and complexity analysis can be
found in [11].

The constraint-based algorithms for determining graphical model structure
are reliant on conditional indepenedence tests between variables. The fact that
RL data comes in the form of a time-series (an agent’s periodic observations
of its environment) is problematic for the calculation of conditional probability.
We discuss the problem and present a solution based on statistical testing in
section 3.2. A brief presentation of the statistical tests used is covered in the
next subsection.

2.3 Statistical Testing

Correlated sample tests are statistical methods for determining the significance
of the difference between the means of two correlated samples. These tests
are useful for examining a population before and after the occurence of some
variable in order to determine whether the variable had a significant effect upon
a population.

A simple illustration of this idea is answering the question of whether people
are taller with their shoes on as opposed to with their shoes off [12]. The
obvious answer is yes, but as we will shortly see, a simple misapplication of
statistical tests can give us a very non-intuitive answer. In this example we
have two samples; sample A consists of the height measurements for people
without shoes. Sample B is the set of height measurements for the same people
except with shoes. If we try and apply a standard student t-test for determining
the difference between the means of the two samples, we will probably find that
the difference is quite insignificant. This is because the small mean difference is
washed out by the large internal variability of the samples. Since we know the
samples have paired data (the measurements of the same individual from both
samples) we can overcome this problem by examining the difference between the
pairs. If the two samples truly have the same mean then the difference across
all pairs should be zero. This fact is used to determine the significance of the
difference between correlated samples.

Two tests for performing this comparision are the paired student t-test and
the Wilcoxon signed rank test. The difference between these methods is the stu-
dent t-test is parametric (i.e. it makes assumptions about the parameters of the
population distribution) and the Wilcoxon signed rank test is non-parametric
(i.e. it does not make these assumptions). The assumptions made for the
student t-test are that the scale of measurement is an equal-interval scale, the
differences between the paired values have been randomly drawn, and the source
population of the differences can be assumed to have a normal distribtuion [12].
The Wilcoxon signed-rank test is an alternative for when these assumptions do
not hold. The nice thing about both these tests is that as the sample size passes
a small number (these tests are designed for small sample testing) they perform
virtually the same so we can choose either test for our purposes. We use the
paired student t-test in our application and the algorithm can be found in the
appendix (taken from [12]). More details on these tests can be found in [12].

3 Applying Graphical Models to Reinforcement
Learning

In this section we present a method for applying causal models to reinforcement
learning. The first subsection gives the high level application of how a causal
model is used during the learning process along with an algorithm for applica-
tion. The second section describes the difficulties of applying standard model
construction algorithms to the RL domain and presents a possible approach
using statistical testing.

3.1 Internal Intermediate Reinforcement

We approach the problem of increasing feedback during learning by exploiting
dependence relationships in the environment. The general idea is to determine
what state variable values have influence on reward then use those values as
conditions for applying intermediate feedback. Intuitively, we can think of this
process as first finding the causes of reward and creating sub-goals around those
causes (e.g. if our goal is g and ¢ causes g then make ¢ a sub-goal). In theory,
the process can be applied recursively so that we find intermediate feedback for
the sub-goals ad infinum until the problem has been completely decomposed
(e.g. if ¢ is a subgoal because it causes the original goal g, determine what
causes ¢ and make that a sub-sub-goal).

We call this internal intermediate reinforcement because in standard RL,
reward is allocated externally by the agent’s environment. The feedback we
propose for achieving the sub-goals (described above) comes in between the
external rewards, hence the intermediate, and is applied by the agent internally
to itself. The significant difference between these two types of feedback is that
the set of conditions for external reward must be defined using human knowledge
of the domain whereas the conditions for the internal rewards are dependent on
the agent’s interaction and observation of the environment. This means the
definition of conditions for internal rewards do not require additional human
engineering.

The intuition behind using causal models in RL is straight-forward. Learning
to complete a complicated task with sparse feedback is difficult because we are
searching in a very large state space for reward state(s). By finding out what
state values increase the probability of receiving reward, we learn what parts of
the state space have high probability of being close to the goal state. Learning
to states with these dependent values is essentially learning to move to a part
of the state-space that is close to the goal state, which makes searching for goal
easier.

