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In secure group communications, group users share a symmetric key,

called group key. The group key is used for encrypting data traffic among

group users or restricting access to resources intended for group users only.

A key server needs to change the group key after users join and leave (called

group rekeying), by composing a rekey message that consists of encrypted new

keys (encryptions, in short) and delivering it to all users. When group size

is large, it becomes infeasible to rekey per user join or leave because of its

high processing and bandwidth overheads. Instead, the key server changes

the group key per rekey interval, the length of which indicates how tight the

group access control is. It is desired to reduce the overhead of group rekeying

as much as possible in order to allow frequent rekeying.

To address the scalability issue of the key server, Wong, Gouda, and

Lam proposed the key tree approach in 1998. The same idea also appears in
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RFC 2627. The scalability of rekey transport, however, was not addressed.

The objective of this dissertation is to design a scalable and reliable rekey

transport protocol and evaluate its performance. Rekey transport differs from

data transport because rekey messages require scalable, reliable, and real-

time delivery. Furthermore, each user needs only a small subset of all of the

encryptions in a rekey message.

We have proposed a scalable and reliable rekey transport protocol; its

efficiency benefits from the special properties of rekey transport. The protocol

runs in two steps: a multicast step followed by a unicast recovery step. Proac-

tive forward error correction (FEC) is used in multicast to reduce delivery

latency and limit the number of users who need unicast recovery. The uni-

cast recovery step provides eventual reliability; it also reduces the worst-case

delivery latency as well as user bandwidth overhead. In the protocol design,

various technical issues are addressed. First, a key identification scheme is

proposed for each user to identify the subset of new keys that it needs. The

communication cost of this scheme is only several bytes per packet. Second,

we investigate how to space the sending times of packets to make proactive

FEC resilient to burst loss. Lastly, an adaptive FEC scheme is proposed to

make the number of users who need unicast recovery controlled around a small

target value under dynamic network conditions. This scheme also makes FEC

bandwidth overhead and rekey interval close to the the feasible minima.

Application-layer multicast (ALM) offers new opportunities to do nam-

ing and routing. In the dissertation, we have studied how to use ALM to
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support concurrent rekey and data transport in secure group communications.

Rekey traffic is bursty and requires fast delivery. It is desired to reduce rekey

bandwidth overhead as much as possible since it competes for available band-

width with data traffic. Towards this goal, we propose a multicast scheme

that exploits proximity in the underlying network. We further propose a rekey

message splitting scheme to significantly reduce rekey bandwidth overhead at

each user access link and network link. We formulate and prove correctness

properties for the multicast scheme and rekey message splitting scheme. Sim-

ulation results show that our approach can reduce rekey bandwidth overhead

from several thousand encryptions to less than ten encryptions for more than

90% of users in a group of 1024 users.
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Chapter 1

Introduction

Many emerging Internet applications, such as grid computing, restricted

teleconferences, pay-per-view of digital media, multi-party games, virtual pri-

vate networks, and distributed interactive simulations will benefit from using

a secure group communications model [20]. In this model, members of a group

share a symmetric key, called group key, which is known only to group users

and a key server. The group key can be used for encrypting data traffic be-

tween group members or restricting access to resources intended for group

members only. The group key is distributed by a group key management sys-

tem, which changes the group key from time to time (called group rekeying).

It is desired that the group key changes after a new user has joined (so that

the new user will not be able to decrypt past group communications) or an

existing user has departed (so that the departed user will not be able to access

future group communications).

1.1 Prior work

There have been extensive research results on the design of group key

management in recent years [4, 8, 12, 17, 30, 50, 52, 55]. In particular, the key
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tree approach [50, 52] uses a hierarchy of keys to facilitate group rekeying, and

it reduces the server processing time complexity of group rekeying from O(N)

to O(logd (N)), where N is the group size and d is the key tree degree. This

approach was shown to be optimal in terms of server communication cost per

user join or leave [47].

A key tree is a rooted tree with the group key as root [52]. It has two

types of nodes: u-nodes and k-nodes. Each u-node corresponds to a particular

user, and it contains the individual key of the user. A user’s individual key

is known only by the user and the key server. A k-node contains either the

group key or an auxiliary key. In the key tree approach, each user is given

its individual key as well as all of the keys contained in the k-nodes along the

path from its corresponding u-node to the root node. Consider a group with

nine users. An example key tree is shown in Figure 1.1. In this example, user

u9 is given the three keys k9, k789, and k1−9. Key k9 is the individual key of

u9, key k789 is an auxiliary key shared by u7, u8, and u9, and key k1−9 is the

group key shared by all nine users.1

When a user joins or leaves the group, the key server needs to change

all of the keys on the path from the user’s corresponding u-node to the root

node. For example, in Figure 1.1, suppose that u9 leaves the group. To update

the key tree, the key server removes the u-node containing k9 from the key

tree, changes k789 to k78, and changes k1−9 to k1−8. To distribute the new keys

1The key server knows every key in the key tree.
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Figure 1.1: An example key tree.

to the remaining users using the group-oriented rekeying strategy [52], the key

server uses the key in each child node of the updated k-node to encrypt the

new key in the updated k-node. In this example, the key server generates

the following encrypted new keys: {k78}k7, {k78}k8, {k1−8}k123 , {k1−8}k456 , and

{k1−8}k78 . Here {k′}k denotes key k′ encrypted by key k, and is referred

to as an encryption. All encryptions are put in a single rekey message,

which is multicasted to all remaining users. Each user, however, does not need

to receive the entire rekey message since it needs only a small subset of all

encryptions. For example, u7 needs only {k1−8}k78 and {k78}k7 .

When group size is large, or when users join and leave frequently, it

becomes infeasible to rekey after every join or leave request because of its high

processing and bandwidth overheads. To further improve the scalability of

the key server, periodic batch rekeying was proposed [27, 45, 55]. In batch

rekeying, the key server collects join and leave requests during each rekey

interval. At the end of the rekey interval, the key server processes these

requests as a batch, and generates a single rekey message. The rekey message

3



is sent to group users during the next rekey interval. We use T to denote the

length of a rekey interval.

In batch rekeying, a new group key will not be generated until the

end of a rekey interval. Suppose the new group key will be used to encrypt

group communications s time units later.2 Then a departed user can still read

future group communications for up to T + s time units after its departure.

Therefore, T is a measure of the granularity of group access control. A small

T is preferable for tight group access control.

Group rekeying requires reliable delivery of new keys to users. This is

because the key server uses keys generated in one rekey interval to encrypt

new keys of the next rekey interval. Reliable delivery of rekey messages has

not received much attention in prior work. In Keystone [53], a basic protocol

was designed and implemented that uses proactive forward error correction

(FEC) to improve the reliability of multicast rekey transport. Some prelimi-

nary performance results of rekey transport were presented in [55].

1.2 Scope of the dissertation

The objective of this dissertation is to study the rekey transport prob-

lem. We will identify the special properties and requirements of rekey trans-

port, and investigate various technical issues involved. In particular, we will

2We need to set s > 0 since it takes time to deliver a rekey message to users. In the
rekeying protocol presented in Chapter 2 and 3, almost all users can receive their required
new keys by the end of a single multicast round. Therefore, we can set s as the duration of
a multicast round.
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design protocols for scalable and reliable group rekeying, and evaluate the

protocols with analytical results and simulations.

1.2.1 Properties of rekey transport

Many reliable multicast protocols for data transport have been pro-

posed in recent years [15, 19, 21, 26, 32, 33, 35, 48]. These protocols, however,

are not efficient for rekey transport because rekey transport differs from data

transport. More specifically, in rekey transport, each user needs only a small

subset of encryptions in a rekey message. In data transport, each user typi-

cally needs every packet. Furthermore, the amount of rekey traffic is usually

much smaller than that of data traffic, and the sending rate of rekey traffic is

constrained at a small fraction of total available bandwidth.

1.2.2 Requirements of rekey transport

Rekey transport has the following requirements.

• Reliable delivery requirement — This requirement arises because the key

server uses keys generated in one rekey interval to encrypt new keys of

the next rekey interval. Each user however does not need to receive the

entire rekey message since it needs only a small subset of all encryptions.

• Soft real-time requirement — It has two meanings. First, it is required

that almost all users can receive their required new keys before the new

keys are used. This is because a user has to buffer incoming encrypted

data packets and future (encrypted) rekey messages before receiving its

5



new keys to decrypt them. Second, it is desired to make rekey interval

as small as possible to achieve tight group access control.

• Scalability requirement — The processing and bandwidth overheads of

the key server and each user should increase as a function of group size

at a low rate such that a single server is able to support a large group

and allow a small rekey interval T .

1.2.3 Rekey transport protocol

We have proposed a scalable and reliable rekey transport protocol [57–

59, 61]; its efficiency benefits from the special properties of rekey transport.

The protocol runs on top of IP multicast or other multicast schemes.

Our server protocol for each rekey message consists of five phases: (i)

updating the key tree to reflect user joins and leaves, and generating a se-

quence of encryptions; (ii) assigning the encryptions into packets (called rekey

packets) by running a key assignment algorithm, (iii) generating packets con-

taining FEC redundant information (called parity packets), (iv) multicast

of rekey and parity packets, and (v) transition from multicast to unicast.

To achieve reliability, our protocol runs in two steps: a multicast step

followed by a unicast recovery step. During the multicast step, which lasts for a

single multicast round, almost all users will receive their new keys because each

user needs only one specific rekey packet (guaranteed by our key assignment

algorithm) and proactive FEC is also used. Subsequently, for users who cannot

receive or recover their new keys in the multicast step, each of them sends a

6



NACK packet to the key server. The key server then sends each such user

its required keys via unicast. Since each user needs only a small number of

new keys, and there are few users remaining in the unicast recovery step, our

protocol achieves reliability without incurring a large bandwidth overhead.

To meet the soft real-time requirement, proactive FEC is used in the

multicast step to reduce delivery latency [22, 44]. In particular, only a target

number of NACKs (which is usually a small value) are expected to be sent

to the key server at the end of the multicast round. To achieve a small rekey

interval T , our protocol seeks the smallest feasible T that allows the delivery

of new keys to be accomplished at a constrained rate.

Towards a scalable design, we use the following ideas.

• To reduce the key server processing requirement, we partition a rekey

message into blocks to reduce the size of each block and therefore reduce

the key server’s FEC encoding time.

• To reduce each user’s processing requirement, our key assignment algo-

rithm assigns all of the encryptions for a user into a single rekey packet.

As a result, the vast majority of users can receive their specific rekey

packets directly, and do not perform FEC decoding.

• To reduce key server bandwidth requirement, our protocol uses multi-

cast to send a rekey message to users initially, and the sending rate is

constrained at a small fraction of total available bandwidth.
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• To reduce a user’s bandwidth requirement, we use unicast for each user

who cannot receive or recover its new keys during the multicast step.

In this way, a small number of users in high-loss environments will not

cause our protocol to perform multicast for multiple rounds to all users.

In the protocol design, we investigate the following technical issues.

• Key identification — This issue arises since each user needs only a small

subset of all of the new keys after group rekeying. Therefore, we need

to provide an efficient scheme for each user to identify which new keys

it needs in a rekey message. The challenge is that the key server keeps

changing the structure of the key tree to reflect user joins and leaves for

each rekey interval. As a result, the positions of a user’s required keys

in the key tree keep changing. Each user, however, does not keep track

of the key tree structure. To complicate the issue, each user needs to

further identify which particular rekey packet contains its required new

keys. In the case that its specific rekey packet is lost, the user needs to

determine to which block its specific rekey packet belongs, so that it can

use FEC decoding to recover the whole block. To address these issues,

we propose a key, encryption, and user identification scheme, a new

marking algorithm for the key server to update the key tree structure,3

3Two different marking algorithms were proposed in [27, 55], which aim to maintain a
balanced key tree. However, none of them provides a simple and efficient way for a user to
keep track of its up-to-date ID and identify its required keys.
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and a block ID estimation algorithm. The communication cost of our

scheme is only several bytes per packet.

• Proactive FEC — It was observed that FEC is very effective in improving

reliability for data transport if packets experience independent loss, but

it is not effective if packets are lost in a burst [32]. Our goal is to make

proactive FEC effective for group rekeying even when packets experience

burst loss, by exploiting the special properties of rekey transport. For

this purpose, we analyze the performance of proactive FEC for group

rekeying using both the Bernoulli and continuous-time Markov models.

Using a constrained non-linear optimization technique, we further pro-

pose a scheme to space the sending time of packets such that packets

of the same block tend to experience independent loss. Our evaluation

shows that this scheme can significantly improve the probability for each

user to receive or recover its new keys. In particular, with the packet

spacing scheme, an increase of the number of parity packets per block

(denoted by h) can exponentially reduce the number of NACKs, and we

have h = O(log N) if the expected number of NACKs is constant.

• Adaptive FEC — We investigate how to control the number of NACKs

(denoted by u) to be around a small target value under dynamic network

conditions. A small u is desired to reduce delivery latency and limit uni-

cast recovery overhead. However, there are tradeoffs between u, h, and

T . More specifically, to make u small, the key server needs to increase h.
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To deliver the increased rekey traffic at a small constrained rate, the key

server may have to increase rekey interval T . However, a small h is also

preferable to reduce rekey bandwidth overhead, and a small T preferable

to achieve tight group access control. Therefore, it is desired for the key

server to seek the smallest feasible (h, T ) pair that makes u controlled

around a target value. This is challenging since network conditions are

dynamic, and network topology is unknown to the key server. We in-

vestigate the tradeoffs between u, h, and T using analytic models and

simulations. We further propose an adaptive FEC scheme. This scheme

can adaptively choose from among all feasible (h, T ) pairs one with h and

T values close to their feasible minima, and make u controlled around a

specified value under dynamic network conditions.

1.2.4 Rekeying using application-layer multicast

Application-layer multicast (ALM) offers new opportunities to do nam-

ing and routing [6, 13]. In the dissertation, we will study how to make ALM

efficient for secure group communications [62]. Our work is the first attempt

on how to efficiently support both rekey and data transport using ALM.

Using ALM to support concurrent rekey and data transport in secure

group communications creates new challenges. In particular, bursty rekey traf-

fic competes for available bandwidth with data traffic, and thus considerably

increases the load of bandwidth-limited links, such as the access links of users

that are close to the root of the ALM tree. Congestion at such an access link
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causes data losses for all of the downstream users. Therefore, it is desired to

reduce rekey bandwidth overhead as much as possible.

In our approach, each user, which is an end host, in the group is assigned

a unique ID that is a string of digits. All of the user IDs and their prefixes are

organized into a tree structure, referred to as ID tree. In addition, each user

maintains a neighbor table that supports hypercube routing [24, 25, 28, 37,

42, 63]. The neighbor tables embed multicast trees rooted at the key server and

each user. Therefore, the key server or any user can send a message to every

one else via multicast. We propose a multicast scheme using the neighbor

tables for both rekey and data transport.

To provide fast delivery of rekey messages, we propose a distributed

user ID assignment scheme that exploits proximity in the underlying network.

By virtue of this scheme, each multicast tree embedded in the neighbor tables

tends to be topology-aware. As a result, when a message is forwarded from

its multicast source towards a user during multicast, it tends to be always

forwarded geographically in the direction towards the user, rather than being

forwarded over links that may go back and forth across continents.

To reduce rekey bandwidth overhead, we observe that each user needs

only a small subset of encryptions in every rekey message. Therefore, it is

desired to let each user receive only the encryptions needed by itself or its

downstream users. The challenging issue is how each user knows who are its

downstream users and which encryptions are needed by these users.
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To address this issue, we propose to modify the key tree to make its

structure match that of the ID tree. An identification scheme is then proposed

to identify each key and encryption. With this scheme, a user can easily

determine whether an encryption is needed by itself or its downstream users by

checking the encryption’s ID. A message splitting scheme is further proposed

to let each user receive only the encryptions needed by itself or its downstream

users. The splitting scheme can significantly reduce rekey bandwidth overhead

at each user access link and network link.

It is possible to perform rekey message splitting on top of an existing

ALM scheme such as the ones in [6, 13, 23, 38, 43, 64]. If we use an exist-

ing ALM scheme to replace the proposed multicast scheme, then in order to

perform rekey message splitting each user has to keep track of who are its

downstream users and which encryptions are needed by them. As a result, it

incurs a large maintenance cost for the users who are close to the root of the

ALM tree since each of them has O(N) downstream users. In our approach,

each user does not need to maintain states of its downstream users in order to

perform rekey message splitting. Furthermore, the proposed splitting scheme

is more effective in reducing rekey bandwidth overhead than what could be

achieved with an existing ALM scheme.

We have formulated and proved correctness properties for the multicast

scheme and rekey message splitting scheme. We have also conducted extensive

simulations to evaluate the approach. Simulation results show that for 78%

of users in a group of 226 users, the latency from a sender to each of these
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users over the multicast paths is less than twice the unicast delay between the

sender and such user. Furthermore, with the rekey message splitting scheme,

more than 90% of users in a group of 1024 users can reduce their incoming

and outgoing rekey bandwidth overhead from several thousand encryptions to

less than ten encryptions.

The balance of the dissertation is organized as follows. In Chapter 2, we

will present our rekey transport protocol. The protocol will be analyzed and

further refined in Chapter 3. In Chapter 4, we will study how to use ALM to

support group rekeying. Future work is discussed in Chapter 5. We conclude

in Chapter 6. Three appendices are included. In particular, Appendix A gives

proofs for the lemmas and theorems presented in the dissertation.
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Chapter 2

Protocol design

In this chapter, we present the design and specification of a protocol

for scalable and reliable group rekeying together with performance evaluation

results. The protocol is based upon the use of key trees [50, 52] for secure

groups and periodic batch rekeying [27, 45, 55]. At the beginning of each rekey

interval, the key server sends all users a rekey message consisting of encrypted

new keys (encryptions, in short) carried in a sequence of packets. We present

a scheme for identifying keys, encryptions, and users, and a key assignment

algorithm that ensures that the encryptions needed by a user are in the same

packet. Our protocol provides reliable and fast delivery of new keys. For

each rekey message, the protocol runs in two steps: a multicast step followed

by a unicast recovery step. Proactive FEC multicast is used to reduce deliv-

ery latency. In particular, it attempts to deliver new keys to all users with

a high probability in a single multicast round. Our experiments show that

a small FEC block size can be used to reduce encoding time at the server

without increasing server bandwidth overhead. Early transition to unicast,

after a single multicast round, further reduces the worst-case delivery latency

as well as user bandwidth requirement. The key server adaptively adjusts

the proactivity factor based upon past feedback information; our experiments
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show that the number of NACKs after the multicast round can be effectively

controlled around a target number. Throughout the protocol design, we strive

to minimize processing and bandwidth requirements for both the key server

and users.

Notation used in this chapter is defined in Table 2.1.

symbol description
d degree of a key tree
h number of parity packets per FEC block
k FEC block size (number of rekey packets per block);

also denotes a key when it appears in {k′}k
ρ proactivity factor, defined as (h + k)/k
J number of join requests in a rekey interval
L number of leave requests in a rekey interval
N number of users in a group

maxKID largest k-node ID
u∗ target number of NACKs
α percentage of high loss rate users

Table 2.1: Notation used in Chapter 2.

2.1 Protocol overview

In this section, we give an overview of our rekey transport protocol.

The key server’s behavior is described in Figure 2.1.

At the beginning of each rekey interval, the key server first runs a

marking algorithm to generate encryptions. It then executes a key assignment

algorithm to assign the encryptions into rekey packets.1 Our key assignment

1A rekey packet is a protocol message generated in the application layer. But we will
refer to it as a packet to conform to terminology in the literature.
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1. run a marking algorithm to generate encryptions
2. run a key assignment algorithm to construct rekey packets
3. partition the sequence of rekey packets into blocks of k packets
4. generate h parity packets for each block
5. multicast k rekey packets and h parity packets for each block
6. when timeout do
7. collect NACK packets from users
8. adaptively adjust the proactivity factor
9. send unicast recovery packets to each user who sends a NACK

Figure 2.1: Basic protocol for key server.

algorithm ensures that all of the encryptions needed by a user are assigned

into one rekey packet.

Next, the key server uses a Reed-Solomon Erasure (RSE) coder to gen-

erate FEC redundant information, called parity packets. In particular, the

key server partitions the sequence of rekey packets into multiple blocks. Each

block contains k rekey packets. We call k the block size. The key server

generates h parity packets for each block. We define the ratio of (h + k)/k as

proactivity factor, denoted by ρ.

Then the key server multicasts all of the rekey and parity packets to

all users. A user can receive or recover its required encryptions in any one of

the following three cases: 1) The user receives the specific rekey packet that

contains all of the encryptions for the user. 2) The user receives at least k

rekey or parity packets from the block that contains its specific rekey packet,

and thus the user can recover its specific rekey packet through FEC decoding.

3) The user receives a unicast recovery packet during a subsequent unicast

recovery step. The unicast recovery packet contains all of the encryptions the
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user needs.

After multicasting rekey and parity packets to users, the server waits

for the duration of a round, which is typically larger than the largest round-trip

time over all users. Meanwhile, the key server collects NACK packets from

users who cannot receive or recover their required encryptions in the multicast

step. At the end of the multicast round, based on the NACK information

received, the key server adaptively adjusts the proactivity factor to control

the number of NACKs for the next rekey message. At the same time, the key

server switches to unicast and sends unicast recovery packets to each user

who sends a NACK.2

An informal specification of the user protocol is shown in Figure 2.2. In

our protocol, a NACK-based feedback mechanism is used because the vast ma-

jority of users can receive or recover their required encryptions in the multicast

step, which consists of a single round. In particular, for each rekey message, a

user checks whether it has received its specific rekey packet or can recover the

block that contains this packet through FEC decoding. If not, the user sends

a NACK packet to the key server. In the NACK, the user specifies the number

of parity packets (denoted by a) needed to recover its required block.3 By the

property of Reed-Solomon encoding, a is equal to k minus the number of rekey

2To provide fast recovery, the key server can send unicast recovery packets to a user once
it receives a NACK from the user. In this dissertation, however, for clear presentation, we
assume that the key server starts to send unicast recovery packets at the end of the multicast
round.

