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Abstract

Nonnegative matrix approximation (NNMA) is a recent tecjud for dimensionality reduction and
data analysis that yields a parts based, sparse nonneggiresentation of the nonnegative input data. Due
to these advantages, NNMA has found a wide variety of apjdies, including text analysis, document
clustering, face/image recognition, language modelipgesh processing and many others. Despite these
numerous applications, the algorithmic development fonmating the NNMA factors has been relatively
deficient. This paper makes algorithmic progress by modadimdsolving (using multiplicative updates)
new generalized NNMA problems that minimize Bregman dieeges between the input matrix and its
low-rank approximation. The multiplicative update formelin the pioneering work by Lee and Seung [20]
arise as a special case of our algorithms. In addition, tipempshows how to use penalty functions for
incorporating constraints other than nonnegativity ihi problem. Further, some interesting extensions to
the use of “link” functions for modeling non-linear relatighips are also discussed.

Keywords: Nonnegative matrix factorization, approximation, Bregnadavergence, multiplicative updates.

1 Introduction

Nonnegative matrix approximation (NNMA) is a method for éinsionality reduction and data analysis that
has gained substantial prominence over the past few yealiglAhas previously been callgabsitive matrix
factorization[27] andnonnegative matrix factorizatiof21]. Assume that,...,ay are N nonnegative
input (M-dimensional) vectors. We organize these vectors as thwred of a nonnegative data matrix

Aé[al as ... aN}.

NNMA seeks a small set dk nonnegative representative vectéis. . ., bx that can be nonnegatively (or
conically) combined to approximate the input vecteysThat is,

K
anzzcknbkv 1S’RSN,
k=1

where the combining coefficients,, are restricted to be nonnegativeclf, andb;, are unrestricted, and we
minimize " |la, — Be,||?, the Truncated Singular Value Decomposition (TSVD)b§ields the optimal
b, andcg, values. If theb, are unrestricted, but the coefficient vectessare restricted to be indicator
vectors, then we obtain the problem of hard-clustering (S38eChapter 8] for related discussion regarding
different constraints on,, andby).



In this paper we consider problems where all involved masriare nonnegative. For many practical
problems nonnegativity is a natural requirement. For examgwlor intensities, chemical concentrations,
frequency counts etc., are all nonnegative entities, apdosgmating their measurements by nonnegative
representations leads to greater interpretability. NNM& found a significant number of applications, not
only due to increased interpretability, but also becauseitidg only nonnegative combinations of thg
leads to sparse representations.

This paper contributes to the algorithmic advancement oM\by generalizing the problem signifi-
cantly, and deriving efficient algorithms based on multialive updates for the generalized problems. The
scope of this paper is primarily on generic methods for NNNMa&ther than on specific applications. The
multiplicative update formulae in the pioneering work byel&nd Seung [20] arise as a special case of our
algorithms, which seek to minimize Bregman divergencewéet the nonnegative input and its approxi-
mation. In addition, we discuss the use penalty functiongmrporating constraints other than nonnegativ-
ity into the problem. Further, we illustrate an interestaxgension of our algorithms for handling non-linear
relationships through the use of “link” functions.

2 Problems

Given a nonnegative matrid as input, the classical NNMA problem is to approximate it bipwaer rank
nonnegative matrix of the forlC, whereB = [by, ...,bx]| andC = [cy, ..., cy] are themselves nonnega-
tive. That is, we seek the approximation,

Ay n %BMXKCKX]V, WhereB,CZO. (21)

We judge the goodness of the approximation in (2.1) by usiggreeral class of distortion measures
called Bregman divergencesFor any strictly convex functiopp : S € R — R that has a continuous
first derivative, the correspondiRyegman divergenceD,, : S x int(S) — R, is defined ad,, (z, y) £
o(x)—e(y)—Vo(y)(z—y), where intS) is the interior of seb [1, 3]. Bregman divergences are nonnegative,
convex in the first argument and zero if and onlyif= y. These divergences play an important role in
convex optimization [3]. For the sequel we consider onlyesaple Bregman divergences, iB, (X, Y) =
> i Do(®ij, yij). We further requires;;, y;; € domp NR,.

