
Towards computationally sound symbolic analysis of key
exchange protocols
(extended abstract)

Prateek Gupta and Vitaly Shmatikov
The University of Texas at Austin

Abstract

We present a cryptographically sound formal method for proving correctness of key ex-
change protocols. Our main tool is a fragment of a symbolic protocol logic. We demonstrate
that proofs of key agreement and key secrecy in this logic imply simulatability in Shoup’s se-
cure multi-party framework for key exchange. As part of the logic, we present cryptographically
sound abstractions of CMA-secure digital signatures and Diffie-Hellman exponentiation, which
is a technical result of independent interest. We illustrate our method by constructing a proof
of security for a simple authenticated Diffie-Hellman protocol.
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1 Introduction

Cryptographic protocols are the fundamental building blocks of secure communication systems.
Key exchange protocols are a particularly important class, because they are commonly used to im-
plement secure sessions. Secure session establishment is the main objective of popular, widely
deployed protocols such as Kerberos [29], SSL/TLS [22] and IKE [28]. Therefore, ensuring cor-
rectness and security of key exchange is of critical importance. Intuitively, a key exchange protocol
is secure if it provides agreement (upon completion of the protocol, the parties correctly know each
other’s identity and agree on the value of the established key) and key secrecy (for anyone but the
participants, the established key is indistinguishable from a random value).

Design and analysis of provably correct key exchange protocols has a long history [9, 23, 8,
10, 6, 34, 16, 17]. Cryptographic proofs of security for key exchange are usually carried out in the
so-called simulatability paradigm (e.g., [5, 11]), using standard techniques for secure multi-party
computation [25]. Informally, definitions in the simulatability paradigm involve defining an ideal
functionality for key exchange which is secure by design because, in the ideal functionality, a trusted
third party generates the key as a true random value and distributes it to protocol participants. The
actual, real-world protocol is secure if there exists an efficient (i.e., probabilistic polynomial-time)
simulator, that, with access only to the ideal functionality, can “fool” any efficient adversary into
thinking that the latter is engaged in the real-world protocol. If the ideal functionality and the real-
world protocol are indistinguishable by any efficient adversary, then no more information can be
extracted from real-world protocol sessions than from the ideal functionality. Since the latter is
secure by design, security of the real-world protocol follows. Simulatability-based definitions are
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very appealing because they provide a clean, natural way of specifying the abstraction (i.e., the ideal
functionality) that the key exchange protocol is supposed to present to higher-level applications.

Constructing proofs of simulatability is, in general, a nontrivial task. Validity arguments for
the simulator often rely on manual case analysis and informal reasoning “by the logic of the pro-
tocol” (e.g., [34]). We show that, for a certain class of key exchange protocols, the simulator can
be constructed automatically. Validity of the simulator is then proved using a simple, purely sym-
bolic deductive system which does not involve probabilities. Such symbolic inference systems for
reasoning about security are known in the literature as “Dolev-Yao” models.

We use a fragment of the protocol composition logic of Durgin, Datta et al. [24, 20], containing
abstract digital signatures, but not encryption. We also introduce formal abstractions of Diffie-
Hellman exponentiation and hash functions. We prove that this fragment is computationally sound:
even though the logic represents cryptographic primitives as abstract symbolic terms, the existence
of a proof in the symbolic model implies security in the computational model under standard as-
sumptions about security of the cryptographic primitives.

Our second contribution is symbolic, computationally sound criteria for proving security of key
exchange protocols in Shoup’s simulatability-based framework [34] with static corruptions. Our ap-
proach thus combines the ease of reasoning (and possible automation) provided by purely symbolic
deductive techniques with the strong security guarantees implied by simulatability. We illustrate our
approach by constructing a proof of security for an authenticated Diffie-Hellman protocol.

Our choice of Shoup’s framework is somewhat arbitrary. We were attracted by its conceptual
simplicity, which allowed us to carry out symbolic reasoning solely on the basis of standard as-
sumptions about the underlying cryptography, namely, the Decisional Diffie-Hellman assumption
and CMA security of the digital signature scheme. Shoup’s model does not separate authentication
from key exchange, thus avoiding the need for hybrid ideal functionalities, nor does it require the
use of any specific cryptographic library. We believe that the symbolic techniques developed in this
paper can be applied to other simulatability-based frameworks for key exchange.

Related work. The protocol composition logic used in this paper is due to Durgin, Datta et
al. [24, 20]. Computational soundness for a different, complementary fragment of this logic (con-
taining encryption, but not signatures) is established in [21]. Our techniques are similar, but (i)
we extend the logic with axioms modeling the Decisional Diffie-Hellman assumption and universal
hash functions, (ii) our simulatability-based cryptographic definitions of security are substantially
different from the game-based definitions considered in [21].

Bridging the gap between symbolic models and the computational model used in modern cryp-
tography has been a subject of very active research [1, 31, 30, 32]. Our proof techniques are inspired
by the work of Micciancio and Warinschi [32]. The results of [31, 32], however, simply show the
existence of a sound symbolic abstraction for computational traces in the presence of CCA2-secure
encryption, and cannot be used to demonstrate simulatability of Diffie-Hellman-based protocols.

Canetti et al. [12, 13, 17, 18, 14] and Backes, Pfitzmann, and Waidner [33, 3, 4] proposed
simulatability-based definitions of security for cryptographic primitives and protocols that are pre-
served under arbitrary or universal composition (UC). We view our work as complementary. Instead
of alternative definitions, we propose cryptographically symbolic proof methods that can be used to
demonstrate that a protocol is simulatable in a particular ideal functionality.

Another important difference is that symbolic proofs can rely on UC cryptographic primitives
only if the primitives’ ideal functionalities are purely “Dolev-Yao.” Informally, this means that
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every computation using a given cryptographic primitive must have a sound symbolic abstraction,
as is the case, e.g., for the “universally composable cryptographic library” [3]. By contrast, we
follow [21] in requiring only that every provable symbolic theorem hold for the overwhelming
majority of computational instantiations. For protocols using Diffie-Hellman, this enables us to
obtain computationally sound symbolic proofs without coming up with a general-purpose “Dolev-
Yao” functionality for Diffie-Hellman exponentiation (which is a challenging open problem).

Potential disadvantages of our approach are as follows. If the symbolic criteria cannot be proved
for a particular protocol, this does not mean that the corresponding computational criteria do not
hold (unlike UC definitions, our criteria do not provide exact characterization). This is inevitable in
any expressive deductive system. Moreover, in this paper, the adversary is not allowed to corrupt
participants in the middle of protocol execution. Therefore, symbolically proved simulatability
is not necessarily preserved under arbitrary composition. This is the price we pay for extending
computational soundness results to cryptographic primitives such as Diffie-Hellman with standard
(non-UC) definitions of security. In the future, we plan to investigate symbolic proof for stronger
notions of composability, such as security in the presence of adaptive corruptions.

Very recently, Canetti and Herzog proposed a symbolic criterion for (universally composable)
key exchange [15], while Backes and Pfitzmann [2] proposed an alternative symbolic criterion for
key secrecy. Both papers consider classes of protocols which are substantially different from ours,
with cryptographic primitives that include encryption, but not Diffie-Hellman. We view this paper,
along with [21], as one of the first steps towards development of cryptographically sound proof
methods for criteria such as those proposed in [15, 2].

We are not aware of other computational soundness results for protocols using Diffie-Hellman.
A computational soundness result for symbolic digital signatures appears in [19], but, unlike the
result in this paper, it seems to require a stronger notion of signature security than standard CMA
security of [26] since [19] does not account for the possibility of signature re-randomization.

Organization of the paper. We explain the cryptographic assumptions in section 2, then define
the symbolic protocol model in section 3, and the computational model in section 4. In section 5,
we give the fragment of the protocol composition logic of Durgin, Datta et al. that we are using in
this paper, and the associated inference system in section 6. Section 7 contains the main result of
the paper: automated construction of the simulator and symbolic proof of validity, illustrated by the
example in section 8. We describe future research directions in section 9.

2 Cryptographic background

Our cryptographic definitions are standard, and discussed in more detail in section A.
A digital signature scheme consists of a key generation algorithm � which produces a pub-

lic/private key pair, a signing algorithm � , and a verification algorithm V . The signature scheme
is assumed to be secure against existential forgery under the adaptive chosen-message attack [26].
Informally, this means that is computationally infeasible for the adversary to produce a signature on
any message which had not been previously signed by an honest signer.