3In a NACK packet, a user may request parity packets for a range of blocks if the user
cannot determine to which block its specific rekey packet belongs. See Section 2.3.1.
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1. when timeout do
2. if received its specific rekey packet or at least k rekey and parity

packets from its required block, or a unicast recovery packet then
3. recover its required block through FEC decoding if needed
4. retrieve required encryptions
5. else
6. a← number of parity packets needed for recovery
7. unicast a NACK packet that contains the value of a to the key server
8. start the timer

Figure 2.2: Basic protocol for a user.

and parity packets received in the block that contains the user’s specific rekey

packet.

In summary, our protocol uses four types of packets: 1) rekey packet,

which contains encryptions for a set of users; 2) parity packet, which contains

FEC redundant information produced by a RSE coder; 3) unicast recovery

packet, which contains all of the encryptions for a particular user; 4) NACK

packet, which is feedback from a user to the key server.

Note that protocols given in Figure 2.1 and 2.2 only outline the behav-

iors of the key server and users. More detailed specifications of these protocols

are given in Appendix B.1.

2.2 Construction of rekey Packets

At the beginning of each rekey interval, the key server processes the J

join and L leave requests collected in the previous rekey interval by running

a marking algorithm. The marking algorithm, presented in Appendix B.3, is

different from those in the previous papers [27, 55]. The marking algorithms
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presented in [27, 55] aim to maintain a balanced key tree. None of them,

however, provides a simple and efficient way for a user to keep track of its

up-to-date ID and identify its required keys (see Section 2.2.1).

In the marking algorithm, the key server first modifies the structure

of the key tree to satisfy join and leave requests. The u-nodes for departed

users are removed or replaced by u-nodes for newly joined users. If J > L, the

key server will “split” nodes after the rightmost k-node at the highest level

(with the root at level 0, the lowest) to accommodate the extra joins. After

modifying the key tree, the key server changes the key in each k-node (if the

node exists in the updated key tree) along the path from every newly joined

or departed u-node to the root.

Next, the key server constructs a rekey subtree. A rekey subtree con-

sists of all of the k-nodes whose keys have been updated, the direct children of

the updated k-nodes, and the edges connecting the updated k-nodes with their

direct children. Given a rekey subtree, the key server generates encryptions in

the following way: For each edge in the rekey subtree, the key server uses the

key in the child node to encrypt the key in the parent node.

After generating a sequence of encryptions, the key server then runs

a key assignment algorithm to assign the encryptions into rekey packets. To

increase the probability for each user to receive its required encryptions within

a single multicast round, our key assignment algorithm guarantees that all of

the encryptions for a given user are assigned into a single rekey packet. For

each user to identify its specific rekey packet and extract its encryptions from
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the rekey packet, the key server assigns a unique ID for each key, encryption,

and user; such ID information is included in rekey packets.

In the remaining part of this section, we first discuss how to assign an

ID for each key, encryption, and user. Then we define the format of a rekey

packet. Lastly, we present and evaluate our key assignment algorithm.

2.2.1 Key identification

After group rekeying, each user needs only a small subset of all of the

new keys. Therefore, we need to provide an efficient scheme for each user to

identify which (encrypted) new keys it needs in a rekey message. The challenge

is that the key server keeps changing the structure of the key tree to reflect

user joins and leaves for each rekey interval. As a result, the positions of a

user’s required keys in the key tree keep changing. Each user, however, does

not keep track of the key tree structure. To address this issue, we propose a

key, encryption, and user identification scheme.

To uniquely identify each key, the key server assigns an integer as the

ID of each node in a key tree. More specifically, the key server first expands

the key tree to make it full and balanced by adding null nodes, which we

refer to as n-nodes. As a result of the expansion, the key tree contains three

types of nodes: u-nodes containing individual keys, k-nodes containing the

group key and auxiliary keys, and n-nodes that do not contain keys. Then the

key server traverses the expanded key tree in a top-down and left-right order,

and sequentially assigns an integer as a node’s ID. The ID starts from 0 and
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increments by 1. For example, the root node has an ID of 0, and its leftmost

child has an ID of 1. We then define the ID of a key to be the ID of the node

that contains the key. Figure 2.3 (left) illustrates how to assign node IDs in an

expanded key tree with a degree of three. In this example, the group consists

of seven users.

1 2

4 5 6 7 8 9

3 m

d*m+dd*m+1

10 11 12

n−nodes

m−1
d

0

... ...

... ...

Figure 2.3: Illustration of key identification.

In the key identification scheme, the IDs of a node and its parent node

in the expanded key tree have the following relationship: If a node has an ID

of m, then its parent node has an ID of bm−1
d
c, where d is the key tree degree.

Figure 2.3 (right) illustrates this ID relationship.

To uniquely identify an encryption {k′}k, we define the ID of the en-

cryption to be the ID of the encrypting key k because the key in each node

will be used at most once to encrypt another key. Since k′ is the parent node

of k, its ID can be easily derived given the ID of the encryption.

The ID of a user is, by definition, the ID of its corresponding u-node,

which contains the user’s individual key. If a user knows its user ID, then

given an encryption with its ID, by the simple ID relationship between parent
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and child nodes, the user can easily determine whether the encrypted key is

on the path from the user’s corresponding u-node to the tree root. Recall

that in the key tree approach, a user needs only the keys on the path from

its corresponding u-node to the tree root. Therefore, a user can determine

whether it needs the encrypted key in a given encryption (with its ID) if the

user knows its ID. So the remaining issue is how a user knows its ID.

A user can get its initial ID from the key server when it joins the group.

However, the key server may keep changing the ID of the user for each rekey

interval. This is because when users join and leave, the marking algorithm

needs to modify the structure of the key tree, and thus the IDs of some nodes

will be changed. For a user to determine its up-to-date ID, a straightforward

approach is for the server to inform each user its new ID by sending a packet

to the user. This approach, however, is obviously not scalable.

To provide an efficient way for each user to derive its update-to-date ID,

our marking algorithm updates the key tree structure such that two invariants

are maintained, as stated in Lemma 2.2.1 and 2.2.2.

Lemma 2.2.1. In the marking algorithm specified in Appendix B.3, if the key

server changes the position of a u-node, then the new position of the u-node

must be a leftmost descendant of its original position.

Lemma 2.2.2. After the key server updates the structure of the key tree using

the marking algorithm specified in Appendix B.3, the ID of any k-node is always

less than the ID of any u-node in the updated key tree.
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If the key server changes the position of a u-node, by Lemma 2.2.2, the

ID of the u-node’s new position must be in the range of maxKID + 1 and

d ·maxKID + d, inclusively. Here d ·maxKID + d is the ID of the rightmost

child of the k-node maxKID. In this ID range, there is only one possible

position that is a leftmost descendant of the u-node’s old position. In this

way, the user can determine the ID of the new position of its corresponding

u-node, as stated in the following theorem.

Theorem 2.2.3. For any user, let m denote the user’s ID before the key server

runs the marking algorithm, and m′ denote its ID after the key server finishes

the marking algorithm. Let maxKID denote the largest k-node ID after the

key server finishes the marking algorithm. Define function f(x) = dxm + 1−dx

1−d

for integer x ≥ 0, where d is the key tree degree. Then there exists one and

only one integer x′ ≥ 0 such that maxKID < f(x′) ≤ d ·maxKID + d. And

m′ is equal to f(x′).

By Theorem 2.2.3, a user can derive its current ID by knowing its old

ID and the largest ID of the current k-nodes.

2.2.2 Format of rekey packets

We now define the format of a rekey packet. (Formats of other packets

are specified in Appendix B.2. ) As shown in the Figure 2.4, a rekey packet has

nine fields, and contains both ID information and encryptions. Each number

in the parentheses of Figure 2.4 is the suggested field length, in number of bits.
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1. Type: rekey packet(3) 2. Duplication flag (1)
3. Rekey message ID (12) 4. Block ID (8)
5. Sequence number within a block (8) 6. maxKID (16)
7. <frmID, toID> (32) 8. A list of <encryption, ID> (variable)
9. Padding (variable)

Figure 2.4: Format of a rekey packet.

The ID information in a rekey packet allows a user to identify the

packet, extract its required encryptions, and update its user ID (if changed).

In particular, Fields 1 to 5 uniquely identify a packet. A flag bit in Field 2

specifies whether this packet is a duplicate; this field will be further explained

in Section 2.3. Field 6 is the largest ID of the current k-nodes. Each user can

derive its current user ID based upon this field and its old user ID. Field 7

specifies that this rekey packet contains encryptions only for the users whose

new IDs are in the range of <frmID, toID>, inclusively.

Field 8 of a rekey packet contains a list of encryption and its ID pairs.

After the encryption payload, a rekey packet may be padded by zero to have

fixed length because FEC encoding requires fixed length packets. Padding by

zero does not cause any ambiguity since no encryption has an ID of zero.

2.2.3 User-oriented Key Assignment (UKA) algorithm

Given the format of a rekey packet, we next discuss how to assign

encryptions into rekey packets. This is performed by our key assignment al-

gorithm, which is referred to as the User-oriented Key Assignment (UKA)

algorithm. The algorithm guarantees that all of the encryptions for a user are
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assigned into a single rekey packet.

Figure 2.5 illustrates a particular run of the UKA algorithm in which

seven rekey packets are generated. In the algorithm, the key server first puts

all user IDs into a list in increasing order. Then a longest prefix of the list is

extracted such that all of the encryptions needed by the users whose IDs are

in this prefix will fill up a rekey packet. Repeatedly, the key server generates

a sequence of rekey packets whose <frmID, toID> intervals do not overlap.

In particular, the algorithm guarantees that toID of a previous rekey packet

is less than the frmID of the next packet. This property is useful for block

ID estimation to be performed by a user (see Section 2.3.1).

1 2

3 4 5 6 7

rekey subtree

shared encryptions

Figure 2.5: Illustration of a particular run of the UKA algorithm.

2.2.4 Performance of the UKA algorithm

The UKA algorithm assigns all of the encryptions for a user into a

single rekey packet, and thus a majority of users can receive their specific rekey

packets in the multicast step. This helps reducing the number of NACKs sent
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to the key server.

This benefit, however, is achieved at an expense of sending duplicate

encryptions. In a rekey subtree, users may share encryptions. For two users

whose encryptions are assigned into two different rekey packets, their shared

encryptions need to be duplicated in these two rekey packets. Therefore, we

expect that the UKA algorithm would increase the bandwidth overhead at the

key server.

We evaluate the performance of the UKA algorithm using simulations.

In the simulations, we assume that at the beginning of a rekey interval, the

key tree is full and balanced with N u-nodes. In the rekey interval, J join and

L leave requests are processed. We further assume that the leave requests are

uniformly distributed over the u-nodes. We set the key tree degree d as 4 and

the length of a rekey packet as 1028 bytes. In all of our simulations in this

chapter, each average value is computed based on at least 100 simulation runs.

We first investigate the size of a rekey message as a function of J and

L for N = 4096, as plotted in Figure 2.6. For a fixed L, we observe that

the average number of rekey packets increases linearly with J . For a fixed

J , we observe that as L increases, the number of rekey packets first increases

(because more leaves imply more keys to be changed), and then decreases

(because now some keys can be pruned from the rekey subtree).

Next we investigate the size of a rekey message as a function of N , as

shown in Figure 2.7. We observe that the average number of rekey packets in
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Figure 2.6: Average number of rekey packets as a function of J and L for
N = 4096.
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Figure 2.7: Average number of rekey packets as a function of N .

a rekey message increases linearly with N for three combinations of J and L

values.

With the UKA algorithm, some encryptions are duplicated in rekey

packets. We define duplication overhead as the ratio of duplicated encryp-

tions in all rekey packets to the total number of encryptions in a rekey subtree.

Figure 2.8 plots the average duplication overhead as a function of J and L for
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N = 4096. First consider the case of a fixed L. We observe that the aver-

age duplication overhead decreases from about 0.1 to 0.05 as we increase J .

Next consider the case of a fixed J . We observe that the average duplication

overhead first increases and then decreases as we increase L.
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Figure 2.8: Average duplication overhead as a function of J and L for N =
4096.

Lastly, we plot in Figure 2.9 the average duplication overhead as a

function of N . For J = 0 and L = N/4, or J = L = N/4, the average

duplication overhead increases approximately linearly with log(N) for N ≥ 32.

This is because the rekey subtree is almost full and balanced for J = 0 and

L = N/4, or J = L = N/4, and thus the duplication overhead is directly

related to the tree height logd(N). For J = N/4 and L = 0, the rekey subtree

is very sparse, and thus the curve of the average duplication overhead fluctuates

around the curve of J = L = N/4.
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2.3 Block partitioning

After running the UKA algorithm to construct rekey packets, the key

server next generates parity packets for the rekey packets using a Reed-Solomon

Erasure (RSE) coder.

Although grouping all rekey packets into a single RSE block may re-

duce server bandwidth overhead, a large block size can significantly increase

encoding and decoding time [9, 32, 40]. For example, using the RSE coder of

Rizzo [40], the encoding time for one parity packet is approximately a linear

function of block size. Our evaluation shows that for a large group, the num-

ber of rekey packets generated in a rekey interval can be large. For example,

for a group with 4096 users, when J = L = N/4, the key server can generate

up to 128 rekey packets with a packet size of 1028 bytes. Given such a large

number of rekey packets, it is necessary to partition them into multiple blocks

in order to reduce the key server’s encoding time.
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Consider the rekey packets sequenced in order of generation by the

UKA algorithm. The packet sequence is partitioned into blocks of k packets,

with the first k packets forming the first block, the next k packets forming

the second block, and so on. Each block formed is assigned sequentially an

integer-valued block ID. Each packet within a block is assigned a sequence

number from 0 to k − 1.

To form the last block, the key server may need to duplicate rekey

packets until there are k packets to fill the last block. (The key server may

choose rekey packets from other blocks to duplicate, but all duplicates are

used to fill the last block.) We use a flag bit in each rekey packet to specify

whether the packet is a duplicate, as shown in Figure 2.4. A duplicate rekey

packet has the same contents in all fields as the original packet except for the

<block ID, sequence number> and duplication flag bit fields. A new <block

ID, sequence number> pair is assigned to each duplicate rekey packet because

Reed-Solomon encoding needs to uniquely identify every packet, duplicate or

not.

2.3.1 Block ID estimation

One issue that arises from partitioning rekey packets into blocks is that

if a user lost its specific rekey packet, the user needs to determine the block

to which its rekey packet belongs. Then the user will try to recover this block

through FEC decoding. We present an algorithm in Appendix B.4 for users to

estimate the ID of the block to which its specific rekey packet belongs. With
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this algorithm, the probability that a user cannot determine the precise value

of the ID of its required block is no more than p2 in the worst case, where

p is the loss rate observed by the user under the assumption of independent

packet loss. When this happens, the user can still estimate a possible range of

its required block ID. It will then request parity packets for every block within

this range when it sends a NACK packet. When the key server receives the

NACK, it considers only the number of parity packets requested for the user’s

required block when it adjusts the proactivity factor.

2.3.2 Packets sent in interleaving pattern

After forming the blocks of rekey packets, the key server generates

parity packets, and multicasts all rekey and parity packets to users. One

remaining issue is to determine an order in which the key server sends these

packets. In our protocol, the key server sends packets of different blocks in

an interleaving pattern. By interleaving packets from different blocks, two

packets from the same block are separated by a larger time interval, and thus

are less likely to experience the same burst loss on a link. We will investigate

this issue in detail in Chapter 3.

2.3.3 Choosing block size

Block partitioning is carried out for a given block size k. To determine

the block size, we need to evaluate the impact of block size in terms of two

performance metrics.
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The first metric is server bandwidth overhead, which is defined to

be the ratio of v′ to v, where v is the number of rekey packets in a rekey

message, and v′ is the total number of packets that the key server multicasts

to enable recovery of specific rekey packets by all users.

To evaluate server bandwidth overhead, we use a multi-round mul-

ticast protocol. In this protocol, no unicast recovery is involved. For each

rekey message, the key server performs multicast for multiple rounds until all

users receive or can recover their specific rekey packets. The behavior of the

key server and each user in the first round is the same as what is described in

Figure 2.1 and 2.2.

The second and remaining rounds are performed as follows. Suppose

that the specific rekey packet of user w belongs to block i, i ≥ 0. Let ai,w

denote the number of parity packets requested by user w for block i through its

NACK packet sent in the previous round. Let amax[i] be the largest number

of parity packets requested in the previous round for block i by all of the users

whose specific rekey packets belong to block i, that is, amax[i] = max{ai,w|
for all user w whose specific rekey packet belongs to block i}. Then at the

beginning of this round, for each block i, the key server generates amax[i] new

parity packets for this block, and multicasts these packets to all users. At the

user side, if a user still cannot recover its specific rekey packet, it constructs a

new NACK packet in the same way as in the first round, and sends it to the

key server.

The second metric is overall FEC encoding time, defined to be the
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time that the key server spends to generate all of the parity packets for a

rekey message. Although block size k also has a direct impact on the FEC

decoding time at the user side, the impact is small because in our protocol,

the vast majority of users can receive their specific rekey packets and thus do

not perform any FEC decoding.

We use simulations to evaluate the impact of block size. To support a

large group size, we developed our own simulator for a model proposed and

used by J. Nonnenmacher, et al. [33]. In this model, the key server connects to

a backbone network via a source link, and each user connects to the backbone

network via a receiver link. The backbone network is assumed to be loss-free.

The source link has a fixed loss rate of ps. A fraction α of all group users

have a high loss rate of ph, and the others have a low loss rate of pl. For each

given loss rate, say p, we use a two-state continuous-time Markov chain [32] to

simulate burst loss. More specifically, the average duration of a burst loss is 100
p

milliseconds, and the average duration of loss-free time between consecutive

loss bursts is 100
1−p

milliseconds.4 The default values in our simulations are as

follows: N = 4096, d = 4, J = L = N/4, α = 20%, ph = 20%, pl = 2%,

ps = 1%, and the key server’s sending rate is 10 packets/second, and the rekey

interval is 60 seconds, and the length of a rekey packet is 1028 bytes. The same

simulation topology and parameter values will also be used in the experiments

described in the following sections of this chapter unless otherwise stated.

4This network topology and loss model are simplistic compared to the Internet. They
are however used for simulating a large group size (up to 16384 users). Please see Chapter 3
for simulation results from the use of ns and GT-ITM for a smaller group size.
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The impact of block size on server bandwidth overhead is shown in

Figure 2.10. In the simulations, the key server sets ρ = 1 (that is, h = 0) when

it sends out each rekey message.5 Observe that the average server bandwidth

overhead is not sensitive to the block size k for k ≥ 5.
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Figure 2.10: Average server bandwidth overhead as a function of block size.

We next consider the impact of block size k on overall FEC encoding

time. If we use Rizzo’s RSE coder [40], the encoding time of all parity packets

for a rekey message is approximately the product of the total number of parity

packets and the encoding time for one parity packet. And the encoding time for

one parity packet is approximately a linear function of block size k. Figure 2.11

plots the relative overall encoding time (assuming k time units to generate one

parity packet when block size is k) as a function of block size.

In summary, we found that for ρ = 1, a small block size k can be

chosen to enable fast FEC encoding at the server without incurring a large

5We also investigated the case that the key server adaptively adjusts ρ for consecutive
rekey messages. Results are similar. See technical report [60] for details.

34



0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40 45 50

re
la

tiv
e 

F
E

C
 e

nc
od

in
g 

tim
e

block size k

alpha=0
alpha=20%
alpha=40%

alpha=1

Figure 2.11: Relative overall FEC encoding time as a function of block size.

server bandwidth overhead. For simulations in the following sections of this

chapter, we choose k = 10 as the default value unless otherwise specified.

2.4 Adaptive FEC multicast

In the previous section, we discussed how to partition rekey packets into

blocks and generate parity packets for each block. The discussion, however,

assumes a given proactivity factor ρ. In this section, we investigate how to

determine ρ.

Proactive FEC has been widely used to improve reliability and reduce

delivery latency [7, 18, 22, 29, 32, 44, 56]. However, if the proactivity factor is

too large, the key server may incur high bandwidth overhead. On the other

hand, if the proactivity factor is too small, users may have to depend on

unicast recovery to achieve reliability; thus, the benefit of reduced delivery

latency diminishes. Furthermore, if we depend on proactive FEC to avoid
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feedback implosion and the proactivity factor is too small, many users cannot

receive enough packets to recover its required block, and the key server would

be overwhelmed by NACKs.

The appropriate value of the proactivity factor depends on network

topology and network conditions including loss state of network links, num-

ber of users in a session, and number of sessions using proactive FEC. Such

information is not completely known to the key server and may be changing

during a session’s life time. The objective of our next investigation, therefore,

is to study how to let the key server adaptively adjust the proactivity factor

by observing its impact on the number of NACKs from users. With adap-

tive adjustment, we aim to achieve low delivery latency with small bandwidth

overhead.

2.4.1 Impact of proactivity factor

Before designing an algorithm to adjust the proactivity factor ρ, we

evaluate the impact of ρ on the number of NACKs, the delivery latency at

users, and server bandwidth overhead. We use the multi-round multicast pro-

tocol described in Section 2.3.3 for all of the simulations presented in this

subsection. In these simulations, the value of the proactivity factor is speci-

fied as an experiment parameter. Therefore, the key server does not adaptively

adjust ρ for consecutive rekey messages.

We first evaluate the impact of ρ on the number of NACKs. Figure 2.12

plots the average number of NACKs for the first round as a function of ρ. Note
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that y-axis is in log scale. We observe that the average number of NACKs

decreases exponentially as we increase ρ. (A similar observation was made in

a previous study for data transport [44].)
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Figure 2.12: Average number of NACKs in the first round as a function of ρ.

ρ Percentage of users on average who need
1 round 2 rounds 3 rounds ≥ 4 rounds

1 94.414% 5.134% 0.389% 0.063%
1.2 97.256% 2.502% 0.196% 0.046%
1.6 99.888% 0.090% 0.018% 0.004%
2 99.992% 0.006% 0.001% 0.001%

Table 2.2: Percentage of users on average who need a given number of rounds
to receive or recover their required encryptions.

