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ABSTRACT
Search engines have primarily focused on presenting the most
relevant pages to the user quickly. A less well explored aspect
of improving the search experience is to remove or group all
near-duplicate documents in the results presented to the user.
In this paper, we apply a Bloom filter based similarity detec-
tion technique to address this issue by refining the search
results presented to the user. First, we present and analyze
our technique for finding similar documents using content-
defined chunking and Bloom filters, and demonstrate its ef-
fectiveness in compactly representing and quickly matching
pages for similarity testing. Later, we demonstrate how a
number of results of popular and random search queries re-
trieved from different search engines, Google, Yahoo, MSN,
are similar and can be eliminated or re-organized. Finally,
we apply our near-duplicate detection technique to show how
to effectively remove similar search results and improve user
experience.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms
Algorithms, Performance, Measurement

Keywords
Similarity Measures, Web Search, Bloom filter, Aliasing, Near-
Duplicate Detection

1. INTRODUCTION
Enterprise and web search has become a ubiquitous part

of the web experience. Search is a complex process that
involves crawling the content, organizing and indexing the
crawled content, finding the matching results for a given key-
word query, and presenting the ordered results to the user.
Searching for data on the web is further complicated by the
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fact that the data is not only unstructured, it is duplicated,
modified, and cached, in different forms and at multiple lo-
cations. Numerous studies have shown that the ad-hoc dis-
tribution of information on the web has resulted in a high
degree of content aliasing (i.e., the same data contained in
pages from different URLs) [17] and which adversely affects
the performance of search engines [7]. The initial study by
Broder et al., in 1997 [8], and the later one by Fetterly et
al. [12], shows that around 29.2% of data is common across
pages in a sample of 150 million pages. This common data
when presented to the user on a search query degrades user-
experience by repeating the same information on every click.
Similar data can be grouped or eliminated to improve the

search experience. Similarity based grouping is also useful
for organizing the results presented by meta-crawlers (e.g.,
vivisimo, metacrawler, dogpile, copernic). The findings by
searchenginejournal.com [2] show a significant overlap of
search results returned by Google and Yahoo search engines—
the top 20 keyword searches from Google had about 40%
identical or similar pages to the Yahoo results. Sometimes
search results may appear different purely due to the restruc-
turing and reformatting of data. For example, one site may
format a document into multiple web pages, with the top
level page only containing a fraction of the document along
with a “next” link to follow to the remaining part, while an-
other site may have the entire document in the same web
page. An effective similarity detection technique should find
these “contained” documents and label them as similar.
Although improving search results by identifying near-

duplicates had been proposed for Altavista [7], we found that
popular search engines, Google, Yahoo, MSN, even today
have a significant fraction of near-duplicates in their top re-
sults1. For example, consider the results of the query “emacs
manual” using the Google search engine. We focus on the
top 20 results (i.e., first 2 pages) as they represent the re-
sults most likely to be viewed by the user. As shown in
Figure 1, four of the results, www.delorie.com/gnu/docs/emacs/
emacs toc.html, www.cs.utah.edu/dept/old/texinfo/emacs19/emacs

toc.html, www.dc.urkuamk.fi/docs/gnu/emacs/emacs toc.html, and
www.linuxselfhelp.com/gnu/emacs/html chapter/emacs toc.html,
on the first page (top-10 results), were highly similar—in fact,
they had nearly identical content but different page headers,
disclaimers, and logo images. For this particular query, on
the whole, 7 out of 20 documents were redundant (3 identical
pairs and 4 similar to one top page document).
Consider, again, the same search using the Yahoo search

engine. The results here (Figure 2) too showed that the pages
www.delorie.com/gnu/docs/emacs/emacs toc.html, www.cs.utah.

1Google does have a patent [21] for near-duplicate detection
although it is not clear which approach they use.
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Figure 1: Top-10 query search results for
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Figure 2: Top-10 query search results for

“emacs manual” on Yahoo

edu/csinfo/texinfo/emacs19/emacs toc.htm, sunsite.ualberta.
ca/Documentation/Gnu/.../html chapter/emacs.html, were sim-
ilar, while tonic.physics.sunysb.edu/docs/emacs/emacs.html was
similar to www.cs.utah.edu/dept/old/texinfo/emacs19/emacs

1.html. In the top 20 pages, 3 pages were similar to one
top-level page, 3 pairs of pages were similar, and 1 page was
a subset of another page (one listed the entire manual in one
page while the other only had the preface in the first page
with a next link to follow to the next page).
The search engine a9 from Amazon (www.a9.com) had re-

sults that resembled Google2 with 4 pages,
www.delorie.com/gnu/docs/emacs/emacs toc.html, www.cs.utah.
edu/dept/old/texinfo/emacs19/emacs toc.html, www.dc.turkuamk.
fi/docs/gnu/emacs/emacs toc.html, www.linuxselfhelp.com/gnu/
emacs/html chapter/emacs toc.html, in the top-10 results re-
turned, being similar.
As another example, results for a recent popular query,

