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Abstract

Nonnegative matrix approximation (NNMA) is a recent technique for dimensionality reduction and
data analysis that yields a parts based, sparse nonnegativerepresentation of the nonnegative input data. Due
to these advantages, NNMA has found a wide variety of applications, including text analysis, document
clustering, face/image recognition, language modeling, speech processing and many others. Despite these
numerous applications, the algorithmic development for computing the NNMA factors has been relatively
deficient. This paper makes algorithmic progress by modeling andsolving(using multiplicative updates)
new generalized NNMA problems that minimize Bregman divergences between the input matrix and its
low-rank approximation. The multiplicative update formulae in the pioneering work by Lee and Seung [20]
arise as a special case of our algorithms. In addition, the paper shows how to use penalty functions for
incorporating constraints other than nonnegativity into the problem. Further, some interesting extensions to
the use of “link” functions for modeling non-linear relationships are also discussed.

Keywords: Nonnegative matrix factorization, approximation, Bregman divergence, multiplicative updates.

1 Introduction

Nonnegative matrix approximation (NNMA) is a method for dimensionality reduction and data analysis that
has gained substantial prominence over the past few years. NNMA has previously been calledpositive matrix
factorization[27] andnonnegative matrix factorization[21]. Assume thata1, . . . ,aN areN nonnegative
input (M -dimensional) vectors. We organize these vectors as the columns of a nonnegative data matrix

A ,
[
a1 a2 . . . aN

]
.

NNMA seeks a small set ofK nonnegative representative vectorsb1, . . . , bK that can be nonnegatively (or
conically) combined to approximate the input vectorsai. That is,

an ≈
K∑

k=1

cknbk, 1 ≤ n ≤ N,

where the combining coefficientsckn are restricted to be nonnegative. Ifckn andbk are unrestricted, and we
minimize

∑
n ‖an −Bcn‖2, the Truncated Singular Value Decomposition (TSVD) ofA yields the optimal

bk and ckn values. If thebk are unrestricted, but the coefficient vectorscn are restricted to be indicator
vectors, then we obtain the problem of hard-clustering (See[37, Chapter 8] for related discussion regarding
different constraints oncn andbk).
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In this paper we consider problems where all involved matrices are nonnegative. For many practical
problems nonnegativity is a natural requirement. For example, color intensities, chemical concentrations,
frequency counts etc., are all nonnegative entities, and approximating their measurements by nonnegative
representations leads to greater interpretability. NNMA has found a significant number of applications, not
only due to increased interpretability, but also because admitting only nonnegative combinations of thebk

leads to sparse representations.
This paper contributes to the algorithmic advancement of NNMA by generalizing the problem signifi-

cantly, and deriving efficient algorithms based on multiplicative updates for the generalized problems. The
scope of this paper is primarily on generic methods for NNMA,rather than on specific applications. The
multiplicative update formulae in the pioneering work by Lee and Seung [20] arise as a special case of our
algorithms, which seek to minimize Bregman divergences between the nonnegative inputA and its approxi-
mation. In addition, we discuss the use penalty functions for incorporating constraints other than nonnegativ-
ity into the problem. Further, we illustrate an interestingextension of our algorithms for handling non-linear
relationships through the use of “link” functions.

2 Problems

Given a nonnegative matrixA as input, the classical NNMA problem is to approximate it by alower rank
nonnegative matrix of the formBC, whereB = [b1, ..., bK ] andC = [c1, ..., cN ] are themselves nonnega-
tive. That is, we seek the approximation,

AM×N ≈ BM×KCK×N , whereB,C ≥ 0. (2.1)

We judge the goodness of the approximation in (2.1) by using ageneral class of distortion measures
called Bregman divergences. For any strictly convex functionϕ : S ⊆ R → R that has a continuous
first derivative, the correspondingBregman divergenceDϕ : S × int(S) → R+ is defined asDϕ(x, y) ,