An algorithm we shall call CMRL (for Causal Model Reinforcement Learn-
ing) is shown in Figure 1. This algorithm applies to RL a graphical model
representing dependence relationships between variable values. Each node in
the graph represents a variable value and the directed edges represent a depen-
dence relation between two variable values. The general idea is for the agent
to check the model upon entering a new state and see if it should apply in-
termediate reward to itself. The model contains information on what variable
values directly or indirectly increase the probability of high reward occuring in
the future (in our case high reward is 1 and low/no reward is 0). The nodes

that positively influence reward (we shall call these ”influential nodes”) are on
directed paths in the graph that end with the high reward node. The agent ap-
plies reward to itself if it reaches a state who has a variable value equal to one
of the influential nodes. The algorithm also describes maintenance operations
such as recording every state visited as data for re-constructing the model later
on. After the agent has determined whether reward should be applied or not,
the behavior is based on the RL algorithm generating the agent’s policy. In our
case an action is chosen using the @Q-table and the agent transitions to a new
state starting the process anew.

3.2 Modifying Causal Model Construction for the RL Do-
main

We present the main technical difficulties of applying causal models to RL in this
section. The first adaptation is graphical models represent relationships between
individual variable values as opposed to entire variables. We do this because
our goal is to find conditions for when to apply intermediate reward and those
conditions are defined as environment variable values. The second change deals
with the fact that state variable data comes as a time-series. The difficulty
with time-series is that conditional probability is defined in such a way that
the calculation is not meaningful when data is in a time-series. Determining
conditional independence relies heavily on the idea of conditional probability
and this proves to be the most challenging aspect of adapting causal models to
RL.

Modeling relationships between individual variable values is a natural way
to introduce intermediate reward (as described in section 3.1). These graphs
are a generalization of standard models because nodes representing values from
the same variable can be grouped together to create a standard model.

The constraint-based algorithms for constructing graphical models rely on
conditional independence tests. The formula X 1Y|S states that variables X
and Y are independent given the set of variables S. Conditional independence
can also be described by the formula P(X|S) = P(X|Y A\ S). Empirical data
from reinforcement learning naturally comes in the form of a time series (evenly
spaced observations of the environment by the agent over time). This is not
conducive to the standard formula of calculating conditional probability so we
present an alternative method using correlated samples tests.

Dependence between two variables is normally defined in terms of conditional
probability with the formula P(X = z) = P(X = z|Y = y). The intuition is
if the probability of X = x is not affected by the occurrence of Y = y then
the two values are independent. Calculating P(X = z|Y = y) is not effective
with time series data because the event of Y = y may not co-occur with X = x
even if Y = y influences X = z. Imagine a light bulb being turned on always
causes a door to open at some time in the future, but the light bulb can be
turned off before the door is actually open. Under these conditions it is quite
conceivable that P(door = open|light = on) = P(door = open) despite the fact
door = open and light = on are dependent.

We approach this problem by examining the intuitive notion of dependence.
If we are trying to determine whether two variable values X = x and ¥ =y
are dependent, we would like to see if the occurence of one value changes the
behavior of the other value. Behavior in this case is defined by frequency so we

CMRL algorithm

Let 7 : States — Actions be a policy for choosing an action given the current
state.

Let V = {Vi =v1,,Vi = va, ...,V = v,,} be the set of all state variable value
pairs where there are ¢ different variables and n possible variable value pairs.
Note each v; represents a unique variable value pair.

Let G = V, E be a graphical model of the causal relationships in the environ-
ment, where E is a set of weighted edges.

Let I = {<v;,d1 >,...,<wj,dp >} be a set of pairs used for defining interme-
diate reward. The pair consists of a variable value pair v; € V. The second value
is an integer d representing the distance from the reward node in the graph.
Let S =< s1,...,s7 > be the ordered state history, where each s = {V4,...,V,}
is a state defined by the state variables in V. Each s; € S is a state that has
been visited by the agent.