We next evaluate the impact of ρ on delivery latency. Table 2.2 shows

the percentage of users on average who need a given number of rounds to

receive or recover their required encryptions. For ρ = 1, we observe that

on average 94.41% of the users can receive their encryptions within a single

round; for ρ = 1.6, the percentage value is increased to 99.89%; for ρ = 2.0,

the percentage value is increased to 99.99%.
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We then evaluate the impact of ρ on average server bandwidth overhead,

as shown in Figure 2.13. For ρ close to 1, the key server sends a small number

of proactive parity packets during the first round, but it needs to send much

more reactive parity packets in subsequent rounds to allow users to recover

their required encryptions. As a result, a small increase of ρ has little impact

on the average server bandwidth overhead. When ρ becomes large, the rekey

and parity packets sent during the first round dominates the server bandwidth

overhead, and the average server bandwidth overhead increases linearly with

ρ.
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Figure 2.13: Average server bandwidth overhead as a function of ρ.

In summary, we observe that an increase of ρ can have the following

three effects: 1) It will significantly reduce the average number of NACKs for

the first multicast round. 2) It will reduce the worst-case delivery latency.

3) It will increase average server bandwidth overhead when ρ is larger than

needed.
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2.4.2 Adjustment of proactivity factor

We present in Figure 2.14 an algorithm for the key server to adaptively

adjust the proactivity factor ρ. In the algorithm, according to the NACK

information received for the current rekey message, the key server chooses

a new value of ρ such that a target number of NACKs are expected to be

returned for the next rekey message. The key server runs this algorithm at

the end of the multicast step for each rekey message. Note that the multicast

step consists of a single multicast round (see Figure 2.1).

AdjustRho (u∗, A)
� u∗: target number of NACKs
� A: each item in A is the number of parity packets requested by

a user for its required block
1. if (size(A) > u∗) then
2. au∗+1 ← (u∗ + 1)th (starting from 1) largest item in A

3. h← h + au∗+1

4. if (size(A) < u∗) then
5. set h← max{0, h− 1} with probability max{0, u∗−2·size(A)

u∗ }
6. ρ← (h + k)/k

Figure 2.14: Algorithm to adaptively adjust the proactivity factor.

The input to the algorithm AdjustRho is the target number of NACKs

u∗ and a list A. Each item in A is the number of parity packets requested by

a user through its NACK packet. If a user requests parity packets for a range

of blocks, the key server records into A only the number of parity packets

requested for the block that contains the user’s specific rekey packet.

The algorithm works as follows. For each rekey message, at the end

of the multicast step, the key server compares the number of NACKs it has
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received (that is, sizeof(A)) and the number of NACKs it targets (that is,

u∗). The comparison results in two cases.

In the first case, the key server receives more NACKs than it targets.

In this case, the server selects the (u∗ + 1)th (starting from 1) largest item

(denoted by au∗+1) from A, and increases ρ such that au∗+1 additional proactive

parity packets will be generated for each block of the next rekey message. For

example, suppose ten users, u1, u2, ..., u10, have sent NACKs for the current

rekey message, and user ui requests ai parity packets for the block to which its

specific rekey packet belongs. For illustration, we assume a1 ≥ a2 ≥ ... ≥ a10,

and the target number of NACKs is 2, that is, u∗ = 2. Then according to our

algorithm, for the next rekey message, the key server will send a3 additional

parity packets so that users u3, u4, ..., u10 have a higher probability to recover

their specific rekey packets in the multicast step. This is because according

to the current rekey message, if users u3, u4, ..., u10 were to receive a3 more

parity packets, they could have recovered their specific rekey packets.

In the second case, the key server receives less NACKs than it targets.

Although receiving less NACKs is better in terms of reducing delivery latency,

the small number of NACKs received may indicate that the current proactivity

factor is too high, thus causing high bandwidth overhead. Therefore, in this

case, our algorithm reduces ρ by one parity packet with probability equal to

u∗−2·size(A)
u∗ .
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2.4.3 Performance evaluation

We use simulations to evaluate the algorithm AdjustRho. We will first

investigate whether our protocol can effectively control the number of NACKs,

and then evaluate extra server bandwidth overhead that it may incur. We

choose 20 to be the default value of u∗ unless otherwise specified.

2.4.3.1 Controlling the number of NACKs

For all of the simulations presented in this subsection, we use the rekey

protocol specified in Figures 2.1 and 2.2. Recall that in this protocol, the

multicast step consists of a single round, and the key server adaptively adjusts

the proactivity factor at the end of the multicast round.

Before evaluating whether the algorithm AdjustRho can control the

number of NACKs, we first investigate the stability of the algorithm.

Figure 2.15 shows how ρ is adaptively adjusted when the key server

sends a sequence of rekey messages. Each curve in the figure (and all remaining

figures in this subsection) is a trace obtained from one typical simulation run.

For the case of initial ρ = 1, we observe that it takes only two or three rekey

messages for ρ to settle down to stable values, as shown in Figure 2.15 (a). In

the case of initial ρ = 2, we observe that ρ keeps decreasing until it reaches

stable values, as shown in Figure 2.15 (b). Comparing Figures 2.15 (a) and

(b), we note that the stable values of these two figures match each other very

well.
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Figure 2.15: Traces of proactivity factor.
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Figure 2.16: Traces of the number of NACKs for various loss conditions.

Figure 2.16 plots the traces of the number of NACKs returned in the

multicast step. In Figures 2.16 (a) where the initial ρ value is 1, the number

of NACKs received stabilizes very quickly, and the stable values are generally

less than 1.5 times of u∗. Figures 2.16 (b) shows the case for initial ρ = 2. We

observe that the stable values of these two figures match very well.

We then evaluate whether the algorithm AdjustRho can control the
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number of NACKs for various values of u∗. As shown in Figure 2.17, the

number of NACKs received at the key server fluctuates around each target

number specified. However, we do observe that the fluctuations become more

significant for larger values of u∗. Therefore, in choosing u∗, we need to consider

the potential impact of large fluctuations when u∗ is large.
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Figure 2.17: Traces of the number of NACKs for various target number of
NACKs.

2.4.3.2 Overhead of adaptive FEC

From the previous subsection, we know that the algorithm AdjustRho

can effectively control the number of NACKs and thus reduce delivery latency.

However, compared with an approach that does not send any proactive parity

packets at all during the first round and only generates reactive parity packets

during the subsequent rounds, the adaptive FEC scheme may incur extra

server bandwidth overhead. We investigate this issue in this subsection.

We first evaluate the extra server bandwidth overhead caused by adap-
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tive FEC under various loss conditions. Figure 2.18 compares the average

server bandwidth overhead for the adaptive FEC scheme with the case that

all parity packets are generated reactively (we call it ρ = 1 case). In the simu-

lations, we use the multi-round multicast protocol described in Section 2.3.3.

To measure average server bandwidth overhead for the adaptive FEC scheme,

we let the key server adaptively adjust the proactivity factor for consecutive

rekey messages that it multicasts. In particular, we set initial ρ = 1, and let

the key server send out 10 rekey message. We then compute average server

bandwidth overhead based on the next 100 or more rekey messages. In con-

trast, for ρ = 1 case, the key server sets ρ = 1 for each rekey message it sends

out.

From Figure 2.18, we observe that our adaptive scheme causes little

extra average server bandwidth overhead in a homogeneous low loss environ-

ment, that is, α = 0 (recall that α is the percentage of high loss rate users).

For α = 1, the adaptive scheme can even save a little bandwidth. This is be-

cause for ρ = 1 case, the key server takes more rounds for all users to recover

their encryptions in the reactive scheme (ρ = 1 case) than in the adaptive

scheme. Therefore, it is possible that the total number of parity packets gen-

erated during the rounds for ρ = 1 case is larger than that of the adaptive

scheme. In the case of α = 20%, the extra average server bandwidth overhead

generated by the adaptive scheme is less than 0.3 for k ≥ 10.

We next compare the average server bandwidth overhead of the two

schemes for various group sizes. From Figure 2.19, we observe that the extra
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Figure 2.18: Average server bandwidth overhead for the adaptive FEC scheme
and for ρ = 1 case under various loss conditions.
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Figure 2.19: Average server bandwidth overhead for the adaptive FEC scheme
and for ρ = 1 case when the group size N varies.
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average server bandwidth overhead incurred by the adaptive scheme increases

with N . But the extra average bandwidth overhead incurred is still less than

0.42 even for N = 16384 when k ≥ 10.

2.5 Speedup with unicast

Rekey transport has a soft real-time requirement, that is, it is required

that almost all users can receive their required new keys before the new keys are

used. This requirement arises because a user has to buffer incoming encrypted

data packets and future (encrypted) rekey messages before receiving its new

keys to decrypt them. To meet this requirement, we proposed to use adaptive

FEC in the multicast step to reduce the number of users who send NACKs.

To further reduce delivery latency, the key server will switch to unicast after

a single multicast round. Unicast can reduce delivery latency compared to

multicast because the duration of a multicast round is typically larger than

the largest round-trip time over all users.

One issue of early unicast is its possible high unicast recovery band-

width overhead at the key server. In our protocol, however, unicast recovery

will not cause large bandwidth overhead at the key server for the following two

reasons. First, the size of a unicast recovery packet is much smaller than that

of a rekey or parity packet. In our protocol, a unicast recovery packet contains

only the encryptions for a specific user. The number of encryptions needed by

a user is less than or equal to the height of the key tree. On the other hand,

the size of a rekey or parity packet is typically more than one kilobyte long.
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Second, our adaptive FEC scheme ensures that only a few users need unicast

if the target number of NACKs is small enough.

2.6 Summary

In this chapter, we present in detail our rekey transport protocol as

well as its performance. Our server protocol for each rekey message consists

of five phases: (i) updating the key tree to reflect user joins and leaves, and

generating a sequence of encryptions; (ii) assigning the encryptions into rekey

packets by running a key assignment algorithm, (iii) generating parity packets,

(iv) multicast of rekey and parity packets, and (v) transition from multicast

to unicast.

In the first and second phases, the key server runs a marking algorithm

to generate encryptions and then uses a key assignment algorithm to construct

rekey packets. The major problem in these two phases is to allow a user to

identify its required new keys after the key tree has been modified. To solve the

problem, first we assign a unique integer ID to each key, encryption, and user.

Second, we propose a new marking algorithm that facilitates key identification.

Third, our key assignment algorithm ensures that all of the encryptions for a

user are assigned into a single rekey packet. By including a small amount of

ID information in rekey packets, each user can easily identify its specific rekey

packet and extract the encryptions it needs.

In the third phase, the key server uses a RSE coder to generate parity

packets for rekey packets. The major problem in this phase is to determine the
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block size for FEC encoding. This is because a large block size can significantly

increase FEC encoding and decoding time. Our performance results show

that a small block size can be chosen to provide fast FEC encoding without

increasing bandwidth overhead. We also present an algorithm for a user to

determine to which block its specific rekey packet belongs.

In the fourth phase, the key server multicasts both rekey and parity

packets to all users. This proactive FEC multicast can effectively reduce de-

livery latency of users; however, a large proactivity factor may increase server

bandwidth overhead. Therefore, the major problem in this phase is how to

achieve low delivery latency with small bandwidth overhead. In our protocol,

the key server adaptively adjusts the proactivity factor based on past feedback.

Our simulations show that the number of NACKs can be effectively controlled

around a target number, thus achieving low delivery latency, while the extra

server bandwidth overhead incurred is small.

In the fifth phase, the key server switches to unicast to provide eventual

reliability and also reduce the worst-case delivery latency. In our protocol, each

unicast recovery packet contains only the encryptions for a particular user.

Furthermore, the number of users who need unicast recovery is effectively

controlled around a target value (which is usually small). Therefore, unicast

recovery does not incur high bandwidth overhead at the server.

In summary, we have the following contributions. First, a new mark-

ing algorithm for batch rekeying is presented. This algorithm facilitates key

identification. Second, a key identification scheme, key assignment algorithm,
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and block ID estimation algorithm are presented and evaluated. Third, we

show that a fairly small FEC block size can be used to reduce encoding time

at the server without increasing server bandwidth overhead. Lastly, an adap-

tive algorithm to adjust the proactivity factor is proposed and evaluated. The

algorithm is found to be effective in controlling the number of NACKs and

reducing delivery latency. The algorithm will be further analyzed and refined

in Chapter 3.
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Chapter 3

Protocol analysis and refinement

In the previous chapter, we presented the design and specification of a

scalable and reliable group rekeying protocol. In this protocol, a key server can

deliver a rekey message to a large number of users efficiently using multicast.

For reliable delivery, we proposed the use of forward error correction (FEC)

in an initial multicast, followed by the use of unicast recovery for users that

cannot receive or recover their new keys from the multicast. In this chapter,

we investigate how to limit unicast recovery to a small fraction r of the user

population. By specifying a very small r, almost all users in the group will

receive their new keys within a single multicast round.

We present analytic models for deriving r as a function of the amount

of FEC redundant information (denoted by h) and the rekey interval dura-

tion (denoted by T ) for both Bernoulli and continuous-time Markov Chain

loss models. From our analyses, we conclude that r decreases roughly at an

exponential rate as h increases. We then present an adaptive FEC scheme

to adaptively adjust (h, T ) to achieve a specified r. In particular, the scheme

chooses from among all feasible (h, T ) pairs one with h and T values close to

their feasible minima. The adaptive FEC scheme also adapts to an increase
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in network traffic. Simulation results using ns-2 show that with network con-

gestion the adaptive FEC scheme can still achieve a specified r by adjusting

values of h and T .

Notation used in this chapter is defined in Table 3.1.

symbol description
BWm amount of multicast traffic (in bytes per rekey message)
BWu amount of unicast recovery traffic (in bytes per rekey message)

h number of parity packets per FEC block
hl a lower bound of h
k FEC block size (number of rekey packets per block)
n number of users in a group
r fraction of users that require unicast recovery
r∗ target value of r
T length of rekey interval (in seconds)
u∗ target number of NACKs

(h∗, T ∗) smallest feasible (h, T ) pair for a specified r∗

(h′, T ′) a (h, T ) pair that is close to (h∗, T ∗)

Table 3.1: Notation used in Chapter 3.

3.1 Overview of group rekeying protocol

In this section, we give an overview of our group rekeying protocol,

which is a refinement of the protocol presented in Chapter 2. In particular,

the key server will adaptively adjust the value of T in addition to h at the end

of the multicast round.

The key server protocol for one rekey message is as follows.

• At the beginning of each rekey interval, the key server processes all of the

join and leave requests collected in the previous rekey interval by running
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a marking algorithm. The marking algorithm generates a sequence of

encrypted new key, called encryption. In the key tree approach, a user

needs a particular encryption only if the encryption contains a key that

is on the path from the user’s corresponding u-node to the root node.

• The key server assigns the encryptions into rekey packets. Our key

assignment algorithm (presented in Section 2.2.3) guarantees that all of

the encryptions for a given user are assigned into a single rekey packet.

• The key server partitions the sequence of rekey packets into multiple

blocks. Each block contains k rekey packets.1 We call k the block size.

The key server then generates h parity packets for each block using a

Reed-Solomon Erasure (RSE) coder [40].

• The key server multicasts k rekey packets and h parity packets for each

block during this rekey interval.

• The key server collects NACK packets from users. For each user who

sends a NACK, the key server sends unicast recovery packets each

containing all of the encryptions needed by the user.

• After collecting NACKs, the key server adjusts the values of h and T for

the next rekey message according to the NACK information received.

1The key server may need to duplicate some packets for the last block so that there are
exactly k packets for each block.
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At the user side, following a timeout, a user checks whether it has

received or can recover its required encryptions. A user can recover its required

encryptions in any one of the following three cases: 1) The user receives the

specific rekey packet that contains the user’s required encryptions. 2) The user

receives at least k rekey and parity packets from the block that contains its

specific rekey packet, and thus the user can recover its specific rekey packet

through FEC decoding. 3) The user receives a unicast recovery packet during

subsequent unicast recovery step. The unicast recovery packet contains all of

the encryptions needed by the user.

If the user cannot receive or recover its required encryptions, it will

report a NACK packet to the key server. In the NACK packet, the user

specifies the number of parity packets it needs to recover the block to which

its specific rekey packet belongs.2 By the property of Reed-Solomon encoding,

this value is equal to k minus the number of rekey and parity packets received

in the block to which the user’s specific rekey packet belongs.

3.2 Analyses

In the rekey transport protocol, the key server uses an FEC scheme to

send k+h packets for each block within rekey interval T , such that most users

can receive or recover their required encryptions in the multicast step. We call

2A user will request parity packets for a range of blocks in its NACK if it cannot determine
which block contains its specific rekey packet, as discussed in Appendix B.4. When the key
server receives the NACK, it considers only the number of parity packets requested for the
user’s required block when it executes the adaptive FEC scheme.
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the (expected) fraction of users who cannot receive or recover their required

encryptions during multicast as residual error rate, denoted by r. For these

users, the key server will use unicast to deliver their required encryptions to

them. These users, however, have to buffer incoming data packets that are

encrypted by the new group key until they receive the new keys. Hence, a

small r is preferable in terms of reducing the buffering overhead at the user

side as well as reducing the key server’s unicast recovery traffic.

To achieve a small r, we may need to increase T (the duration of rekey

interval). More specifically, to make r smaller, the key server needs to increase

h (the number of parity packets per block) and thus the amount of rekey traffic.

To deliver the increased rekey traffic at a small constrained rate, the key server

has to increase T . Otherwise, if the key server increases the sending rate of

rekey traffic instead of increasing T , rekeying traffic may hurt the performance

of other flows in the Internet [2, 3].

On the other hand, as a measure of the granularity of group access

control, a small T is preferable. This is because all join and leave requests

issued in the same rekey interval are processed in a batch. Thus a new group

key will not be generated and used until the end of each rekey interval. Suppose

the new group key will be used to encrypt group communications s seconds

later. Then a departed user can still read future group communications for

up to T + s seconds after its departure. Therefore, a small T is preferable for

tight group access control.

In this section, we will investigate the tradeoffs between r, T , and h. To
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do this, we will first analyze r as a function of h and T , and then investigate

the impact of rekey bandwidth constraint on the relationships among h, T ,

and r.

3.2.1 Analytic models

In this subsection, we will analyze r as a function of h and T , denoted

by r = f(h, T ). Both the Bernoulli and Markov loss models are considered.

For simplicity of analyses, we assume that users experience independent and

homogeneous (same loss parameters) losses. Under this assumption, r equals

the probability that a user cannot receive or recover its required encryptions

during multicast. For simplicity, we still call this probability residual error

rate.

3.2.1.1 Bernoulli model for independent loss

We now derive the expression of r = f(h, T ) for the case that T is large,

that is f(h,∞). In this case, packets sent consecutively can be spaced widely

enough such that they will likely experience independent losses. Temporally

independent losses can be simulated by the Bernoulli loss model. In particular,

letting p denote the packet loss rate seen by each user, we have

r = f(h,∞) (3.1)

= p ·
k−1∑
i=0

(
k + h− 1

i

)
(1− p)ipk+h−1−i (3.2)

= pk+h ·
k−1∑
i=0

(
k + h− 1

i

)
(
1

p
− 1)i (3.3)
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where k is the block size. Intuitively, r equals the probability that the user

does not receive its specific rekey packet, and it receives less than k packets

from the block to which its specific rekey packet belongs.

From Equation 3.3, we observe that for a fixed k and p,
∑k−1

i=0

(
k + h− 1

i

)
(1

p
− 1)i is a polynomial function of h with a degree of

k − 1. Letting Pk−1(h) denote this polynomial function, we have

r = pk+h · Pk−1(h) (3.4)

= O(ph). (3.5)

From this expression, we observe that the effect of h on r comes from

the product of two terms: pk+h and Pk−1(h). When h increases, the first term

pk+h decreases exponentially, while the second term Pk−1(h) increases as a

polynomial function of h. Since the first term changes at a faster rate than the

second, we expect that increasing h will reduce r exponentially. Furthermore,

from Equation 3.5, we have h = O(log(1/r)).

3.2.1.2 Markov model for burst loss

In the subsection above, we consider the case that T is large, and thus

derive r = f(h,∞) based on the Bernoulli loss model. If T is small, however,

packets sent within interval T will likely experience temporally dependent

losses. To analyze r = f(h, T ) for a small T , we apply a Markov loss model

used in [7, 32] to investigate correlated losses between consecutive packets.

In the Markov loss model, a two-state continuous-time Markov chain
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{Xt} ∈ {0, 1} is used to model the packet losses. In particular, a packet

transmitted at time t is lost if {Xt} = 1 and not lost if {Xt} = 0. The

generator matrix of this Markov chain is

Q =

[ −µ0 µ0

µ1 −µ1

]
.

Its rate transition diagram is shown in Figure 3.1.

µ0

µ1

0
(no loss)

1
(loss)

Figure 3.1: Transition diagram of the two-state Markov chain.

Let πi, i = 0, 1, be the stationary distribution of this Markov chain.

Let pi,j(τ) denote the probability that the process is in state j at time t + τ

given that it was in state i at time t. That is pi,j(τ) = P (Xt+τ = j|Xt = i).

Then we have π0 = µ1/(µ0 + µ1), π1 = µ0/(µ0 + µ1), and

p1,1(τ) = (µ0 + µ1 · exp(−(µ0 + µ1)τ))/(µ0 + µ1) (3.6)

= π1 + π0 · exp(−(µ0 + µ1)τ). (3.7)

Before analyzing r = f(h, T ), we first need to figure out how to space

packets when they are sent out within rekey interval T . It is well known that

residual error rate is sensitive to the packet spacing under burst losses [32].

58



Therefore, we are concerned with how to space packets so as to minimize r

while they are sent out within interval T .3

To answer this question, we observe that in our group rekeying protocol,

a particular user needs packets only from the block to which its specific rekey

packet belongs. Therefore, we consider the case that the key server sends

only a block of k + h packets within interval T to a particular user. We are

concerned with how to space the k + h packets so as to minimize the residual

error rate for this user.