“ohio court battle” from both Google and MSN search had
a similar behavior, with 10 and 4 out of the top 20 results
being nearly identical in content.
Returning similar pages (even in the top-10 and 20 results)

is a pervasive problem, occurring in all the popular search en-
gines. Although Google has a link for similar pages, those
are more for presenting, as a group, related pages from the
same site and not for grouping together pages with similar
content across sites. However, returning similar results for a
query may not always be a concern. Occasionally, the user
may want to view all the similar results, for example, when
comparison shopping, it may be desirable to have all the dif-
ferent sites offering the same product with similar product
descriptions. Similar pages from different locations can also
be useful for masking server unavailability and network par-
titions. Thus, it may be useful, when presenting the results,
to group similar pages together rather than eliminating them
from the user’s view.

2A9 states that it uses a Google back-end for part of its
search.

In this paper, we study the current state of popular search
engines and evaluate the application of a Bloom filter based
near-duplicate detection technique on search results. We
demonstrate, using multiple search engines, how a number
of results (ranging from 7% to 60%) on search queries are
similar and can be eliminated or re-organized. Later, we
explore the use of Bloom filters for finding similar objects
and demonstrate their effectiveness in compactly representing
and quickly matching pages for similarity testing. Although
Bloom filters have been extensively used for set membership
checks, they have not been analyzed for similarity detection
between text documents. Finally, we apply our Bloom filter
based technique to effectively remove similar search results
and improve user experience. Our evaluation of search results
shows that the occurrence of near-duplicates is strongly cor-
related to: i) the relevance of the document and ii) the popu-
larity of the query. Documents that are considered more rel-
evant and have a higher rank also have more near-duplicates
compared to less relevant documents. Similarly, results from
the more popular queries have more near-duplicates com-
pared to the less popular ones.
Our similarity matcher can be deployed as a filter over

any search engine’s result set. The overhead of integrating
our similarity detection algorithm with search engines only
associates about 0.4% extra bytes per document and pro-
vides fast matching on the order of milliseconds as described
later in section 3. Note that we focus on one main aspect
of similarity—text content. This might not completely cap-
ture the human-judgement notion of similarity in all cases.
However, our technique can be easily extended to include
link structure based similarity measures by comparing Bloom
filters generated from hyperlinks embedded in web pages.
Based on different weighted combinations of text and link
structure attributes, an overall similarity measure could be
computed.
The rest of the paper is organized as follows. Similarity

detection using Bloom filters is described and analyzed in



Section 2. Section 3 evaluates and compares our similarity
technique to improve search results from multiple engines and
for different workloads. Finally, Section 4 covers related work
and we conclude with Section 5.

2. SIMILARITY DETECTION USING BLOOM
FILTERS

Our similarity detection algorithm proceeds in three steps
as follows. First, we use content-defined chunking (CDC) to
extract document features that are resilient to modifications.
Second, we use these features as set elements for generating
Bloom filters3. Third, we compare the Bloom filters to detect
near-duplicate documents above a certain similarity thresh-
old (say 70%). We start with an overview of Bloom filters and
CDCs, and later present and analyze the similarity detection
technique for refining web search results.

2.1 Bloom Filter Overview
A Bloom filter of a set U is implemented as an array of

m bits [5]. Each element u (u ∈ U) of the set is hashed
using k independent hash functions h1, . . . , hk. Each hash
function hi(u) for 1 ≤ i ≤ k maps to one bit in the
array {1 . . . m}. Thus, when an element is added to the set,
it sets k bits, each bit corresponding to a hash function, in
the Bloom filter array to 1. If a bit was already set it stays
1. For set membership checks, Bloom filters may yield a
false positive, where it may appear that an element v is in
U even though it is not. From the analysis in [9], given
n = |U | and the Bloom filter size m, the optimal value of
k that minimizes the false positive probability, pk, where p

denotes that probability that a given bit is set in the Bloom
filter, is k = m

n
ln 2. Previously, Bloom filters have primarily

been used for finding set-membership [9].

2.2 Content-defined Chunking Overview
To compute the Bloom filter of a document, we first need

to split it into a set of elements. Observe that splitting a doc-
ument using a fixed block size makes it very susceptible to
modifications, thereby, making it useless for similarity com-
parison. For effective similarity detection, we need a mecha-
nism that is more resilient to changes in the document. CDC
splits a document into variable-sized blocks whose bound-
aries are determined by its Rabin fingerprint matching a pre-
determined marker value [22]. The number of bits in the
Rabin fingerprint that are used to match the marker deter-
mine the expected chunk size. For example, given a marker
0x78 and an expected chunk size of 2k, a rolling (overlapping
sequence) 48-byte fingerprint is computed. If the lower k bits
of the fingerprint equal 0x78, a new chunk boundary is set.
Each chunk is represented by computing a SHA-1 hash of
its content. Since the chunk boundaries are content-based,
any modifications should affect only a couple of neighboring
chunks and not the entire document. CDC has been used
in LBFS [18], REBL [14] and other systems for redundancy
elimination.