Let R be the reward node in GG. This node represents reward = 1

Initialize I, S, and G to be empty.

For each episode

1. Initialize agent to be in state s.

2. Let G’ be the subset of G consisting of nodes that have a direct path to
R that when conditioned upon increase probability of reward. Vv € G’ add
< w,d > to I, where d is the distance of v from R in the graph.

While goal state not reached...

3. Add s to S. If s is the goal state end the episode. Else V < v,d >€ I check
if any of the variables defining s has the value v. If any part of s has value v
apply a reward inversely proportional to d to the agent and remove v from 1.
4. Use action a = m(s) to transition to a new state s’. Let s = ¢'.

After the episode ends...

5. Call the GS algorithm to re-construct G using S.

Figure 1: CMRL algorithm.

look at how P(X = z) changes before and after an event Y = y. In practice
we measure the significance of behavior change using paired statistical tests on
samples containing P(z) before and after occurences of Y = y collected from the
data. If the sample means differ significantly then we know (with a certain level
of confidence) that x and y are dependent. We apply this idea in algorithms for
testing dependence relations and calculating conditional probabilities in time
series data (see Figure 2 and Figure 3).

The algorithm presented in Figure 2 uses an agent’s observations of the en-
vrionment to determine whether two values X = x and Y = y are independent
given the set of values Z. The first step is to identify each occurence of Y =y
in the state history. Once the states where Y = y are recorded, we calculate the
conditional probability P(X = x|Z) in time intervals before and after each oc-
curence. The time intervals are defined using heuristic. Suppose the occurence
of Y = y currently being examined is at time ¢;. We define the before time in-
terval as half way between ¢; and ¢;_; where t;_; is the most previous occurence
of Y = y. We define the interval for calculating P(X = z|Z) after occurence t;
as t; to t;11. The reasoning behind this choice is if Y = y does in fact influence
P(X = z|Z) then the amount of influence in a short time interval right before
Y = y will be different with respect to the time period after Y = y occurs. If
Y = y does not influence P(X = z|Z) then the time intervals should not matter
and P(X = z|Z) should be the same before and after Y = y occurs. Each con-
ditional probability calculation before and after a Y = y occurence makes up a
pair for the paired student t-test. After each pair is found for each occurence
of Y =y, we use the test to determine the confidence level that P(X = z|Z) is
significantly different before and after an occurence of Y = y.

The method we use for calculating conditional probability over a specified
time interval (as described in Figure 3) is to record the time right after all of the
conditioning values have occurred at least once. We call this time startCount.
The probability of X = x is then calculated over the subinterval beginning
at startCount and ending at the end of the specified interval. Probability is
calculated by dividing the number of X = x occurences by the length of the
subinterval.

While this is an intuitively appealing idea for determining conditional in-
dependence relationships there is no formal backing for its correctness. Many
assumptions are made such as the duration of influence a variable value has after
it occurs. Defining what time interval to calculate probabilities over is a non-
trivial problem and is dealt with in a heuristic manner for this approach. That
being said, the experiments performed in simple domains show some success at
recovering important dependence relationships in the environment.

Now that we have a method for performing conditional independence tests
with time series data, we can apply the GS algorithm to an agent’s observations
and learn the structure of a causal model. The model can be applied to improve
RL as described in section 3.1.

4 Experiments and Results

In this section we present preliminary experiments and results that support the
idea of using causal models in reinforcement learning. Our experiments show

Conditional Independence Test algorithm.:

Input: X =2,Y =y, Z={Z1 =2,...,Z, = 2z}, where X, Y, and Z; are
state variables.
Output: Confidence value that X = x is indepedent of Y = y given set Z.

Let S =< s1,...,s7 > be the ordered state history, where each s; is a state
visited by the agent.

Let Sy = {s¢,,...,5t,} be a set of states, s;, € S, with Y =y and 1 <t; <T.
Let Pyefore = {p1,.-.,pr} be the set of probability values P(X = z|Z) before
occurences of Y = y.

Let Pyfter = {p1,...,pr} be the set of probability values P(X = z|Z) after
occurences of Y = y.