Formally, the resulting generalized nonnegative matrpragimation problems are:

_min - D,(BC, A)+a(B) + B(C), (2.2)
ST Dy(A, BC) +a(B) + B(O). (2.3)

The functionsy and g serve agpenaltyfunctions, and they allow us to enforce regularization (tweo con-
straints) onB andC'. We consider both (2.2) and (2.3) since Bregman divergesreegenerally asymmetric.
Table 1 gives a small sample of NNMA problems to illustrate ineadth of our formulation.

DivergenceD,, %) « I} Remarks

|A— BCJ2 1a? 0 0 Lee and Seung [20, 21]
|A— BC|2 12 0 ATC1 | Hoyer[17]

W ® (A - BC)|2 % 2 0 0 Paatero and Tapper [27]
KL(A, BC) zlogz —x 0 0 Lee and Seung [20]
KL(A,WBC) zlogx —x 0 0 Guillamet et al. [15]
KL(A, BC) rlogr —z | ;1TBTB1 | —c,||C||2 | Feng etal. [10]

D, (A, Wi BCW5) | ¢(z) a(B) B(C) Weighted NNMA (new)

Table 1: Some example NNMA problems that may be obtained {@8). The corresponding asymmet-
ric problem (2.2) hasiot been previously treated in the literature. Kl () denotes the generalized KL-
Divergence =, x; log o+ — xi +y; (also called I-divergence).



3 Algorithms

In this section we present algorithms that seek to optiniz2)(and (2.3). Our algorithms are iterative in
nature, and are directly inspired by the efficient algorghoh Lee and Seung [20]. Appealing properties
include ease of implementation and computational effigienc

Note that the problems (2.2) and (2.3) are not jointly conme® andC, so itis not easy to obtain globally
optimal solutions in polynomial time. Our iterative proceeés start by initializingB and C randomly or
otherwise. ThenB andC are alternately updated until there is no further appréeiattange in the objective
function value.

3.1 Algorithms for (2.2)

We utilize the concept of auxiliary functions [20] for ourrdations. It is sufficient to illustrate our methods
using a single column af' (or row of B), since our divergences are separable.

Definition 3.1 (Auxiliary function). A functionG(e, ¢’) is called an auxiliary function foF'(c) if:
1. G(e,c) = F(c), and
2. G(e,c') > F(c) forall ¢
Auxiliary functions turn out to be useful due to the followitemma.

Lemma 3.2(lterative minimization) If G(¢, ¢’) is an auxiliary function forF'(¢), thenF' is non-increasing
under the update

t+1

c' = argmin, G(c, c").

Proof. F(c!™) < G(c', e!) < G(ct, et) = F(ch). O

As can be observed, the sequence formed by the iterativecapph of Lemma 3.2 leads to a monotonic
decrease in the objective function valBé¢c). For an algorithm that iteratively updatesn its quest to min-
imize F'(c), the method for proving convergence boils down to the cantitn of an appropriate auxiliary
function. Auxiliary functions have been used in many plaoe®re, see for example [5, 20].

We now construct simple auxiliary functions for (2.2) thalg multiplicative updates. To avoid clutter
we drop the functions and from (2.2), noting that our methods can easily be extendettrporate these
functions.

SupposeB is fixed and we wish to compute an updated colum@'ofVe wish to minimize

F(c) = Dy(Bec, a), (3.1)

wherea is the column ofA corresponding to the columnof C. The lemma below shows how to construct
an auxiliary function for (3.1). For convenience of notatiwe use) to denotév ¢ for the rest of this section.

Lemma 3.3(Auxiliary function). The function
biic
3 :Z/\ij‘p( 7_ J) ZSO (a;) (Bc) - ai), (3.2)
j

with \;; = (bi;c)/ (32, bucy), is an auxiliary function fo(3.1). Note that by definition) >, A;; = 1, and as
bothb;; andc; are nonnegative);; > 0. '

Proof. Itis easy to verify thaté(c, ¢) = F(c), since)_; \;; = 1. Using the convexity of, we conclude
thatif 3=, A;; = 1andX;; > 0, then '

Z <wacﬂ> — ¢(a;) = ¥(a;)((Be)i — a;)
< ;Aiw(bwcj) Zeﬂ a;) )((Be)i — a;)

=G(e, c). O




To obtain the update, we minimiz&(c, ¢’) w.r.t. c. Let(z) denote the vector)(x1), ..., ¥ (z,)]".
We compute the partial derivative