ϕ(x)−ϕ(y)−∇ϕ(y)(x−y), where int(S) is the interior of setS [1, 3]. Bregman divergences are nonnegative,
convex in the first argument and zero if and only ifx = y. These divergences play an important role in
convex optimization [3]. For the sequel we consider only separable Bregman divergences, i.e.,Dϕ(X, Y ) =∑

ij Dϕ(xij , yij). We further requirexij , yij ∈ domϕ ∩ R+.
Formally, the resulting generalized nonnegative matrix approximation problems are:

min
B, C≥0

Dϕ(BC, A) + α(B) + β(C), (2.2)

min
B, C≥0

Dϕ(A, BC) + α(B) + β(C). (2.3)

The functionsα andβ serve aspenaltyfunctions, and they allow us to enforce regularization (or other con-
straints) onB andC. We consider both (2.2) and (2.3) since Bregman divergencesare generally asymmetric.
Table 1 gives a small sample of NNMA problems to illustrate the breadth of our formulation.

DivergenceDϕ ϕ α β Remarks
‖A−BC‖2F 1

2
x2

0 0 Lee and Seung [20, 21]
‖A−BC‖2F 1

2
x2

0 λ1T C1 Hoyer [17]
‖W ⊙ (A−BC)‖2F 1

2
x2

0 0 Paatero and Tapper [27]
KL(A,BC) x log x− x 0 0 Lee and Seung [20]
KL(A,WBC) x log x− x 0 0 Guillamet et al. [15]
KL(A,BC) x log x− x c11

T BT B1 −c2‖C‖2F Feng et al. [10]
Dϕ(A, W1BCW2) ϕ(x) α(B) β(C) Weighted NNMA (new)

Table 1: Some example NNMA problems that may be obtained from(2.3). The corresponding asymmet-
ric problem (2.2) hasnot been previously treated in the literature. KL(x, y) denotes the generalized KL-
Divergence =

∑
i xi log xi

yi

− xi + yi (also called I-divergence).
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3 Algorithms

In this section we present algorithms that seek to optimize (2.2) and (2.3). Our algorithms are iterative in
nature, and are directly inspired by the efficient algorithms of Lee and Seung [20]. Appealing properties
include ease of implementation and computational efficiency.

Note that the problems (2.2) and (2.3) are not jointly convexin B andC, so it is not easy to obtain globally
optimal solutions in polynomial time. Our iterative procedures start by initializingB andC randomly or
otherwise. Then,B andC are alternately updated until there is no further appreciable change in the objective
function value.

3.1 Algorithms for (2.2)
We utilize the concept of auxiliary functions [20] for our derivations. It is sufficient to illustrate our methods
using a single column ofC (or row ofB), since our divergences are separable.

Definition 3.1 (Auxiliary function). A functionG(c, c′) is called an auxiliary function forF (c) if:

1. G(c, c) = F (c), and

2. G(c, c′) ≥ F (c) for all c′.

Auxiliary functions turn out to be useful due to the following lemma.

Lemma 3.2(Iterative minimization). If G(c, c′) is an auxiliary function forF (c), thenF is non-increasing
under the update

c
t+1 = argmincG(c, ct).

Proof. F (ct+1) ≤ G(ct+1, ct) ≤ G(ct, ct) = F (ct).
As can be observed, the sequence formed by the iterative application of Lemma 3.2 leads to a monotonic

decrease in the objective function valueF (c). For an algorithm that iteratively updatesc in its quest to min-
imizeF (c), the method for proving convergence boils down to the construction of an appropriate auxiliary
function. Auxiliary functions have been used in many placesbefore, see for example [5, 20].

We now construct simple auxiliary functions for (2.2) that yield multiplicative updates. To avoid clutter
we drop the functionsα andβ from (2.2), noting that our methods can easily be extended toincorporate these
functions.

SupposeB is fixed and we wish to compute an updated column ofC. We wish to minimize

F (c) = Dϕ(Bc, a), (3.1)

wherea is the column ofA corresponding to the columnc of C. The lemma below shows how to construct
an auxiliary function for (3.1). For convenience of notation we useψ to denote∇ϕ for the rest of this section.

Lemma 3.3(Auxiliary function). The function

G(c, c′) =
∑

ij

λijϕ

(
bijcj
λij

)
−
∑

i

ϕ(ai)− ψ(ai)
(
(Bc)i − ai

)
, (3.2)

with λij = (bijc
′
j)/(

∑
l bilc

′
l), is an auxiliary function for(3.1). Note that by definition

∑
j λij = 1, and as

bothbij andc′j are nonnegative,λij ≥ 0.