Let τi denote the interval between the times at which the ith and (i +

1)th packets are sent, i = 1, 2, ..., k + h− 1. Those packets tend to experience

burst losses when T is small. We assume that the probability of more than

one burst loss duration happening within a small interval T is low. Suppose

that the specific rekey packet that this user requires is at the mth position,

m = 1, 2, ..., k. Given that the loss duration starts from the jth packet, where

j = 1, 2, ..., m and j +h ≥ m, we can derive the conditioned residual error rate

3Bolot, et al. investigated another case of this problem in a similar way [7]. The opti-
mization problem in [7] was presented for a unicast telephony application, and the paper
maximized the probability that at least one packet out of k packets is received. In our mul-
ticast based group rekeying protocol, however, each user needs to receive its specific rekey
packet, or receive at least k packets out of the k + h packets from the block to which its
specific rekey packet belongs.
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for this user as

rm,j = π1 ·
j+h−1∏

i=j

p1,1(τi) (3.8)

= π1 ·
j+h−1∏

i=j

(π1 + π0 · exp(−(µ0 + µ1)τi)) (3.9)

where the right side expression represents the probability that the jth packet

and the following h packets are lost.

From Equation 3.9 we observe that the conditional probability rm,j is

a decreasing function of τi for j ≤ i ≤ j + h− 1. To minimize rm,j , we should

have τi = 0 for i < j or i > j + h− 1 since
∑k+h−1

i=1 τi = T . Then the desired

values of {τi | j ≤ i ≤ j + h − 1} should be the solution to the following

constrained non-linear optimization problem:

minimize π1 ·
∏j+h−1

i=j (π1 + π0 · exp(−(µ0 + µ1)τi))

subject to
∑j+h−1

i=j τi = T.

Solving it using the standard Lagrange multipliers method, we get τj = τj+1 =

... = τj+h−1. Therefore, to minimize rm,j for a particular user, the packets

should be equally spaced.

Our eventual goal is to minimize the residual error rate for each user

without conditioning on the start point of the loss duration. We observe that

different users may need different specific rekey packets, and the loss duration

may start from different packets. That is, m and j may vary from user to

user.4 To minimize the sum of residual error rates for all users, we argue that

4In our key assignment algorithm presented in Section 2.2.3, each rekey packet contains
encryptions for roughly equal number of users.
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we should have τi = τj , ∀i, j = 1, 2, ..., k + h− 1.

Thus we get our packet spacing strategy as follows. If the rekey message

consists of only one block of packets, all of the packets should be equally

spaced in rekey interval [t, t + T ] including both endpoints. If the key server

has multiple blocks to send, the packets belonging to the same block should

be equally spaced. The packets from different blocks, however, should be sent

in an interleaved fashion. That is, the ith packets from each blocks should

be sent together without spacing. Though these packets will likely experience

burst losses, it is harmless since each particular user needs packets only from

one specific block. Figure 3.2 illustrates how the key server should space the

sending times of packets. In this example, the rekey message is divided into

three blocks, and each block contains k + h = 4 rekey and parity packets.
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one packet in block 3

one packet in block 2

time

one packet in block 1

Figure 3.2: Illustration of our packet spacing scheme.

With equal spacing between packets, we can derive a lower bound of r

by assuming that at most one loss duration happens during rekey interval T ,
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as follows:

r = f(h, T ) (3.10)

≥ π1 · exp(−µ1 · h · τ) (3.11)

≈ π1 · exp(− µ1 · h · T
h + k − 1

) (3.12)

where exp(−µ1 ·h · τ) is the probability that the loss duration lasts for at least

h·τ time interval. Factor τ here is the spacing interval between two consecutive

packets of the same block. Roughly speaking, τ equals T/(h + k − 1) if we

ignore packet transmission time.

3.2.1.3 Illustration of r = f(h, T )

We now illustrate the function r = f(h, T ) with numerical and simula-

tion results. We set p = 0.06 for the Bernoulli loss model, and µ0 = 0.75 and

µ1 = 11.75 (thus π1 = 0.06) for the two-state Markov model.

 1e-04

 0.001

 0.01

 0  2  4  6  8  10

r

h

T=0.5 sec
T=1 sec
T=3 sec
T=5 sec

Bernoulli

Figure 3.3: r as a function of h.

Figure 3.3 plots the value of r as a function of h. The figure contains
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five curves. One is for the Bernoulli loss model, and the remaining four are

based on the Markov loss model for different values of T , that is, T = 0.5, 1, 3,

and 5 second(s). For the Bernoulli loss model, we use numerical results based

on Equation 3.3. For the Markov loss model, we use simulations to compute

the value of r for various h and T values. Each point in the four curves is the

average value based on 100 simulation runs.

As can be seen from Figure 3.3, as h increases, r decreases roughly

linearly on a logarithmic scale. Therefore, we expect that h = O(log(1/r))

(see Equation 3.5). We also observe that when T is small, packets sent con-

secutively will likely experience burst losses, and thus the Markov model gives

larger r than the Bernoulli model. When T increases, the curve of r produced

by the Markov model will gradually approach that of the Bernoulli model.

From now on, given (h, T ), we use the larger value produced by Equa-

tion 3.3 and 3.12 to approximate the actual r. The value we choose is still a

lower bound. For the evaluation in this section, however, the conclusions we

draw based on the lower bound will usually hold for the actual r. Furthermore,

we expect the value we choose will be close to the actual r if T is not very

small.

3.2.2 Rekey bandwidth constraint

In the previous subsections, we analyzed r = f(h, T ) under the Bernoulli

and Markov loss models. In our derivations, we assume that h and T are in-

dependent variables. The relationship between h and T , however, should be
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constrained because the available rekey bandwidth is usually limited.

Rekey bandwidth constraint requires that rekey traffic should not ex-

ceed a given sending rate at any time. This constraint arises from the fact

that rekey traffic has to share available bandwidth with data traffic, while

the total available bandwidth is determined by network conditions and users’

receiving capacities. For example, in secure group communication applica-

tions such as pay-per-view of digital media, restricted teleconferences, and

multi-party games, there typically exists a considerable amount of data traffic

among group users. The data traffic competes for available bandwidth with

rekey traffic. Therefore, usually only a small percentage of total available

bandwidth can be allocated for group rekeying. Let b(t) denote the allowed

sending rate (in bytes per second) for rekey messages at time t. In the litera-

ture, there are extensive research results on how to determine the unicast or

multicast sending rate under dynamic network conditions. We refer interested

readers to related papers such as [16, 41, 51, 54]. Here, we assume that b(t) is

a given system parameter.

We claim that b(t) will not sharply change with time t. It is true that

the total available bandwidth shared by data and rekey traffic is a dynamic

function of time. However, we can adjust the rate of data traffic to keep b(t)

smooth. From now on, we assume that b(t) is constant for the duration of a

rekey interval.

Before formulating the rekey bandwidth constraint, we introduce some

notation. Let n be the number of users in the system, sm be the length of
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a multicast packet (in bytes), su be the unicast recovery packet length (in

bytes), nb be the number of blocks in a rekey message,5 and w be the expected

number of unicast transmissions (and retransmissions) in order to deliver a

unicast recovery packet to a user.

Then at the key server side, the amount of multicast traffic (in bytes

per rekey message) is

BWm(h) = (k + h) · nb · sm. (3.13)

After multicast, there are about n·r users who cannot receive or recover

their required encryptions. The key server sends unicast recovery packets to

them to provide eventual reliability. The key server’s unicast recovery traffic

(in bytes per rekey message) is

BWu(r) = n · r · w · su. (3.14)

In summary, our rekey bandwidth constraint can be formulated as6

BWm(h) + BWu(r) ≤ T · b(t). (3.15)

We now evaluate the impact of h and T on the amount of rekey traffic,

which equals BWm(h) + BWu(r). As a concrete example, suppose that at

5nb is in fact a function of rekey interval T ; however, it can be treated as a given value
while the rekey bandwidth constraint is formulated. In particular, at the end of one rekey
interval Ti, the key server generates a rekey message that has nb (a function of Ti) blocks.
This rekey message will be sent out within the next rekey interval Ti+1. As far as the rekey
interval Ti+1 is concerned, nb is a given value.

6Since it takes time for the key server to receive NACKs, unicast recovery for one rekey
message has to be executed during the subsequent rekey intervals. However, as long as
Inequality 3.15 holds for each rekey interval, the rekey traffic will not exceed allocated
bandwidth over a long term.
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the beginning of each rekey interval the key tree (with degree 4) is balanced

with 768 users. During each rekey interval, 192 join and 192 leave requests are

processed. We further assume that the leave requests are uniformly distributed

over the users. We set the length of a multicast packet as 1005 bytes (including

UDP and IP header sizes). The length of a unicast recovery packet is 132 bytes.

This is determined by the height of the key tree. We set block size k = 14 and

unicast retransmission factor w = 1.3.

Figure 3.4 illustrates the rekey traffic (in bytes per rekey message) as

a function of h for various values of T (in seconds). As can be seen, as a

function of h, rekey traffic first decreases and then increases linearly when h

increases. This is because when h is small, unicast recovery traffic produced by

large r dominates the overall rekey traffic. When h increases, unicast recovery

traffic sharply decreases and eventually diminishes. And then multicast traffic

begins to dominate and increase as a linear function of h. On the other hand,

as a function of T , rekey traffic is large for small T , and then it decreases

and keeps unchanged as T increases. This is explained by the fact that burst

losses produce large r when T is small. Large r requires large unicast recovery

traffic.

We next investigate the impact of the rekey bandwidth constraint on

the relationship between h and T . As a concrete example, we set b(t) = 100

Kbps. Because of the rekey bandwidth constraint, we expect that some (h, T )

pairs will violate the constraint. Figure 3.5 shows the (h, T ) pairs that satisfy

the rekey bandwidth constraint. We observe that when T or h is small, the
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Figure 3.4: Rekey traffic (bytes per rekey message) as a function of h for
various values of T (seconds).

bandwidth constraint is not satisfied because of high unicast recovery traffic,

as implied by Figure 3.4. Furthermore, large h is not allowed since it pro-

duces high multicast traffic. From Figure 3.5 we can draw another important

conclusion. That is, T has to be in the order of seconds to satisfy the rekey

bandwidth constraint given the configuration of this example.
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Figure 3.5: Feasible (h, T ) pairs for b(t) = 100 Kbps.
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Based on this observation, we predict that our FEC scheme will be very

effective for our group rekeying protocol. To see this, we first notice that T

cannot be very small because of the rekey bandwidth constraint, as implied by

Figure 3.5. Second, each particular user needs packets only from one specific

block. Therefore, when k + h packets of the same block are equally spaced

within interval T , these packets tend to experience independent losses. As a

result, we expect that each user has a high probability to recover the block

that it requires.

3.2.3 Tradeoffs between r, T , and h

Up to now, we have analyzed r = f(h, T ) under the Bernoulli and

Markov loss models, and also quantified the impact of rekey bandwidth con-

straint on the relationship between h and T . We are now ready to investigate

the tradeoffs between r, T , and h.

Recall that r is the expected fraction of users who cannot receive or

recover their new keys during the multicast step, while T measures the group

access control granularity. Small values of r and T are preferable. However,

achieving a small r and a small T are conflicting goals.

In practice, we would like to give higher priority to r than to T . This

is because r is directly related to the performance seen by each user. For

this purpose, we specify a target residual error rate (denoted by r∗) as

a system parameter. We aim to make sure that current (h, T ) values satisfy

f(h, T ) ≤ r∗ as well as the rekey bandwidth constraint. As a concrete example,
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we set b(t) = 100 Kbps and r∗ = 5/n, where n = 768. Figure 3.6 plots feasible

(h, T ) pairs that satisfy f(h, T ) ≤ r∗ as well as the rekey bandwidth constraint.
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Figure 3.6: Feasible (h, T ) pairs for r∗ = 5/768 and b(t) = 100 Kbps.

Among all feasible (h, T ) pairs for a given r∗, the one with the smallest

T is preferred. Let (T ∗, h∗) be such a pair, that is, T ∗ = min{T | ∃h, s.t. f(h, T ) ≤
r∗, BWm(h)+BWu(f(h, T )) ≤ T ·b(t)}, h∗ = min{h | f(h, T ∗) ≤ r∗, BWm(h)+

BWu(f(h, T ∗)) ≤ T ∗ · b(t)}. Figures 3.7 and 3.8 plot the values of T ∗ and h∗

for various r∗. (In Figures 3.7 and 3.8, h′ and T ′ are approximations of h∗ and

T ∗. They can be computed without knowledge of the mathematical expression

for r = f(h, T ). See Section 3.3.1.) First consider h∗. From Figure 3.7 we

observe that when r∗ decreases from 0.1 to 0.0001 on a logarithmic scale, h∗

increases roughly at a linear rate. This confirms that our FEC scheme is very

effective in reducing r. We next examine T ∗ as a function of r∗, as shown in

Figure 3.8. Recall that when r∗ decreases from a large value, unicast recovery

traffic will decrease significantly. The decrease of unicast recovery traffic will

balance the increase of multicast traffic. As a result, the curve of T ∗ keeps
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flat when r∗ decreases from 0.1 to 0.001. When r∗ further decreases, unicast

recovery traffic diminishes and multicast traffic will dominate. Consequently,

T ∗ will increase at a similar rate as h∗. A direct conclusion from Figures 3.7

and 3.8 is that we can achieve a very small r without significantly increasing

h and T .
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Figure 3.7: h∗ and h′ as functions of r∗.
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Figure 3.8: T ∗ and T ′ as functions of r∗.

70



3.2.4 Further discussion

In our previous analyses, we assume that loss parameters p, µ0, and µ1

are independent of h and T . Then from Equations 3.3 and 3.12, we conclude

that r can be made as small as possible by increasing h and T .

This conclusion seems to conflict with previous research results such

as [2, 3], which observed that large FEC traffic may increase residual error rate

at receivers. A further investigation, however, will resolve this discrepancy.

In the FEC schemes investigated in [2, 3], the sender sends k + h packets for

each block within fixed time interval T . Therefore, the traffic rate will increase

proportionally if h is increased. When h is too large, FEC traffic will eventually

overflow router buffers, and thus cause congestion. On the other hand, in our

group rekeying protocol, the rate of rekey traffic is constrained by b(t). In

practice, the value of b(t) can be updated over time and reflect up-to-date

network conditions. However, since rekey traffic is usually much smaller than

data traffic, we expect that rekey traffic will not hurt network performance as

long as b(t) is updated in a smooth manner.

3.3 Adaptive FEC Protocol

From our analyses in Section 3.2, we observe that our FEC scheme

is very effective in reducing r. As a result, we can achieve a very small r

without significantly increasing h and T . In this section, we will discuss how

to determine (h∗, T ∗) for any specified r∗ under dynamic network conditions.
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3.3.1 Foundation

In practice, it seems hard to find the exact T ∗ and h∗ for a specified r∗.

This is because the general form of f(h, T ) is usually unknown. In particular,

the expression of f(h, T ) depends on network loss conditions as well as network

topology. Therefore, it is desirable to design a method to find a near-optimal

pair without knowledge of the mathematical expression for r = f(h, T ).

Theorem 3.3.1 shows how to find a feasible pair (h′, T ′) that is close to

(h∗, T ∗).

Theorem 3.3.1. Given that f(h, T ) is a non-increasing function of h and T ,

let (h′, T ′) be a solution to the following set of inequalities,

BWm(h) + BWu(r
∗) = T · b(t) (3.16)

f(h, T ) ≤ r∗ (3.17)

f(h− 1, T ) > r∗ for h > 0 (3.18)

then we have h′ ≤ h∗ and T ′ − T ∗ ≤ BWu(r∗)−BWu(f(h∗,T ∗))
b(t)

.

We expect that the difference between T ′ and T ∗ is very small in prac-

tice. By Theorem 3.3.1, we know that it is bounded by BWu(r∗)−BWu(f(h∗,T ∗))
b(t)

=

n·w·su·(r∗−f(h∗,T ∗))
b(t)

. This bound will be close to 0 if r∗ is small enough. To see

this, we first notice that the length of a unicast recovery packet (denoted by

su) is usually very small since each unicast recovery packet contains encryp-

tions only for one particular user. Second, we expect that f(h∗, T ∗) will be

close to r∗ when r∗ is small.
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Figures 3.7 and 3.8 compare the values of h′ with h∗ and T ′ with T ∗

for various values of r∗. The numerical results are based on the loss models

described in Section 3.2. From the figures, we observe that h′ is the same as

h∗ for a large range of r∗, and the difference between T ′ and T ∗ is very small.

3.3.2 Framework of our adaptive FEC scheme

Based on Theorem 3.3.1, we design an iterative algorithm to find (h′, T ′)

for any specified r∗. Recall that r measures the (expected) fraction of users

who send NACKs. The number of users in the system changes with time.

Therefore, instead of specifying a fixed r∗, we define a target number of NACKs

as our system parameter. Let u∗ denote the target number of NACKs.

In fact, the number of NACKs directly reflects residual error rate.

Given an (h, T ) pair, the number of NACKs returned to the key server is

a random variable. Let U denote this random variable, and E(U) be its ex-

pectation. Assuming that users have independent and homogeneous losses, we

have

P{U = u} =

(
n
u

)
ru(1− r)n−u (3.19)

E(U) = n · r. (3.20)

Therefore, we have u∗ = n · r∗ if n is a constant. Furthermore, since we

have h = O(log(1/r)) (see Equation 3.5 and Figure 3.3), it follows that h =

O(log(n/E(U)). Thus we have h = O(log n) if the expected number of NACKs

E(U) is constant.
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The framework of our adaptation scheme is shown in Figure 3.9. The

beauty of this scheme lies in the fact that it does not require knowledge of the

mathematical expression for r = f(h, T ).

1. if E(U) > u∗ then
2. h← h + ∆h

3. T ← BWm(h)+BWu(u∗/n)
b(t)

4. if E(U) ≤ u∗ then
5. h← max(h− 1, 0)
6. T ← BWm(h)+BWu(u∗/n)

b(t)

Figure 3.9: Framework of our adaptive FEC scheme.

This scheme works as follows. If E(U) > u∗ (and thus r > r∗), the

key server increases h by a certain value, denoted by ∆h, so that hopefully

Inequality 3.17 will hold for future rekey messages. On the other hand, if

E(U) ≤ u∗ (and thus r ≤ r∗), the key server will reduce h by 1 to make sure

that current h satisfies Inequality 3.18. At any time, whenever h is updated,

T will be updated according to Equation 3.16. Finally the values of h and T

will be around h′ and T ′. Now the remaining issues are how to determine ∆h

and how to tell whether E(U) > u∗ or E(U) ≤ u∗.

3.3.3 When to update h

We first consider when the key server should increase h in the adaptive

FEC scheme. From the framework above, we know that the key server should

increase h if E(U) > u∗. To estimate E(U), it seems that the key server should

collect a large number of sample values of U from consecutive rekey messages.

This however will significantly slow down the system’s responsiveness to sud-
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den network congestion, and thus may cause poor performance in terms of r

metric. On the other hand, a hasty estimation of E(U) may let the key server

increase h unnecessarily, and thus hurt the system performance in terms of T

metric. (Recall that T will increase proportionally with h when b(t) and n are

constant in our framework above.) As a tradeoff, we argue that r metric may

be more important than T metric. Therefore, it is preferable for our protocol

to have quick responsiveness to network congestion.

To achieve quick responsiveness to network congestion, the key server

will decide whether to increase h by checking the number of NACKs (denoted

by u) for the last rekey message. In particular, the key server will increase h

whenever u > uα, where uα is defined as P{U > uα} ≤ 1 − α by assuming

E(U) = u∗. Confidence level α can be specified by the owner of the key

server. In this way, whenever event u > uα happens, we have a confidence

level of α to tell that E(U) 6= u∗ (and thus E(U) < u∗ possibly). To derive

uα, we notice that random variable U follows the binomial distribution with

parameters (n, r), as shown in Equation 3.19. The binomial distribution can

be approximated as the normal distribution when n is large. In particular,

U−nr√
nr(1−r)

can be approximated as a standard normal random variable. Then

for any specified α, we can derive uα by solving P{ U−nr√
nr(1−r)

≤ uα−nr√
nr(1−r)

} = α

and n ·r = u∗ For example, letting α = 99.9% and n = 768, we have uα = 11.9,

19.7, and 33.6 for u∗ = 5, 10, and 20 respectively.

We next consider when the key server should decrease h. An inappro-

priate decrease of h may significantly increase the number of NACKs. There-
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fore, it is desired to measure E(U) based on several rekey messages before the

key server decides to reduce h. We use exponentially weighted average of u

to approximate E(U). Let ū be the estimate value of E(U). The key server

executes ū← v · ū + (1− v)u whenever a new sample value u is available for

current (h, T ) pair. In our simulations, we use v = 0.8 and the average value

should be based on at least three sample values for each updated (h, T ) pair.

We further specify a lower bound (denoted by hl) on h. That is, the

value of h should be larger than or equal to hl at any time. This prevents the

key server from reducing h to a very small value due to inaccurate estimation

of E(U). In fact, as can be seen from Figure 3.7, it is possible for h′ to reach

0 while h∗ is 2. Given u∗, the value of hl can be determined by

hl = min{h | p ·
k−1∑
i=0

(
k + h− 1

i

)
(1− p)ipk+h−1−i ≤ u∗/n}

where the value of p can be chosen based on experience. Intuitively, hl is the

minimum h that makes the value of r computed by the Bernoulli loss formula in

Equation 3.3 no less than r∗ = u∗/n. Here we consider only the Bernoulli loss

model since packets of the same block will likely experience independent losses,

as observed in Section 3.2. The Markov loss model can also be considered if

T is very small.

In our simulations, we set p = 6%, and then get hl = 3, 3, and 2 for

u∗ = 5, 10, and 20, respectively.
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3.3.4 Determining ∆h

From our previous discussions, we know that the key server should in-

crease h by ∆h whenever u > uα. In our approach, the key server uses the

heuristic presented in Section 2.4 to determine the value of ∆h. For complete-

ness, we describe the heuristic here again.