—ZW( ) <BTw( Do (3:3)

We need to solve (3.3) far, by settingdG/dc, = 0. Solving this equation analytically is not always
possible. However, for a broad class of functions, we caaiol#n analytic solution. For examplefis
multiplicative (i.e.,w(xy) = ¥ (x)1(y)) we obtain a multiplicative update relation feas follows:

5o = Swt(2)u(mer) ~But@n, = v )BTuBe), - Bv@),

Thus upon settingG/dc,, = 0, we obtain

<C_p’> _ _[B™¥(a)],

Cp B [BTy(Bc)],’
which yields the update .
- [B™(a)l,
e Cp 1(m). (3.4)

We can compute updates f& one row at a time. Let this row be denoted#dy, and the corresponding
row of matrix A by a”. The objective function for a row is

H(b) = D,(b"C, a” ZD b'c;, a;),

wherec; denotes thg-th column ofC, anda; denotes thg-th component of the row vectar’ . Once again,
using the convexity of, we define an appropriate auxiliary functiéi(b, b’) for H(b), where

c b
K(b,b) = ZM’W kj k Zcp a;) —(a;) (b e; — aj),

Jk

andug; = cx;by./ (3, b)), anduy > 0.
We now computé K’/ 0b,, to obtain

oK T
3722 Pﬂ/’( be ) _Zcpﬂ/’(aj)-
P J J
Once again, assuming multiplicative and setting X /9b,, = 0, we obtain the update

1 ( [W(a")C"],
by — by (W) (3.5)

It turns out that wherp is a convex function of Legendre type, thén' can be obtained by the derivative
of the conjugate functiop* of ¢, i.e.,1y)~! = V* [31].
Note. (3.5) & (3.4) coincide with updates derived by Lee and Se@, [if o(z) = %xz.

3.2 Examples of New NNMA Problems

We illustrate the power of our generic auxiliary functiorigem above for deriving algorithms with multi-
plicative updates for some specific interesting problems.



3.2.1 New KL-Divergence NNMA

First we consider the problem that seeks to minimize thergamce,

(Bc)l

a;

KL(Bc¢,a) = Z(Bc)i log
Letyp(z) = zloga — x. Then)(xz) = logx, and ash(zy) = ¥ (x) + ¥ (y), upon substituting in (3.3), and
setting the resultant to zero we obtain

oG
6cp Z bip log(c,y(BC) /c Z biploga; =0,

— (Be); + ai, B,c>0. (3.6)

— (B”1),log 2 L = [B"loga — B" log(Bc)],
C
p

(BT 1og(a/<Bc’>)1p>
[BT1], ‘

/
= cpch-exp<

The update fob is derived to be

by =y, - exp<[(10g(a/b/Tci)TcT]p>.

p []_TcT »

3.2.2 Constrained NNMA
Next we consider NNMA problems that have additional conistsa We illustrate our ideas on a problem
with linear constraints.

min  D,(Bc, a)

(3.7)
st. Pc<0, c¢c>0.

We can solve (3.7) problem using our method by making use apanopriate (differentiable) penalty func-
tion that enforcedPc < 0. We consider,

F(c) = D,(Bc, a) + p|| max(0, Pc)||?, (3.8)

wherep > 0 is some penalty constant. Assuming multiplicativeand following the auxiliary function
technique described above, we obtain the following updates,

(BT, — P (Pe),
P < [BTY(Bo), )

where(Pc)™ = max(0, Pc). Note that care must be taken to ensure that the additioripénalty term
does not violate the nonnegativity efand to ensure that the argument/of! lies in its domain.

Remarks. Incorporating additional constraints into (3.6) is howegasier, since the exponential updates
ensure nonnegativity. Givasm = 1, with appropriate penalty functions, our solution to (X&h be utilized
for maximizing entropy ofB¢ subject to linear or non-linear constraints @n That is, for the maximum
entropy problem

max en{Bc) st.Pc<0,c>0,

we solve the corresponding problem (with appropriate ntimaion)
min KL (Beg,1) st.Pc<0,c>0.