Proof. It is easy to verify thatG(c, c) = F (c), since
∑

j λij = 1. Using the convexity ofϕ, we conclude
that if

∑
j λij = 1 andλij ≥ 0, then

F (c) =
∑

i

ϕ

(∑

j

bijcj

)
− ϕ(ai)− ψ(ai)

(
(Bc)i − ai

)

≤
∑

ij

λijϕ

(
bijcj
λij

)
−
∑

i

ϕ(ai)− ψ(ai)
(
(Bc)i − ai

)

= G(c, c′).
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To obtain the update, we minimizeG(c, c′) w.r.t. c. Let ψ(x) denote the vector[ψ(x1), . . . , ψ(xn)]T .
We compute the partial derivative

∂G

∂cp
=
∑

i

λipψ

(
bipcp
λip

)
bip
λip

−
∑

i

bipψ(ai)

=
∑

i

bipψ

(
cp
c′p

(Bc
′)i

)
− (BTψ(a))p. (3.3)

We need to solve (3.3) forcp by setting∂G/∂cp = 0. Solving this equation analytically is not always
possible. However, for a broad class of functions, we can obtain an analytic solution. For example, ifψ is
multiplicative (i.e.,ψ(xy) = ψ(x)ψ(y)) we obtain a multiplicative update relation forc as follows:

∂G

∂cp
=
∑

i

bipψ

(
cp
cp

′
)
ψ
(
(Bc

′)i

)
− (BTψ(a))p = ψ

(
cp
cp

′
)

[BTψ(Bc
′)]p − [BTψ(a)]p.

Thus upon setting∂G/∂cp = 0, we obtain

ψ

(
cp
cp

′
)

=
[BTψ(a)]p

[BTψ(Bc′)]p
,

which yields the update

cp ← cp · ψ−1

( [BTψ(a)]p
[BTψ(Bc)]p

)
. (3.4)

We can compute updates forB one row at a time. Let this row be denoted bybT , and the corresponding
row of matrixA by aT . The objective function for a row is

H(b) = Dϕ(bT
C, a

T ) =
∑

j

Dϕ(bT
cj , aj),

wherecj denotes thej-th column ofC, andaj denotes thej-th component of the row vectoraT . Once again,
using the convexity ofϕ, we define an appropriate auxiliary functionK(b, b′) for H(b), where

K(b, b′) =
∑

jk

µkjϕ
(ckjbk
µkj

)
−
∑

j

ϕ(aj)− ψ(aj)(b
T
cj − aj),

andµkj = ckjb
′
k/(
∑

l cljb
′
l), andµkl ≥ 0.

We now compute∂K/∂bp to obtain

∂K

∂bp
=
∑

j

cpjψ

(
bp
b′p

b
′T

cj

)
−
∑

j

cpjψ(aj).

Once again, assuming multiplicativeψ, and setting∂K/∂bp = 0, we obtain the update

bp ← bp · ψ−1

( [ψ(aT )CT ]p
[ψ(bT C)CT ]p

)
. (3.5)

It turns out that whenϕ is a convex function of Legendre type, thenψ−1 can be obtained by the derivative
of the conjugate functionϕ∗ of ϕ, i.e.,ψ−1 = ∇ϕ∗ [31].
Note. (3.5) & (3.4) coincide with updates derived by Lee and Seung [20], if ϕ(x) = 1

2
x2.

3.2 Examples of New NNMA Problems

We illustrate the power of our generic auxiliary functions given above for deriving algorithms with multi-
plicative updates for some specific interesting problems.
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3.2.1 New KL-Divergence NNMA

First we consider the problem that seeks to minimize the divergence,

KL(Bc,a) =
∑

i

(Bc)i log
(Bc)i

ai

− (Bc)i + ai, B, c ≥ 0. (3.6)

Let ϕ(x) = x log x − x. Then,ψ(x) = log x, and asψ(xy) = ψ(x) + ψ(y), upon substituting in (3.3), and
setting the resultant to zero we obtain

∂G

∂cp
=
∑

i

bip log(cp(Bc
′)i/c

′
p)−

∑

i

bip log ai = 0,

=⇒ (BT
1)p log

cp
c′p

= [BT log a−B
T log(Bc

′)]p

=⇒ cp = c′p · exp

(
[BT log

(
a/(Bc′)

)
]p

[BT1]p

)
.