2.3 Bloom Filters for Similarity Testing
Observe that we can view each document to be a set in

Bloom filter parlance whose elements are the CDCs that it is
composed of4. Given that Bloom filters compactly represent

3Within a search engine context, the CDCs and the Bloom
filters of the documents can be computed offline and stored.
4For multisets, we make each CDC unique before Bloom filter
generation to differentiate multiple copies of the same CDC.
This is achieved by attaching an index value of each CDC

a set, they can also be used to approximately match two sets.
Bloom filters, however, cannot be used for exact matching
as they have a finite false-match probability but they are
naturally suited for similarity matching.
For finding similar documents, we compare the Bloom fil-

ter of one with that of the other. In case the two documents
share a large number of 1’s (bit-wise AND) they are marked
as similar. In this case, the bit-wise AND can also be per-
ceived as the dot product of the two bit vectors. If the set
bits in the Bloom filter of a document are a complete sub-
set of that of another filter then it is highly probable that
the document is included in the other. Web pages are typ-
ically composed of fragments, either static ones (e.g., logo
images), or dynamic (e.g., personalized product promotions,
local weather). Fragments can be detected automatically us-
ing techniques described in [23] or when they contain an in-
markup scripting language (e.g., Edge Side Includes (ESI),
an XML-based markup language) that can define tags and
templates to identify fragments. When targeting pages for
a similarity based “grouping”, the test for similarity should
be on the fragment of interest and not the entire page. Also,
while grouping similar pages, the higher ranked page should
be displayed as the anchor.
Bloom filters, when applied to similarity detection, have

several advantages. First, the compactness of Bloom filters
is very attractive for storage and transmission whenever we
want to minimize the meta-data overheads. Second, Bloom
filters enable fast comparison as matching is a bitwise-AND
operation. Third, since Bloom filters are a complete repre-
sentation of a set rather than a deterministic sample (e.g.,
shingling), they can determine inclusions effectively e.g., tar
files and libraries.
To demonstrate the effectiveness of Bloom filters for sim-

ilarity detection, consider, for example, the pages from the
Money/CNN web server (money.cnn.com). We crawled 103
MB of data from the site that resulted in 1753 documents.
We compared the top-level page marsh ceo/index.html with
all the other pages from the site. For each document, we con-
verted it into a canonical representation as described later
in Section 3. The CDCs of the pages were computed us-
ing an expected and maximum chunk size of 256 bytes and
64 KB respectively. The corresponding Bloom filter was of
size 256 bytes. Figure 3 shows that two other copies of the
page one with the URI /2004/10/25/news/fortune500/marsh\

ceo/index.htm and another one with a dynamic URI /2004/
10/25/news/fortune500/marsh ceo/index.htm?cnn=yes matched
with all set bits in the Bloom filter of the original document.
As another example, we crawled around 20 MB of data

(590 documents) from the IBM web site (www.ibm.com). We
compared the page /investor/corpgovernance/index.phtml with
all the other crawled pages from the site. The chunk sizes
were chosen as above. Figure 4 shows that two other pages
with the URIs /investor/corpgovernance/cgcoi.phtml and /investor/
corpgovernance/cgblaws.phtml appeared similar, matching in
53% and 69% of the bits in the Bloom filter, respectively.
To further illustrate that Bloom filters can differentiate

between multiple similar documents, we extracted a technical
documentation file ‘foo’ (say) (of size 17 KB) incrementally
from a CVS archive, generating 20 different versions, with
‘foo’ being the original, ‘foo.1’ being the first version (with
a change of 415 bytes from ‘foo’) and ‘foo.19’ being the last.
As shown in Figure 5, the Bloom filter for ’foo’ matched the
most (98%) with the closest version ‘foo.1’.

chunk to its SHA-1 hash. The index ranges from 1 to ln r,
where r is the multiplicity of the given chunk in the file.
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2.3.1 Analysis
The main consideration when using Bloom filters for sim-

ilarity detection is the false match probability of the above
algorithm as a function of similarity between the source and a
candidate document. Extending the analysis for membership
testing in [5] to similarity detection, we proceed to determine
the expected number of inferred matches between the two
sets. Let A and B be the two sets being compared for simi-
larity. Let m denote the number of bits (size) in the Bloom
filter. For simplicity, assume that both sets have the same
number of elements. Let n denote the number of elements in
both sets A and B i.e., |A| = |B| = n. As before, k denotes
the number of hash functions. The probability that a bit is
set by a hash function hi for 1 ≤ i ≤ k is 1

m
. A bit can be

set by any of the k hash functions for each of the n elements.
Therefore, the probability that a bit is not set by any hash
function for any element is (1− 1

m
)nk. Thus, the probability,

p, that a given bit is set in the Bloom filter of A is given by:

p =
“

1−
`

1− 1

m

´

nk”

≈ 1− e
−

nk

m (1)