Using the penalty function as described above, and empdyie iterative update relation derived in Sec-
tion 3.2 we obtain the following update scheme éor

[~B™log(Bc) — pP"(Pc)"],
Cp < Cp-€Xp [BT1],



3.2.3 Nonlinear models with “link” functions

If A = h(BC), whereh is a “link” function that models a nonlinear relationshiptiveen A and the
approximantBC, we may wish to minimizeD,,(hL(BC'), A). We can easily extend our methods to handle
this case for appropriate Recall that the auxiliary function that we used, dependszhithe convexity of
. Thus, if (¢ o h) is a convex function, whose derivatiye o h)’(z) is “factorizable,” then we can easily
derive algorithms for this problem with link functions.

For example, ifh is convex (concave) and is an increasing (decreasing) function then h is also
convex, since the second derivative of the compositiert. is given by

(o h)" () = h"(@)p(h(@)) + ¢’ (h(x)) (' (2))*, (3.9)

and it is nonnegative for sughande.

3.3 Algorithms using KKT conditions

We now derive efficient multiplicative update relations (213), and these updates turn out to be simpler than
those for (2.2). To avoid clutter, we describe our methodb wi= 0, andg = 0, noting that ifo ands are
differentiable, then it is easy to incorporate them in oui@gions. For convenience we ugér) to denote
V?2(z) for the rest of this section.

We now compute the gradieNtg D,(A, BC). Using the fact that(BC);;/0b,, = ¢4, We see that
0D, (A, BC)/0by, is given by

%pq{z ¢(ai;) — e((BC)ij) — v((BC)ij)(aij — (Bc)ij)}

j

= Z —p((BC)pj)eg; — C((BC)pj)cgi (BC)pj + i (BC)pj) — C(BC)pj)cqjap;

= CUBC)y,)((BC)yp; — apj)cq;
j

=[(¢(BC)® (BC - A))CT] .

In a similar way, using the fact tha{( BC');; /0c,q = bip, we see thad D, (A, BC')/0c,, is given by

[B”(¢(BC) ® (BC ~ A))]

pq’
According to the KKT conditions, there exist Lagrange npligr matricesA > 0 and€2 > 0 such that

[VBDSD(A, BC)]mk = )\mk, [Vcha(A, BC)];m = Wkn, (3.103.)
/\mkbmk = WknCkn = 0. (310b)

Multiplying (3.10a)a byb,,.x, and using (3.10b, we obtain

[(¢(BC)® (BC - A))C"] bk = Amkbmr =0,

which suggests the iterative scheme

. By o 4)c")
"*(¢(BC)® BC)CT

mk_ (3.11)

bmk —
}mk

Proceeding in a similar fashion we obtain a similar iteeseheme foey,,, which is

(B (C(BC) © A)kn

" BT (((BC) ® BC) |’ (3.12)

Ckn < C



3.4 Examples of New and Old NNMA Problems as Special Cases

We now illustrate the power of our approach by showing howaareeasily obtain iterative update relations
for many NNMA problems, including known and new problems.

3.4.1 Lee and Seung’s Algorithms.

Leta =0, 8 = 0. Now if we setp(x) = %:172, then (3.11) and (3.12) reduce to

(ACT) (BT A)n

bk — bmkm, Chkn < Clmm,

and these correspond to the Frobenius norm update rulésallygderived by Lee and Seung [20].
If o(x) = zlogz, then{(z) = 1/x. Witha = 0andg =0, (3.11) and (3.12) reduce to

(Z51CT),. 3. Chstims/(BC) s

bmk - bmk{ (]'EiT CT)’mkk B Zn Ckn }7
CLr — ¢ { (BT[ ])kn . Zt btkatn/(BC)tn}
kn kn (BT]-]W]-N) kn - Zm b .

These updates are the same as the ones originally deriveelbgrid Seung [20].

3.4.2 Elementwise weighted distortion.

Here we wish to minimizd W (A — BC)||%. UsingX «— vW © X, andA — vW ® Ain (3.11) and
(3.12) one obtains

(WoeACT CeCo BT (W o A)

B =B GysBoyer BT(W & (BO))’

These iterative updates are significantly simpler than ki€ Rlgorithms of [27], and can be used as an
alternate way for obtaining elementwise weighted appraioms.