The update forb is derived to be

bp = b′p · exp

(
[
(
log(a/b′

T
C)
)T

CT ]p

[1T CT ]p

)
.

3.2.2 Constrained NNMA

Next we consider NNMA problems that have additional constraints. We illustrate our ideas on a problem
with linear constraints.

min
c

Dϕ(Bc, a)

s.t. Pc ≤ 0, c ≥ 0.
(3.7)

We can solve (3.7) problem using our method by making use of anappropriate (differentiable) penalty func-
tion that enforcesPc ≤ 0. We consider,

F (c) = Dϕ(Bc, a) + ρ‖max(0,Pc)‖2, (3.8)

whereρ > 0 is some penalty constant. Assuming multiplicativeψ and following the auxiliary function
technique described above, we obtain the following updatesfor c,

cp ← cp · ψ−1

(
[BTψ(a)]p − ρ[P T (Pc)+]p

[BTψ(Bc)]p

)
,

where(Pc)+ = max(0,Pc). Note that care must be taken to ensure that the addition of this penalty term
does not violate the nonnegativity ofc, and to ensure that the argument ofψ−1 lies in its domain.

Remarks. Incorporating additional constraints into (3.6) is however easier, since the exponential updates
ensure nonnegativity. Givena = 1, with appropriate penalty functions, our solution to (3.6)can be utilized
for maximizing entropy ofBc subject to linear or non-linear constraints onc. That is, for the maximum
entropy problem

max
c

ent(Bc) s.t.Pc ≤ 0, c ≥ 0,

we solve the corresponding problem (with appropriate normalization)

min KL(Bc,1) s.t.Pc ≤ 0, c ≥ 0.

Using the penalty function as described above, and employing the iterative update relation derived in Sec-
tion 3.2 we obtain the following update scheme forc

cp ← cp · exp

(
[−BT log(Bc)− ρP T (Pc)+]p

[BT1]p

)
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3.2.3 Nonlinear models with “link” functions

If A ≈ h(BC), whereh is a “link” function that models a nonlinear relationship betweenA and the
approximantBC, we may wish to minimizeDϕ(h(BC), A). We can easily extend our methods to handle
this case for appropriateh. Recall that the auxiliary function that we used, depended upon the convexity of
ϕ. Thus, if (ϕ ◦ h) is a convex function, whose derivative(ϕ ◦ h)′(x) is “factorizable,” then we can easily
derive algorithms for this problem with link functions.

For example, ifh is convex (concave) andϕ is an increasing (decreasing) function then,ϕ ◦ h is also
convex, since the second derivative of the compositionϕ ◦ h is given by

(ϕ ◦ h)′′(x) = h′′(x)ψ(h(x)) + ψ′(h(x))(h′(x))2, (3.9)

and it is nonnegative for suchh andϕ.

3.3 Algorithms using KKT conditions

We now derive efficient multiplicative update relations for(2.3), and these updates turn out to be simpler than
those for (2.2). To avoid clutter, we describe our methods with α ≡ 0, andβ ≡ 0, noting that ifα andβ are
differentiable, then it is easy to incorporate them in our derivations. For convenience we useζ(x) to denote
∇2(x) for the rest of this section.

We now compute the gradient∇BDϕ(A, BC). Using the fact that∂(BC)ij/∂bpq = cqj , we see that
∂Dϕ(A, BC)/∂bpq is given by

∂

∂bpq

{∑

ij

ϕ(aij)− ϕ((BC)ij)− ψ((BC)ij)(aij − (BC)ij)
}

=
∑

j

−ψ((BC)pj)cqj − ζ((BC)pj)cqj(BC)pj + cqjψ((BC)pj)− ζ((BC)pj)cqjapj

=
∑

j

ζ((BC)pj)((BC)pj − apj)cqj

=
[(
ζ(BC)⊙ (BC −A)

)
C

T
]
pq
.

In a similar way, using the fact that∂(BC)ij/∂cpq = bip, we see that∂Dϕ(A, BC)/∂cpq is given by
[
B

T
(
ζ(BC)⊙ (BC −A)

)]
pq
.