We formalize the Decisional Diffie-Hellman (DDH) assumption in the form of a game. Let G
be a group of large prime order q and let g � G be a generator. Let �DH denote a “Diffie-Hellman
oracle.” In the learning phase, the adversary can make a polynomial number of distinct queries of
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Identities �� ::= X (variable name) � A (constant name)
Indices �� ::= � (index of a hash function family)
Terms � ::= � (variable) � � (constant) � �� (identity) � � (random) �

�� (hash function) � ��� �� (pair) � ���� (exponential gr) �
���� �� (exponential gr�r) � ����

��
(signature of ��)

Actions � ::= � (null) � ���� (generate nonce) � ��� (send term �) �
��� (receive term �) � � � � (equality test) � ����� (pattern matching) �
�������� (“key created”) � ��	

���� (“key agreement reached”)

���� ::= � � �� ����
������ ::= � id, sessionId �
�	�� ::= ������������

Figure 1: Syntax of the symbolic model

the form �i� j� (i 	� j). In response to a query, the oracle returns the �gxi � gxj � gxixj�, where xi� xj are
chosen uniformly at random from Zq. In the testing phase, the adversary makes a single query of the
form �i� j� (i 	� j), where �i� j� is different from any pair used in the learning phase. A random bit b
is chosen by the oracle. If b � �, then the tuple �gxi � gxj � gxixj� is returned, else the tuple �gxi � gxj � gzij�
is returned, where zij is random. The DDH assumption says that no efficient adversary can compute
b with probability that is greater than �

� by more than a negligible amount.
Finally, let H be an almost universal family of hash functions mapping ��� ��n to ��� ��l and

indexed by a set 
 , i.e., for every x� y � ��� ��n, x 	� y, the probability that hi�x� � ni�y� for
an element hi � H selected uniformly from H is at most �

�l �
�
�n . Let X � ��� ��n, � X �� �l.

Using the leftover hash lemma [27], we will assume that the distribution �hi�x�� is computationally
indistinguishable from the uniform distribution for any index i.

3 Symbolic protocol model

Our symbolic protocol model is essentially the same as in the protocol composition logic of Datta
et al. [20]. Therefore, we only give the main definitions and indicate where our model differs
from [20]. Informally, protocol 	 is a set of roles, each describing a sequence of actions to be
executed by a participant in a protocol session. A role can be thought of as a strand in the Strand
Space Model [35]. In this paper, we focus on two-party protocols.

Protocol syntax is given in fig. 1. Note that terms representing signatures have labels r, used to
differentiate between signatures created by an honest protocol participant and the adversary on the
same plaintext (CMA security does not guarantee uniqueness of signatures). We omit encryption
for the purposes of this paper. Actions include two special annotations �������� and ��	

����,
which mark, respectively, the point in the protocol where, according to the specification, the key is
first computed by an honest participant and the point after which both roles are supposed to share
the computed key. These annotations are further explained in section 7.2.

A symbolic trace of protocol 	 is a sequence of steps denoting, in the order of execution, all
honest participants’ actions and send/receive actions of the attacker. Formally, this is modeled as a
symbolic execution strand ExecStrand� 

� Start�Init�� ����, where Init is some initial configu-
ration, and ���� is the sequence of actions.
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4 Computational protocol model

To link the abstract symbolic model described in section 3 to the full computational model, in which
cryptographic primitives are implemented as actual computational algorithms, we (i) instantiate the
abstract actions of honest protocol participants to computational actions and the abstract symbolic
terms sent by honest participants to corresponding bitstrings, and (ii) construct symbolic abstrac-
tions for all messages generated by the computational adversary.

We emphasize that, unlike other work on computational soundness of symbolic models [32, 13,
3], we do not claim that every computational trace has a sound symbolic abstraction (this is difficult
to achieve in the presence of malleable Diffie-Hellman exponentiation). Our computational sound-
ness is a weaker condition: any property that can be proved in the symbolic model using the logic
of section 5 is guaranteed to hold in the computational model. This is the same general approach
as in [21], but the properties considered in this paper are substantially different. Weakening the
soundness requirement allows us to handle key exchange protocols based on Diffie-Hellman.

As in [32, 21], we fix the protocol 	, adversary , security parameter �, and some randomness
R of size polynomially bounded in �, which is divided into the randomness used by honest partici-
pants and that used by the adversary. The symbolic protocol execution is converted into a concrete
execution by mapping every abstract symbol into the corresponding bitstring and instantiating every
abstract action of the honest participants with the corresponding computational action.

Details of this mapping are given in appendix B. For example, symbolic terms r denoting
random values are mapped into the bitstrings drawn from the appropriate part of randomness R.
Diffie-Hellman symbolic terms ����� ���� �� are mapped into elements gx� gx�y � G where G is a
large cyclic group of prime order q whose generator is g, and so on. Symbolic actions are instanti-
ated similarly, e.g., ��x� is instantiated in the concrete model as generation of a random nonce using
randomness R.

The only difficult part is defining a symbolic abstraction for messages sent by the adversary. As
in [32], this is done by parsing them and replacing every bitstring which is neither an instantiation of
a symbolic constant, nor generated by an honest participant with a new symbol, denoting an adver-
sarial nonce. We handle terms of the form gx as follows. Whenever an honest participant receives
a value representing gx for some x which is known to the recipient, we abstract the corresponding
term as ���� (because the recipient can compute gx and check if it matches the received value). If x
is not known, we create a new symbolic term ����� where x� is a new symbolic name.

Informally, the resulting symbolic abstraction of Diffie-Hellman terms is not “Dolev-Yao.” Be-
cause Diffie-Hellman exponents are malleable, the adversary can convert some gy sent by an honest
participant into gy�

, and this computation does not have a symbolic equivalent. Note, however,
that our theorem 1 guarantees computational soundness only for properties that are provable in the
symbolic logic. As we demonstrate below, a symbolic proof for agreement in a Diffie-Hellman-
based key exchange protocol only goes through if the protocol ensures non-malleability (e.g., all
Diffie-Hellman terms are signed), and for this class of protocols the symbolic abstraction is sound.

A computational trace t������R� (for some fixed protocol 	, adversary , security parameter
� and randomness R) is defined as a tuple �ts� f �R�, where ts � ExecStrand� is the corresponding
symbolic trace, f is the function from Var�ts��Const (where Var�ts� denotes the set of variables oc-
curring in ts and Const is the set of symbolic constants) to bitstrings (of size polynomially bounded
in �). We denote by CExecStrand� the set of all computational (concrete) traces of the protocol 	.

Given a concrete trace t, we denote by R�t� � �R��R�� the randomness used in t. We say that
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� ::= ��
��P� �� � ��������P� �� � ����P� �� � �������P� ��
� ::= � � ���P� �� � �����P� �� � �	
���P� � �	
���
���� ��� �

�
������� ��� � � � � � �� � � x�� � ������P� � ��� � �����
� ::= ���

Figure 2: Syntax of the protocol logic

a concrete trace tc is an implementation of ts (or inversely, ts is an abstraction of tc), denoted by
tc � ����

�

������ts�, iff tc � �ts� f �R�tc��.

5 Protocol logic

The syntax of the logic is given in fig. 2, where � denotes a role (see fig. 1), while � and P denote a
term and a thread, respectively. The only substantial addition to [20] is the �
��� predicate.

In the rest of this paper, we use � and � to indicate predicate formulas and m to denote a generic
term called a “message.” A message m is a 4-tuple (source, destination, session id, content). Since
we model the network as controlled by the adversary, the source and destination fields may not
denote the real identities of the principals and may be altered by the adversary at will.

Action formulas refer to honest participants’ actions: ��
��P� ��, ��������P� ��, ����P� ��,
�������P� �� mean that the last action taken in the protocol execution was, respectively, sending,
receiving, generating a new value and verifying a signature by the agent P on message �. Formula
���P� �� means that thread P knows term �. Similarly, �����P� �� means that term � is freshly
generated in thread P and has not been sent out in an outgoing message. �	
���P� simply means
that party P is honest at the start of the protocol and remains honest throughout the execution of the
protocol (we only consider static corruptions). Formula �	
���
���� ��� means that the term �� is
contained in the term ��. Formulas ��� and����� are temporal formulas which say, respectively, that
� was true sometime or immediately before in the past. ������P� simply says that the P has not
performed any actions in the past. Finally, the modal formula 	�R�X� is in the style of Floyd-Hoare
logic and states that in a thread X after actions R are executed, starting from a state in which the
formula 	 was true, formula � is true in the resulting state.