3.4.3 The Multifactor NNMA Problem (new).

The above ideas can be extended to the multifactor NNMA peratthat seeks to minimize the following
divergence
D,(A, B1B;...Bg),

where all matrices involved are nonnegative. We computegtadient of the distortion w.r.t. eads,.. Let
B=BB,...B,_{,C= BT+1BT+2 .. .BR, H=BB;.. .BR, Z =. We have

8b7” Z< 17 z_] a/z_] 8b7” Zsz k}lCl]

Pqg R
:E C(hig)(his = aij)bipéy;
i

= [B"(¢(H) © (H - A))C"]

Thus the update formula fd8,. is given by

BT(¢(H)® A)CT

B, — B, ®© = —.
BT(((H) ® H)CT

(3.13)

A typical usage of multifactor NNMA problem would be to obta three-factor NNMA, namely =
RBC. Such an approximation is closely tied to the problem of kustering [4], and can be used to produce
relaxed co-clustering solutions.



3.4.4 Weighted NNMA Problems

There are two main ways in which weighting can be incorparato the NNMA model. First is the model
that uses elementwise weighting, and the second is the aajieed weighting scheme. Formally, these
problems are

min D,(A, W © (BC)),

min  D,(A, Wi BCW5),
and their corresponding asymmetric versions. The first eé¢hproblems is solved easily using the KKT
techniques described above. The second version of thegqundblsolved likewise. For reference, we provide
the updates below, where we ugeas a shorthand fdv; BC W5,
Wi (((2)o A)\wicT
wi((z)o (z)wlcT
BW] (((2) © A) W
BTWTI(((Z)o (Z2)W]
The weighting matrice$¥; and W, are assumed to be nonnegative. Further study is neededeioniie¢
what restrictions are necessary on these matrices to emsuratonic convergence of the update relations.

B+~ B®

C—Co

Weighted Bregman Divergences. If we seek to minimize a weighted sum of Bregman divergertbes s
yet another type of weighting. Here we aim to

Minimize D,(A, BC) wa (aij, (BC)y), (3.14)

whereW = [w;;] is a weight matrix.

The problem (3.14) may be solved in a manner analogous toth&ans in the previous section. After
computing appropriate gradients, and using the KKT coonj the following update relations give solutions
to problem (3.14),

(KBC)oAow)CT
(¢((BC)oW o (BC))CT
BT (((BC)OW © A)
BT (¢(BC)oW © BC)’
We remark that these solutions appear to be the same as éhd1B.12) except for the addition ofi&

term in both the numerator and the denonimator. These sokitire also closely tied to the solution of the
elementwise weighted Bregman divergence NNMA problems.

B —B®

C —Co

3.5 Convergence

In this section we study convergence for only the updatewetkin Section 3.3. We have verified (by
implementing) that the updates derived in Section 3.3 cgevempirically (see Figure 1) for a large number
of divergence measures (including squared Euclidean anéi@kzed KL-Divergence). However, we have
not yet formalized a unified convergence proof for the gdrse. As an illustration, we offer here proofs
of two important special cases. These proofs do not makefumaxdiary functions, and are the first known
direct proofs of convergence of the NNMA algorithms for thelbenius norm and KL-Divergence based
problems (proofs for these cases were furnished by [20]air raper).

We wish to show that the updates (3.11) and (3.12) are naedasig for their corresponding objective
functions. For simplicity, we first assume thgtX ) = X . Once again, lef'(c) denote the objective function
value contributed by columaof C. Thatis,

F(e) = D,(a, Be),

for a given columnc of C, and the corresponding colunenof A. Let d denote the updated value of
resulting from (3.12). To prove monotonicity we should pd(c) > F(d).



Initial approach. We use the strict convexity @f to arrive at a condition that can prove to be crucial for
monotonicity of many of our NNMA problems. The change in aibjee function value is,

F(di)=F(c;) = p((Bd);) — ¢((Be)i) — ¥((Be)i)(ai — (Be)i) + ¢¥((Bd);)(a; — (Bd);)
> ((Bd); — (Bc)i)y¥((Be)i) — ¢¥((Be)i)(a; — (Be);) + ¢((Bd)i)(a; — (Bd);)
> (a; — (Bd);)(¥((Bd);) — ¥ ((Bc)i)),

where for the first inequality we utilized the fact that

p(x) = o(y) + (= y)d(y).
SinceF(c) = Y, F(c;), we concludé
F(c) = F(d) > (a — Bd)" (¢(Bd) — ¢(Bc)).