For an element to be considered a member of the set, all
the corresponding k bits should be set. Thus, the probability
of a false match, i.e., an outside element is inferred as being
in set A, is pk. Let C denote the intersection of sets A and
B and c denote its cardinality, i.e., C = A∩B and |C| = c.
For similarity comparison, let us take each element in set

B and check if it belongs to the Bloom filter of the given set
A. We should find that the c common elements will definitely
match and a few of the other (n− c) may also match due to
the false match probability. By Linearity of Expectation, the
expected number of elements of B inferred to have matched
with A is

E[# of inferred matches] = (c) + (n− c)pk

To minimize the false matches, this expected number should
be as close to c as possible. For that (n−c)pk should be close
to 0, i.e., pk should approach 0. This happens to be the same
as minimizing the probability of a false positive. Expanding
p and under asymptotic analysis, it reduces to minimizing

(1 − e−
nk

m )k. Using the same analysis for minimizing the
false positive rate given in [9], the minima obtained after dif-
ferentiation is when k = m

n
ln 2. Thus, the expected number

of inferred matches for this value of k becomes

E[# of inferred matches] = c + (n− c)(0.6185)
m

n

Thus, the expected number of bits set corresponding to
inferred matches is

E[# of matched bits] = m
h

1−
“

1− 1

m

”k

`

c + (n−c)(0.6185)
m

n

´

i

Under the assumption of perfectly random hash functions,
the expected number of total bits set in the Bloom filter of

the source set A, is mp. The ratio, then, of the expected
number of matched bits corresponding to inferred matches in
A ∩B to the expected total number of bits set in the Bloom
filter of A is:

E[# of matched bits]

E[# total bits set]
=

“

1− e−
k

m
(c + (n−c)(0.6185)

m

n )
”

`

1− e−
nk

m

´

Observe that this ratio equals 1 when all the elements
match, i.e., c = n. If there are no matching elements, i.e.,

c = 0, the ratio = 2(1 − (0.5)(0.6185)
m

n ). For m = n, this
evaluates to 0.6973, i.e., 69% of matching bits may be false.
For larger values,m = 2n, 4n, 8n, 10n, 11n, the corresponding
ratios are 0.4658, 0.1929, 0.0295, 0.0113, 0.0070 respectively.
Thus, for m = 11n, on an average, less than 1% of the bits
set may match incorrectly. The expected ratio of matching
bits is highly correlated to the expected ratio of matching
elements. Thus, if a large fraction of the bits match, then it’s
highly likely that a large fraction of the elements are common.
Although the above analysis was done based on expected

values, we show later in the appendix that under the as-

sumption that the difference between p and (1 − e−
nk

m ) is
very small, the actual number of matched bits is highly con-
centrated around the expected number of matched bits with
small variance [16].
Given that the number of bits in the Bloom filter should

be larger than the number of elements in the set we need
large filters for large files. One approach is to select a new
filter size when the file size doubles. If we want to support
subset matching the filter size should be identical. Thus all
files will have a filter size equaling the size required for the
largest set of files.

2.4 Discussion
Previous work on document similarity has mostly been

based on shingling or super fingerprints. Using this method,
for each object, all the k consecutive words of a document
(called k-shingles) are hashed using Rabin fingerprint [22]
to create a set of fingerprints (also called features or pre-
images). These fingerprints are then sampled to compute a
super-fingerprint of the document. Many variants have been
proposed that use different techniques on how the shingle fin-
gerprints are sampled (min-hashing, Modm, Mins etc.) and
matched [8, 7, 6]. While Modm selects all fingerprints whose
value modulo m is zero; Mins selects the set of s fingerprints
with the smallest value. The min-hashing approach further
refines the sampling to be the min values of say 84 random
min-wise independent permutations (or hashes) of the set of
all shingle fingerprints. This results in a fixed size sample of
84 fingerprints that is the resulting feature vector. To fur-
ther simplify matching, these 84 fingerprints can be grouped
as 6 “super-shingles” by concatenating 14 adjacent finger-



prints [12]. In [14] these are called super-fingerprints. A pair
of objects are then considered similar if either all or a large
fraction of the values in the super-fingerprints match.
Our Bloom filter based similarity detection differs from the

shingling technique in several ways. It should be noted, how-
ever, that the variants of shingling discussed above improve
upon the original approach and we provide a comparison of
our technique with these variants wherever applicable. First,
shingling (Modm, Mins) computes document similarity us-
ing the intersection of the two feature sets. In our approach,
it requires only the bit-wise AND of the two Bloom filters
(e.g., two 128 bit vectors). Next, shingling has a higher com-
putational overhead as it first segments the document into
k-word shingles (k = 5 in [12]) resulting in shingle set size
of about S − k + 1, where S is the document size. Later, it
computes the image (value) of each shingle by applying set
(say H) of min-wise independent hash functions (|H|=84 as
used in [12]) and then for each function, selecting the shingle
corresponding to the minimum image. On the other hand,
we apply a set of independent hash functions (typically less
than 8) to the chunk set of size on average d S