For the purposes of this paper, the definition of the subterm relation� defined on terms coincides
with the definition of ��	���, i.e., �� � �� iff �� � ��	�������, where the closure of term � is
defined as the least set of terms derivable using the following rules:

� � ��	������� � � ��	������� ���  � ��	������� ��� � � ��	�������	


�

�� � ��	������ � � � ��	�������� �� � ��	�������

Symbolic semantics. Formula � is true in a symbolic trace R � ExecStrand� of the protocol
	, denoted as 	,R �� � or R�	� �� �, if � holds true at the end of the trace R. The inductive
definition is given in appendix D. Trace R may be a complete or an incomplete trace in which
some of the parties have not completed the protocol. For a given protocol 	, let �
���	� denote
the set of all possible initial configurations. Then 	 satisfies �, denoted by 	 �� �, if R �� �,
�R � ExecStrand� .
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AN3 ���n�X�����X� n�
REC ����������X� n�� ���X� n�
VER �	
���X� � �������Y� ���	X� � X 	� Y �

�X����� l������
��X� �� � �	
���
��� ���	
�

X ��
F 	�����X������X� ��, where �� � ����
DDH1 �����Y� y� � �	���
��Y� ���� ��� � �	
���Y� � ��X� �X 	� Y� � �	
���X�

������x�X�� � �	���
��X� ���� ���� � r��
�������� ��� �����
DDH2 �
�������� ��� ������a�X�
�������� ��� �����, where if � � ��� then

d�x� y�� x� y 	� ��	������
LHL �
����d�x� y�� d�r�� � � i��
����hi�d�x� y��� r�

�������� �� � ���� ���������
����	
�
 �������� � � � � ��� � ��������� ���� � � � � ����������� ���

�	���
��X� �� � � ������ � � � ����� � 	� ��	������

Figure 3: Examples of symbolic axioms

6 Proof system

Our proof system is based on the proof system in the original protocol logic of Datta et al. [24,
20, 21], but we omit the axioms for encryption and extend the logic with several new axioms: VER
(signature verification axiom), DDH1 and DDH2 (Diffie-Hellman axioms), and LHL (leftover hash
lemma, for reasoning about hash functions). We prove that the new axioms are computationally
sound. To the best of our knowledge, this is the first computationally sound symbolic model of the
Decisional Diffie-Hellman assumption and universal hash functions.

Since most of the axioms were presented in previous work on the protocol composition logic, we
list the entire set of axioms in appendix C, and only give a selection of important axioms, including
all the new ones, in fig. 3. Note that existential quantification over X on the right-hand side of
implication in the VER axiom simply means that there exists an instance of protocol role X.

Say 	 � � if � is provable using the symbolic inference system.

Computational semantics. We now define what it means for a formula � to hold over the set of
concrete, computational traces T of protocol 	. Our definitions follow closely those of [32, 21].
For all formulas not involving �
���, we define semantics on a single concrete trace. We say that
a concrete execution trace t of a protocol 	 satisfies a formula � if � ts � ExecStrand� such that
t � ����

�

������ts� and ts satisfies �, i.e., � is true (in the symbolic semantics of section 3) on the
symbolic abstraction of the concrete trace.

The semantics of a formula � over a set of computational traces T is defined as the subset
T � � T whose elements satisfy the formula �. We say that a formula � holds for protocol 	 in the
computational model, denoted by 	 ��c �, if the semantics of the formula � is an overwhelming
subset of all possible traces of the protocol 	. More precisely, given a formula � and a protocol
	, we associate with � the set ����� � CExecStrand� of traces in which the formula � is satisfied.
Now, 	 ��c �, if, by definition, � ����� � � � CExecStrand� �� �� ����, where � is some negligible
function in the security parameter �.

Computational semantics for the �
��� predicate is quite subtle because it cannot be defined
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for a single concrete trace. It can only be defined over families of traces (a similar issue arises
when modeling real-or-random indistinguishability of values under encryption [21]). Protocol 	
satisfies �
������� ��� in the concrete model, denoted by 	 ��c �
������� ���, if for all possible
executions which assign random values to the terms ��� �� from some set S according to distributions
D�D�, respectively, no probabilistic polynomial-time algorithm can distinguish between D and D�

with a non-negligible probability. That is, for every X � S, it holds that � D�X� � D��X� �
 ����,
where ���� is some negligible function of the security parameter �, i.e., the distributions of �� and
�� are computationally indistinguishable.

Theorem 1 (Computational soundness). Let 	 be an executable protocol and � a formula. If the
protocol is implemented with a digital signature scheme which is secure against existential forgery
under the adaptive chosen message attack and assuming the Decisional Diffie-Hellman assumption
holds, then 

	 � �� 	 ��c �

The proof follows from computational soundness of all axioms and inference rules of the logic,
which is proved in appendix E.

7 Symbolic proofs of security for key exchange protocols

We now demonstrate how to automatically construct the simulator in Shoup’s simulatability-based
framework for key exchange [34], and prove its validity using the purely symbolic logic described
in section 5.

7.1 Definition of security for key exchange

We adopt Shoup’s model of secure key exchange [34] due to its conceptual simplicity. It is spe-
cific to key exchange, unlike general-purpose models, such as universal composability [13, 17] and
reactive simulatability [4], that aim to give new definitions for cryptographic primitives and multi-
party protocols which are preserved under general composition. It also allows us to demonstrate
the power of symbolic reasoning directly, and to avoid the difficulties inherent in coming up with a
universally composable model of Diffie-Hellman exponentiation.

Shoup’s framework is based on the standard notion of multi-party simulatability. In this section,
we give a concise summary of [34]. A more detailed exposition can be found in appendix F. For
simplicity, we consider the case of two-party protocols. First, an ideal-world model is defined,
in which key exchange is carried out with the help of a trusted third party, called the ring master
in [34], but perhaps better referred to as the ideal key exchange functionality. In the ideal world,
the adversary may instruct the ideal functionality to create a truly random key (“create” operation),
chosen by the ideal key exchange functionality, and to securely distribute the created key to both
user instances (“connect” operation). Clearly, this ideal-world key exchange is secure by definition,
since the key is a random value which is known to both user instances but hidden from the adversary.
In this paper, we limit our attention to static corruptions, and only permit the ideal-world adversary
to compromise user instances that are engaged in a protocol session with a corrupt user.

In the real-world model, there is no trusted third party and keys are established by executing the
actual key exchange protocol. For both the real-world and ideal-world adversaries, a transcript is
created, recording all observable events as they happen.
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A key exchange protocol is secure in Shoup’s framework [34] if it has the properties of termina-
tion, liveness, and simulatability. Termination requires that any real-world user instance terminate
after a polynomially bounded number of messages are delivered to it. Liveness requires that, for
every efficient real world-adversary , whenever the adversary faithfully delivers all messages be-
tween the two user instances, both user instances successfully terminate the protocol and generate
a session key. Simulatability requires that, for every real-world adversary , there exists an ideal-
world simulator � such that their transcripts, RealWorld�� and IdealWorld���, respectively, are
computationally indistinguishable.

7.2 Construction of the simulator

To prove a key exchange protocol correct, we need to prove termination, liveness and simulatability.
Termination is guaranteed since only protocols with a constant number of rounds can be specified
using the symbolic syntax described in section 3. Liveness is established by manual examination of
the protocol specification (we are not concerned with formally verifying liveness in this paper). In
the rest of the paper, we focus on simulatability.

We present a formal method for constructing the simulator and the proof of its validity from a
symbolic protocol specification and symbolic proofs of agreement and key secrecy. We emphasize
that the simulator and the computational proof of its validity are essentially the same as in Shoup’s
original paper [34]. The proofs in [34], however, are hand-crafted and based on informal reasoning
that “follows easily from the logic of the protocol” (see, e.g., [34, p. 25]). Our contribution is to take
a rigorously defined, computationally sound protocol logic and show that a simple symbolic proof
in this logic implies the computational proof of [34], thus opening the road to automated formal
proofs of security for key exchange protocols.

The complete algorithm for constructing the simulator in given in appendix G, and summarized
here. As in [34], the ideal-world simulator runs the real-world adversary  as a subroutine, simu-
lating execution of real-world honest participants to him. The simulator computes the appropriate
connection assignments (i.e., it figures out which ideal-world user instances to connect based on
which user instances are talking to each other in the real world), except that in the ideal world the
ideal functionality substitutes computed real-world keys with random ideal-world keys. Whenever
� compromises an ideal-world user instance, it does so by supplying the session key extracted from
the real-world user instance that � is simulating to the real-world adversary . Any record placed
in the real-world transcript by the real-world adversary is copied by � to the ideal-world transcript.
Finally, any �!!������	
 operation, which in Shoup’s framework models arbitrary higher-level
protocols or applications making use of the exchanged key, is evaluated in the real world using the
computed real-world key, and in the ideal world using the random ideal-world key.

7.3 Validity of the simulator

To prove that the simulator � is valid, it is necessary to establish that the connection assignments
made by � are legal and that the substitutions of real-world keys with random ideal-world keys are
not detectable. We demonstrate that two symbolic conditions – one modeling agreement between
the participants, the other modeling key secrecy – are sufficient for the computational validity of the
simulator.
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Init ::= ��A� A�����x���A��A�� ����� ������A��
	
�

�

A���
�A��A�� ����� y�� k� z���z������� y�� k�A��

	�

A�� ��	

�����A��
Resp ::= ��A� A�����y���A��A�� x�� z�� �z��x��A��

	�

A�
����������

�A��A�� x�� ����� k� �x�� ����� k�A��
	
�

�

A�
��A��

where k is some hash function index;
the derived key is hk�gxy� for some hash function H indexed by k.

Figure 4: Symbolic specification of the DHKE protocol.

Agreement in the symbolic model. Following [8], our definition is based on matching records
of runs, which is slightly weaker than usual. The signature received by one party may be different
from that sent by the other party, as long as it’s on the same plaintext. For a symbolic trace R of
a two-party protocol 	, a record of R by an honest party Ai (i � ��� ��) consists of a sequence of
actions performed by Ai during R.