1. Vs € S check whether ys = y, where y; is the value for Y in state s. If ys =y
then add s to 5.
2. Define P;, ¢, (X = z[Z) to be the conditional probability measured over the

time interval [t;...t;]. Then Vs;, € S, calculate ppefore = P[u(jfl)ﬂj)}ét‘(X =
2 J

.’L"Z) and Pafter = Ptjﬂt(j_*_l)(X = $|Z) Add Poefore to Pbefore- Add Dafter to
Py tter- These observations make up the paired samples for the statistical tests.
3. Perform the paired student t-test (see appendix) using Pyefore and Py fier.
Return the confidence level of that test.

Figure 2: Conditional Independence Test algorithm.

Conditional Probability algorithm.:

Input: tpegin, tends X = ¢, Z ={Z1 = z1,...,2Z, = z,}, where t; are integers
and X and Z; are state variables.

Output: Probability of X = x conditioned on Z over the interval tyegin — tend
(i.e. P(X = z) given Z has occurred).

Let Ssub = {Styegin: - - - Stond} be a subset of the state history S.

Let counter be an integer keeping track of instances of X = x.

Let startCount be an integer marking the beginning of the interval for
calculating P(X = z).

Initialize counter = 0, startCount = tyegin.

1. Check S, for the first occurences of conditional values Z. Suppose these first
occurences are at {S,..., S, } where s;, is the state where value z; occurred.
then let startCount = t; where t; = maz{t;}. Else return 0 because P(X =
x|Z) is vacuously true. This essentially means wait for all the conditioning
values to occur at least once and when that happens then begin calculating the

P(X =z).
2. Vs; € 8; for startCount < i < tepqd, check whether z,, = x, where x,, is
the value for X in state s;. If x5, = x then counter = counter + 1. Here we

calculate the occurences of X = z in the specified time interval, which we will
eventually divide by the total interval to get P(X = z).
3. Return ¥ This is P(X = x) given Z has occurred.

‘ sub‘

Figure 3: Conditional Probability algorithm.

10

Figure 4: Simple Taxi

the modified GS algorithm can discern important dependence relationships in
simple environments. The conditions for applying intermediate reinforcement
found by this algorithm also show improvement in learning within the domain.
We describe the domain, experimental setup, and results in the subsections.

4.1 Simple Taxi

The domain for testing the algorithm is a simple retrieval task set in a grid-world
environment. The grid-world consists of adjacent cells/grids the agent can move
amongst using the actions UP, DOWN, LEFT, or RIGHT. Taxi is an episodic
task where the objective of the agent is to pickup passengers at pre-designated
locations and drop them off at their destinations. We use a simplified ” corridor”
variation where the agent moves along a 1-by-5 strip (see Figure 4). The world
contains a set of landmarks, L = {R, G, B}, at designated locations on the strip.

At the beginning of each episode a passenger appears at one of the land-
marks and must be delivered to a different landmark. The agent’s state, s =
{X,Y, PL, D}, is defined by the variables X location (X = {0}), Y location(Y =
{0,1,2,3,4}), passenger location(PL = {R,G,B,I}), and destination (D =
{R, G, B}). Passenger location can be any of the landmarks or inside the taxi;
destination can be any of the landmarks. Actions the taxi can take are defined
by the set A ={UP, DOWN,PICKUP, PUTDOW N}. Two variations of the
task are used in the experiments. In the first version the passenger location
(PL), destination (D), and taxi starting position are the same for every episode
(we refer to this set-up as "defined taxi”). The other version starts each episode
with PL, D, and taxi start position randomly chosen (we refer to this set-up as
”random taxi”).

4.2 Experimental Setup

The following experiments test model construction in the simple taxi domain.
The objective is to determine whether important dependence relationships are
discovered using the algorithms described in section 3. We do this by observing
direct and indirect dependence relations in the environment, discovered by the
algorithm, in regards to select variable values. The variable values are chosen
with respect to their relevance to reward.