After multicast, the key server collects NACKs from users. In its

NACK, a user specifies the number of parity packets it needs to recover the

block to which its specific rekey packet belongs. Let au∗+1 be the (u∗ + 1)th

(starting from 1) largest one among collected NACKs. Then the key server

sets ∆h = au∗+1.

3.3.5 Proposed A-FEC scheme

We are now ready to present our adaptive FEC scheme named A-FEC,

as specified in Figure 3.10. The key server runs the routine after it collects

NACKs from users. Initially counter is 0.

3.3.6 Performance evaluation

We use simulations to evaluate the performance of the A-FEC scheme.

We run our simulations using network simulator ns-2 [34]. To simulate the

Internet topology, we use Georgia Tech Internetwork Topology Models (GT-

ITM) [10] to generate a Transit-Stub graph with 10 Mbps of link bandwidth.

The graph contains 592 stub domains. We let the key server reside in one

stub domain, and then create 591 edge networks in each of the remaining stub
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A-FEC (u∗, A)
� u∗: target number of NACKs
� A: each item in A is the number of parity packets requested by a user

for its required block
1. u← size(A) � number of NACKs received
2. au∗+1 ← (u∗ + 1)th (starting from 1) largest item in A
3. counter← counter + 1
4. if counter = 1 then ū← u
5. else ū← v · ū + (1− v)u
6. if (u > uα) or (counter ≥ 3 and ū > u∗) then
7. h← h + au∗+1

8. T ← BWm(h)+BWu(u∗/n)
b(t)

9. counter← 0
10. if counter ≥ 3 and ū ≤ u∗ and h > hl then
11. h← h− 1
12. T ← BWm(h)+BWu(u∗/n)

b(t)

13. counter← 0

Figure 3.10: Our adaptive FEC scheme A-FEC.

domains. Each edge network has an access link connected to the internetwork.

For simplicity, we did not simulate data traffic for our group communication

application. Instead, we set the bandwidth of each access link to a relatively

small value. More specifically, the bandwidth of each access link is uniformly

distributed between 0.1 and 1 Mbps. To simulate the background traffic, we

let each of 514 edge networks have 30 outgoing and 30 incoming FTP flows,

and each of the remaining 77 edge networks have 40 outgoing and 40 incoming

FTP flows. For simplicity, we assume that when the key server updates h

during one rekey interval, the updated h will be applied for the next rekey

message. We assume that at the beginning of each rekey interval, the key tree

(with degree 4) is balanced with 768 users. During each rekey interval, 192

join and 192 leave requests are processed. We set block size as k = 14. Our
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simulations show that the average packet loss rate observed by each user is

about 6%. Therefore, we set uα = 11.9, 19.7, and 33.6, and hl = 3, 3, and 2

for u∗ = 5, 10, and 20 respectively, as calculated earlier.

For comparison, we define two additional heuristics to compare with

the A-FEC scheme:

• Heuristic 1. The key server increases h by au∗+1 whenever u > u∗, and

decrease h whenever u ≤ u∗. No lower bound is specified for h.

• Heuristic 2. It is the same as Heuristic 1 except that h should be larger

than or equal to a lower bound hl at any time.

Figures 3.11 to 3.13 demonstrate traces of the number of NACKs for

Heuristic 1, 2, and the A-FEC scheme. Each curve in the figure (and all

remaining figures in this subsection) is a trace obtained from one typical sim-

ulation run. For Heuristic 1, the system starts with h = 0. For Heuristic 2

and the A-FEC scheme, the initial value of h is hl. From the figures, we have

the following observations:

• An increase of h by au∗+1 upon u > uα (or u > u∗) can effectively control

the number of NACKs. In particular, whenever the number of NACKs

is larger than uα (or u∗), it usually takes only one rekey message for the

key server to make u ≤ uα (or u ≤ u∗).

• With the lower bound hl specified, we can effectively prevent h being

reduced to a very small value. As a result, specifying hl can significantly
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Figure 3.11: Traces of the number of NACKs for u∗ = 5.

reduce the peak point values on the curves of the number of NACKs.

• Compared to Heuristics 1 and 2, the A-FEC scheme can further reduce

the fluctuations of the number of NACKs by making the conditions to

update h more strict. This is achieved by trading our protocol’s respon-

siveness to network traffic change.

• When u∗ is large, it is hard to control the fluctuations of the number

of NACKs, as seen in Figure 3.13. Therefore, it is desired to specify a

small u∗ in practice.

We further evaluate the responsiveness of the A-FEC scheme to network

traffic change. To simulate a changing network, we increase the number of

background FTP flows until the total number is doubled. Each added FTP

flow starts randomly during the rekey intervals of rekey messages 13 to 23.

Figures 3.14 and 3.15 demonstrate the traces of h and the number of NACKs.
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Figure 3.12: Traces of the number of NACKs for u∗ = 10.
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Figure 3.13: Traces of the number of NACKs for u∗ = 20.

As can be seen, when the network becomes loaded, shared loss causes a lot of

users to send NACKs. With the A-FEC scheme, the key server can quickly

increase h upon network congestion, thus significantly reducing the number of

NACKs for the next rekey message.

To simulate a network with decreasing traffic, we let each added FTP

flow stop randomly during the rekey intervals of rekey messages 38 to 48.
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Figure 3.14: Traces of h when background traffic is doubled.
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Figure 3.15: Traces of the number of NACKs when background traffic is dou-
bled.

As seen from Figures 3.16 and 3.17, with the A-FEC scheme, the key server

gradually reduces h (and T ) to adapt to the improved network condition.

3.4 Related work

Following the key tree approach [50, 52], several other group key man-

agement systems have been proposed [4, 8, 12, 30, 36]. Some of these [4, 12]

82



0

2

4

6

8

10

12

14

40 45 50 55 60

h

rekey message ID

u*=5
u*=10

Figure 3.16: Traces of h when background traffic is reduced.
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Figure 3.17: Traces of the number of NACKs when background traffic is re-
duced.

also require reliable delivery of rekey messages; however, no reliable group

rekeying protocols have been designed for them. Other approaches, such as

MARKS [8], ELK [36], and Subset-Difference [30], do not require reliable de-

livery of rekey messages. Each of them, however, has its limitations. In par-

ticular, MARKS assumes the lifetime of each user to be pre-determined before

it joins the system. ELK introduces hint information into each data packet
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to help users recover a new group key. This approach incurs per-packet band-

width overhead and imposes significant computation overhead on users. In the

Subset-Difference approach, each rekey message contains 2 · e keys, where e is

the total number of revoked users from the beginning of a session until now.

The value of e may become very large as the session progresses.

Recently, the WKA-BKR protocol was proposed [46] which tries to

improve server bandwidth overhead compared to our protocol. This protocol,

however, does not provide real-time delivery of rekey messages as our protocol

does.

Proactive FEC scheme was first proposed by Rubenstein et al. [44] for

data transport. The paper observed that an increase of h can exponentially

decrease the number of NACKs. However, no detailed algorithm was specified

to determine and adjust h. Similar to [44], Yoon et al. also used receiver-

initiated proactivity to provide fast delivery of data packets [56]. McKinley

et al. proposed an adaptive proactive FEC protocol for a wireless plus wired

LAN environment [29].

Bolot et al. proposed an adaptive FEC-based error control scheme for

Internet telephony [7]. In their protocol, the sender calculates the amount of

redundant information based on a utility function and the loss rate reported by

the unicast receiver. We believe that this scheme is hard to apply to multicast

because the loss rates of receivers are often unknown to the sender in multicast.

At the same time, it is more challenging to determine an appropriate utility

function for multicast than unicast.
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3.5 Summary

In our group rekeying protocol, we study two performance metrics: r

and T . Metric r measures the fraction of users who cannot receive the new

group key during the initial multicast, while T is a measure of group access

control granularity. Ideally, we want to achieve both small r and T . To achieve

a smaller r, however, the key server has to increase h, and thus increase T to

send increased rekey traffic. Therefore, there are tradeoffs between r, T , and

h.

To investigate the tradeoffs between r, T , and h, we analyzed r =

f(h, T ) under the Bernoulli and Markov loss models. We also examined the

impact of rekey bandwidth constraint on the relationship between h and T .

The rekey bandwidth constraint arises since we do not want rekey traffic to

impact the performance of other flows in the Internet. We observed that with

a rekey bandwidth constraint of b(t) = 100 Kbps, the value of T needs to be

in the order of seconds. Then with our packet spacing scheme, packets of the

same block will likely experience independent loss. As a result, an increase of

h can effectively reduce r; decreasing r will not significantly increase h and T .

In conclusion, we can achieve both small r and T .

We designed an adaptive FEC scheme to determine (h′, T ′) for any

specified u∗. We proved and also demonstrated that (h′, T ′) is close to the

optimal (h∗, T ∗). Our scheme does not require knowledge of the mathematical

expression for r = f(h, T ). Simulation results from ns-2 show that our protocol

can achieve fairly smooth traces of the number of NACKs when group rekeying
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is subjected to statistical fluctuations of a fixed set of competing flows. We also

found that with the onset of network congestion our adaptive FEC protocol

can still achieve the target u∗ by adjusting values of h and T .
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Chapter 4

Efficient rekeying using application-layer

multicast

Application-layer multicast (ALM) offers new opportunities to do nam-

ing and routing. In this chapter, we propose to use application-layer multicast

to support concurrent rekey and data transport. Rekey traffic is bursty and

requires fast delivery. It is desired to reduce rekey bandwidth overhead as

much as possible since it competes for available bandwidth with data traffic.

Towards this goal, we propose a multicast scheme that exploits proximity in

the underlying network. We further propose a rekey message splitting scheme

to significantly reduce rekey bandwidth overhead at each user access link and

network link. We formulate and prove correctness properties for the multicast

scheme and rekey message splitting scheme. We have conducted extensive

simulations to evaluate our approach. Our simulation results show that our

approach can reduce rekey bandwidth overhead from several thousand en-

crypted new keys (encryptions, in short) to less than ten encryptions for more

than 90% of users in a group of 1024 users. Furthermore, for 78% of users in

a group of 226 users, the latency from a sender to each of these users over the

multicast paths is less than twice the unicast delay between the sender and

such user.
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symbol description
B base of each digit in user ID
D number of digits in user ID

F -percentile a joining user computes F -percentile of the RTTs
measured for users in its (i, j)-ID subtree

K maximum number of neighbors in each neighbor table entry
N number of users in a group
P a joining user collects P users from each of its (i, j)-ID subtrees
Ri RTT thresholds, i = 1, 2, ..., D− 1

u.ID ID of user u
u.ID[i] ith digit of u.ID, 0 ≤ i ≤ D − 1

u.ID[0 : i] first i + 1 digits of u.ID; it is a null string if i < 0

Table 4.1: Notation used in Chapter 4.

Notation used in this chapter is defined in Table 4.1.

4.1 System design

In this section, we present our system design. We assume a fixed group

of N users in this section. User joins and leaves are discussed in Section 4.2.

4.1.1 ID tree

Each user, which is an end host, in the group is assigned a unique ID

that is a string of D digits of base B, where D > 0 and B > 0. We count digits

from left to right and call the leftmost digit the 0th digit. We use D = 5 and

B = 256 in the simulations presented in this chapter. All user IDs and their

prefixes are organized into a tree structure, referred to as ID tree, as defined

below. Note that an ID is a prefix of itself, and a null string is a prefix of any

ID.
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Definition 4.1.1. Given a group of users, the corresponding ID tree is de-

fined as follows:

• At level 0, there is a single node, the tree root, whose ID is a null string,

denoted by “[ ]”.

• At level i, 1 ≤ i ≤ D, each node has a unique ID that is a string of i

digits. A node with ID x exists at level i if there exists a user u in the

group such that x is a prefix of u.ID. The node with ID x at level i is a

child of the node at level i− 1 whose ID is a prefix of x.

In an ID tree, a subtree is said to be a level-i ID subtree if it is rooted

at a node of level i, 0 ≤ i ≤ D. The ID of a subtree is defined to be the ID of

the subtree root. Hereafter, we say that a user belongs to an ID subtree if the

ID subtree has the leaf node whose ID equals the user’s ID.

Definition 4.1.2. Given a user u and an ID tree, a level-(i + 1) ID subtree

is said to be the (i, j)-ID subtree of u if the parent node (at level i) of the

subtree root is an ancestor of the leaf node whose ID equals u.ID, and the last

digit of the subtree’s ID is j, 0 ≤ i ≤ D − 1 and 0 ≤ j ≤ B − 1.

By definition 4.1.2, for each user w that belongs to u’s (i, j)-ID subtree,

w.ID must share the the first i digits with u.ID, and the ith digit of w.ID

(that is, w.ID[i]) is j.

Figure 4.1 illustrates the ID tree for a group of five users with the IDs

“[0,0]”, “[0,1]”, “[2,0]”, “[2,1]”, and “[2,2]”, respectively. In the ID tree, users
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u3, u4, and u5 belong to u1’s (0, 2)-ID subtree, and u2 belongs to u1’s (1, 1)-

ID subtree. Note that an ID tree is not a data structure maintained by the

key server or any user. It is defined as a conceptual structure to guide us in

protocol design.

u1 u2 u3 u4 u5
[0,1] [2,2][0,0] [2,0] [2,1]

k1−9

[0] [2]

level 0

level 1

level 2

[ ]

(1,1)−ID

1

1

(0,2)−ID
subtree

of u

subtree of u

Figure 4.1: Example ID tree.

Our user ID assignment scheme exploits proximity in the underlying

network. More specifically, user IDs are assigned such that the round-trip-

time (RTT) between any two users belonging to the same level-i ID subtree

tends to be less than or equal to a delay threshold Ri, for i = 1, 2, ..., D − 2.

As a result, all of the users belonging to the same level-i ID subtree tend to

be in the same topological region with one-way delay diameter Ri/2. These

users are partitioned into multiple child level-(i + 1) ID subtrees of the level-i

ID subtree, such that all of the users belonging to the same level-(i + 1) ID

subtree tend to be in the same topological sub-region with delay diameter

Ri+1/2, where Ri+1 < Ri. In Section 4.2.1, we discuss how a joining user

determines its ID.
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We further define the ID of the key server to be a null string, denoted

by “[ ]”. By definition, the key server belongs to the level-0 ID subtree.

4.1.2 Neighbor tables

Each user in the group maintains a neighbor table. Similar neighbor

tables were used to support hypercube routing [24, 25, 28, 37, 42, 63].

A neighbor table has D rows and each row has B entries. The jth

entry at the ith row is referred to as (i, j)-entry, 0 ≤ i ≤ D − 1 and 0 ≤ j ≤
B − 1. The (i, j)-entry of a user’s neighbor table contains user records and

performance measures of some other users, referred to as (i, j)-neighbors. Each

(i, j)-neighbor of user u must be a user that belongs to the (i, j)-ID subtree

of u. The first neighbor in each entry is referred to as the primary neighbor

of that entry. Each user record contains the IP address, ID, and some other

information of a particular neighbor. For rekey transport, the performance

measure of a neighbor is the RTT between the neighbor and the owner of the

table. All neighbors in the same entry are arranged in increasing order of their

RTTs.

Definition 4.1.3. Given a group of users, each with a unique ID of D digits,

their neighbor tables are said to be K-consistent, K ≥ 1, if for any user u in

the group, each (i, j)-entry, 0 ≤ i ≤ D − 1 and 0 ≤ j ≤ B − 1, in its neighbor

table satisfies the following conditions:

(1) If j = u.ID[i], then the (i, j)-entry is empty.
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(2) If j 6= u.ID[i], then the (i, j)-entry contains min{K, m} (i, j)-neighbors,

where m denotes the total number of users belonging to the (i, j)-ID

subtree of u.

The concept of K-consistency was proposed in [24, 25]. K-consistency

implies 1-consistency. If all users in the group maintain 1-consistent neighbor

tables, then a message is guaranteed to reach every user via multicast, as

proved in Section 4.1.3. It is desired to let K > 1 for resilience [24, 25].

The key server also maintains a neighbor table, which has a single row.

The row contains B entries, each referred to as (0, j)-entry, j = 0, 1, ..., B− 1.

Among all of the users whose IDs have the prefix “[j]”, the key server chooses

the K (or all, if the total number of such users is less than K) users who have

the smallest RTTs to the key server as its (0, j)-neighbors.

4.1.3 Multicast scheme: T-mesh

Given a group of users with their neighbor tables, the neighbor tables

embed multicast trees rooted at the key server and each user. Therefore, the

key server or any user can send a message to every one else via multicast by

using their neighbor tables. A multicast session consists of a sender, a set of

receivers, and a message to multicast. The sender is the multicast source. In

a multicast session for rekey transport, the key server is the sender, and all

users in the group are receivers. In a multicast session for data transport, a

particular user who has data to multicast is the sender, and all other users are
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receivers. Hereafter, we use “member” to refer to the key server or a user in

the group.

We propose a multicast scheme, referred to as T-mesh, for both rekey

and data transport. In the multicast scheme, each message to multicast con-

tains a forward level field. This field specifies the forwarding level of each

user, as defined below. Each user is at a unique forwarding level in a multicast

session since each one receives a single copy of the multicast message, as stated

in Theorem 4.1.3.

Definition 4.1.4. In a multicast session, the sender’s forwarding level is

defined to be 0. A user u is said to be at forwarding level i if it receives a

message with the forward level field equal to i, 1 ≤ i ≤ D.

To multicast a message, the sender first sets the message’s forward level

field to be 0, and then executes the routine FORWARD specified in Figure 4.2.

When a user receives the message, it also executes this routine. We can see

that each member can determine who are the next hops by looking up its

neighbor table according to the forward level field of the multicast message.

Figure 4.3 illustrates an example rekey multicast tree for the group of

five users defined in Figure 4.1. Intuitively, a copy of the multicast message

first enters each level-1 ID subtree, and then enters each level-2 ID subtree,

and so on. It is not surprising to find out that the IDs of a member and its

downstream users satisfy a specific relationship, as stated below.
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FORWARD (msg)
. The sender should set msg.forward level to be 0

before calling this routine.
. msg: the message to multicast if the caller (who calls the routine) is

the sender; otherwise, it is the message received by the caller.
1 level← msg.forward level
2 if level = D then return
3 if the caller is the key server then . level = 0 in this case
4 msg.forward level ← level + 1
5 send a copy of msg to each (0, j)-primary neighbor, 0 ≤ j < B
6 else for i← level to D − 1 do
8 msg.forward level ← i + 1
9 send a copy of msg to each (i, j)-primary neighbor, 0 ≤ j < B

Figure 4.2: Routine that the sender or each forwarder executes to send or
forward a message.

key server

[0,0]
u1 u4

[2,1]

u3 u5u2

[ ]

level 1

level 0

level 2

[0,1] [2,0] [2,2]

Figure 4.3: Example multicast tree for rekey transport.

Lemma 4.1.1. In a multicast session, suppose member u is at forwarding

level i, 0 ≤ i ≤ D. Then the IDs of u and all of its downstream users have

the common prefix u.ID[0 : i − 1]. Furthermore, u and all of its downstream

users belong to the same level-i ID subtree.

Recall that all of the users belonging to the same ID subtree tend to

be in the same topological region by virtue of our user ID assignment scheme.
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Lemma 4.1.2. In a multicast session, suppose member u is at forwarding

level i, 0 ≤ i ≤ D. Then for any other member w whose ID has the prefix

u.ID[0 : i− 1], w can only be a downstream user of u.

A direct implication of Lemmas 4.1.1 and 4.1.2 is that each multicast

tree embedded in the neighbor tables tends to be topology-aware. That is, in

a multicast session, only a single copy of the multicast message is forwarded

to each topological region; once the message with forward level = i enters a

region (which corresponds to a level-i ID subtree), it is forwarded only to its

sub-regions (each corresponds to a child level-(i + 1) ID subtree), and not be

sent out of the region anymore. As a result, the message goes through each

long-latency link that connects remote regions only once. This helps to reduce

delivery latency as well as link stress. Here, stress of a physical link is defined

as the number of identical copies of the message carried by a physical link

during multicast.

The correctness of the multicast scheme is stated below.

Theorem 4.1.3. In a multicast session, assume that every user in the group

has 1-consistent neighbor table and no message is lost. Then following the

multicast scheme specified in Figure 4.2, each member (except the sender) will

receive a single copy of the multicast message.

T-mesh also provides fast failure recovery and quick adaptation to net-

work dynamics if K > 1. Once a member detects the failure of a next hop, or

detects congestion on the path to a next hop by observing burst losses, it can
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simply forward messages to another neighbor in the same table entry as the

failed or congested neighbor. At the same time, the member needs to look for

another neighbor to replace the failed or congested one.

4.1.4 Modified key tree

The key server maintains a key tree. To support efficient rekey mes-

sage splitting, the key tree used in this chapter is different from the original

approach proposed in [50, 52] and used in Chapter 2 and 3. The original key

tree has a fixed tree degree, and the tree grows vertically when users join. Our

modified key tree has a fixed height, and it grows in a horizontal direction

when users join. Hereafter, unless otherwise stated, we use “key tree” to refer

to the modified key tree.

A key tree is a rooted tree with the group key as root. It has two types

of nodes: u-nodes and k-nodes. Each u-node corresponds to a particular

user, and it contains the individual key of the user. A user’s individual key

is known only by the user and the key server. A k-node contains either the

group key or an auxiliary key. In the key tree approach, each user is given its

individual key as well as all of the keys contained in the k-nodes along the path

from its corresponding u-node to the root node [52].

To facilitate rekey message splitting, the key server makes the structure

of the key tree match exactly that of the ID tree. More specifically, for each

user u, the u-node in the key tree that contains u’s individual key corresponds

to the leaf node in the ID tree whose ID equals u.ID. Figure 4.4 shows the
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key tree that corresponds to the example ID tree shown in Figure 4.1. In this

example, user u5 is given the three keys on the path from its u-node to the

root: k5, k345, and k1−5. Key k5 is the individual key of u5, key k1−5 is the

group key that is shared by all of the five users, and k345 is an auxiliary key

shared by u3, u4, and u5.
1

group key

u1

k4 k5

u3 u4 u5

k1 k2 k3

k12
k−nodes

k−node

u−nodes

keys

individual
keys

auxiliary
[0]

[0,1] [0,2]

[2]

[2,0] [2,1] [2,2]

[ ]
k1−5

k345

(change to k1−4)

(change to k34)

u2

Figure 4.4: Example modified key tree.