Definition 1. Messages ��� �� containing terms ��� ��, respectively are matching in the two records
if �� is incoming for one record, m� is outgoing for the other record, i.e., the source field of one
matches the destination field of other, and the terms �� and �� in the two records, match up-to-
randomness in the following sense:
- If �� and �� do not contain a subterm which is a signature, then they match exactly.
- If �� � ��	��

, then �� matches any term �� which is a signature of the same term under the same

private key (maybe with a different label), i.e., �� � ��	
�

��
for some l�.

- All subterms of �� match up-to-randomness with the corresponding subterms of ��.
We say that two records match if their messages can be partitioned into sets of matching mes-

sages with one message from each record in each set, such that messages originated by either
participant appear in the same order in both records.

Key secrecy in the symbolic model. To model key secrecy, we say that the key should be in-
distinguishable from a random number, i.e., we require that � r��
����t� r� holds in the symbolic
model, where where t is the symbolic term representing the key that is derived by the participants,
and r is a symbolic term representing a random value.

Theorem 2. Let 	 be a protocol. If there exists a symbolic proof of agreement according to defini-
tion 1 and a symbolic proof of the � r��
����t� r� formula where t is the symbolic term representing
the key, then the simulator constructed by the algorithm of section 7.2 is valid for an overwhelming
subset of all possible executions of 	.

Proof in appendix H.

8 Example

We illustrate our method by constructing a valid simulator for the two-move authenticated Diffie-
Hellman protocol (DHKE). The symbolic specification of the protocol appears in fig. 4.

Let A� denote the initiator of the protocol and A� the responder. Assume that the certificates for
public signature verification keys are known and not sent as part of the protocol. Recall that create
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and connect are special markers denoting, respectively, the points in the protocol execution where
the key is first derived by one (respectively, both) participants.

We prove agreement for the initiator role of the protocol. The proof for the responder is similar.
The property is proved using the formulation pre [actions] post, where pre is the precondition before
the actions in the actions list are executed and post is the postcondition.

pre ::= �����A�� x�
actions ::= �Init�A�
post ::= Honest(A�)� �A������	
�
 �����

��
��A�� �A��A�� ����� ������A��
	�

A�
��

��������A�� �A��A�� x�� �x��A��
	
�

�

A�
���

��
��A�� �A��A�� x�� ����� k� �x�� ����� k�A��
	�

A�
��

��������A�� �A��A�� ����� y�� k� ������ y�� k�A��
	
�

�

A�
����

where x� � ���� and y� � ����.

The actions in the formula are the actions of the Init role of the DHKE protocol. The precon-
dition specifies that x is freshly generated by A� before sending or receiving any messages. The
postcondition captures the notion of agreement for the initiator role of the protocol (according to
definition 1). The symbolic proof of this property is given in appendix I.

In appendix I, we also construct a proof of key secrecy (in the sense of real-or-random indistin-
guishability) for the initiator role of the protocol under the assumption that both parties are honest.
The key secrecy property is specified as:

pre ::= �	
���A�� � �����A�� x�
actions ::= �Init�A�
post ::= �A�. Honest(A�)� � r��
����������� ���� ��

where hk is some hash function and r denotes a random term

Here the postcondition specifies that, if A� is honest, too, then the value of the derived key is
indistinguishable from a random value. According to theorem 2, these two conditions are sufficient
for the existence of a valid simulator for the DHKE protocol in Shoup’s model [34].

9 Future directions

This paper is but a first step towards development of computationally sound symbolic methods for
proving correctness of key exchange protocol. The next step is to find symbolic criteria (and appro-
priate deductive systems for proving them) that would permit symbolic proofs of simulator validity
for key exchange with adaptive corruptions [34] and weaker forms of universally composable key
exchange. In appendix J, we show that symbolic proofs in our model imply simulatability in the
relaxed key exchange functionality of Canetti and Krawczyk [17].

Another challenge is to extend the method proposed in this paper to key exchange protocols that
use encryption in addition to signatures. This would require establishing computational soundness
for a fragment of the symbolic protocol logic that includes encryption. Logical characterization of
real-or-random indistinguishability of values under encryption is a nontrivial task, although progress
has been recently made by Datta et al. [21].
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A Cryptographic background

A.1 Security of digital signature schemes

Definitions in this section follow Bellare and Rogaway [7]. A digital signature scheme ��=
������� consists of three standard algorithms, as follows. The randomized key generation al-
gorithm � (which takes no input) produces a public/private key pair. The randomized signing
algorithm � takes the private key and message M to return the signature � � ��� ��� � ���. The
special value � denotes that a signature for message M was not produced correctly. The deter-
ministic verification algorithm � takes a public key, message M and a candidate signature � 	��,
and produces a 1-bit output d. If d � � (�) then the signature was correctly verified (respectively,
verification failed). As usual, it is required that the verification algorithm output � for any signature
� 	�� produced by the signing algorithm S on message M.

We adopt the standard notion of security for signature schemes, that is, security against exis-
tential forgery under the adaptive chosen-message attack [26]. This notion of security is formalized
as a game in which the goal of the adversary is to forge a signature �M on a message M of his
choice (which had not been previously signed by an honest signer). We first define a signing oracle
SignX��� (which produces message signatures under the secret signing key of participant X) and
give the adversary access to it. The actions of the adversary can be viewed as divided into two
phases. In the first, “learning” phase, the adversary can query the signing oracle a polynomial num-
ber of times (in the security parameter �). In the second, “forgery” phase, the adversary is required
to produce a correct signature for his chosen message M, provided that he did not query the signing
oracle on M in the first phase. The adversary wins the game if he can do so with a non-negligible
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probability. The signature scheme�� is CMA-secure if no probabilistic polynomial-time adversary
can win the above game with a probability that is non-negligible in the security parameter �.

Remark. Note that we only have a signing oracle and not a verification oracle, since it is assumed
that the public keys are known to everyone and, in particular, to the adversary. Thus, the adversary
can verify any signature internally.

A.2 Decisional Diffie-Hellman assumption

Let G be a group of large prime order q and let g � G be a generator. For g�� g�� u�� u� � G,
define DHP(g�� g�� u�� u�) to be � if there exists x � Zq such that u� � gx

� and u� � gx
�, and �

otherwise. The Decisional Diffie-Hellman (DDH) assumption states that there is no probabilistic,
polynomial-time algorithm that computes DHP with negligible error probability on all inputs.

Following [34], we adopt a slightly more restrictive definition of the DDH assumption, which
states that the distribution �g� �gxi 
 � � i � n�� �gyj 
 � � j � m�� �gxiyj 
 � � i � n� � � j � m�
and the distribution �g� �gxi 
 � � i � n�� �gyj 
 � � j � m�� �gzij 
 � � i � n� � � j � m�� are
computationally indistinguishable. Here, base g and exponents xi� yj� zij are random.

We formalize the notion of security in the form of a game played by the adversary. Let �DH

denote a “Diffie-Hellman oracle.” Let  be an adversary running in time T and allowed to make
at most Q queries to the oracle. The adversary operates in two stages. In the learning phase the
adversary can make at most Q distinct queries of the form �i� j� (i 	� j). In response to the query the
oracle returns the 3-tuple �gxi � gxj � gxixj�, where xi� xj are chosen uniformly at random from Zq. In the
second phase, known as the testing phase the adversary makes a single query of the form �i� j� (i 	� j)
subject to the constraint that he could not have asked for the same in the learning phase. A bit b is
chosen at random by the oracle not known to the adversary. If b � �, then the tuple �gxi � gxj � gxixj�
is returned, else the tuple �gxi � gxj � gzij� is returned, where zij is random. At the end of the game the
adversary outputs a guess b� of the bit b. The advantage of the adversary is defined as the distance
from �

� of the probability that the guess is correct. The DDH assumption states that the advantage of
any probabilistic polynomial time adversary who can make at most a polynomial number of queries
in the learning phase is negligible. Our definition of the DDH assumption is slightly more general
and allows to prove security of Diffie-Hellman-based protocols in the concurrent execution model.
In this setting, the adversary is allowed to perform session state reveals for previously completed
sessions which reveal the session key for these sessions. The above definition of security implies
that revealing a polynomial number of previously computed session keys does not compromise
security of the current session.

A.3 Universal hash functions

Let D be a distribution on a finite set S. We denote by D�s�, for s � S the probability that D assigns
to s. For X � S, let D�X� denote the probability that an element chosen according to D is in X. Let
the collision probability of D be the probability that two elements chosen independently according
to D are the same. We sat that distributions D and D� are statistically indistinguishable within an
error � if, for every X � S, � D�X�� D��X� �
 �. We say that D is quasi-random on S (within �) if
D is statistically indistinguishable from the uniform distribution on S.
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Leftover hash lemma. Let H be a family of functions mapping ��� ��n to ��� ��l indexed by a
set 
 . We say that H is universal or a universal family of hash functions if, for every x� y � ��� ��n,
x 	� y, the probability that hi�x� � hi�y�, for an element hi � H selected uniformly from H, is at
most �

�l . We say that H is almost universal if, for every such pair, the aforementioned probability is
at most �

�l �
�
�n .