c
e where c is the

expected chunk size (e.g., c = 256 bytes for S = 8 KB docu-
ment). Third, the size of the feature set (number of shingles)
depends on the sampling technique in shingling. For example,
in Modm, even some large documents might have very few
features whereas small documents might have zero features.
Some shingling variants (e.g., Mins, Mod2i) aim to select
roughly a constant number of features. Our CDC based ap-
proach only varies the chunk size c, to determine the number
of chunks as a trade-off between performance and fine-grained
matching. We leave the empirical comparison with shingling
as future work.
In general, a compact Bloom filter is easier to attach as a

document tag and can be compared simply by matching the
bits. Thus, Bloom filter based matching is more suitable for
meta crawlers and can be added on to existing search engines
without any significant changes.

3. EXPERIMENTAL EVALUATION
In this section, we evaluate Bloom filter-based similar-

ity detection using several types of query results obtained
from querying different search engines using the keywords
posted on Google Zeitgeist www.google.com/press/zeitgeist.
html, Yahoo Buzz buzz.yahoo.com, and MSN Search Insider
www.imagine-msn.com/insider.

3.1 Methodology
We have implemented our similarity detection module us-

ing C and Perl. The code for content defined chunking is
based on the CDC implementation of LBFS [18]. The exper-
imental testbed used a 933 MHz Intel Pentium III worksta-
tion with 512 MB of RAM running Linux kernel 2.4.22. The
three commercial search engines used in our evaluation are
Google www.google.com, Yahoo Search www.yahoo.com, and
MSN Search www.msnsearch.com. The Google search results
were obtained using the GoogleAPI [1], for each of the search
queries, the API was called to return the top 1000 search re-
sults. Although we requested 1000 results, the API, due to
some internal errors, always returned less than 1000 entries
varying from 481 to 897.
For each search result, the document from the correspond-

ing URL was fetched from the original web server to compute
its Bloom filter. Each document was converted into a canon-
ical form by removing all the HTML markups and tags, bul-
lets and numberings such as “a.1”, extra white space, colons,
replacing dashes, single-quotes and double-quotes with single

space, and converting all the text to lower case to make the
comparison case insensitive. In many cases, due to server un-
availability, incorrect document links, page not found errors,
and network timeouts, the entire set of requested documents
could not always be retrieved.

3.1.1 Size of the Bloom Filter
As we discussed in the section 2, the fraction of bits that

match incorrectly depends on the size of the Bloom filter.
For a 97% accurate match, the number of bits in the Bloom
filter should be 8x the number of elements (chunks) in the
set (document). When applying CDC to each document, we
use the expected chunk size of 256 bytes, while limiting the
maximum chunk size to 64 KB. For an average document
of size 8 KB, this results in around 32 chunks. The Bloom
filter is set to be 8x this value i.e., 256 bits. To accommodate
large documents, we set the maximum document size to 64
KB (corresponding to the maximum chunk size). Therefore,
the Bloom filter size is set to be 8x the expected number of
chunks (256 for document size 64 KB) i.e., 2048 bits or 256
bytes, which is a 3.2% and 0.4% overhead for document size
of 8 KB and 64 KB respectively.

Example. When we applied the Bloom filter based matcher
to the “emacs manual” query (Section 1), we found that the
page www.linuxselfhelp.com/gnu/emacs/html chapter/emacs toc.

htmlmatched the other three, www.delorie.com/gnu/docs/emacs/
emacs toc.html, www.cs.utah.edu/dept/old/texinfo/emacs19/emacs
toc.html, and www.dc.turkuamk.fi/docs/gnu/emacs/emacs toc.

html, with 74%, 81% and 95% of the Bloom filter bits match-
ing, respectively. A 70% matching threshold would have
identified and grouped all these 4 pages together. Similarly,
the pair of similar pages, www.math.uio.no/doc/gnu/emacs/top.
html and www.kfa-juelich.de/zam/docs/bhb/bhb html/d0115/d0115.

html matched in 84% of the bits in the filter.
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3.2 Effect of the Degree of Similarity
In this section, we evaluate how the degree of similarity

affects the number of documents that are marked similar.
The degree of similarity is the percentage of the document
data that matches (e.g., a 100% degree of similarity is an
identical document). Intuitively, the higher the degree of
similarity, the lower the number of documents that should
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queries on Google
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Figure 9: Search results for 3 medium-

popular queries on Google
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Figure 10: Search results for 3 random

queries on Google

match. Moreover, the number of documents that are similar
depends on the total number of documents retrieved by the
query. Although, we initially expected a linear behavior, we
observed that the higher ranked results (the top 10 to 20
results) were also the ones that were more duplicated.
Using GoogleAPI, we retrieved 493 results for the “emacs