According to the KKT conditions, there exist Lagrange multiplier matricesΛ ≥ 0 andΩ ≥ 0 such that

[∇BDϕ(A, BC)]mk = λmk, [∇CDϕ(A, BC)]kn = ωkn, (3.10a)

λmkbmk = ωknckn = 0. (3.10b)

Multiplying (3.10a)a bybmk, and using (3.10b, we obtain
[(
ζ(BC)⊙ (BC −A)

)
C

T
]
mk
bmk = λmkbmk = 0,

which suggests the iterative scheme

bmk ← bmk

[(
ζ(BC) ⊙A

)
CT
]
mk[(

ζ(BC)⊙BC
)
CT
]
mk

. (3.11)

Proceeding in a similar fashion we obtain a similar iterative scheme forckn, which is

ckn ← ckn

[BT
(
ζ(BC)⊙A

)
]kn

[BT
(
ζ(BC)⊙BC

)
]kn

. (3.12)
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3.4 Examples of New and Old NNMA Problems as Special Cases

We now illustrate the power of our approach by showing how onecan easily obtain iterative update relations
for many NNMA problems, including known and new problems.

3.4.1 Lee and Seung’s Algorithms.

Letα ≡ 0, β ≡ 0. Now if we setϕ(x) = 1

2
x2, then (3.11) and (3.12) reduce to

bmk ← bmk

(ACT )mk

(BCCT )mk

, ckn ← ckn

(BT A)kn

(BT BC)kn

,

and these correspond to the Frobenius norm update rules originally derived by Lee and Seung [20].
If ϕ(x) = x log x, thenζ(x) = 1/x. With α ≡ 0 andβ ≡ 0, (3.11) and (3.12) reduce to

bmk ← bmk

{ (
[ A

BC
]CT

)
mk

(1M1T
NCT )mk

=

∑
s cksams/(BC)ms∑

n ckn

}
,

ckn ← ckn

{ (
BT [ A

BC
]
)
kn

(BT1M1T
N )kn

=

∑
t btkatn/(BC)tn∑

m bmk

}
.

These updates are the same as the ones originally derived by Lee and Seung [20].

3.4.2 Elementwise weighted distortion.

Here we wish to minimize‖W ⊙ (A−BC)‖2F . UsingX ←
√

W ⊙X, andA←
√

W ⊙A in (3.11) and
(3.12) one obtains

B ← B ⊙ (W ⊙A)CT

(W ⊙ (BC))CT
, C ← C ⊙ BT (W ⊙A)

BT (W ⊙ (BC))
.

These iterative updates are significantly simpler than the PMF algorithms of [27], and can be used as an
alternate way for obtaining elementwise weighted approximations.

3.4.3 The Multifactor NNMA Problem (new).

The above ideas can be extended to the multifactor NNMA problem that seeks to minimize the following
divergence

Dϕ(A, B1B2 . . .BR),

where all matrices involved are nonnegative. We compute thegradient of the distortion w.r.t. eachBr. Let
B̂ = B1B2 . . .Br−1, Ĉ = Br+1Br+2 . . .BR, H = B1B2 . . .BR, Z =. We have

∂Dϕ

∂brpq

=
∑

ij

ζ(hij)(hij − aij)
∂

∂brpq

∑

kl

B̂ik(Br)klĈlj

=
∑

ij

ζ(hij)(hij − aij)b̂ipĉqj

=
[
B̂

T (ζ(H)⊙ (H −A))ĈT
]
pq
.

Thus the update formula forBr is given by

Br ← Br ⊙
B̂

T (ζ(H)⊙A)ĈT

B̂T (ζ(H)⊙H)ĈT
. (3.13)

A typical usage of multifactor NNMA problem would be to obtain a three-factor NNMA, namelyA ≈
RBC. Such an approximation is closely tied to the problem of co-clustering [4], and can be used to produce
relaxed co-clustering solutions.
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3.4.4 Weighted NNMA Problems