Let X � ��� ��n, � X �� �l. Let e � �, and H be an almost universal family of hash functions
mapping ��� ��n to ��� ��l��e . The leftover hash lemma [27] states that if i is drawn uniformly
from the set 
 , x is drawn uniformly from X, then the distribution �hi� hi�x�� is quasi-random (on
the set H � ��� ��l) within �

�l . In other words, the distribution �hi� hi�x�� is uniform if i is chosen
uniformly from the index set 
 and x is chosen uniformly from the domain X. Although we can
use any (almost) uniform family of hash functions, we require an additional property from H in the
security analysis. We assume that the distribution �hi�x�� is computationally indistinguishable from
the uniform distribution for any index i. This is to ensure that there is no ”weak” index which can
be chosen by the adversary which allows him to distinguish between the distribution �hi�x�� and
the uniform distribution.

B Computational protocol model

Our computational protocol model is similar to other works on computational soundness such as [32,
21]. Protocol messages are bitstrings as opposed to abstract symbolic terms, and the adversary is a
probabilistic polynomial-time state machine.

To link the computational model with the symbolic model, we define function f which maps
atomic symbols to bitstrings. Without loss of generality, we assume that variable and nonce names
are unique for each protocol role (this can be easily ensured by -renaming). Below, we explain
how the mapping f is built.

We fix the protocol 	, adversary , security parameter �, and some randomness R of size
polynomially bounded in �. We denote by Sid the set all session ids for possible executions of the
protocol. A thread is an instance of a protocol role executed by a participant, modeled as a pair
consisting in the participant’s identity and session id (drawn from Sid) of this protocol instance.
Each participant and each session is assigned a symbolic name from the set I � ��� ��� . Some of
the principals are designated as honest and the rest as dishonest (corrupt). Randomness R is split
into R� � �Ri for each honest participant i � I (for the random coin tosses performed by i) and R�
for the random coin tosses performed by the adversary.

Let G be a large cyclic group (under multiplication) of prime order q. Let g denote the generator
of G. Denote by ����, ���� �� the elements gx� gx�y � G, for x� y chosen uniformly from Zq. We
abuse notation and write gxy instead of gx�y.

We also assume the existence of some CMA-secure signature scheme �� � �������. In the
initialization phase, public/private key pairs are generated for each participant executing a role in the
protocol. The public keys of all participants are made available to the adversary. In addition, private
keys of the dishonest participants are also known to the adversary. We consider the case of static
corruptions only, i.e., the participants that have initially been designated as honest remain honest
throughout the protocol execution. The adversary is also given the identities of all the participants
and their role assignments.

The adversary is constrained to run in probabilistic polynomial time. Once the randomness of
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the adversary is fixed, we view the adversary as a deterministic state machine. As usual, we model
the network as adversarially controlled, i.e., honest parties communicate by sending messages to
and from the adversary.

Computational instantiation of symbolic actions. We model honest parties as (stateful) oracles,
following [8]. In particular, an honest participant i trying to communicate with an honest participant
j in a protocol session s is modeled as a stateful oracle �s

ij.
The state of the oracle is defined by the mapping f from atomic symbols to bitstrings and the

counter c, which is initially set to � and increased by � for each executed action in the thread.
The mapping for constants such as public keys and identities is fixed prior to the execution of the
protocol by mapping each name to the corresponding bitstring. The mapping for pairs is defined by
simply concatenating the corresponding bitstrings. The domain of f can be extended to include the
set of all terms as shown below.

Each oracle proceeds in steps according to the sequence of actions in the role’s action list.
The oracles are activated by the adversary who communicates with them by sending and receiving
messages. We omit the details of communication between the adversary and the oracles, and focus
on computational interpretation of symbolic protocol actions. Let � be the current action in the
���� defining some role of participant i in session s, i.e., the symbolic thread is �i�� s�� where
i � f �i�� and s � f �s��.

We now give the computational interpretation for the actions. If a � ��x� (for thread �i�� s��),
then we update f so that f �x� � v where v is some bitstring which is freshly generated using the
randomness of party i. Generation of a symbolic signature ���	� , where � is a fresh random label,
is implemented in the computational model by running the signing algorithm � on the private key
of participant X, message � and some randomness r drawn from Ri so that f �l� � r. Generation
of a Diffie-Hellman exponent ���� is done assuming access to an exp function which, given x,
computes gx. The joint exponent ���� �� can be computed by using a function joinexp which takes
as arguments x, gy (or alternatively y, gx). We omit the details for signature verification, pairing,
unpairing and equality test, which can be implemented similarly. Pattern matching is simply a
composition of one or more simpler operations.

If a � ��� (for some thread �i�� s��), then we simply send f �x� to the adversary. Similarly for a
receive action �x�, we update f so that f �x� � m, where m is the bitstring sent by the adversary.

Symbolic abstraction of computational messages. We now define an abstraction function �
from bitstring messages in the computational trace (i.e., messages received by honest participants
from the network) to symbolic terms in the formal execution. Since the randomness of all partic-
ipants in the protocols is already fixed, the mapping from constant bitstrings to constant symbols
is defined simply by canonically labelling these bitstrings with the corresponding symbolic names.
Because we have already defined the function f from the set of symbolic terms to bitstrings for each
oracle �s

ij representing an honest participant, we only need to define symbolic abstraction for the
adversary’s messages, each of which can be viewed as a query to one of the oracles.

As in [32], this is done by parsing the query sent by the adversary and replacing every bitstring
which is neither an instantiation of a symbolic constant, nor generated by an honest participant
with a new symbol, denoting an adversarial nonce. The main difficulty is abstracting computational
terms of the form gx. Whenever an honest participant receives a value representing gx for some x
which is known to the recipient, we abstract the corresponding term as ���� (because the recipient
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can compute gx and check if it matches the received value). If x is not known, we create a new
symbolic term ����� where x� is a new symbolic name.

C Axioms and proof rules of the protocol logic

We list the full list of axioms and proof rules for our fragment of the protocol composition logic.

Basic axioms:

AA1 ��a�X���
AA2 �����X� ���a�X���� ����������X� ���
AN2 ���n�X���Y� n�� �Y � X�
AN3 ���n�X�����X� n�
ARP ����������X� !������"����"�����X����������X� !����
ORIG ������X� n�� ���X� n�
REC ����������X� n�� ���X� n�
TUP ���X� x� � ���X� y�� ���X� �x� y��
PROJ ���X� �x� y�� � ���X� x� � ���X� y�
VER �	
���X� � �������Y� ���	X� � X 	� Y �

�X�� ��� l������
��X� �� � �	
���
��� ���	
�

X ��
N1 ������X� n� � ������Y� n�� �X � Y�
N2 ����������X� n��� ����X� n���� �n� 	� n��
F1 �������X� �� � �������Y� t�� �X � Y�
CON1 �	
���
��x� y�� x� � �	
���
��x� y�� y�
CON2 �	
���
����	X � ��

�������� �� � ���� ���������
����	
�
 �������� � � � � ��� � ��������� ���� � � � � ����������� ���

Preservation and freshness loss axioms:
P1 #�����X� ���a�X#�����X� ��
P2 �����X� ���a�X�����X� ��, where t � a or a 	� ���
P3 ����	
��X� n��a�X����	
��X� n�, where n �v a or a 	� ���
F 	�����X������X� ��, where �� � ����
F2 �����X� s�� �����X� t�, where s � t

#���� � ��������,
����	
��X� �� � ���X� �� � ����Y� ��� �X � Y��

PLTL axioms and temporal ordering of actions:

T1 ���� � ��� ��� � ���
T2 ���� � ��� ��� � ���
T3 ������� ������
AF0 ������X���X�����X� ��
AF1 	�a� � � � an�X��������� ��� � � � � � ����������� ���
AF2 �������X� ��� ����������X� ��� � �����Y� �����

���������X� ���� ����Y� ����, where � � �� and X 	� Y
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Diffie-Hellman and hash function axioms:
DDH1 �����Y� y� � �	���
��Y� ���� ��� � �	
���Y� � ��X� �X 	� Y� � �	
���X�

������x�X�� � �	���
��X� ���� ���� � r��
�������� ��� �����
DDH2 �
�������� ��� ������a�X�
�������� ��� �����, where if � � ��� then

d�x� y�� x� y 	� ��	������
LHL �
����d�x� y�� d�r�� � � i��
����hi�d�x� y��� r�

�	���
��X� �� � ������� � � � ����� � 	� ��	������

Proof rules:
G1 if 	 �� 	�P�X� and 	 �� 	�P�X� then 	 �� 	�P�X� � �
G2 if 	 �� 	�P�X� and 	� � 	 and �� �� then 	 �� 	��P�X��

G3 if 	 �� � then 	 �� 	�P�X�
TGEN if 	 �� � then 	 �� �����
HON if 	 �� �������X� and �P � S�	��	 �� ��P�X�

then 	 �� ������X� � �	
���X�� �

where S�	� denotes all possible starting configurations of 	 and
Alive�X� means that thread X has not completed the protocol yet.