manual” query. To determine the number of documents that
are similar among the set of retrieved documents, we use a
union-find data structure for clustering Bloom filters of the
documents based on similarity. Figure 6 shows that for 493
documents retrieved, the number of document clusters were
56, 220, 317, 328, 340, when the degree of similarity was
50, 60, 70, 80, 90%, respectively. Each cluster represents a
set of similar documents (or a single document if no similar
ones are found). We assume that a document belongs to
a cluster if it is similar to a document in the cluster, i.e.,
we assume that similarity is transitive for high values of the
degree of similarity (as in [10]). The fraction of duplicate
documents as shown in Figure 6, decreases from 88% to 31%
as the degree of similarity increases from 50% to 90%. As
the number of retrieved queries increase from 10 to 493, the
fraction of duplicate documents initially decrease and then
increase forming a minima around 250 results. The decrease
was due to the larger aliasing of “better” ranked documents.
However, as the number of results increase, the initial set
of documents get repeated more frequently, increasing the
number of duplicates. Similar results were obtained for a
number of other queries that we evaluated.
Figure 7 shows the similarity search results for a recent

popular query, “ohio court battle”, for a total of 836 docu-
ments retrieved. The fraction of duplicate documents, in this
case, decreased from 64% to 24% as the degree of similarity
increased, from 50% to 90%. As the number of retrieved
queries increases from 10 to 836, the fraction of duplicate
documents initially decreased and then increased forming a
minima around 300 results for the smaller values of (50% and
60%) the degree of similarity. For larger values of the degree
of similarity, the minima shifted to a higher value of 650 docu-
ments. As the threshold for the degree of similarity increases,
the number of near-duplicates decrease. Increasing the num-
ber of results rapidly reduces the fraction of near-duplicates.
This pushes the minima, for higher degrees of similarity, to
a larger value.

3.3 Effect of the Search Query Popularity
To get a representative collection of the types of queries

performed on search engines, we selected samples from Google
Zeitgeist (Nov. 2004) of three different query popularities: i)
Most Popular, ii) Medium-Popular, and iii) Random.
In computing similarity, our target was to compare only

the fragments that contained the matching keywords. How-
ever, in a number of cases, we could not determine the exact
fragment that matched. The canonical representation of the

pages that contained frames includes the text in the sidebars
that may not result in a match of an otherwise similar page.
This could lower the similarity estimate of the documents
making our results more conservative.
For most-popular search queries, the three queries selected

in order were—“jon stewart crossfire”(TP1), “electoral col-
lege”(TP2) and “day of the dead”(TP3). While the first was
a CNN news show episode, the second was related to the U.S.
elections, and the third was related to a Mexican festive day.
We computed the number of duplicates having 70% similarity
(atleast 70% of the bits in the filter matched) in the search
results. Figure 8 shows the corresponding number of dupli-
cates for a maximum of 870 search results from the Google
search API. The TP1 query had the maximum fraction of
near-duplicates, 44.3%, while the other two TP2 and TP3
had 29.7% and 24.3%, respectively. Observe that the most
popular query TP1was the one with the most duplicates.
For the medium popular queries, we selected three queries

from the list “Google Top 10 Gaining Queries” for the week
ending Aug. 30, 2004 on the Google Zeitgeist—“indian larry”
(MP1), “national hurricane center”(MP2) and “republican
national convention”(MP3). While the first corresponded to
the recent death of the motorcycle stunt man known as Indian
Larry, the other two corresponded to recent news events, the
hurricanes in Florida and the political convention in New
York. Figure 9 shows the corresponding search results having
70% similarity for a maximum of 880 documents from the
Google search engine. The fraction of near-duplicates among
880 search results ranged from 16% for MP1 to 28% for MP2.
For a non-popular query sample, we selected three queries

at random—“olympics 2004 doping”, “hawking black hole
bet”, and “x prize spaceship”. The Google API retrieved
only about 360 results for the first two queries and 320 re-
sults for the third query. Figure 10 shows the number of
near-duplicate documents having 70% similarity in the search
results corresponding to the three queries. The fraction of
near-duplicates in all these queries were in the same range,
around 18%.
As we observed earlier, as the popularity of queries de-

crease so do the number of duplicate results. The most pop-
ular queries had the largest number of near-duplicate results,
the medium ones fewer, and the random queries the lowest.

3.4 Behavior of different search engines
The previous experiments all compared the results from

the Google search engine. We next apply the similarity de-
tection algorithm on the search results returned by Yahoo
and MSN search. To our knowledge, Yahoo and MSN search
do not provide an API similar to the GoogleAPI for doing
automated retrieval of search results. Therefore, we manu-
ally made HTTP requests to the URLs corresponding to the
first 50 search results for a query.
For Yahoo, the three search queries were a random search
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Figure 11: Search results for 3 random queries on Yahoo

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50

N
um

be
r o

f N
ea

r-D
up

lic
at

e 
D

oc
um

en
ts

 (7
0%

 s
im

ila
r)