There are two main ways in which weighting can be incorporated into the NNMA model. First is the model
that uses elementwise weighting, and the second is the a generalized weighting scheme. Formally, these
problems are

min Dϕ(A, W ⊙ (BC)),

min Dϕ(A, W1BCW2),

and their corresponding asymmetric versions. The first of these problems is solved easily using the KKT
techniques described above. The second version of the problem is solved likewise. For reference, we provide
the updates below, where we useZ as a shorthand forW1BCW2,

B ←B ⊙ W
T
1

(
ζ(Z) ⊙A

)
W

T
2 C

T

W T
1

(
ζ(Z) ⊙ (Z)

)
W T

2
CT

C ←C ⊙ BT W T
1

(
ζ(Z) ⊙A

)
W T

2

BT W T
1

(
ζ(Z)⊙ (Z)

)
W T

2

.

The weighting matricesW1 andW2 are assumed to be nonnegative. Further study is needed to determine
what restrictions are necessary on these matrices to ensuremonotonic convergence of the update relations.

Weighted Bregman Divergences. If we seek to minimize a weighted sum of Bregman divergences,that is
yet another type of weighting. Here we aim to

Minimize
B,C≥0

Dϕ(A, BC) =
∑

ij

wijDϕ(aij , (BC)ij), (3.14)

whereW = [wij ] is a weight matrix.
The problem (3.14) may be solved in a manner analogous to the solutions in the previous section. After

computing appropriate gradients, and using the KKT conditions, the following update relations give solutions
to problem (3.14),

B ←B ⊙
(
ζ(BC)⊙A⊙W

)
CT

(
ζ(BC)⊙W ⊙ (BC)

)
CT

C ←C ⊙ BT
(
ζ(BC)⊙W ⊙A

)

BT
(
ζ(BC)⊙W ⊙BC

) .

We remark that these solutions appear to be the same as (3.11)and (3.12) except for the addition of aW
term in both the numerator and the denonimator. These solutions are also closely tied to the solution of the
elementwise weighted Bregman divergence NNMA problems.

3.5 Convergence

In this section we study convergence for only the updates derived in Section 3.3. We have verified (by
implementing) that the updates derived in Section 3.3 converge empirically (see Figure 1) for a large number
of divergence measures (including squared Euclidean and Generalized KL-Divergence). However, we have
not yet formalized a unified convergence proof for the general case. As an illustration, we offer here proofs
of two important special cases. These proofs do not make use of auxiliary functions, and are the first known
direct proofs of convergence of the NNMA algorithms for the Frobenius norm and KL-Divergence based
problems (proofs for these cases were furnished by [20] in their paper).

We wish to show that the updates (3.11) and (3.12) are non-increasing for their corresponding objective
functions. For simplicity, we first assume thath(X) ≡X. Once again, letF (c) denote the objective function
value contributed by columnc of C. That is,

F (c) = Dϕ(a, Bc),

for a given columnc of C, and the corresponding columna of A. Let d denote the updated value ofc

resulting from (3.12). To prove monotonicity we should proveF (c) ≥ F (d).
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Initial approach. We use the strict convexity ofϕ to arrive at a condition that can prove to be crucial for
monotonicity of many of our NNMA problems. The change in objective function value is,

F (di)−F (ci) = ϕ((Bd)i)− ϕ((Bc)i)− ψ((Bc)i)(ai − (Bc)i) + ψ((Bd)i)(ai − (Bd)i)

≥ ((Bd)i − (Bc)i)ψ((Bc)i)− ψ((Bc)i)(ai − (Bc)i) + ψ((Bd)i)(ai − (Bd)i)

≥ (ai − (Bd)i)(ψ((Bd)i)− ψ((Bc)i)),

where for the first inequality we utilized the fact that

ϕ(x) ≥ ϕ(y) + (x− y)ψ(y).

SinceF (c) =
∑

i F (ci), we conclude1

F (c)− F (d) ≥ (a−Bd)T
(
ψ(Bd)− ψ(Bc)

)
.

If we now show the latter quantity above to be nonnegative ford given by update (3.12), we will have our
monotonicity proof.

We illustrate these ideas by providing new proofs of convergence for the the Frobenius norm and the
KL-Divergence NNMA problems.