Suppose that a single user, say u5, leaves the group in a rekey interval.

Then at the beginning of the next rekey interval, the key server needs to

change the keys that u5 knows: change k1−5 to k1−4, and change k345 to k34.

To securely distribute the new keys to the remaining users, the key server uses

the key in each child node of the updated k-node to encrypt the new key in the

updated k-node, and generates the following encrypted new keys: {k1−4}k12 ,

{k1−4}k34 , {k34}k3 , and {k34}k4. Here {k′}k denotes key k′ encrypted by key

k, and is referred to as an encryption. All of the encryptions are put in a

single rekey message, which is multicasted to all remaining users. Each user,

1The key server knows every key.
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however, does not need to receive the entire rekey message since it needs only

a small subset of all encryptions. For example, u1 needs only {k1−4}k12 .

In general, the key server performs the following operations in each

rekey interval. For each joining user u, the key server adds into the key tree

a u-node with ID u.ID. At each level i, i = D− 1, D− 2, ..., 0, a k-node with

ID u.ID[0 : i − 1] is added if such a k-node does not exist. For each leaving

user w, the key server deletes from the key tree the u-node whose ID equals

w.ID. At each level i, i = D − 1, D − 2, ..., 0, the k-node whose ID equals

w.ID[0 : i− 1] is deleted if the k-node does not have any descendants. At the

beginning of the next rekey interval, the key server updates all of the keys (if

the corresponding node exists in the updated key tree) on the path from each

newly joined or departed u-node to the root, and then generate encryptions.

We propose an identification scheme to identify each key and encryp-

tion. We define the ID of a key in the key tree to be the ID of its corresponding

node in the ID tree. The ID of an encryption is defined to be the ID of the

encrypting key. The ID is attached to each encryption. With this identifica-

tion scheme, a user can easily determine whether it needs a given encryption

by checking the encryption’s ID, as stated below.

Lemma 4.1.4. Given an encryption, a user needs the key encrypted in the

encryption if and only if the ID of the encryption is a prefix of the user’s ID.

The correctness of the lemma is due to the fact that a user needs only

the keys on the path from its corresponding u-node to the root in the key tree.
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4.1.5 Rekey message splitting scheme

To send new keys to users after rekeying, a straightforward approach is

to multicast all encryptions to each user, and let each user extract the encryp-

tions that it needs. The bursty rekey traffic, however, may cause congestion

at bandwidth-limited links, especially at user access links. Congestion at an

access link causes rekey and data message losses for all of its downstream

users. Therefore, it is desired to reduce rekey bandwidth overhead as much as

possible.

REKEY-MESSAGE-SPLIT (msg, ws,j , s)
. msg: it is the original rekey message if the caller is the key

server; otherwise, it is the message received by the caller.
. ws,j : the (s, j)-primary neighbor of the caller, 0 ≤ j < B.
. s: it equals 0 if the caller is the key server; otherwise, we have

msg.forward level ≤ s < D.
1 msg′ ← an empty message with forward level = s + 1
2 for each encryption e contained in msg do
3 if e.ID is a prefix of w.ID[0 : s] or ws,j .ID[0 : s] is a prefix of e.ID then
4 copy e into msg′

5 send msg′ to ws,j via unicast

Figure 4.5: Routine that the sender or each forwarder executes to compose a
separate rekey message for a particular next hop.

To reduce rekey bandwidth overhead, we propose a rekey message split-

ting scheme. In this scheme, each member sends or forwards an encryption to

its downstream users if and only if the encryption is needed by at least one

downstream user. To achieve this goal, the key server composes a separate

message for each (0, j)-primary neighbor by executing the routine REKEY-

MESSAGE-SPLIT specified in Figure 4.5, j = 0, 1, ..., B − 1. Each user at

forwarding level i, 0 ≤ i ≤ D − 1, also composes a separate message for each
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(s, j)-primary neighbor by executing the routine, s = i, i + 1, ..., D − 1 and

j = 1, 2, ..., B − 1. The routine in Figure 4.5 is called at lines 5 and 9 of

the routine FORWARD specified in Figure 4.2. The correctness of the rekey

message splitting scheme is stated below.

Theorem 4.1.5. In a multicast session for rekey transport, suppose that mem-

ber u is at forwarding level i, 0 ≤ i ≤ D − 1. Let w be any (s, j)-primary

neighbor of u, where s = 0 if u is the key server, s = i, i + 1, ..., D − 1 if u is

a user, and j = 0, 1, ..., B − 1. Let set V contain w and all of the downstream

users of w. Then given an encryption e, the encryption is required by at least

one user in V if and only if e.ID is a prefix of w.ID[0 : s], or w.ID[0 : s] is

a prefix of e.ID.

By Theorem 4.1.5, each member can determine whether to forward

each received encryption to its downstream users by checking the encryption’s

ID. This is accomplished easily because a coherent identification strategy is

used to identify each user, key, and encryption throughout the design of the

T-mesh, the multicast scheme, and the key tree.

Corollary 4.1.6. In a multicast session for rekey transport, assume that ev-

ery user in the group has 1-consistent neighbor table and no message is lost.

Following the multicast scheme and the rekey message splitting scheme speci-

fied in Figures 4.2 and 4.5, respectively, for any user u in the group and any

encryption e that is generated by the key server, user u receives a single copy

of e if and only if e is needed by u or by at least one downstream user of u.
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In the rekey message splitting scheme specified in Fig. 4.5, a rekey

message is split in units of encryptions and then re-composed during multicast.

An alternative way is to split and re-compose the rekey message at packet level,

instead of encryption level. In this case, the rekey bandwidth overhead would

be larger than what is presented in Section 4.3.3.

4.1.6 Discussion

In our rekey message splitting scheme, each user can easily determine

whether an encryption is needed by its downstream users by checking the

encryption’s ID. Therefore, there is no need for each user to maintain states

for its downstream users. However, if we use an existing ALM scheme such

as the ones in [6, 13, 23, 38, 43, 64] to replace T-mesh, or use the original key

tree [50, 52, 55, 61] to replace the modified key tree, then in order to perform

rekey message splitting, each user has to keep track of who are its downstream

users and which encryptions are needed by them. In the original key tree

approach, the IDs of a user’s required keys keep changing for each rekey interval

even when no downstream users join or leave. Therefore, each user has to keep

track of such changes for itself and all of its downstream users. As a result, it

incurs a large maintenance cost for the users who are close to the root of the

ALM tree since each of them has O(N) downstream users.

Furthermore, our splitting scheme is more effective in reducing rekey

bandwidth overhead than what could be achieved with the existing ALM

schemes. In T-mesh, because of the exact structure match between the mod-

101



ified key tree and the ID tree, all of the users sharing a common encryption

belong to the same level-i ID subtree, where i is the number of digits con-

tained in the encryption’s ID. As a result, only a single copy of the encryption

is forwarded when the forwarding level is less than or equal to i. It is then

duplicated to users who need it at subsequent forwarding levels. In contrast,

if we use an existing ALM scheme to replace T-mesh, it becomes hard to make

the structure of the key tree match that of the ALM tree. As a result, users

sharing a common encryption have random positions in the ALM tree. In this

case, the shared encryption may have to be duplicated at early forwarding

levels.

The efficiency of our splitting scheme also benefits from our topology-

aware user ID assignment scheme. Since all of the users sharing a common

encryption belong to the same ID subtree, they tend to be in the same topo-

logical region by virtue of the user ID assignment scheme. As a result, only a

single copy of the shared encryption is forwarded until it enters the region. It

is then duplicated and forwarded to multiple sub-regions. In contrast, if each

user randomly chooses its ID, then each user has a random position in the ID

tree. For example, users from the same LAN could belong to different level-0

ID subtrees. In this case, their shared encryptions have to be duplicated once

the multicast starts, and multiple copies of the shared encryptions traverse the

Internet and enter the same LAN.

In short, the efficiency of our rekey message splitting scheme comes

from a careful integration of the other system components, that is, the user ID
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assignment scheme, the multicast scheme T-mesh, and the modified key tree.

If any of these components is replaced by an existing scheme, the efficiency of

the splitting scheme would be reduced. This is confirmed by our simulation

results presented in Section 4.3.

4.2 Protocol description

In this section, we present the protocol for a joining user to determine

its ID. We also discuss the issues related to a user’s join, leave, and recovery

from neighbor failures.

4.2.1 User ID assignment

To join a group, a user, say u, first contacts the key server (or a sep-

arate registrar server [53]). They mutually authenticate each other using a

protocol such as SSL. If authenticated and accepted into the group, user u

receives its individual key and the current group key. From now on, all of the

communications between u and the key server are encrypted with the individ-

ual key, and all of the communications between u and other users in the group

are encrypted with the group key.2

If u is the first join in the group, the key server assigns its user ID as D

digits of “0”. The key server then sends u a message via unicast that contains

u’s ID and all of the keys on the path from u’s corresponding u-node to the

2The key server needs to send u the new group key via unicast if u cannot finish con-
structing its neighbor table before the end of the current rekey interval.
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root in the key tree.

If u is not the first join, the key server gives u the user record of another

user already in the group. Then u needs to determine its ID digit by digit,

starting with the 0th digit. To determine the ith digit, 0 ≤ i ≤ D−2, user u’s

actions consist of four steps. (We assume i is fixed in the following discussion

and in Sections 4.2.1.1, 4.2.1.2, and 4.2.1.3.)

In the first step, u collects the records of users who belong to its (i, j)-

ID subtree (see Definition 4.1.2), for j = 0, 1, ..., B − 1. These users tend to

be in the same topological region, and each one’s ID shares the first i digits

with u’s ID. (User u has already determined the first i digits, u.ID[0 : i− 1],

of its ID so far.) In the second step, u measures the RTTs between itself and

the users it collected. According to the measurement results, u determines the

value of u.ID[i] in the third step. More specifically, if u predicts that it is

“close” to the users belonging to a particular ID subtree, say (i, b)-ID subtree,

then u sets u.ID[i] to be b, 0 ≤ b ≤ B − 1. As a result, u’s ID shares one

more digit with the users in the (i, b)-ID subtree, and u itself becomes a user

belonging to this ID subtree. We thus achieve the effect that users close to

each other belong to the same ID subtree. In the last step, u notifies the key

server its determined ID digits. We describe each step in detail below.

4.2.1.1 Step 1: collecting user records

For u to know which users belong to its (i, j)-ID subtree, j = 0, 1, ..., B−
1, a straightforward approach is to let the key server provide such information.
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This however increases the key server’s bandwidth overhead. Therefore, we

let u collect the information by querying other users.

For i = 0, user u sends a query to the user whose record is provided to

u by the key server. For i > 0, since u has already determined the first i digits

of its ID so far, it knows at least one user that belongs to u’s (i − 1, 0)-ID

subtree, (i− 1, 1)-ID subtree, ..., or (i− 1, B − 1)-ID subtree. User u sends a

query to such a user. The query specifies a target ID prefix as u.ID[0 : i− 1].

Upon receiving the query, the receiver looks up its neighbor table, and returns

the user records of all of the neighbors whose IDs have the target ID prefix. In

this way, u collects one or more users from its (i, j)-ID subtree if the subtree

is not empty, for j = 0, 1, ..., B − 1.

For each j, j = 0, 1, ..., B − 1, to collect more users from its (i, j)-ID

subtree, u keeps querying the users it collected from the ID subtree until it

collects P users from the subtree, or it has queried all of the users it collected

from the subtree. In each query, u specifies the target ID prefix as u.ID[0 : i−1]

appended with digit j. We set P = 10 for all of the simulations in this chapter.

4.2.1.2 Step 2: measuring RTTs

In this step, u estimates whether it is close to the users it collected

from its (i, j)-ID subtree, for j = 0, 1, ..., B − 1. For this purpose, u measures

the RTT between the first-hop and last-hop routers (referred to as gateway

routers) on the path from u to w, for each user w it collected in the ID subtrees.

Let r(u, w) denote the RTT between u and w’s gateway routers. Let h(u, w)
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denote the RTT between the two end hosts u and w. In our protocol, u uses

r(u, w) instead of h(u, w) to estimate whether it is close to w topologically.

The rational is that two end hosts tend to be topologically close to each other

even if their access links have long latency.3

User u can easily derive r(u, w) if it knows h(u, w), the RTT between

u and its gateway router, and the RTT between w and its gateway router.

For this purpose, u estimates h(u, w) by using ping messages. And each user

measures the RTT between itself and its gateway router using the traceroute

utility. The value of the RTT between a user and its gateway router is stored

in each copy of the user’s corresponding user records so that others can know

it.

4.2.1.3 Step 3: determining u.ID[i]

In this step, for each j, j = 0, 1, ..., B − 1, user u computes the F -

percentile of the RTTs measured for all of the users it collected from its (i, j)-

ID subtree. (Each RTT used in this step is the one between two gateway

routers.) Here F is a system parameter. In order to tolerate the estimation

error of RTTs, we did not use 100-percentile. Instead, 70-percentile is used

in all of the simulations in this chapter. Suppose the RTTs of the users that

u collected from its (i, b)-ID subtree, 0 ≤ b ≤ B − 1, produces the smallest

F -percentile value, denoted by fi,b. User u then compares fi,b with the delay

3Note that the latency stored for each neighbor in a neighbor table is the RTT between
two end hosts.
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threshold Ri+1, and the comparison results in two cases.

In the first case, fi,b is less than or equal to Ri+1. User u then predicts

that it is topologically close to the users belonging to its (i, b)-ID subtree, and

thus assigns u.ID[i] as b. User u then continues to determine the next digit

u.ID[i + 1] of its ID if the next digit is not the last digit. That is, u increases

the value of i by 1, and goes back to step 1. If the next digit is the last one,

u goes to step 4 and asks the key server to assign the last digit to make sure

that every user in the group has a unique ID.

In the second case, fi,b is larger than Ri+1. User u then predicts that it

is not close enough to the users in any (i, j)-ID subtree, j = 0, 1, ..., B − 1. In

this case, u goes to step 4 and asks the key server to assign digits for u.ID[i],

u.ID[i + 1], ..., and u.ID[D − 1].

4.2.1.4 Step 4: notifying the key server

In this step, u sends the key server a message that contains its deter-

mined ID digits. Suppose u already determines the first l digits, u.ID[0 : l−1],

of its ID, 0 ≤ l ≤ D − 1. The key server then assigns the lth digit to the last

digit of u’s ID, such that none of the other users in the group shares the first

l + 1 digits with u.4 Consequently, in the ID tree, u becomes a user in a new

4In an extreme case, the key server may not be able to find a unique value for u.ID[0 : l]
such that none of the existing users in the group shares the first l + 1 digits with u. In this
case, the key server will try to modify u.ID[l− 1] to make u.ID[0 : l− 1] unique among the
IDs of all existing users. If this attempt fails, the key server will try to modify u.ID[l − 2],
u.ID[l − 3],..., and so forth. If all of the attempts fail, the key server will force u to join a
level-1 ID subtree.
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level-(l+1) subtree to which none of the other users in the group belong. After

that, the key server sends u a message that contains u’s complete ID and all

of the keys on the path from u’s corresponding u-node to the root in the key

tree.

To analyze the communication cost for a joining user to determine

its ID, we observe that if each non-leaf node in the ID tree has the same

outgoing degree, then the total number of messages exchanged while a joining

user determines its ID is O(P · D · N1/D) on average. The cost function is

minimized as O(P · e · ln N) for D = ln N . Here e refers to the base of the

natural logarithm.

4.2.2 Join, leave, and failure recovery

After its ID is determined, u needs to build its neighbor table.5 It also

needs to contact some other users to have its user record inserted in their

neighbor tables. The join protocol presented in the Silk system [24, 28] is used

to accomplish this task. The join protocol is proved to construct consistent

neighbor tables after an arbitrary number of joins if messages are delivered

reliably and there are no user leaves or failures. After its joining process

terminates, u sends the key server a notification message.

When u decides to leave the group, it needs to contact other users to

have its user record deleted from their neighbor tables. The leave protocol

5All user records collected by u while it determines its ID could be used to fill its neighbor
table.
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presented in Silk is used to accomplish this task. After that, user u sends a

leave request to the key server.

User u detects the failure of a neighbor if the neighbor does not respond

to consecutive ping messages. Upon detecting the failure of a neighbor, u

sends the key server a notification message. It also needs to contact some

other users to look for appropriate users to replace the failed one. We refer

interested readers to [25] for effective failure recovery strategies.

4.3 Performance evaluation

We evaluate the performance of our approach in this section. We first

study whether T-mesh can provide low delivery latency. We then study the

modified key tree by the size of the rekey message. Next, we examine whether

the rekey message splitting scheme can significantly reduce rekey bandwidth

overhead. Finally, we investigate the impact of different values of the delay

thresholds Ri, i = 1, 2, ..., D− 1, on the latency performance of T-mesh.

For efficiency, we wrote our own discrete event-driven simulator. We

simulate the sending and the reception of a message as events. The following

two topologies were used in the simulations:

• PlanetLab topology – We measured the RTT between each pair of 227

hosts on the PlanetLab infrastructure [1] using a single probe message on

August 12, 2004.6 These hosts spread in North America, Europe, Asia,

6We also used the smallest value of 20 RTT samples measured for each pair of PlanetLab
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and Australia, and belong to various domains including .edu, .com, .net,

and .org. In our simulator, we let each member (a user or the key server)

correspond to a PlanetLab host, and set the RTT between each pair of

members to be the same as the RTT between the corresponding two

PlanetLab hosts. We set one-way delay between two members to be half

of their RTT.

• GT-ITM topology – This is a transit-stub topology based on the GT-

ITM topology models [10]. The topology consists of 5000 routers and

13000 network links. Each member is attached to a randomly selected

router. We abstract away queueing delays in the simulations. We set the

two-way propagation delay for each link in the following way. For each

link within a stub domain, its delay is uniformly distributed between 0.1

and 1 millisecond. For each link connecting a stub router and a transit

router, its delay is between 2 and 3 milliseconds. For each link connecting

two transit routers of the same transit domain, its delay is between 10

and 15 milliseconds. For each link connecting two transit domains, its

delay is between 75 and 85 milliseconds. With these settings, the relative

latency performance of T-mesh to NICE [6], one of the state-of-the-art

ALM schemes that we choose for comparison purpose, changes little

as we change the simulation topology from PlanetLab to GT-ITM. As

to the evaluation of rekey message size and rekey bandwidth overhead,

hosts, and repeated each simulation presented in Section 4.3.1. The relative performance of
T-mesh to NICE (the multicast scheme for comparison) does not change.
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simulation results presented in Section 4.3.2 and 4.3.3 are not sensitive

to the delay settings in the GT-ITM topology.

In the simulations, we compare the performance of T-mesh with NICE [6].7

We simulate the NICE protocol based on its protocol description [6] and the

authors’ simulation code.8 In our simulation of NICE, a user will not join

or leave the group until the previous join or leave terminates. In NICE, the

ALM tree constructed by such sequential joins and leaves is expected to have

better (at least not worse) performance than the tree constructed by concur-

rent joins. In all of the simulations (except the ones in Section 4.3.2) for

T-mesh, we use concurrent joins and leaves. The join and leave protocols of

T-mesh are based on the Silk protocols, but simplified to improve simulation

efficiency. For each run of a simulation, users follow the same join and leave

order in T-mesh and NICE. In all of the simulations for T-mesh, we set D = 5,

(R1, R2, R3, R4) = (150, 30, 9, 3) milliseconds, B = 256, and K = 4, unless oth-

erwise stated. In all of the simulations for NICE, each cluster contains three

to eight users [6].

7We did not choose Narada [13] for comparison because the structure of Narada mesh
keeps changing for self-improving purposes even when there are no user joins or leaves. This
incurs significant communication cost for each user to keep track of its downstream users in
order to perform rekey message splitting.

8The NICE simulation code can be found at http://www.cs.wisc.edu/∼suman/. We did
not use the code because it requires specific configurations.
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4.3.1 Delivery latency

We evaluate the delivery latency of a rekey message when the key server

multicasts the message in T-mesh and NICE, respectively. Given a particular

user, we define three performance metrics:

• User stress – The total number of messages the user forwards in a

multicast session.

• Application-layer delay (in seconds) – The latency from the time that

the sender sends a message to the time that the user receives a copy of

the message.

• Relative delay penalty (RDP) – The ratio of the user’s application-

layer delay to the one-way unicast delay from the sender to the user.

4.3.1.1 Rekeying path latency

Note that there is no notion of a key server in the original design of

NICE [6]. In our simulations, to multicast a rekey message using NICE, we let

the key server unicast the message to the root of the NICE tree, which is the

topological center of all of the users in a group [6]. The message then traverses

the tree in a top-down fashion.

We ran simulations on the PlanetLab topology with 226 user joins.

In every run of our simulations, each user join the group at a random time

between 0 and 452 seconds. After all of the joins terminate, the key server

multicasts a message.
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Figure 4.6 plots the inverse cumulative distribution of user stress, application-

layer delay, and RDP. Each curve is obtained from 100 simulation runs. For

each run in Figure 4.6 (a), we changed user joining times, and started a rekey

multicast session in T-mesh and NICE, respectively. We then ranked the

users in increasing order of their stresses. For each rank, which corresponds

to a point on x-axis, we computed the average user stress (shown as a point

in the figure) of the users with this particular rank across all runs, as well as

the 5 to 95-percentile value (shown as a vertical bar). Therefore, each point

with coordinates (x, y) in Figure 4.6 (a) can be interpreted as: x fraction of

users have an average user stress less than or equal to y. Figures 4.6 (b) and

(c) can be interpreted similarly.

From Figure 4.6, we observe that the distributions of user stress in

T-mesh and NICE are comparable; however, the users have much smaller

application-layer delay and RDP in T-mesh than those in NICE. The application-

layer delay in T-mesh is about half of that in NICE for the majority of users.