11

REWARD=1

number of episodes | dependent values
5 Y=0,PL=R
25 Y=0,PL=R
50 Y=0,PL=R
100 Y=0,PL=R

Figure 5: Table 1.1

PL=R
number of episodes | dependent values
5 Y=1
25 Y=1,PL=I
50 Y=0,PL=I
100 Y=0,PL=I

Figure 6: Table 1.2

We test the algorithm in both defined taxi and random taxi. In defined taxi,
the starting state for each episode is s = {X =0,Y = 3,PL = R,D = B}.
The agent uses a random action-selection policy in both experiments. Each
experiment is run for 5, 25, 50, and 100 episodes. The results are summarized
in tables 1.1-1.4 and table 2.

4.3 Defined Taxi Results

We begin by observing what variable values influence reward in defined taxi.
Table 1.1 shows that in the defined taxi domain reward is dependent upon Y = 0
and PL = R. These relationships are apparent after 5 episodes of experience
and remain the same after 25, 50, and 100 episodes. The dependence relation
of reward and Y = 0,PL = R makes sense for this task because Y = 0 is the
grid coordinate for PL = R and the passenger location at the start is always
PL = R. These values would be useful as intermediate reward because the taxi
must pickup the passenger at Y = 0 in order to complete the task. Experiments
using similar conditions for intermediate reinforcement (see section 4.5) suggest
learning to go to Y = 0 will accelerate learning of the whole task.

Since reward is dependent on PL = R and Y = 0, we would like to know
what these values might depend upon in the environment. The algorithm de-
termines PL = R to have dependence relations to Y = 1 and PL = I after a
5-25 episodes (as shown in Table 1.2), but with more information we settle on
PL = R having dependence relations to PL = I and Y = 0. These relation-
ships make sense because the passenger must get into the taxi (PL = I) at the
landmark R and the landmark R is located at Y = 0.

The results in Table 1.3 describe the dependence relations for Y =0. Y =0
is found to be dependent with PL = R and PL = I. The direct dependence
with PL = R and PL = [exists because Y = 0 is the grid coordinate for
PL = R and the passenger must get inside at ¥ = 0.

The final variable value we examine in the defined taxi domain is PL = I

12

Y=0

number of episodes | dependent values
5 PL=R
25 PL=R,PL=I
50 PL=R,PL=I
100 PL=R,PL=I

Figure 7: Table 1.3

PL=I
number of episodes | dependent values
5 PL=R
25 Y=0
50 Y=0,PL=R
100 Y=0,PL=R

Figure 8: Table 1.4

(see Table 1.4). We find that PL = I is dependent with Y = 0 and PL = R,
which is to be expected from the previous tables.

4.4 Random Taxi Results

The results for random taxi are more difficult to interpret than in defined taxi.
The dependence relations for selected variables are summarized in Table 2. Re-
ward is found to have dependence relationships with multiple values of Y and
PL = I over the course of episodes 5-50. The variable value reward most consis-
tently has direct dependence with is PL = I. This is an important relationship
because PL = I is a condition for reward independent of the passenger starting
position or destination. PL = I, as a condition for applying intermediate rein-
forcement, is also important because it has been shown to accelerate learning
in the domain (see Figure 10). After 100 episodes the dependence relationships
make less sense as reward is found to have dependence with PL = G, PL =Y,
and D = G. These values are explored in more depth, but no intuitive expla-
nation is apparent.

4.5 Learning in Simple Taxi

We verify the dependence relationships found in section 4.2 and 4.3 can accel-
erate learning by applying them as conditions for intermediate reinforcement
in the simple taxi domain. The experiment compares learning with the stan-
dard SARSA algorithm and SARSA combined with intermediate reinforcement
applied when PL = I (i.e. when the passenger get into the car). PL = T
was discovered to be an important variable value when constructing the causal
model in both defined and random taxi. The following results are not from a
complete integration of causal models and reinforcement learning, but they do
demonstrate relationships discovered by the construction of a causal model can
benefit learning.