3.5.1 Frobenius norm NNMA

Let ∆(d) = (a −Bd)T
(
ψ(Bd)− ψ(Bc)

)
. For the Frobenius norm NNMA problem, we have

di = ci
(BT a)i

(BT Bc)i

. (3.15)

We can write∆(d) = dT BT a− dT BtBd. To prove that∆(d) ≥ 0, we show thatmind ∆(d) = 0.
From (3.15) we know that(BT a)i = di(B

T Bc)i/ci, thus

∆(d) =
∑

i

d2
i

ci
(BT

Bc)i − di(B
T
Bd)i.

The first derivative of∆ w.r.t. dp is

∂∆

∂dp

= 2
dp

cp
(BT

Bc)p − 2(BT
Bd)p,

which tells us that an optimumd must satisfy

(BT
a)p = (BT

Bd)p.

Therefore, for such ad we see that∆(d) = 0. It now remains to verify that the Hessian of∆ is positive
semi-definite.

A quick calculation reveals that Hessian of∆ is given by (δij is the Kronecker delta function),

Hij = δij
(BT Bc)i

ci
− (BT

B)ij . (3.16)

Lemma 3.4(Hessian is SPD). The Hessian matrix given by(3.16)is positive semidefinite2.

Proof. See Lee and Seung [20].

1In fact F (c) − F (d) = (a − Bd)T
(
ψ(Bd) − ψ(Bc)

)
+ Dϕ(Bd, Bc), whereby, we might be better off showing that

∆(d) +Dϕ(Bd, Bc) ≥ 0.
2In their paper Lee and Seung [20] also hinge their proof upon the positive semi-definiteness of matrixH, however their arrived at

this matrix by another approach.
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3.5.2 KL-Divergence NNMA

Once again we define∆(d) = (a − Bd)T (ψ(Bd) − ψ(Bc). For the KL-Divergence problem,ψ(x) =
1 + log x. Thus we need to prove that

0 ≤ ∆(d) =
∑

i

(ai − (Bd)i) log
(Bd)i

(Bc)i

.

We proceed by analyzing individual terms in the summation above. We have

log
(Bd)i

(Bc)i

=
1

(Bc)i

(
(Bc)i log

(Bd)i

(Bc)i

)

=
1

(Bc)i

(∑

j

bijcj log

∑
l bildl∑
l bilcl

)

≥ 1

(Bc)i

∑

j

bijcj log
dj

cj
, (3.17)

where the latter inequality follows from the log-sum inequality that says
∑

i xi log xi

yi

≥ (
∑

i xi) log

∑
i
xi∑

i
yi

.

A second application of this log-sum inequality allows us toconclude that

−(Bd)i log
(Bd)i

(Bc)i

≥ −
∑

j

bijdj log
dj

cj
. (3.18)

Using (3.17) and (3.18) we conclude that

∆(d) ≥
∑

ij

bij log
dj

cj

( ai

(Bc)i

cj − dj

)

=
∑

j

log
dj

cj

((
cj
∑

i

bij
ai

(Bc)i

)
−
∑

i

bijdj

)

= 0,

where the last equality follows from the update fordj given by

dj = cj

∑
i bijai/(Bc)i∑

i bij
.

In a similar manner we can conclude that the objective function does not increase after an update toB, which
concludes the proof of monotonicity.

3.5.3 Other cases

It is easy to generalize the above two proofs to weighted versions of their respective problems. Our experi-
ments suggest that∆(d) is not always non-negative for all choices ofϕ. Thus, to prove monotonicity of our
algorithms in the general case we might need to derive other conditions.

4 Experiments and Discussion

We have looked at generic algorithms for minimizing Bregmandivergences between the input and its approx-
imation. One important question arises: Which Bregman divergence should one use for a given problem?
Consider the following factor analytic model

A = BC + N ,

10



whereN represents some additive noise present in the measurementsA, and the aim is to recoverB and
C. If we assume that the noise is distributed according to somemember of the exponential family, then
minimizing the corresponding Bregman divergence [1] is appropriate. For e.g., if the noise is modeled as
i.i.d. Gaussian noise, then the Frobenius norm based problem is natural.

Another question is: Which version of the problem we should use, (2.2) or (2.3)? Forϕ(x) = 1

2
x2, both

problems coincide. For otherϕ, the choice between (2.2) and (2.3) can be guided by computation issues or
sparsity patterns ofA. Clearly, further work is needed for answering this question in more detail.