D Symbolic semantics of the protocol logic

We will use notation EVENT�R�X�P��n��x� to describe a single reaction step. A reaction step denotes
that in some (partial) symbolic trace R, thread X executes actions P, receiving data �n into variable
�x. We use LAST�R�X�P��n��x� to denote that the last event of R is EVENT�R�X�P��n��x�. Also,
for a symbolic R and a thread X, let R�X denote a projection of R onto events observed by X and
FreeVar�R�X� denote the free variables in the trace. The semantics of protocol logic are as follows:

Action formulas
	�R �� ��
��A� �� if LAST�R�A� ���� �� ��.
	�R �� ��������A� �� if LAST�R�A� �x�� �� x�.
	�R �� ����A� �� if LAST�R�A� ��x�� �� x�.
	�R �� �������A�m� if LAST�R�A�m����	X� �� �� for some �� � and X.

Formulas
	�R �� ���A� �� if there exists i such that ��i�A� ���
where ��i is defined inductively as follows:
�����A� �� if ��� � FreeVar�R�A�� �EVENT�R�A� ��x�� �� x� �EVENT�R�A� �x�� �� x�
and ��i���A� �� if ��i�A� �� � ���i�A� ���
����i�A� ��� � ��i�A� ���� ���� � ��� ���� � �� � ���� �����
����i�A� ��� �� � ����	A� for some label �
����i�A� a� � ��i�A� ����� �� � ���� ���
����i�A� ���� ��� � � � ���� ���.

	�R �� �����A� �� if 	�R �� �������A� �� � �������A� 
� � � � g�
���
�������
��A� ��� �� � ���.

	�R �� �	
���A� if A � HONEST�C� in some initial configuration C of R and
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R�A is an interleaving of basing sequences of roles in 	.
	�R �� �	
���
���� ��� if �� � ��.
	�R �� ��� � ��� if 	�R �� �� and 	�R �� ��.
	�R �� �� if 	�R 	�� �.
	�R �� � x�� if 	�R �� �d�x�� for some d,

where �d�x�� denotes the formula obtained by substituting d for x in �.
	�R �� ��� if 	�R� �� �, where R� is some prefix of R.
	�R �� ����� if 	�R� �� �, where R � R�e for some event e.
	�R �� ������X� if R�X is empty.

Modal formulas
	�R �� ���P�A�� if R � R�R�R�, for some R��R� and R�, and

either P does not match R��A or P matches
R��A and 	�R� �� ��� implies 	�R�R� �� ���,

where � is the substitution matching P to R��A.

E Computational soundness of the protocol logic

E.1 Soundness of axioms

AA1, AA2, AN2, AN3, ARP: Follows directly from definitions.
ORIG, REC, TUP, PROJ: Follows directly from the semantics of ��.
VER: Let 	 be a protocol and let �� � ������� be a signature scheme secure against existential
forgery, i.e., CMA-secure. We prove the axiom by constructing an attack against the security of the
signature scheme in case the axiom does not hold. Let tc � CExecStrand� denote a concrete trace
and let ts � ExecStrand� be the corresponding formal trace such that tc � ����

�

����c�
�ts�, where

c denotes the concrete adversary.
The proof proceeds in two steps. In the first step, we show that, for every concrete trace tc �

CExecStrand�, there exists a symbolic trace ts � ExecStrand� obtained by fixing the randomness
R� of the adversary c and R� of the honest participants and consistently labeling all the bitstrings
with symbolic names such that the ts is an abstraction of the concrete trace tc. This step is defined
by the abstraction function � from section B.

We need to show that the resulting symbolic trace satisfies the VER axiom with overwhelming
probability over the random coin tosses of the concrete adversary and the oracle environment. We do
this by demonstrating that if the axiom does not hold over the symbolic trace, then the corresponding
concrete adversaryc can be used to construct another concrete adversary � which attacks the CMA
security of the signature scheme �� with a non-negligible probability.

The CMA adversary � runs the concrete adversary c in a “box,” i.e., it behaves as the oracle
environment for c. More formally, when c makes a query q while running as a subroutine for �,
� gets hold of q and performs the desired action. For example, if the concrete adversary c makes
a query to start a new instance of a protocol between principals A and B, � simply starts a new
instance of the protocol 	 between “dummy” copies of A and B and faithfully performs all actions
prescribed by the protocol specification on their behalf. In particular, � generates the nonces to be
used by the parties, and computes signatures expected byc by invoking the corresponding signing
oracles.
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Suppose VER does not hold over the constructed symbolic trace. Consider the sequence of
queries q�� � � � � qn made by the concrete adversary c (running as a subroutine of �) and the corre-
sponding abstract queries Q�� � � � �Qn made in the symbolic trace. Since the trace does not satisfy
the axiom, it is easy to see there must exist some query Qi which contains the signature ���	

�
of

a term � under the private key of some honest party i such that no earlier message contains the
signature of the same term � under the same signing key (maybe with a different label ��). At this
point, we stress that it is perfectly valid for the abstract query to contain a different signature of a
term � under the private key of the honest party i if the honest party itself had produced a signature
of the same term earlier (with a different label). Hence, the corresponding concrete adversary c

also produces a signature in the query qi which is a re-randomization of the honest participant’s
signature.

We claim that � can win in the CMA game with a non-negligible probability. At some point in
the protocol execution, � “guesses” the query made by the adversary c which contains a signature
of a term under an honest party’s signing key such that a (possibly different) signature of the same
term was not produced by the corresponding signing oracle earlier. Note that � does not know
at what stage in the protocol c will first produce the signature. But this is not a problem since
the number of messages used in the protocol and the total number of terms (including nonces) are
constant in the security parameter �. Thus, � can guess in polynomial time the query qi which first
contains a forged signature of term � under the secret key of some honest party, and output it as its
own output, thus winning the CMA game.

We consider two cases which lead to � correctly guessing the output bit b. In both cases, we
assume that the trace does not satisfy the VER axiom. In the case when � incorrectly guesses
the term which is being signed or the query qi which first contains the invalid signature, � simply
outputs a random guess of the bit b with probability �

� . The other case is when � correctly guesses
the term �, message � which contains the signature, and the position P in this message where �

occurs. Then � correctly guesses b. Each of the these probabilities is bounded by a polynomial of
the security parameter �. Let us denote by Advind�cma

���� the advantage of the adversary in this game.
It can be easily shown that the probability that the corresponding symbolic trace does not obey VER
is less than a polynomial factor of Advind�cma

���� . Therefore, if the trace does not obey VER with non-
negligible probability, we derive a contradiction with our assumption that the signature scheme is
secure.
N1, N2, F1: Follows from the semantics of the � operator (nonce generation) and actions ��� and
����.
CON1-2: Follows directly from the semantics of Contains.
P1, P2, P3, F,F2: Follow directly from definitions of Fresh and Has.
T1, T2, T3: Follow from the semantics of PLTL.
AF0, AF1, AF2: Follow directly from the semantics of logic.
DDH1-2: Let 	 be a protocol and G be a large cyclic group of prime order q and generator g.
We prove computational soundness for DDH1 (the proof for DDH2 is similar). As always, fix the
randomness R� of the computational adversary c and R� of the honest participants, and suppose
that DDH1 does not hold over the overwhelming majority of computational traces of 	. In this
case, we demonstrate that the corresponding concrete adversary c can be used to used to construct
another concrete adversary � who wins in the Decisional Diffie-Hellman game (as described in
section A.2) with non-negligible probability.

As usual, � runs the concrete adversary c in a “box,” i.e., it behaves as the oracle environment
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for c. More formally, when c makes a query q while running as a subroutine for �, � gets hold
of q and performs the desired action. For example, if the concrete adversary c makes a query to
start a new instance of a protocol between principals A and B, � simply starts a new instance of
the protocol 	 between “dummy” copies of A and B and faithfully performs all actions prescribed
by the protocol role on their behalf. In particular, it computes honest participants’ Diffie-Hellman
values. For example, if an honest participant is required to send a fresh value gx, then � chooses
a value x uniformly at random from Zq and computes gx using the exp function. Similarly, � can
compute a joint exponent gxy provided he has x and gy, or y and gx.

We assume the existence of a DH oracle �DH and let � have access to the oracle. Initially, �
simulates the learning phase for c. We allow the adversary c to perform session state reveals
of previously completed sessions which reveal the value of the joint Diffie-Hellman value for these
sessions. We assume that these values are gxixj for some xi� xj drawn uniformly from Zq. Since
c is constrained to run in polynomial time, he can only initiate a polynomial number of sessions.
In response to a reveal operation, � hands the value gxixj (for that particular session), which he
obtains from the oracle �DH to c. Intuitively, this means that having a polynomial number of
samples from the distribution �gxi � gxj � gxixj� does not give the adversary a non-negligible advantage
in distinguishing between the two distributions �gxi � gxj � gxixj� and �gxi � gxj � gzij�.