13

REWARD=1
number of episodes dependent values
5 Y=0,PL=I
25 Y=1,Y=3,Y=4,PL=I
50 Y=1,PL=I,D=Y
100 PL=G,PL=Y,D=G
PL=G
100 \ PL=Y
PL=Y
100 \ Y=4,PL=G

Figure 9: Table 2

70
60
50 — Standard RL
40 | i
30 + l — RL with internal
20 i : | reward
10 ~
0 .|

1 78 155 232 309 386 463
Episode

Actions taken

Figure 10: Graph of learning in Simple Taxi with and without intermediate
reinforcement given when PL=I.

Results are summarized in Figure 10 where each point is the median of
running the simulation 20 times for 500 episodes each. Each episode starts with
the taxi at a set position in the world and the passenger located at a random
special landmark with a random destination. The domain was first learned
using SARSA as presented in [9] then learned such that the agent would apply
a reward to itself the first time it reached a state with PL = I. The results
show this intermediate reinforcement accelerates the learning process in simple
taxi.

5 Conclusion and Discussion

We have presented an approach for improving reinforcement learning by au-
tomatically increasing useful feedback. Our proposal is to exploit the causal
structure of an environment; more specifically we use environment values that
increase the probability of reward as conditions for applying intermediate rein-
forcement. This method minimizes the amount of human engineering required
because causal structure is determined through an agent’s observation of its

14

environment. We presented modifications to established structure-learning al-
gorithms in order to apply them in the RL domain. The general idea is to
reformulate conditional independence as a comparison (using paired statistical
tests) of a variable before and after the occurence of a conditioning value. This
method inherently has a heuristic nature to it, but experiments in simple do-
mains showed dependence relations that improve learning can be automatically
discovered.

While the particular approach presented in this paper is probably limited
by the weaknesses of the method for determining conditional independence in
a time series, the main contribution of this work is a demonstration that using
causal models may be a good approach to the reinforcement learning problem.
Theoretically, a non-action-value RL method could be devised by learning a
causal graph that represents the environment in its totality (including the ac-
tion model). If complete understanding of what causes what were known, then
a policy could be generated by recursively sub-goaling until only atomic actions
are needed for the lowest level goals’ completion. This is still a lofty endeavor as
the machinery for causal model construction requires much more development
before the idea can be feasible. Possibilities for more immediate future work
would be to apply already established methods for graphical model construc-
tion from time-series data [13] and seeing how well they aid learning. Making
the models for continuous domains and applying them to benchmarks such as
keepaway [14] is also an important task. The application of causal models in
reinforcement learning is a rich field with potential for future successes.

6 Acknowledgements

This project was supervised by Peter Stone and funded by the University of
Texas Mathematics Department VIGRE program. Risto Miikkulainen and
Calvin Lin reviewed the work and served on the undergraduate thesis com-
mittee. Additional statistical code was provided by Nick Jong and the learning
agent framework code was provided through [14]. Many thanks go to all those
involved.

A SARSA

The SARSA algorithm from [9].

Initialize (s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose o' from s" using policy derived from Q (e.g., e-greedy)
Q(s,a) — Q(s,a) +a ['r' +~5Q(s',a’) — Q(s, aj]
s—sa—a

until s is terminal

15

B Paired Student T-Test

The paired student t-test from [12].
Step 1.|sefowardonepageple of N values of Dy, where each instance of Dj is equal to Xai—Xgi, calculate the mean of the
sample as

ZDi
Mp=
N

and the sum of squared deviates as

(zDi)?
N

SSp = ZD?%; —

Step 2. Estimate the variance of the source population as

SSp

{52} =
N—-1

Step 3. Estimate the standard deviation of the sampling distribution of Mp as

{s?}

est, Om, = sqrt [et
N

MNote that Steps 2 and 3 can be combined into the more streamlined formula

SSp/(N—1)
est. Oy = sgrt [-]

I+

Step 4. Calculate t as

Mp
t=——
est, Omp

Step 5. Refer the calculated value of t to the table of critical values of t (Appendix C), with df=N—1. Keep in mind
that a one-tailed directional test can be applied only if a specific directional hypothesis has been stipulated in
advance; otherwise it must be a non-directional two-tailed test,

C Grow-Shrink(GS) Algorithm

The Grow-Shrink algorithm from [11].