Number of Top Search Results Retrieved

Near-Duplicate Results for random search queries on MSN Search

"emacs manual" query
"hawking black hole bet" query

"ohio court battle" query

Figure 12: Search results for 3 random queries on MSN

query “emacs manual”, a most popular query “revenge of the
sith”, based on an upcoming Star Wars movie release featured
in buzz.yahoo.com as one of the top Yahoo web searches on
Sunday, Nov. 7 2004, and a popular news query “ebay sellers
phony bids” which was listed as the most viewed news item
for that day on Yahoo. Figure 11 shows that Yahoo search
for these queries returned near-duplicates ranging from 16%
to 22%.
The MSN search engine did not provide a listing of the

top queries, we therefore selected sample queries that we
had used earlier to evaluate Google and Yahoo. The queries
chosen were a random query, “emacs manual”, a top query
from Google, “ohio court battle” and another random query
“hawkings black hole bet”. Figure 12 shows the results for
MSN, where the near-duplicates range from 10% to 46%. For
the “emacs manual” query, MSN had 32% near duplicates
while Yahoo had 22%.
Next, we evaluate the behavior of all three search engines,

Google, Yahoo and MSN search in returning near-duplicate
documents for 10 popular queries featured on their respective
web sites. We plot minimum, average and maximum number
of near-duplicate (atleast 70% similar) search results in the
10 popular queries. The three whiskers on each vertical bar
in Figures 13,14,15 represent min., avg., and max. in order.
Figure 13 shows the results for Google, with average num-
ber of near-duplicates ranging from 7% to 23%. Figure 14
shows near-duplicates in Yahoo results ranging from 12% to
25%. Figure 15 shows the results for MSN, where the near-
duplicates range from 18% to 26%. Comparing the earlier
“emacs manual” query, MSN had 32% near duplicates while
Yahoo had 22%.
These experiments support our hypothesis that current

search engines return a significant number of near-duplicates.
However, these results do not in any way suggest that any
particular search engine performs better than the others.

3.5 Analyzing Response Times
In this section, we analyze the response times for perform-

ing similarity comparisons using Bloom filters. The timings
include (a) the (offline) computation time to compute the
document CDC hashes and generating the Bloom filter, and
(b) the (online) matching time to determine similarity using
bitwise AND on Bloom filters and time for insertions and
unions in a union-find data structure for clustering.
Table 1 shows the CDC hash computation times for a

complete document (of size 10 KB, 100 KB, 1 MB, 10 MB) for
different expected chunk sizes (256 bytes, 512 bytes, 2 KB, 8
KB). The Bloom filter generation times are shown in Table 2
for different values (2, 4, 8) of the number of hash functions
(k) and different number of chunks (n). Each value shown is

Exp. Chunk Sizes 256 Bytes 512 Bytes 2 KB 8 KB
File Size (ms) (ms) (ms) (ms)

10 KB 0.3 0.3 0.2 0.2
100 KB 4 3 3 2
1 MB 29 27 26 24
10 MB 405 321 267 259

Table 1: CDC hash computation time for different files

and expected chunk sizes

# of chunks k = 2 k = 4 k = 8
Document Size (n) (ms) (ms) (ms)

10 KB 35 11 12 14
100 KB 309 118 120 126
1 MB 2959 961 1042 1198
10 MB 30463 11792 11960 12860

Table 2: Time (ms) for Bloom filter generation for dif-

ferent document sizes (expected chunk size 256 bytes)

an average taken over 1000 runs of the experiment. Although
the Bloom filter generation times appear high relative to the
CDC times, it is more an artifact of the implementation of
the Bloom filter code in Perl instead of C and not due to any
inherent complexity in the Bloom filter code. A preliminary
implementation in C reduced the Bloom filter generation time
by an order of magnitude.
For the matching time overhead, Table 3 shows the pair-

wise matching time for two Bloom filters for different filter
sizes ranging from 100 bits to 5000 bits. The overall match-
ing and clustering time for different query requests is shown
in Table 4. Overall, using untuned Perl and C code, for clus-
tering 80 results each of size 10 KB for the “emacs manual”
query would take around 80*0.3 ms + 80* 14 ms + 66ms =
1210 ms. However, the Bloom filters can be computed and
stored apriori reducing the time to 66 ms.

4. RELATED WORK
The problem of near-duplicate detection consists of two

major components: (a) extracting document representations
aka features (e.g., shingles using Rabin fingerprints [22], super-
shingles [12], super-fingerprints [14]), and (b) computing the
similarity between the feature sets. As discussed in Sec-
tion 2, many variants have been proposed that use different
techniques on how the shingle fingerprints are sampled (e.g.,
min-hashing, Modm, Mins) and matched [8, 7, 6]. Google’s
patent for near-duplicate detection uses another shingling
variant to compute fingerprints from the shingles [21]. They
first eliminate all shingles that occur only in a single docu-
ment and then apply a hash function to map them to a list
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lar queries on Google
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lar queries on Yahoo Search
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Figure 15: Search results for 10 popu-

lar queries on MSN Search

Bloom Filter Size 100 300 625 1250 2500 5000
(Bits)