We now show how � can win in the DDH game with a non-negligible advantage. Suppose
DDH1 does not hold over a non-negligible fraction of computational traces. This means that, given
some computational trace tc, the precondition of DDH1 is true, but the postcondition is false. The
latter means that c can determine, with a non-negligible advantage vs. random guessing, whether
gr or gxixj has been used in this trace. � chooses the session corresponding to this trace as the “test
session”.

Because the precondition of DDH1 must be true on tc, values x and y either have not been sent
at all in this trace, or have only been sent as gx or gy, respectively. Therefore, � is never required
to send the actual values of x or y when simulating tc to c. At the start of the session, � performs
a query q � �i� j� to the oracle �DH , and obtains the tuple �gxi � gxj � g�zij� (where �zij is either xixj or a
random zij) from �DH in response.

Whenc is ready, � gives it the value g�zij to be distinguished from gr where r is drawn uniformly
at random from �Z�q. If �zij � xixj, then c guesses this correctly with some probability �

� � p
�� 
 p 
 �

��, where (since DDH1 fails, by assumption) p is a non-negligible function of �. If
�zij is itself random, then c cannot do better than random guessing, i.e., it guesses correctly with
probability �

� . � submits the value guessed by c to �DH as its own guess of the oracle’s bit
b. Therefore, � wins the DDH game with probability �

� � p
� , where p is the advantage of the

computational adversary c in invalidating the � r��
�������� ��� ����� predicate. Thus, if DDH1
is false on more than a negligible fraction of computational traces, � wins the DDH game with a
non-negligible probability.

The proof of DDH2 involves a similar argument and is left to the reader.

LHL. Let G be a large cyclic group (under multiplication) of prime order q with generator g. Let
H be an almost universal family of hash functions mapping G to ��� ��l (indexed by a set 
). For
any i � 
 , let hi denote a member of H. For any i drawn uniformly from 
 and x drawn uniformly
from G, it follows from the leftover hash lemma that the distribution �hi� hi�x�� is statistically in-
distinguishable from the uniform distribution on the set H � ��� ��l. Additionally, we require that
the distribution �hi�x�� be computationally indistinguishable from the uniform distribution for any
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index i.
We fix the protocol 	 and the concrete adversary c. Let tc � CExecStrand� denote a concrete

trace. To show that the LHL axiom holds with overwhelming probability over random coin tosses
of the concrete adversary and the oracle environment, we suppose that this is not the case, and use
the concrete adversary c to construct another adversary � that acts as a distinguisher between the
uniform distribution on H � ��� ��l and �hi� hi�x��. As usual, the adversary � runs the concrete
adversary c in a “box” and behaves as the oracle environment for c, simulating the answer to
every query made by c.

Before giving the construction of the distinguisher �, we need a few results. We first note that
there exists a bijection f from the set Zq to the elements of the group G. More formally, f 
 Zq  G
is a one-to-one function that maps i � Zq to gi � G. If x is drawn uniformly at random from Zq,
then the distribution �gx� is uniform on G.

We now construct �, assuming that the axiom does not hold for a non-negligible fraction of
concrete traces. This means that the precondition �
����d�x� y�� d�r�� holds, but the postcondition
�
����hk�d�x� y��� r� is false, where x� y� r are chosen uniformly at random from Zq, and k is some
hash function index chosen uniformly from 
 .

B proceeds as follows. It draws random values r�� r� uniformly from Zq and ��� ��l, respec-
tively. It then gives the values hk�gr�� and r� to the concrete adversary c. Since we assumed that
the precondition is true, this implies that no efficient adversary can distinguish between the distri-
butions gxy and gr with a non-negligible advantage. Thus, c cannot distinguish between hk�gr��
and hk�gxy� with a non-negligible advantage. But, according to our assumption, c can distinguish
between the values hk�gxy� and r� with a probability non-negligibly greater than �

� . This implies that
c can distinguish between hk�gr�� and r� with a probability non-negligibly greater than �

� . � sim-
ply outputs the guess of c as its own guess. Therefore, � can distinguish between the distribution
hk�� � �� and the uniform distribution on ��� ��l with a non-negligible probability, which contradicts
the leftover hash lemma.

E.2 Rules

G1, G2, G3: Follow directly from Floyd-Hoare logic.
TGEN. Follows from semantics of PLTL.
Honesty. Follows from definition.

F Shoup’s model for key exchange protocols

We summarize the definition of security for key exchange protocols proposed by Shoup in [34].
Following the standard approach in secure multi-party computation, the protocol is secure if no
efficient adversary can tell whether he is dealing with the real-world execution of the protocol, or
with a simulation in the ideal world where the ideal key exchange functionality generates keys as
random numbers and distributes them securely to protocol participants.

We limit our attention to the case of static corruptions.
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F.1 Ideal world

Let Ui for i � ��� �� � � �� be a set of honest users and let Iij denote the user instances of the user
Ui (user instances are effectively different sessions of the protocol executed by the same user). The
ideal-world adversary interacts with the ideal key exchange functionality (called the “ring master”
in [34]). The adversary may issue the following commands:

� (initialize user, i, IDi): This operation assigns the identity IDi to the user Ui.

� (initialize user instance, i, j, role ij, PIDij): User instance Iij is specified along
with a value roleij � ��� ��, as well as a partner identity PIDij (identity of the other party in
the protocol session). User Ui must have been previously initialized, but Iij should not have
been previously initialized.

� (abort session, i, j): This operation aborts the session with the active user instance Iij.

� (start session, i, j, connection assignment[,ke]): An active user instance Iij is specified.
The connection assignment specifies how the session key Kij for the user instance Iij is gen-
erated. It can be one of ������� �	

���� �	�!�	���. ������ results in the generation of
a random bit string Kij by the ring master, �	

����i�� j�� instructs the ring master to set Kij

equal to Ki�j� , �	�!�	��� instructs the ring master to set Kij to key.

Say that two initialized user instances Iij and Ii�j� are compatible if PIDij � ID�
i, PIDi�j� � IDi

and roleij 	� rolei� j� . The connection assignment �	

��� is legal if user instances Iij and
Ii�j� are compatible and Iij is isolated (not active). The connection assignment �	�!�	��� is
legal if PIDij is not assigned to a user (i.e., the ideal-world adversary may only assign a key
of his choice to an ideal-world user instance if the other party in that protocol session is not
honest).

� (application, f ): This models an arbitrary use of the key by higher level applications.
It returns the result of applying function f to the session key Kij and a random input R. The
adversary can select any function f (even one that completely leaks the key!). If the key
exchange protocol is secure, no matter how the established key is used (even if it is revealed
to the adversary), the adversary will not be able to determine whether that key has been
generated in the real world or in the ideal world.

� (implementation, comment): This is a “no op” which allows the adversary to record an
arbitrary bitstring in the protocol transcript. It is by the simulator to record messages of the
real-world protocol in the ideal-world transcript.

A transcript recording all actions of the adversary in the ideal world is generated. If S is the
ideal-world adversary, let Ideal�� denote the ideal world transcript of .

F.2 Real world

We now describe the execution model for the real world. As in ideal world case, we have users Ui

and user instances Aij. The model assumes the existence of a trusted third party T (modeling the
PKI registrar) which generates the public/private key pairs (PKi� SKi) for the parties. Let (PKT � SKT )
denote the (public, private) key pair of T . T may be online or offline. For simplicity, assume that
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the user instances upon initialization obtain a public/private key pair from T by a protocol-specific
action, which is stored as part of the long term state (LTSi) information by Aij.

In the real world, a user instance Iij is a probabilistic state machine. As usual, it has access to
PKT , the long term information LTSi, the role roleij � ��� �� (specifying whether it’s the initiator
or responder in this session of the protocol) and his partner identity PIDij (identity of the other
party in this session of the protocol). Upon starting in some state, the user updates his state upon
receiving a message and may generate a response message. At any instant, the state of a user is
one of �	
��
��� ����!�� ��$���. These mean, respectively, that the user is ready to receive a
message, has successfully terminated a protocol session having generated a session key Kij, or has
unsuccessfully terminated a protocol session without generating a session key.

The real-world adversary may issue the following commands:

� (initialize user, i, IDi): This operation assigns the (previously unassigned) identity
IDi to an uninitialized user Ui.

� (register, ID, registration request): The adversary runs T’s registration protocol directly
with the identity ID and the registration request, and obtains the registration receipt. This
operation allows the adversary to operate under various aliases.

� (initialize user instance, i, j, role ij, PIDij): A user instance Iij is specified along
with a value roleij � ��� ��, as well as a partner identity PIDij. It is required that user Ui must
have been previously initialized, but Iij should not have been previously initialized. After this
operation we say that the user instance Iij is active.