16

1. [Compute Markov Blankets |
For all X € 7, compute the Markov blanket B(X).

2. [Compute Graph Structure |
Forall X € U and ¥ € B{X), determine ¥ to be a direct neighbor of X if X and ¥ are
dependent given S for all S C T, where T is the smaller of B{X) — {Y} and B(Y) — {X }.

3. [Orient Edges |
ForallX € Uand ¥ € N(X), orient ¥ — X if there exists a variable Z € N(X) —N(¥) — {Y}
such that ¥ and Z are dependent given SU{X} for all 8 C T. where T is the smaller of
B(Y)—{X.Z}and B(Z) - {X,Y}.

4. [Remove Cycles |
Do the following while there exist cycles in the graph:

e Compute the set of edges C = {X — ¥ such that X — Y is part of a cycle}.

e Remove from the current graph the edge in C that is part of the greatest number of
cycles, and put it in R.

5. [Reverse Edges |
Insert each edge from R in the graph in reverse order of removal in Step 4, reversed.

6. [Propagate Directions |
Forall X € ¥ and ¥ € N(X) such that neither ¥ — X nor X — ¥, execute the following
rule until it no longer applies: If there exists a directed path from X to ¥, orient X — V.

The algorithm for finding the Markov Blanket [11].

.S+ 0
2. While 3¥ € U —{X} suchthatY L X |S,do S+ SU{¥}. [Growing phase]
3. While 3¥ € SsuchthatY L X |S—{¥}.doS + S—{¥}. [Shrinking phase]
4 B(X) « 8.

References

[1] A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
E. Liang, Inverted autonomous helicopter flight via reinforcement learning,
in: International Symposium on Experimental Robotics, 2004.

[2] G. Tesauro, TD-gammon, a self-teaching backgammon program, achieves
master-level play, Neural Computation 6 (2) (1994) 215-219.

[3] M. J. Mataric, Reward functions for accelerated learning, in: Proceedings
of the Eleventh International Conference on Machine Learning, Cambridge,
Massachusetts, 1994, pp. 181-189.

[4] T. Dietterich, Hierarchical reinforcement learning with the MAXQ value
function decomposition, Journal of Artificial Intelligence Research 13
(2000) 227-303.

17

[5]

A. McGovern, A. G. Barto, Accelerating reinforcement learning through
the discovery of useful subgoals, in: Proceedings of the 6th International
Symposium on Artificial Intelligence, Robotics and Automation in Space:
i-SAIRAS 2001, 2001.

M. I. Jordan, Graphical models, Statistical Science (Special Issue on
Bayesian Statistics) 19 (2004) 140-155.

P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search,
2nd Edition, The MIT Press, 2000.

J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge Univer-
sity Press, Cambridge, UK, 2000.

R. S. Sutton, A. G. Barto, Reinforcement Learning: An In-
troduction, MIT Press, Cambridge, MA, 1998, http://www-
anw.cs.umass.edu/ rich/book/the-book.html.

URL http://www-anw.cs.umass.edu/"rich/book/the-book.html

L. Kaelbling, M. Littman, A. Moore, Reinforcement learning: A survey,
Journal of Artificial Intelligence 4 (1996) 237—285.

D. Margaritis, Learning bayesian network model structure from data, Ph.D.
thesis, School of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA, available as Technical Report CMU-CS-03-153 (May 2003).

R. Lowry, Concepts Applications of Inferential Statistics, 1998,
http://faculty.vassar.edu/lowry/webtext.html.
URL http://faculty.vassar.edu/lowry/webtext.html

F. R. Bach, M. 1. Jordan, Learning graphical models for stationary time
series, IEEE Trans. Signal Process. 52 (8) (2004) 2189-2199.
URL http://www.cs.berkeley.edu/ jordan/papers/650.ps.gz

P. Stone, R. S. Sutton, G. Kuhlmann, Reinforcement learning for RoboCup-
soccer keepaway, Adaptive BehaviorTo appear.

18