Time (µsec) 1.9 2.4 2.9 3.9 6.2 10.7

Table 3: Time (microseconds) for computing the bitwise

AND of Bloom filters for different sizes

No. of Results 10 20 40 80 160 320
Search Query

“emacs manual” 1 4 15 66 286 1233
“ohio court battle” 1 7 24 98 369 1426

“hawking black hole bet” 1 6 23 88 364 1407

Table 4: Matching and Clustering time (in ms) for dif-

ferent search queries

in a predetermined set of lists. For each list, a fingerprint is
computed over the shingles that mapped to it. A document
is considered similar if any of the list fingerprints match.
Our similar detection algorithm uses CDC [18] for com-

puting document features and then applies Bloom filters for
similarity testing. In contrast to existing approaches, our
technique is simple to implement, incurs only about 0.4%
extra bytes per document, and performs faster matching us-
ing only bit-wise AND operations. Bloom filters have been
proposed to estimate the cardinality of set intersection in [9]
but have not been applied for near-duplicate elimination in
web search. We recently learned about Bloom filter replace-
ments [20] which we will explore in the future.
Page and site similarity has been extensively studied for

web data in various contexts, from syntactic clustering of web
data [8] and its applications for filtering near duplicates in
search engines [7] to storage space and bandwidth reduction
for web crawlers and search engines. In [10], replica identi-
fication was also proposed for organizing web search results.
Fetterly et al. examined the amount of textual changes in
individual web pages over time in the PageTurner study [13]
and later investigated the temporal evolution of clusters of
near-duplicate pages [12]. Bharat and Broder investigated
the problem of identifying mirrored host pairs on the web
[3]. Bharat et al. evaluated different techniques for detecting
mirrored host pairs based only on the page attributes such as
URL, IP addresses, and hyperlinks between pages but not on
the actual page content [4]. Dasu et al. used min hashing and
sketches to identify fields having similar values in database
tables [11]. Novak et al. used cosine and KL similarity tech-
niques for anti-aliasing on the web to identify the users who
use multiple aliases for web interaction [19].
Our work also complements other studies in several ways.

Ramaswamy et al.[23] presented an automated technique for
detection of fragments in dynamically generated web pages.
Their technique could directly be applied in conjunction with
our similarity detection algorithm to remove the non-related

fragments on the web page which do not correspond to the
user query. Sugiyama, Hatano, and Yoshikawa [24] proposed
techniques for personalization of search engine results ac-
cording to a user’s preference for relevant information. The
Bloom filter based similarity detection algorithm can be ef-
fectively used to provide content-based recommendation in
order to construct user profiles based on user’s browsing his-
tory. Kummamuru et al. [15] presented a hierarchical clus-
tering algorithm to build a topic hierarchy for web search
results. Our similarity detection technique could be applied
together with their approach to organize the search results
into groups of near-duplicate documents within each topic.

5. CONCLUSIONS
In this paper, we applied a Bloom filter based similarity

detection technique to refine the search results presented to
the user. Bloom filters compactly represent the entire docu-
ment and can be used for quick matching. We demonstrated
how a number of results of popular and random search queries
retrieved from different search engines, Google, Yahoo, MSN,
are similar and can be eliminated or re-organized.
From our evaluation of a limited set of search results, we

observed that the occurrence of near-duplicates is strongly
correlated to the relevance of the document and the popular-
ity of the query. Documents that are considered more rele-
vant and have a higher rank also have more near-duplicates
compared to less relevant documents. Similarly, results from
the more popular queries have more near-duplicates com-
pared to the less popular ones.
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APPENDIX

A. PROOF
Under the assumption that the difference between p and

(1 − e−
nk

m )k is very small, we can show using a martingale
argument that:

Theorem 1. The actual number of 1 bits in a Bloom filter
of size m bits, with k hash functions for a set of n elements,
is highly concentrated around the mean mp.

Proof. We only sketch the proof of the result here based
on [16]. Let X be a random variable denoting the num-
ber of 1 bits in a Bloom filter. For any order of the el-
ements to be inserted, let Xi be a random variable cor-
responding to the number of 1 bits set after the ith hash
(0 ≤ i ≤ nk). There are k hashes done for each of the n ele-
ments. Then, the sequence X0, X1, . . . , Xnk is a martingale,
(i.e., E[Xj+1|X0, X1 · · ·Xj ] = Xj) satisfying the Lipschitz
condition of bounded differences, |Xj+1 − Xj | ≤ 1 for all
0 ≤ j ≤ nk − 1. For such a sequence of random variables
the values are concentrated around the mean. Thus, we can
apply the Azuma-Hoeffding inequality [?] which gives a con-
centration result for the values of such sequences. Hence,
applying the inequality, for every t > 0,

Pr(|X −mp| ≥ t) ≤ 2e
−2t

2

nk (2)

If t = ω(
√

m) then the above theorem also holds with
high probability.