In T-mesh, 78% of users have an RDP less than 2, and 95% of users less than

3. In NICE only 23% of users have an RDP less than 2, and 47% of users less

than 3.

From Figure 4.6, we also observe that in different runs the distributions

of application-layer delay and RDP have much smaller variations in T-mesh

than those in NICE. This implies that the latency performance of T-mesh is

less sensitive to different user joining orders than that of NICE.

We repeated these simulations on the GT-ITM topology for 256 and
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(b) Inverse cumulative distribution of application-layer delay.
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Figure 4.6: Rekey path latency on the PlanetLab topology.
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1024 user joins, respectively, as shown in Figures 4.7 and 4.8. Compared with

Figure 4.6, we observe that the relative performance of T-mesh to NICE has

no significant change as the simulation topology changes from PlanetLab to

GT-ITM.

Note that it is not appropriate to conclude that T-mesh is better than

NICE for data transport in general. NICE is designed for scalable group

communications, and has no notion of a key server. In NICE, to determine its

position in the tree, each joining user probes a smaller number of users than

a joining user in T-mesh does.

4.3.1.2 Data path latency

We also conducted simulations on both the PlanetLab and GT-ITM

topologies to evaluate delivery latency of a data message in T-mesh and NICE,

respectively, as shown in Figs 4.9 to 4.11. A random user is chosen as the

sender. The multicast scheme in T-mesh is specified in Section 4.1.3. In

NICE, to multicast a data message, the sender unicasts the message to the

leader of its local cluster. Then the message traverses the ALM tree in a

bottom-up and then top-down fashion [6]. From Figs 4.9 to 4.11, we observe

that the relative performance of T-mesh to NICE is similar in data and rekey

transports.
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(a) Inverse cumulative distribution of user stress.
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(c) Inverse cumulative distribution of RDP.

Figure 4.7: Rekey path latency on the GT-ITM topology with 256 user joins.
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(a) Inverse cumulative distribution of user stress.
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(b) Inverse cumulative distribution of application-layer delay.
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(c) Inverse cumulative distribution of RDP.

Figure 4.8: Rekey path latency on the GT-ITM topology with 1024 user joins.
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(a) Inverse cumulative distribution of user stress.
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(b) Inverse cumulative distribution of application-layer delay.
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(c) Inverse cumulative distribution of RDP.

Figure 4.9: Data path latency on the PlanetLab topology.
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(a) Inverse cumulative distribution of user stress.
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(b) Inverse cumulative distribution of application-layer delay.
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(c) Inverse cumulative distribution of RDP.

Figure 4.10: Data path latency on the GT-ITM topology with 256 user joins.
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(a) Inverse cumulative distribution of user stress.
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(b) Inverse cumulative distribution of application-layer delay.
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Figure 4.11: Data path latency on the GT-ITM topology with 1024 joins.
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4.3.2 Rekey message size

In this subsection, we study the modified key tree by the size of the

rekey message. We define rekey cost as the number of encryptions contained

in a rekey message. All of the simulations in this subsection are performed on

the GT-ITM topology. In each simulation, 1024 users join the group each at a

random time between 0 and 2048 seconds. After all of the joins terminate, the

key server processes J join and L leave requests, 0 ≤ J, L ≤ 1024, in one rekey

interval, and generates one rekey message. For efficiency, we use a centralized

controller to simulate the J joins and L leaves in that rekey interval.

Figure 4.12 (a) plots the average rekey cost of the modified key tree as a

function of number of joins and leaves. Each average value is computed based

on 20 simulation runs. Figure 4.12 (b) plots the rekey cost of the modified

key tree minus that of the original key tree. The original key tree is based

on the Wong-Gouda-Lam key tree [52] with degree 4 and the batch rekeying

algorithm presented in Chapter 2. A degree of 4 is proved to be optimal in

terms of rekey cost per join or leave [52]. After the initial 1024 users join the

group, we assume that the original key tree is full and balanced. Then J joins

and L leaves are processed in a rekey interval.

From Figure 4.12 (b), we observe that the modified key tree has a larger

rekey cost than the original one for the same number of joins and leaves. This

is because in the original key tree, a joining u-node can take the position of

a departed u-node (see the marking algorithm presented in Appendix B.3),

while in the modified key tree a joining u-node cannot replace a departed one
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(c) Rekey cost after applying the cluster rekying heuristic to the modified
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Figure 4.12: Rekey cost as a function of number of joins and leaves in the
modified and the original key trees.
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unless their IDs share the first D− 1 digits. As a result, the modified key tree

tends to update more keys than the original one for the same number of joins

and leaves.

We propose a cluster rekeying heuristic to reduce the rekey cost of the

modified key tree. In the heuristic, all of the users belonging to the same

level-(D − 1) ID subtree are referred to as a bottom cluster. For each bottom

cluster a user is selected as the leader. The leader has all of the keys on the

path from its corresponding u-node to the root in the modified key tree. A

non-leader user has only three keys: the group key, the user’s individual key,

and a pairwise key shared with its cluster leader. When a leader receives a

new group key, it unicasts a copy of the group key to each user in its cluster by

first encrypting the group key with the receiving user’s pairwise key. With this

heuristic, only the join and leave of a leader incurs group rekeying. Appendix C

presents a detailed description of this heuristic.

Figure 4.12 (c) plots the average rekey cost of the modified key tree

with the cluster rekeying heuristic applied minus that of the original key tree.

We observe that with the heuristic, the rekey cost of the modified key tree

becomes even smaller than that of the original key tree when the fraction of

leaving users is small.

4.3.3 Rekey bandwidth overhead

We now evaluate whether the rekey message splitting scheme can sig-

nificantly reduce rekey bandwidth overhead. We use the GT-ITM topology
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protocol key tree multicast cluster rekey message
approach scheme rekeying splitting

P1 original NICE n/a no
P ′

1 original NICE n/a yes
P2 modified T-mesh no no
P ′

2 modified T-mesh no yes
P3 modified T-mesh yes no
P ′

3 modified T-mesh yes yes
P4 original IP multicast n/a no

Table 4.2: Seven rekey protocols.

for all of the simulations in this subsection. In each simulation, 1024 users

join the group each at a random time between 0 and 2048 seconds. After all

of the joins terminate, the key server processes 256 joins and 256 leaves in

one rekey interval of 512 seconds, and generates one rekey message. Each of

the 256 joins and 256 leaves starts at a random time of the rekey interval.

Such a large number of joins and leaves is not typical in practice; however,

it represents a challenging scenario. If the splitting scheme works well in this

scenario, then we expect that rekey transport has little interference with data

transport when users join and leave less frequently.

For comparison, we define seven rekey transport protocols, as specified

in Table 4.2. The IP multicast scheme used in P4 is based on the DVMRP

multicast routing algorithm [14, 49]. As pointed out in Section 4.1.6, to allow

rekey message splitting in P ′
1, users need to maintain states for O(N) down-

stream users. In our evaluation of NICE, we did not count such maintenance

cost because the cost depends on the particular maintenance protocol.

Figures 4.13 (a), (b), and (c) plot the inverse cumulative distribution
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of the number of encryptions received per user, forwarded per user, and going

through each of the 13000 network links, respectively. Each curve in the

figure is obtained from a typical simulation run where one rekey message is

distributed. Note that the y-axis is in log scale, and the x-axis starts from 0.9

or 0.96 since we are concerned with the most loaded users and links.

In Figure 4.13, by comparing P ′
1 to P1, P ′

2 to P2, and P ′
3 to P3, we

observe that rekey message splitting is very effective in reducing rekey band-

width overhead. In particular, in P ′
2 and P ′

3 (using T-mesh), the rekey message

splitting can reduce rekey bandwidth overhead for more than 90% of users and

links from several thousand encryptions to less than ten encryptions. No users

receive or forward more than 350 encryptions in P ′
2 and P ′

3 (see Figures 4.13 (a)

and (b)). And only a few links receive up to 1500 encryptions (see Figure 4.13

(c)). These links are on the paths from the key server to its (0, j)-primary

neighbors, j = 0, 1, ..., B−1. Since rekey transport and data transport choose

different multicast trees in T-mesh, we expect that in P ′
2 and P ′

3 rekey trans-

port does not affect data transport as long as the rekey bandwidth overhead

at most users and most links is very small.

In P ′
1 (using NICE), however, a few users still need to forward 1000 to

10000 encryptions, and some links need to transfer up to 4000 encryptions,

as shown in Figures 4.13 (b) and (c), respectively. These users and links are

close to the root of the NICE tree. Congestion at these users or links can

cause data and rekey message losses for many downstream users. Therefore,

in P ′
1 the rekey bandwidth overhead of the most loaded users and links is a
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(a) Inverse cumulative distribution of the
number of encryptions received per user.
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Figure 4.13: Rekey bandwidth overhead.
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big concern.

We conclude that rekey message splitting is very effective in reduc-

ing rekey bandwidth overhead. Furthermore, it is more effective to perform

message splitting in P ′
2 and P ′

3 (using T-mesh) than in P ′
1 (using NICE), espe-

cially for the most loaded users and links. In addition, in P ′
2 and P ′

3 each user

does not need to maintain states for its downstream users to perform message

splitting.

4.3.4 Delay thresholds

To determine its ID, a joining user needs to compare the RTTs between

itself and the users it collected with the delay thresholds Ri, i = 1, 2, ..., D−1.

To choose appropriate values for Ri, we use the following heuristic. First,

we set R1 around one hundred milliseconds so that all users from the same

continent could belong to the same level-0 ID subtree. Second, we set RD−1

to be in the order of several milliseconds, so that all users in a few closely

located LANs could belong to the same level-(D − 1) ID subtree. Last, we

make the ratio of Ri/Ri+1 larger than or equal to 2, so that each level-i ID

subtree contains several level-(i + 1) ID subtrees.

Figure 4.14 plots the inverse cumulative distributions of application-

layer delay and RDP for various values of D and (R1, R2, ..., RD−1) when the

key server multicasts a rekey message. The PlanetLab topology with 226 joins

is used in the simulations. Each curve in the figure is obtained from a typical

simulation run. From the figure, we observe that the latency performance of
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Figure 4.14: Rekey path latency in T-mesh for various values of D and delay
thresholds (R1, R2, ..., RD−1).

T-mesh is not sensitive to the various values of delay thresholds that we chose.

4.4 Related work

In addition to the rekey transport protocol presented in Chapters 2

and 3, several other rekey transport protocols were proposed recently [5, 46].

These protocols, however, are designed for IP multicast, which has not been

widely deployed.

Many ALM schemes were proposed for data transport in the literature.

Some schemes such as [6, 13, 23, 38, 39, 43, 64] construct topology-aware ALM

trees and provide low delivery latency. These schemes work well for their tar-

get applications; however, they are not sufficient to support concurrent rekey

and data transport because of the following reasons. First, it incurs O(N)

maintenance cost at users to allow rekey message splitting (see Section 4.1.6).
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Second, the message splitting scheme that could be achieved in these ALM

schemes is not as efficient as ours (see Section 4.1.6). Third, most of the ALM

schemes maintains a single ALM tree [6, 23, 43, 64]. As a result, rekey traffic

will further increase the load of the users that are close to the root of the ALM

tree. Lastly, failure recovery in some of these schemes could be slow since it

takes time to recover an explicit tree structure upon host failures.

Hypercube routing was first proposed by Plaxton, Rajaraman, and

Richa (PRR) [37]. It was further explored in Pastry [42] and Tapestry [63] to

provide efficient object lookup operations in distributed hash tables (DHT).

In PRR, Pastry, and Tapestry, each user randomly selects its ID, which is

location-independent. Random user IDs are perfect for lookup operations,

but not desired for multicast, as explained in Section 4.1.6.

Two multicast schemes, namely, Scribe [43] and Bayeux [64], were pro-

posed on top of the Pastry and Tapestry infrastructures. Scribe and Bayeux

were designed to support many small multicast groups, and a single ALM tree

is constructed for each multicast group. Therefore, Scribe and Bayeux are

different from our multicast scheme.

Ng and Zhang proposed a global network positioning (GNP) scheme [31].

With this scheme, the delay between two hosts can be estimated using their

GNP coordinates. This scheme can be used in our system to reduce the prob-

ing cost of each joining user. For example, if the key server knows the GNP

coordinates of all users, it can determine the ID for a joining user by centralized

computing.
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4.5 Summary

In this chapter, we proposed an application-layer multicast approach

that supports concurrent rekey and data transport. Our goal is to provide

fast delivery of rekey messages and reduce rekey bandwidth overhead as much

as possible. Our approach consists of a multicast scheme using neighbor ta-

bles, a modified key tree, and a rekey message splitting scheme. These system

components are integrated with a coherent scheme to identify each user, key,

and encryption. By virtue of the identification scheme, each user can deter-

mine who are the next hops by looking up its neighbor tables in a multicast

session. Also each user can determine whether an encryption is needed by

its downstream users by checking the encryption’s ID. Furthermore, our user

ID assignment scheme exploits proximity in the underlying network such that

each multicast tree embedded in the neighbor tables tends to be topology-

aware. Our simulation results showed that our approach can achieve much

smaller delivery latency and rekey bandwidth overhead for almost all users

(and links) than a representative existing ALM scheme.
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Chapter 5

Future work

In the dissertation, we have studied how to use ALM to support both

rekey and data transport for secure group communications. We have proposed

an ALM framework using hypercube neighbor tables. The ALM framework

has the properties of topology-awareness and dynamic routing. More specifi-

cally, the neighbor tables embed many multicast trees rooted at the key server

and each user. Each of the multicast trees tends to be topology-aware. Fur-

thermore, for each multicast session, users do not maintain parent and child

states to form a static multicast tree. Instead, each user can determine who are

the next hops by looking up its neighbor table according to the forward level

field of the multicast message.

With the Topology-awareness and dynamic routing properties, our ALM

framework has the potential to provide the following benefits for data trans-

port.

• Low delivery latency. In secure group communications applications such

as teleconference and multi-party games, data traffic requires fast deliv-

ery. The topology-awareness property of our ALM framework helps to

achieve this purpose.
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• High throughput. As observed in SplitStream [11], the capacity of out-

going user access links is usually the bottleneck that limits overall system

throughput. In a single ALM tree, the outgoing bandwidth of leaf users

of the tree are not utilized. Since our ALM framework embeds many

multicast trees rooted at each user, we can build multiple ALM trees for

each multicast source, and use each tree to transfer part of data traffic.

This helps to utilize each user’s outgoing link capacity and thus improve

overall system throughput.

• Fast failure recovery and quick adaption to network dynamics. The

dynamic routing property of our ALM frameworks helps to provide the

benefit if each user stores multiple neighbors in each neighbor table entry.

Once a user detects the failure of a next hop, or detects congestion on

the path to a next hop by observing burst losses, it can simply forward

messages to another neighbor in the same table entry as the failed or

congested neighbor. At the same time, the user needs to look for another

neighbor to replace the failed or congested one.

• Supporting user heterogeneity. Users have various incoming and outgo-

ing capacities for their access links. To support heterogeneous outgoing

link capacities, we observe that a user can forward a received message

with forward level= i only to some of its (i, j)-ID subtrees, and ask

its next hops to take care of the remaining ID subtrees. To support

heterogeneous incoming link capacities, it is desired to let those users
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with low incoming link capacities close to leaf level in multicast trees.

For this purpose, we can include the information of available incoming

bandwidth for each neighbor in neighbor tables. In this way, a user can

consider both RTT and bandwidth measures when it selects its next hop

from multiple candidates.

Although many ALM schemes have been proposed in the literature,

they do not offer all of the benefits discussed above. Existing topology-aware

ALM schemes such as [6, 13, 23, 38, 39, 43, 64] do not provide high throughput

since they build a single ALM tree for each multicast source. SplitStream [11]

uses multiple trees to increase overall system throughput, but it does not have

the properties of topology-awareness and dynamic routing.

As our future work, we will explore the topology-awareness and dy-

namic routing properties of our ALM framework, and investigate how to im-

prove our multicast scheme for data transport. In particular, we plan to im-

plement a prototype of the ALM framework, and then conduct extensive ex-

periments in the PlanetLab infrastructure to evaluate the topology-awareness

property of the framework. After that, we plan to explore the dynamic routing

property of the framework, and investigate how to provide high throughput

and quick adaptation to network dynamics for data transport. In a long term,

we plan to extend the framework to a general-purpose overlay network, and

study how to support a range of applications including grid computing and

distribution of streaming media.
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Chapter 6

Conclusion

In the dissertation, we have studied how to provide scalable, reliable,

and real-time rekey transport for secure group communications. We have

identified the special properties and requirements of rekey transport, and in-

vestigated various technical issues involved. In particular, We have proposed

two efficient rekey transport protocols. One runs on top of IP multicast or

other multicast schemes; the other is designed especially for application-layer

multicast. The efficiency of both protocols benefits from the special properties

of rekey transport.

Our first rekey transport protocol runs in two steps: a multicast step

followed by a unicast recovery step. We propose the use of proactive forward

error correction (FEC) in multicast to reduce delivery latency and limit the

number of users who need unicast recovery. The unicast recovery step pro-

vides eventual reliability; it also reduces the worst-case delivery latency as

well as user bandwidth overhead. To make proactive FEC effective for rekey

transport, we investigate how to choose FEC block size to achieve both small

processing and bandwidth overheads, and how to space the sending times of

packets to make proactive FEC resilient to burst loss. We further propose
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an adaptive FEC scheme that makes the number of users who need unicast

recovery controlled around a small target value under dynamic network con-

ditions. The adaptive FEC scheme also makes rekey interval small to achieve

tight group access control.

Since the key server changes the key tree structure frequently, we need

an efficient method for each user to identify the small subset of new keys it

needs after rekeying. In particular, we design a new marking algorithm for

updating the key tree, together with a key identification scheme, key assign-

ment algorithm, and block ID estimation algorithm, such that each user can

identify its new keys with a low bandwidth overhead.

Our second rekey transport protocol explores the naming and routing

opportunities offered by application-layer multicast. Our approach consists of

a multicast scheme using hypercube neighbor tables, a modified key tree, and a

rekey message splitting scheme. These system components are integrated with

a coherent scheme to identify each user, key, and encryption. By virtue of the

identification scheme, each user can determine who are the next hops by look-

ing up its neighbor tables in a multicast session. Also each user can determine

whether an encryption is needed by its downstream users by checking the en-

cryption’s ID. In our protocol, each user receives only the encryptions needed

by itself or its downstream users. Furthermore, we propose a user ID assign-

ment scheme that exploits proximity in the underlying network. As a result,

each multicast tree embedded in neighbor tables tends to be topology-aware.

We formulate and prove correctness properties for the multicast scheme
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and rekey message splitting scheme. Our simulation results have showed

that our approach can achieve much smaller delivery latency and rekey band-

width overhead for almost all users (and links) than a representative existing

application-layer multicast scheme.
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Appendix A

Proofs of lemmas and theorems

Proof of Lemma 2.2.2: Initially the key tree is empty. After collecting some

join requests, the key server will construct a key tree that satisfies the property

stated in this lemma at the end of the first rekey interval.

The property holds when the key server processes J join and L leave

requests during any rekey interval because:

1. The property holds for J ≤ L because joined u-nodes replace departed

u-nodes in our marking algorithm. Note that the algorithm does not

change the IDs of the remaining u-nodes.

2. For J > L, newly joined u-nodes first replace departed u-nodes or the

n-nodes whose IDs are larger than nk, where nk is the maximum ID

of current k-nodes. These replacements make the property hold. Then

the marking algorithm splits the node with ID nk + 1. Therefore, the

property holds after splitting.

2

Proof of Lemma 2.2.1: Obviously hold according to the marking algorithm

specification. See Figure B.7. 2
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Proof of Lemma 2.2.3:

There exists an integer x′ ≥ 0 such that nk < f(x′) ≤ d·nk+d, because:

1. From the marking algorithm, we know that the u-node m needs to change

its ID only when it splits. If no splitting happens, then m′ = m =

f(0). Otherwise, after splitting, the u-node becomes its leftmost descen-

dant. Then there exists an integer x′ > 0 such that m′ = f(x′). By

Lemma 2.2.2, nk < m′ since m′ is a u-node.

2. Since the maximum ID of current k-nodes is nk, the maximum ID of

current u-nodes must be less than or equal to d · nk + d. Therefore

m′ ≤ d · nk + d.

Suppose besides m′, there exists another leftmost descendant (denoted

by m′′) of m that also satisfies the condition nk < m′′ ≤ d · nk + d. Then we

get a contradiction because:

1. By the assumption nk < m′′, m′′ must be a u-node or n-node. Further-

more, m′′ must be a n-node and be a descendant of m′ since m′ is a

u-node.

2. Since m′ is the ancestor of m′′, nk is the parent node of d · nk + d, and

by the assumption m′′ ≤ d · nk + d, we have m′ ≤ nk. This contradicts

Lemma 2.2.2 since m′ is a u-node.

From the proof above, we have m′ = f(x′). 2
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Proof of Theorem 3.3.1: We first prove h′ ≤ h∗. Suppose h′ > h∗. Then we

have h′ − 1 ≥ h∗, and also T ′ ≥ T ∗ by the definition of T ∗. Thus we have

f(h′ − 1, T ′) ≤ f(h∗, T ∗) since f(h, T ) is a non-increasing function of T and

h. Therefore we have f(h∗, T ∗) > r∗ by Inequality 3.18. This contradicts the

definitions of h∗ and T ∗.

We next prove T ′ − T ∗ ≤ BWu(r∗)−BWu(f(h∗,T ∗))
b(t)

. In our group rekeying

protocol, multicast traffic is an increasing function of h. Hence by Equa-

tion 3.16 we have

T ′ · b(t) = BWm(h′) + BWu(r
∗)

≤ BWm(h∗) + BWu(r
∗)

= (BWm(h∗) + BWu(f(h∗, T ∗))) +

(BWu(r
∗)− BWu(f(h∗, T ∗)))

≤ T ∗ · b(t) + BWu(r
∗)− BWu(f(h∗, T ∗)).