If we now show the latter quantity above to be nonnegativedfgiven by update (3.12), we will have our
monotonicity proof.

We illustrate these ideas by providing new proofs of congaog for the the Frobenius norm and the
KL-Divergence NNMA problems.

3.5.1 Frobenius norm NNMA
Let A(d) = (a — Bd)” (¢(Bd) — ¢(Bc)). For the Frobenius norm NNMA problem, we have

(BTa)z‘

m. (3.15)

di:Ci

We can writeA(d) = d¥ BT a — d” B! Bd. To prove thatA(d) > 0, we show thating A(d) = 0.
From (3.15) we know thatB” a); = d;(BT Bc);/c;, thus

d2
A(d) = =2 (BTBe); — d;(BTBd),.
(d) Z ci( c) ( )
The first derivative oA w.r.t. d,, is
AA d
— =2-2(B"Be¢), — 2(BTBd
adp Cp ( C)P ( )P’

which tells us that an optimuia must satisfy
(B'a), = (B"Bd),.

Therefore, for such d we see that\(d) = 0. It now remains to verify that the Hessian Afis positive
semi-definite.
A quick calculation reveals that HessianAfis given by §;; is the Kronecker delta function),

(BTBC)i

Ci

H;j = b — (BTB),;. (3.16)

Lemma 3.4(Hessian is SPD) The Hessian matrix given {$.16)is positive semidefinite

Proof. See Lee and Seung [20]. O

ln fact F(c) — F(d) = (a — Bd)T (w(Bd) - w(Bc)) + D, (Bd, Bc), whereby, we might be better off showing that
A(d) + Dy (Bd, Be) > 0.

2|n their paper Lee and Seung [20] also hinge their proof uperpbsitive semi-definiteness of mati#, however their arrived at
this matrix by another approach.



3.5.2 KL-Divergence NNMA

Once again we definA(d) = (a — Bd)T (v(Bd) — ¢(Bc). For the KL-Divergence problem)(x) =
1 + log z. Thus we need to prove that

(Bd);

(Be);

0<A(d) =) (a; — (Bd);)log

We proceed by analyzing individual terms in the summatiaswvabWe have

Ly
)

(Bd); 1

°®(Be),  (Bo)
(Z bijc;log 2 bads
J

((Bc)l- log

1
(Be)i > baa

1 d;
> biic;log —<, (3.17)
(Be)i 27: T

E.zi
4

i

where the latter inequality follows from the log-sum inelifyahat says) , z; log o> (>, xi)log
A second application of this log-sum inequality allows usdoclude that

(Bd); 3 d;
—(.Bd)Z lOg ) > — bijd/j 10g C_J (318)
Using (3.17) and (3.18) we conclude that
d; a;
> . -7 v .
A(d) 23 by log > ((Bc)icj d,,)

]
d; i
= ; log C—j ((Cj ; bij —(_Bac)l ) - ; b”d])

:0’

where the last equality follows from the update dgrgiven by

d — o, 2o bijai/ (Be)i
J .
2 bij
In a similar manner we can conclude that the objective fonaioes not increase after an updat&tovhich
concludes the proof of monotonicity.
3.5.3 Other cases

It is easy to generalize the above two proofs to weightedmessof their respective problems. Our experi-
ments suggest that(d) is not always non-negative for all choicesaf Thus, to prove monotonicity of our
algorithms in the general case we might need to derive ottratitions.

4 Experiments and Discussion
We have looked at generic algorithms for minimizing Bregrdaergences between the input and its approx-

imation. One important question arises: Which Bregmanrdigece should one use for a given problem?
Consider the following factor analytic model

A=BC+N,

10



where N represents some additive noise present in the measuremenrsd the aim is to recovaB and
C. If we assume that the noise is distributed according to sorember of the exponential family, then
minimizing the corresponding Bregman divergence [1] israpgdate. For e.g., if the noise is modeled as
i.i.d. Gaussian noise, then the Frobenius norm based problaatural.

Another question is: Which version of the problem we showld, §2.2) or (2.3)? Fap(x) = %IQ, both
problems coincide. For other, the choice between (2.2) and (2.3) can be guided by computasues or
sparsity patterns ofl. Clearly, further work is needed for answering this questiomore detail.