Some other open problems involve looking at the class of minimization problems to which the iterative
methods of Section 3.3 may be applied. For example, determining the class of functionsh, for which these
methods may be used to minimizeDϕ(A, h(BC)). Other possible methods for solving both (2.2) and (2.3),
such as the use of alternating projections (AP) for NNMA, also merit a study.

Our methods for (2.2) decreased the objective function monotonically (by construction). However, we
did not demonstrate such a guarantee for the updates (3.11) &(3.12). Figure 1 offers encouraging empirical
evidence in favor of a monotonic behavior of these updates. It is still an open problem to formally prove this
monotonic decrease. Preliminary results that yieldednewmonotonicity proofs were discussed in Section 3.5.

PMF Objective ϕ(x) = − logx ϕ(x) = x log x− x
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Figure 1:Objective function values over 100 iterations for different NNMA problems. The input matrixA was random
20× 8 nonnegative matrix. MatricesB andC were20× 4, 4× 8, respectively.

NNMA has been used in a large number of applications, a fact that attests to its importance and appeal.
We believe that special cases of our generalized problems will prove to be useful for applications in data
mining and machine learning.

5 Related Work
Paatero and Tapper [27] introduced NNMA as positive matrix factorization, and they aimed to minimize
‖W ⊙ (A−BC)‖F, whereW was a fixed nonnegative matrix of weights. NNMA remained confined to
applications in Environmetrics and Chemometrics before pioneering papers of Lee and Seung [20, 21] popu-
larized the problem. Lee and Seung [20] provided simple and efficient algorithms for the NNMA problems
that sought to minimize‖A−BC‖F and KL(A,BC). Lee & Seung called these problemsnonnegative
matrix factorization(NNMF), and their algorithms have inspired our generalizations.

5.1 Quick pointer to applications of NNMA

Below we provide a quick pointer to some of the literature that makes use of either Paatero’s algorithms or
Lee & Seung’s algorithms.

Frenich et al. [11] apply OPA, PMF and ALS techniques to chromatographic data. Welling and Weber
[38] generalizes the Lee/Seung NNMA algorithm from matrices to tensors. Novak and Mammone [23] apply
NNMA for language modeling. Lee et al. [22] and J-H. Ahn and Choi [19] look at some Dynamic Positron
Emission Tomography applications. Hoyer [17] introduces additional sparsity constraints to the NNMA
problem. A collection of research articles dealing with weighting, image and face classification and some
other issues has been produced by Guillamet and Vitrià [12,13, 14], Guillamet et al. [16]. Cooper and Foote
[7] applies NNMA to the task of summarizing video. Szatmáryet al. [35] extend NNMA by Sparse code
shrinkage (SCS) and weight sparsification. Ramadan et al. [30] compare the methods of Paatero [25], Paatero
and Tapper [27] and Paatero [26] on pollution data. Wild et al. [39] have written a brief article trying to
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motivate the use of NNMA along with references to means of initializing NNMA using the clustering results
of spherical k-means [8]. Sajda et al. [32] apply NNMA to the recovery of constituent spectra in chemical
shift imaging. An somewhat offbeat application to Polyphonic music transcription is presented by Smaragdis
and Brown [33]. Donoho and Stodden [9] mull over criteria that enable one to determine when does NNMA
give a correct decomposition into parts for the original data. An application to the discovery of hierarchical
speech features appears in a paper by Behnke [2]. Xu et al. [40] present a simple application to clustering
text data. Szatmáry et al. [36] look at robust hierarchicalimage representation, augmenting NNMA with SCS
preprocessing. Hoyer [18] uses NNMA to model receptive fields of the visual cortex. Further related work
in nonnegative Independent Components Analysis (ICA) and nonnegative Principal Components Analysis
(PCA) has also been conducted [24, 28, 29].

Srebro and Jaakola [34] discuss elementwise weighted low-rank approximations without any nonnega-
tivity constraints. Collins et al. [6] discuss algorithms for obtaining a low rank approximation of the form
A ≈ BC, where the loss functions are Bregman divergences, however, there is no restriction onB andC.
Our methods are tailored to nonnegative data, and they offerthe advantages of computational efficiency and
ease of implementation.
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