Therefore, we have T ′ − T ∗ ≤ BWu(r∗)−BWu(f(h∗,T ∗))
b(t)

. 2

Proof of Lemma 4.1.1: By Definition 4.1.1, all of the members sharing the

common prefix u.ID[0 : i − 1] belong to the same level-i ID subtree. So we

only need to prove that the IDs of u and all of its downstream members have

the common prefix u.ID[0 : i − 1]. We prove by induction on the forwarding

level.

1) At forwarding level i, member u’s ID has the prefix u.ID[0 : i− 1].

2) Assume that at forwarding levels i, i + 1, ..., and s, the ID of any
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downstream member of u at these levels has the prefix u.ID[0 : i− 1], where

s ≥ i.

3) Now consider the forwarding level s + 1. Let w be any downstream

member of u at this level. We observe that w must be a (s, w.ID[s])-neighbor

of its previous hop (say z). By Definition 4.1.3, the IDs of w and z have the

common prefix z.ID[0 : s − 1]. By the induction assumption, z.ID has the

prefix u.ID[0 : i−1] since z’s forwarding level is between i and s (inclusively).

It follows that that w.ID has the prefix u.ID[0 : i− 1] since s ≥ i. 2

Lemma A.0.1. In a multicast session, given any two distinct positions at

forwarding levels i and j respectively in the multicast tree, let ui and wj be the

corresponding member(s) at these two positions, 0 ≤ i ≤ D, 0 ≤ j ≤ D, and

j ≤ i. Then we have ui.ID[0 : i− 1] 6= wj .ID[0 : i− 1]. Furthermore, if wj is

not an upstream member of ui, then we have ui.ID[0 : j−1] 6= wj.ID[0 : j−1].

Proof of Lemma A.0.1: Let Vm be the set of all of the members at forwarding

level m, where 0 ≤ m ≤ D. Note that V0 contains only a single element, the

sender. Since ui and wj are in two distinct positions and j ≤ i, ui’s forwarding

level must be larger than or equal to 1. Consider two cases.

Case 1: wj is an upstream member of ui. Let ui′, ui′ ∈ Vi′, be the

upstream member of ui whose previous hop is wj . (Note that ui′ and ui refer

to the same member if the previous hop of ui is wj.) Then ui′ is a neighbor

at the (i′ − 1)th row of wj’s neighbor table. Thus we have ui′.ID[0 : i′ − 1] 6=
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wj.ID[0 : i′ − 1]. By Lemma 4.1.1, ui′.ID[0 : i′ − 1] is a prefix of ui.ID. So

we have ui.ID[0 : i− 1] 6= wj .ID[0 : i− 1] since i′ ≤ i.

Case 2: wj is not an upstream member of ui. Let v be the common

upstream member of ui and wj who is at the largest forwarding level. That

is, for any v′ who is a common upstream member of ui and wj, the forwarding

level of v′ is smaller than or equal to that of v. Let ui′, ui′ ∈ Vi′, be the

upstream member of ui whose previous hop is v. Let wj′, wj′ ∈ Vj′, be the

upstream member of wj whose previous hop is v. Note that ui′ and ui refer

to the same member if the previous hop of ui is v, and wj′ and wj refer to

the same member if the previous hop of wj is v. Then ui′ and wj′ are two

distinct primary neighbors at the (i′ − 1)th and (j′ − 1)th row of v’s neighbor

table. So we have ui′.ID[0 : i′ − 1] 6= wj′.ID[0 : i′ − 1] and ui′.ID[0 : j′ − 1] 6=
wj′.ID[0 : j′ − 1]. By Lemma 4.1.1, ui′.ID[0 : i′ − 1] is a prefix of ui.ID,

and wj′.ID[0 : j′ − 1] is a prefix of wj .ID. Since i′ ≤ i and j′ ≤ j, we have

ui.ID[0 : i− 1] 6= wj.ID[0 : i− 1] and ui.ID[0 : j − 1] 6= wj.ID[0 : j − 1]. 2

Proof of Lemma 4.1.2: Let j be w’s forwarding level. By Lemma A.0.1,

we have i < j. Furthermore, u must be an upstream member of w since

u.ID[0 : i− 1] = w.ID[0 : i− 1]. 2

Proof of Theorem 4.1.3: Since no message is lost and group membership is

static, each member appears in at most one position in the multicast tree. So

we only need to prove that each member appears in at least one position the

multicast tree. Prove by contradiction.
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Suppose member w is not in the multicast tree. Let Vi, i = 0, 1, ..., D,

be the set of members who are at forwarding level i and vi[0 : i−1] = w.ID[0 :

i − 1], for any member vi, vi ∈ Vi. Obviously, the sender is in V0. Let Vj be

the last non-empty set among V0, V1, ..., VD, that is, Vj is non-empty, and Vj+1,

Vj+2, ..., VD are all empty. Let zj be a member in Vj and let s be the number

of digits contained in the longest common prefix of the IDs w.ID and zj .ID.

Then we have s ≥ j by the definition of Vj.

Member w is a potential (s, w.ID[s])-neighbor of zj . Since all neighbor

tables are 1-consistent, the (s, w.ID[s])-entry of zj ’s neighbor table is not

empty by Definition 4.1.3. Then the primary (s, w.ID[s])-neighbor of zj must

be at forwarding level s+1 in the multicast tree since zj is at forwarding level

j and s ≥ j. As a result, the primary (s, w.ID[s])-neighbor of zj is a member

of set Vs+1. This contradicts the assumption that Vj is the last non-empty set

since s ≥ j. 2

Proof of Theorem 4.1.5: We first prove that encryption e is needed by at

least one member in V if e.ID is a prefix of w.ID[0 : s], or w.ID[0 : s] is a

prefix of e.ID. Note that w must be at forwarding level s + 1, so all of the

members in V have the common prefix w.ID[0 : s] by Lemma 4.1.1.

Case 1: e.ID is a prefix of w.ID[0 : s]. In this case, all of the members

in V need this encryption by Lemma 4.1.4.

Case 2: w.ID[0 : s] is a prefix of e.ID. In this case, only the members

whose IDs have the prefix e.ID need this encryption. Such a member must
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exist in the group; otherwise, the key server will not generate e. Furthermore,

by Lemma 4.1.2, such a member must belong to V since the ID of such a

member has the prefix w.ID[0 : s].

Next we prove that if e is needed by at least one member in V , then

e.ID is a prefix of w.ID[0 : s], or w.ID[0 : s] is a prefix of e.ID.

If e is needed by at least one member (say z) in V , then by Lemma 4.1.4,

e.ID is a prefix of z.ID. Since w.ID[0 : s] is also a prefix of z.ID (by

Lemma 4.1.1), we have that either e.ID is a prefix of w.ID[0 : s], or w.ID[0 : s]

is a prefix of e.ID. 2
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Appendix B

Protocol Specification

B.1 Server protocol and user protocol

The protocol for the key server is specified in Figure B.1, and the

protocol for a user is specified in Figure B.2. In both protocols, we consider

only one rekey message.

1. run a marking algorithm to generate encryptions
2. run a key assignment algorithm to construct rekey packets
3. partition the sequence of rekey packets into blocks such that each block

contains k rekey packets
4. generate h parity packets for each block
5. status ← MULTICAST
6. for each block do multicast k rekey packets and h parity packets
7. R← empty set � R is the set of users who send NACKs
8. A← empty list � A contains NACK information
9. start a timer
10. when receiving a NACK (a list of < ai, i >) from user m do

� < ai, i >: user m requests ai parity packets for block i
13. if (status = MULTICAST) then
14. R← R + {m}
15. im ← ID of the block containing the specific rekey packet of user m
16. aim ← number of parity packets that user m requests for block im
17. put aim into A
18. else send unicast recovery packets to user m
19. when timeout do
20. run the algorithm AdjustRho (A)
21. status ← UNICAST
22. send unicast recovery packets to each user in R

Figure B.1: Key server protocol for one rekey message.
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In the key server protocol specified in Figure B.1, the key server starts

to send unicast recovery packets at the end of the multicast round. However,

to provide fast recovery, the key server can send unicast recovery packets to a

user once it receives a NACK from the user.

In group rekeying, each user needs to know when a new group key

has been distributed. Then the user can set a timer as shown in line 1 of

Figure B.2. A user can figure out that a new group key is being or has been

distributed in the following two cases. In the first case, the user receives any

rekey or parity packet with a new rekey message ID. In the second case, the

user receives some data packets that are encrypted by a new group key that

has a new version number.

B.2 Packet format

Figures B.3, B.4, B.5 and B.6 specify the formats of rekey, parity, uni-

cast recovery, and NACK packets, respectively. Each number in parentheses

is the suggested field length, in number of bits. In a unicast recovery packet,

the encryption IDs are optional if we arrange the encryptions in increasing

order of ID.

B.3 Marking algorithm

In periodic batch rekeying, the key server collects J join and L leave

requests during a rekey interval. At the end of the interval, the server runs
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1. start timer1
2. for each block ID i do counter[i]← 0
3. when receiving a packet pkt do
4. if pkt is a unicast recovery packet then
5. update my user ID according to the new user ID contained in pkt
6. retrieve required encryptions from the packet
7. cancel all timers
8. return
9. else
10. if pkt is a rekey packet then
11. m← new user ID derived
12. set my user ID as m
13. if (pkt.frmID ≤ m ≤ pkt.toID) then

� this packet contains my required encryptions
14. retrieve required encryptions from the packet, and cancel all timers
15. return
16. else
17. if pkt is not a duplicate then
18. execute the algorithm EstimateBlkID (m, high, low, pkt)
19. increase counter[pkt.blkID] by 1
20. when timer1 timeout do
21. if (high = low) and (counter[high] ≥ k) then
22. decode the block with block ID high, and retrieve required encryptions

from the decoded rekey packet
23. return
24. else
25. for each block ID i ∈ [low, ..., high] do
26. if (counter[i] ≥ k) then
27. decode the block
28. if my specific rekey packet is in the block then
29. retrieve required encryptions
30. return
31. else put <k − counter[i], i> into a NACK packet
32. unicast the NACK packet to the key server, and start timer2
33. when timer2 timeout do
34. unicast the NACK packet to the key server, and start timer2

Figure B.2: User protocol for one rekey message.
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1. Type: rekey packet(3) 2. Duplication flag (1)
3. Rekey message ID (12) 4. Block ID (8)
5. Sequence number within a block (8) 6. maxKID (16)
7. <frmID, toID> (32) 8. A list of <encryption, ID> (variable)
9. Padding (variable)

Figure B.3: Format of a rekey packet.

1. Type: parity packet (3) 2. Reserved (1)
3. Rekey message ID (12) 4. Block ID (8)
5. Sequence number within a block (8)
6. FEC parity information for Fields 6 to 9 of rekey packets

Figure B.4: Format of a parity packet.

1. Type: unicast recovery packet(3) 2. Reserved (1)
3. Rekey message ID (12) 4. New user ID (16)
5. A list of <encryption, ID> (variable)

Figure B.5: Format of a unicast recovery packet.

1. Type: NACK packet(3) 2. Reserved (1)
3. Rekey message ID (12) 4. User ID (16)
5. A list of <number of parity packets requested, block ID> (variable)

Figure B.6: Format of a NACK packet.

the following marking algorithm to update the key tree and construct a rekey

subtree. The marking algorithm is different from those presented in [27, 55].

The marking algorithm consists of two steps. In the first step, the

algorithm modifies the structure of the key tree to satisfy the join and leave

requests. The operations for this step are specified in Figure B.7. The n-node

and ID information used in the algorithm are explained in Section 2.2.

In the second step, the marking algorithm constructs a rekey subtree.

The operations are specified in Figure B.8. The input to the second step of
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the algorithm is a copy of the updated key tree. The algorithm will label all

nodes and then prune the tree. We call the remaining subtree rekey subtree.

Each edge in the rekey subtree corresponds to an encryption. In particular,

for each edge in the rekey subtree, the key server uses the key in the child

node to encrypt the key in the parent node, and thus generating a sequence of

encryptions. The key server then runs the key assignment algorithm to assign

encryptions into rekey packets.

� input: key tree, J join and L leave requests
� output: updated key tree
1. if (J = L) then
2. replace all u-nodes that have left by the u-nodes of newly joined users
3. else if (J < L) then
4. choose J u-nodes that have smallest IDs among the L departed u-nodes,

and replace those J u-nodes with joins
5. change the remaining (L − J) u-nodes to n-nodes
6. for each k-node in order of ID from high to low do
7. if all of the children of this k-node are n-nodes then
8. change the k-node to n-node
9. else � the case for J > L
10. replace the u-nodes that have left by joins
11. replace those n-nodes by joins whose IDs are between maxKID + 1 and

d ·maxKID + d (inclusive) in order of from low to high
12. � maxKID is the largest k-node ID
13. while there are still extra joins do

� split the u-node maxKID + 1 to accommodate extra joins
14. move the u-node maxKID + 1 to a new position d ·maxKID + 1

� now this u-node becomes a left-most child of its old position
15. add a new k-node with ID maxKID + 1
16. add, in increasing order of ID, up to d− 1 new joins as child u-nodes

of the k-node maxKID + 1
17. update the value of maxKID
18. for each n-node do
19. if the n-node has a descendant u-node then
20. change the n-node to k-node

Figure B.7: Marking algorithm step 1: updating the structure of the key tree.
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� input: a copy of updated key tree
� output: rekey subtree
1. for each n-node do
2. if the n-node is created in Step 1 as a result of a u-node’s departure then
3. label the n-node as LEAVE
4. else remove the n-node
5. for each u-node do
6. if the u-node has departed and then joined (as another user) then
7. label it as REPLACE
8. else if it is a newly joined u-node then
9. label it as JOIN
10. else label it as UNCHANGED
11. for each k-node in order of ID from high to low do
12. if all of the children of the k-node are labeled as LEAVE then
13. label the k-node as LEAVE, and remove all of its children
14. else if all of its children are UNCHANGED then
15. label the k-node as UNCHANGED, and remove all of its children
16. else if all of its children are UNCHANGED or JOIN then
17. label the k-node as JOIN
18. else label the k-node as REPLACE
19. change the key in each k-node in the rekey subtree

Figure B.8: Marking algorithm step 2: constructing a rekey subtree.

B.4 Estimating Block ID

In our protocol, the key server partitions rekey packets into multiple

blocks. If a user lost its specific rekey packet, the user cannot know directly

to which block its specific rekey packet belongs. We address this issue here.

A user can estimate the ID of the block to which its specific rekey

packet belongs from the ID information contained in the received rekey pack-

ets. Suppose a user’s specific rekey packet is the jth packet in block i, where

i ≥ 0 and 0 ≤ j ≤ k − 1. Let <i, j> denote the <block ID, sequence number

within a block> pair. Whenever a user receives a rekey packet, it first derives

its new user ID, denoted by m, and then it refines its estimation of the block

150



ID i. For example, if the received rekey packet is not a duplicate and m is

larger than toID field of this packet, then i should be larger than or equal to

the block ID of the received packet. This is because the received rekey packet

must be generated earlier than the user’s specific rekey packet. In this way, if

the user can receive any one rekey packet whose <block ID, sequence number>

pair is in the set Sl = {<i − 1, k − 1>, <i, 0>,..., <i, j − 1>}, and receive

any one rekey packet in the set Su = {<i, j +1>, ..., <i, k− 1>, <i+1, 0>},
then it can determine the precise value of i even if the packet <i, j> is lost.

Figure B.9 illustrates the idea of block ID estimation. The detailed algorithm

to estimate block ID is specified in Figure B.10.

... ...

block i block i+1

... ...k−2... ... jj−1 ... ...0 1 1k−1 j+1 k−1 0

S Su

block i−1

l

Figure B.9: Illustration of block ID estimation.

A user can determine the precise value of the ID of its required block

with high probability. The probability of such failure is as low as pj+2 +

pk−j+1 − pk+2, as stated in Lemma B.4.1. In the worst case when j = 0 or

j = k − 1, the probability is about p2.

Lemma B.4.1. Assume packets experience independent loss. Let p be the

packet loss rate observed by a user. Then the probability that the user cannot

determine the precise value of the ID of the block to which its specific rekey

packet belongs is about pj+2 + pk−j+1 − pk+2 = O(p2), where j is the sequence
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number of its specific rekey packet, and k is the block size, 0 ≤ j ≤ k − 1 and

k ≥ 1.

Proof of Lemma B.4.1: As illustrated in Figure B.9, only if all of the rekey

packets whose <block ID, sequence number> pairs are in the set Sl +{<i, j>}
are lost, or when all of the rekey packets in the set Su + {<i, j>} are lost,

the user cannot determine the precise value of the ID of its required block.

The probability of such failure is pj+2 + pk−j+1 − pk+2, which is O(p2) since

0 ≤ j ≤ k − 1 and k ≥ 1. 2

In the case that the user cannot determine the precise value of the ID of

its required block, it can still estimate a possible range of the required block ID.

Then during feedback, the user requests parity packets for each block within

the estimated block ID range. When the key server receives the NACK, it

considers only the number of parity packets requested for the user’s required

block when it adjusts the proactivity factor.

The algorithm EstimateBlkID specified in Figure B.10 has four inputs.

Integer m is the update-to-date ID of the user who runs this routine. Variable

low is the current estimate of the lower bound of the ID of the user’s required

block, and high is the current estimate of the upper bound. Packet pkt is the

rekey packet that the user just received.

In the algorithm, a user sets the initial values of the lower bound low

and upper bound high as 0 and ∞, respectively. However, the if statements

of lines 10-15 guarantee that eventually high will not be infinity if the user
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EstimateBlkID (m, low, high, pkt)
� m: update-to-date ID of the user executing this routine
� low: current estimate of the lower bound of the ID of the required block
� high: current estimate of the upper bound of the ID of the required block
� pkt: rekey packet just received
1. if pkt is a duplicate then � duplicate packets are only in the last block
2. high← min{high, pkt.blkID}
3. else if (pkt.toID ≤ m ≤ pkt.frmID) then
4. high← pkt.blkID
5. low ← pkt.blkID
6. else if (m > pkt.toID) and (pkt.seqNo = k − 1) then
7. low ← max{low, pkt.blkID + 1}
8. else if (m > pkt.toID) and (pkt.seqNo < k − 1) then
9. low ← max{low, pkt.blkID}
10. else if (m < pkt.frmID) and (pkt.seqNo = 0) then
11. high← min{high, pkt.blkID− 1}
12. else if (m < pkt.frmID) and (pkt.seqNo > 0) then
13. high← min{high, pkt.blkID}
14. else if (m > pkt.toID) then
15. high← min{high, pkt.blkID + dd·(pkt.maxKID+1)−pkt.toID−(k−1−pkt.seqNo)

k e}

Figure B.10: Estimating the ID of the required block.

receives any rekey packet, say pkt. Consider two cases. In the first case, the

packet pkt is a duplicate, then we have high ≤ pkt.blkID since the duplicate

packet must belong to the last block. In the second case, the packet pkt is

not a duplicate. We know that the maxKID field of the packet specifies the

largest ID of current k-nodes. Therefore, all user IDs must be in the range of

maxKID + 1 and d · (pkt.maxKID + 1), inclusively. In the worst case, one

rekey packet contains encryptions for only one user; then there are at most

(d · (pkt.maxKID + 1)− pkt.toID) rekey packets each with frmID sub-field

larger than pkt.toID. Among these rekey packets, k − 1− pkt.seqNo of them

are in the block pkt.blkID. Therefore, the maximum block ID cannot be larger

than pkt.blkID + dd·(pkt.maxKID+1)−pkt.toID−(k−1−pkt.seqNo)
k

e.
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Appendix C

Cluster rekeying heuristic for T-mesh

In the heuristic, all of the users belonging to the same level-(D− 1) ID

subtree are referred to as a bottom cluster. For each bottom cluster, the user

with the earliest joining time among all of the users in the cluster is selected as

the cluster leader. A user’s joining time is the time that the key server assigns

the user’s ID, and it is based on the key server’s local clock. Each user record

in neighbor tables contains the joining time and public key of a neighbor, in

addition to the neighbor’s IP address and ID.

A leader has all of the keys on the path from its corresponding u-node

to the root in the modified key tree. It also shares a pairwise key with each

of the other users in its cluster. A non-leader user has only three keys: the

group key, the user’s individual key, and a pairwise key shared with its cluster

leader.

In the heuristic, a joining user determines its user ID and constructs its

neighbor table in the same way as described in the main text. The message

multicast process is as usual when forwarding level is less than D − 1. At

forwarding level D − 1, when a non-leader user receives a rekey message with

forward level = D−1, it forwards the message to its cluster leader. When a
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leader receives a rekey message with forward level ≥ D− 1, it first extracts

the new group key, and then unicasts a copy of the group key to each user in

its cluster by first encrypting the group key with the receiving user’s pairwise

key. 1

A non-leader user’s join or leave does not incur group rekeying. To

join a bottom cluster, the user (say u) first gets from the key server the user

record of the cluster leader (say w) and a joining certificate. The joining

certificate is u’s user record signed by w’s individual key. User u then sends

the certificate to w. After verifying the certificate, w establishes a pairwise

key with u using SSL. To leave a cluster, u first requests w to sign a leaving

certificate with w’s individual key. The leaving certificate contains u’s user

record and a timestamp. User u then presents the certificate to the key server.

A cluster leader’s join or leave incurs group rekeying. A cluster leader

(say w) is always the first join in its cluster. The key server follows the regular

rekeying procedure to process its join. To leave the group, w sends the new

leader (if it exists), say v, the following information: all of the keys on the

path from w’s corresponding u-node to the root in the key tree, and user

records of all of the other users in the cluster. After receiving from v a leaving

certificate signed by v’s individual key, w presents the certificate to the key

server. Meanwhile, v establishes a pairwise key with each remaining user in

1As we can see, it is desired to let cluster leaders, instead of non-leader users, receive
rekey messages at forwarding level D, For this purpose, in every table entry at the (D−2)th
row of each neighbor table, the neighbor with the earliest joining time should be chosen as
the primary neighbor.
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the cluster.
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