Some other open problems involve looking at the class ofmiization problems to which the iterative
methods of Section 3.3 may be applied. For example, det@rgithe class of function, for which these
methods may be used to minimizg, (A, h(BC)). Other possible methods for solving both (2.2) and (2.3),
such as the use of alternating projections (AP) for NNMAgaiterit a study.

Our methods for (2.2) decreased the objective function rmmcally (by construction). However, we
did not demonstrate such a guarantee for the updates (3.(3.)1&). Figure 1 offers encouraging empirical
evidence in favor of a monotonic behavior of these updatés still an open problem to formally prove this
monotonic decrease. Preliminary results that yieldedmonotonicity proofs were discussed in Section 3.5.

PMF Objective o(x) = —logx plx) =xlogxr —x

Figure 1:Objective function values over 100 iterations for differBiNMA problems. The input matrixd was random
20 x 8 nonnegative matrix. MatriceB andC were20 x 4, 4 x 8, respectively.

NNMA has been used in a large number of applications, a fattdtiests to its importance and appeal.
We believe that special cases of our generalized problethpreive to be useful for applications in data
mining and machine learning.

5 Related Work

Paatero and Tapper [27] introduced NNMA as positive maiistdrization, and they aimed to minimize
IW © (A — BC)||g, whereW was a fixed nonnegative matrix of weights. NNMA remained cwedito
applications in Environmetrics and Chemometrics befooagéring papers of Lee and Seung [20, 21] popu-
larized the problem. Lee and Seung [20] provided simple diiclent algorithms for the NNMA problems
that sought to minimiz¢ A — BC/||r and KL(A, BC). Lee & Seung called these problemsnnegative
matrix factorization(NNMF), and their algorithms have inspired our generaiora.

5.1 Quick pointer to applications of NNMA

Below we provide a quick pointer to some of the literaturd thakes use of either Paatero’s algorithms or
Lee & Seung’s algorithms.

Frenich et al. [11] apply OPA, PMF and ALS techniques to chatographic data. Welling and Weber
[38] generalizes the Lee/Seung NNMA algorithm from magitetensors. Novak and Mammone [23] apply
NNMA for language modeling. Lee et al. [22] and J-H. Ahn andh9] look at some Dynamic Positron
Emission Tomography applications. Hoyer [17] introducdditonal sparsity constraints to the NNMA
problem. A collection of research articles dealing with giging, image and face classification and some
other issues has been produced by Guillamet and Vitriall3214], Guillamet et al. [16]. Cooper and Foote
[7] applies NNMA to the task of summarizing video. Szatmatyal. [35] extend NNMA by Sparse code
shrinkage (SCS) and weight sparsification. Ramadan et@Ic{8npare the methods of Paatero [25], Paatero
and Tapper [27] and Paatero [26] on pollution data. Wild e{28] have written a brief article trying to
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motivate the use of NNMA along with references to means d¢ifalizing NNMA using the clustering results
of spherical k-means [8]. Sajda et al. [32] apply NNMA to tleeavery of constituent spectra in chemical
shift imaging. An somewhat offbeat application to Polypicanusic transcription is presented by Smaragdis
and Brown [33]. Donoho and Stodden [9] mull over criteriat thi@able one to determine when does NNMA
give a correct decomposition into parts for the originabdatn application to the discovery of hierarchical
speech features appears in a paper by Behnke [2]. Xu et 3IpféBent a simple application to clustering
text data. Szatmary et al. [36] look at robust hierarchivalge representation, augmenting NNMA with SCS
preprocessing. Hoyer [18] uses NNMA to model receptive $i@fithe visual cortex. Further related work
in nonnegative Independent Components Analysis (ICA) amthagative Principal Components Analysis
(PCA) has also been conducted [24, 28, 29].

Srebro and Jaakola [34] discuss elementwise weighted dmk-approximations without any nonnega-
tivity constraints. Collins et al. [6] discuss algorithnm bbtaining a low rank approximation of the form
A =~ BC, where the loss functions are Bregman divergences, howtinge is no restriction o3 andC.
Our methods are tailored to nonnegative data, and they thiéeadvantages of computational efficiency and
ease of implementation.
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