� (deliver message, i, j, InMsg): The adversary delivers a message InMsg to an active
user instance Iij.

� (application, f ): Same as in the ideal world: models usage of the key by a higher-level
protocol.

As in the ideal case, the transcript generated by the adversary records all actions taken. For
technical reasons, the first record in the transcript is

���!����
����	
� �
������%� �����PKT�

Let RealWorld�� denote the transcript of the real-world adversary .

G Automatic construction of the simulator for Shoup’s framework

Input. Symbolic specification of the protocol 	 annotated to indicate the places where the key
is “created” (one of the participants first computes it) and where the parties are “connected” (both
participants have computed the key).

Output. Simulator � , which is valid for an overwhelming subset of all possible executions of the
protocol, assuming there exist symbolic proofs of agreement and key secrecy.
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Construction. The simulator � in the ideal world runs the real world adversary  in a “box”
simulating the protocol execution to him. Intuitively, this means that � faithfully performs the
actions according to the protocol specification on behalf of honest participants. We assume that �
has access to the signing oracle SignAi��� for an honest participant i. The description of � is divided
into two cases.

Case I. We assume that both participants are honest. In this case, � faithfully performs all actions
according to the protocol specification. Let ! denote the randomness used by � , which is divided
into randomness Ri for each honest participant i. Let � denote the current action in the role played
by participant i.

� If � � ����, then � chooses a value uniformly at random from the set !.

� If � � ���, then � computes the value of the term � and hands the message � containing the
term � to  to be sent to the desired user. The term � can be computed using one (or more)
of the following operations:

– join
  �   : The symbolic term is ��� ��, which represents the pairing (con-
catenation) of terms.

– sig
 �!��  : The symbolic term is ���	Ai
, which represents a digital signature

on term � under the private key of participant i, created using randomness chosen from
Ri and labeled by �. � can compute the signature using the signing oracle SignAi��� for
honest participant i.

– exp
 !  �: The symbolic term is ����, which represents modular exponentiation of
the variable � for some base g.

– DH
 � � �  �: The symbolic term is ���� ��, which represents computation of the
Diffie-Hellman value gxy. Note that � computes gxy on behalf of an honest participant
if and only if the participant �� (knows) one of the exponent values � (respectively, �)
and the other exponential ���� (����).

� If � � ���, then � matches the value of the received term � against the value  specified in
the protocol. Signature verification is subsumed under pattern matching. If the match fails,
the protocol execution is terminated. Equality test and pattern matching are also subsumed
under this case.

� If � � ��������, then � instructs the ideal functionality to “create” the random key in the
corresponding ideal world user instance. This action denotes the position in the protocol when
i becomes the first participant to have computed the key.

� If � � ��	

����, then � instructs the ideal functionality to “connect” two ideal world user
instances, which causes the second honest user instance to learn the created random key.
Intuitively, this denotes the position in the protocol where the other participant also computes
the key.

Case II. Suppose one of the participants has been corrupted at the start of the protocol execution by
the real world adversary . The simulation proceeds as in Case I, except at the points in the protocol
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specification where the � issues “create” and “connect” commands to the ideal functionality. In this
case, the simulator extracts the key computed by the simulated copy of the honest participant in the
real world, and instructs the ideal functionality to “compromise” the corresponding ideal-world user
instance with the extracted key. In this case, the value of the key in the ideal world is the same as
that computed in the real world,

For every action recorded in the real world transcript, the simulator makes a corresponding
request in the ideal world. However, every occurrence of the real world key is replaced by the
random key generated in the ideal world in the ideal world transcript. We argue below that this
change is not detectable by any efficient adversary if there exist symbolic proofs of agreement and
key secrecy.

H Proof of simulator validity

The validity argument rests on the following two conditions: (1) if two user instances share a key
in the ideal world, then the corresponding real world user instance must agree upon the same value
for the key, (2) the keys generated in the ideal world and the real world are computationally indis-
tinguishable. We shall refer to the first condition as key agreement and to the second condition as
indistinguishability.

Assume that the simulator is not valid for an overwhelming subset of all possible executions
of the protocol 	. This would imply that 	 either violates key agreement, or indistinguishability.
Suppose 	 violates key agreement. By assumption, there exists a symbolic proof of agreement for
	 in the logic. From the computational soundness of the logic (theorem 1), a proof of agreement in
the symbolic model implies a proof of agreement in the concrete model. Hence, a contradiction.

We now consider the case when 	 violates indistinguishability. We separate two cases: (1) both
parties are honest, (2) one of the parties is (statically) corrupt. If both parties are honest, then the
ideal-world key is a random value, and indistinguishability of real-world keys from random values
follows from the computational soundness of the proof of � r��
����t� r�.

Now consider the case when one of the participants is corrupt. According to the construction
of the simulator, the simulator S in this case simulates the other (honest) real-world participant
to the real-world adversary. The simulator faithfully executes all actions of the honest participant
according to the protocol specification and then extracts the generated key from this participant.
He then uses the extracted key to “compromise” the ideal-world user instance corresponding to the
honest real-world participant (intuitively, this is valid because in the real-world protocol, an honest
participant who is talking to a corrupt participant will end up generating key which is known to
the adversary). Thus, the key generated in the ideal world is exactly the same as in the real world.
Hence, a contradiction.

Validity follows from key agreement and indistinguishability. Key agreement guarantees that
both participants in the real world derive the same value of the key. Since for every record in the real
world transcript, the simulator makes a corresponding request in the ideal world (with the exception
that all instances where the real-world key is used is replaced by the ideal-world key). Computa-
tional indistinguishability of the real-world and ideal-world transcripts thus follows directly from
the indistinguishability of the real-world key and a random value (recall that ideal-world keys are
random values). Thus, no efficient adversary can distinguish between the two transcripts with a
non-negligible probability in the security parameter �. Therefore, the simulator is valid for an over-
whelming subset of all possible executions of the protocol.
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I Proofs of agreement and key secrecy for DHKE protocol

Agreement. Following is the symbolic proof that the initiator role of the DHKE protocol of sec-
tion 8 satisfies the agreement property according to definition 1.
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Key secrecy. Following is the symbolic proof that the DHKE protocol ensures key secrecy.
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J Connection with the Canetti-Krawczyk model

To demonstrate that our symbolic methods for proving key exchange protocols correct may find
application beyond Shoup’s framework, we outline the relation between the model we use and that
of Canetti and Krawczyk [17].

One of the definitions of security for key exchange in [17] involves a relaxed key exchange func-
tionality, which is weaker than universally composable key exchange functionality and equivalent
to an earlier notion known as SK-security [16]. Roughly, while universally composable security
requires indistinguishability by an arbitrary environment " , the weaker definition only requires
indistinguishability by a particular environment "TEST . As in the standard UC framework, the envi-
ronment machine "TEST provides inputs to the parties and activates either one of the honest parties
or the adversary in every activation until it halts. In the real world, the honest parties, once activated,
carry out their actions faithfully according to the protocol specification, while in the ideal world the
honest parties are just dummy placeholders (same as in Shoup’s model).

Let #RKE denote the relaxed session key exchange functionality in the ideal world and let $
denote the corresponding non-information oracle. Let 	 be a protocol and A�, A� the parties exe-

28



cuting the initiator and responder roles, respectively. The environment "TEST is designed to test key
agreement and real-or-random indistinguishability. More precisely, "TEST outputs � if at the end
of the protocol execution the adversary  (simulator �) in the real world (ideal world, resp.) can
correctly tell the exchanged key from a random number. If the parties A�, A� complete the protocol
but disagree about the value of the key, then "TEST outputs the bit chosen by adversary (this, how-
ever, can never happen if the symbolic proof of agreement per our definition 1 holds). Otherwise,
"TEST outputs �. The protocol is called a secure session key exchange protocol if the output of the
environment machine "TEST is the same in the real and ideal worlds.

We now sketch an informal argument why a symbolic proof of matching conversations in our
model implies the existence of a valid simulator for the above game. The simulator works as in
section 7.2 with a few differences, which we point out below. To illustrate by example, consider
the DHKE protocol from section 8, which is SK-secure, but not UC-secure. Suppose "TEST ac-
tivates parties A��A� with inputs x� y, respectively. Since both parties are honest (the real-world
adversary is not permitted to corrupt the protocol session on which "TEST is trying to distinguish
real- and ideal-world adversaries), the simulation proceeds as usual. It follows from the proof of
agreement in the symbolic logic and the computational soundness of the logic that, if the two par-
ties successfully complete the protocol, then their conversations match in the sense of definition 1.
Hence, the keys computed by both parties match (thus key agreement). Moreover, it follows from
the computationally sound symbolic proof of key secrecy that the real-world adversary  cannot
guess the correct value of the key with a probability non-negligibly greater than�

� . Similarly, in the
ideal world, the key is a random bit, thus the ideal-world adversary can guess its value only with
probability �

� . Therefore, "TEST outputs � in both cases.
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