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tWe present a dedu
tive method for proving invariants of rea
tive systems. Our approa
h uses termrewriting to redu
e invariant proofs to rea
hability analysis on a �nite graph. This substantially auto-mates invariant proofs by obviating the need to de�ne indu
tive invariants while still bene�tting fromthe expressiveness of dedu
tive methods. We implement a pro
edure supporting this approa
h whi
hinterfa
es with the ACL2 theorem prover. The interfa
e a�ords sound extension of our pro
edure withrewrite rules based on proven theorems. We demonstrate the method in the veri�
ation of 
a
he 
oheren
eproto
ols.1 MotivationThe goal of invariant proving is to show that a 
ertain target property of a rea
tive system is an invariant.Invariant proving is a key problem in formal veri�
ation. Veri�
ation of safety properties 
an be redu
ed tothe proof of an invariant. Even in the proofs of liveness properties, one typi
ally needs to establish someauxiliary invarian
e 
ondition.Invariant proving is diÆ
ult for both model 
he
king and theorem proving. The model 
he
king ap-proa
h involves a (symboli
 or expli
it) sear
h to 
he
k if all the rea
hable system states satisfy the targetproperty. If the number of states is tra
table, the pro
ess is automati
 usually with the additional bene�tof 
ounterexample generation when the veri�
ation fails. However, the method is limited in pra
ti
e bystate explosion. The theorem proving approa
h involves strengthening the target property to an indu
tiveinvariant. This approa
h is generally insensitive to state explosion but in pra
ti
e 
an require signi�
antuser intera
tion for de�ning the indu
tive invariant. In addition, indu
tive invariants are brittle and oftenrequire extensive modi�
ation to mat
h design 
hanges. However, theorem provers support expressive logi
swhi
h allow users to su

in
tly de�ne systems, properties, and any additional fun
tions and lemmas thatenable eÆ
ient proofs.We present a method to bridge the automation gap between theorem proving and model 
he
king, whilestill preserving the expressiveness of theorem proving. We use term rewriting to redu
e an invariant proof tothe rea
hability analysis of a �nite graph; the graph is a predi
ate abstra
tion [1℄ of the system. Rewriting isguided by rewrite rules that relate the di�erent fun
tions used to model the system. The rules are sele
tedfrom theorems proven by a theorem prover.Our approa
h transfers the user responsibility from de�ning indu
tive invariants to designing rules thatmanipulate fun
tions used in system de�nitions. How does this redu
e manual e�ort? Proving rewrite rulesdoes require human intera
tion. However, while indu
tive invariants are de�ned by a user for a spe
i�
�Support for this work was provided in part by the SRC under 
ontra
t 02-TJ-1032.1



system, rewrite rules are proven fa
ts about the fun
tions used to model the system and 
an be used inother systems using the same fun
tions. It is 
ustomary for the users of a theorem prover to design rulesthat simplify terms whi
h arise during proofs [2, 3℄. We found that most of the rules ne
essary for our workare generi
, and already available as proven theorems in a dedu
tive setting. Note that sin
e the logi
 ofa theorem prover is unde
idable, any 
olle
tion of rules is in
omplete and it may be ne
essary for the userto extend or re�ne the existing rules and de�nitions. However, feedba
k from our pro
edure assists in thedevelopment of these extensions and re�nements whi
h, in our experien
e, 
an be reused in the veri�
ationof similar systems.Our pro
edure is interfa
ed with the ACL2 theorem prover [4℄. ACL2 has been used to verify several
ommer
ial systems [5, 6℄, and we make use of rewrite rules that have been proven in these e�orts. However,ACL2 is not 
riti
al to our method; it is used primarily as a me
hanized logi
 with whi
h we are familiar.We believe that our pro
edure 
an be easily ported to other theorem provers.The remainder of the paper is organized as follows. In Se
tion 2, we des
ribe the ACL2 logi
 and illustrateour method with a simple example. We present our pro
edure in Se
tion 3. In Se
tion 4, we demonstratethe method in proving invariants of 
a
he 
oheren
e proto
ols. In Se
tion 5, we dis
uss related work. We
on
lude in Se
tion 6. An implementation of the pro
edure, and the proofs des
ribed in this paper areavailable from the web page of the se
ond author [7℄.2 Ba
kground and OverviewIn this se
tion, we review the ACL2 logi
, and illustrate our method to prove invariants of rea
tive systemsmodeled in ACL2. This paper is not about ACL2; our overview only provides a formal 
ontext for our work.Readers interested in ACL2 are referred to [4℄ for a 
omprehensive des
ription.2.1 The ACL2 Logi
ACL2 is a �rst-order logi
 of re
ursive fun
tions with a syntax similar to Lisp. A term is a variable, a 
onstant,or the appli
ation of an n-ary fun
tion f to n terms, written (f t1 t2 : : : tn). The set of 
onstants is openbut in
ludes integers, strings, and symbols T and NIL denoting boolean true and false. Formulas in the logi
are represented by terms. For example, the term (with variables x, y, z)(implies (< x y) (< (+ x z) (+ y z)))represents a formula about arithmeti
. The syntax is quanti�er-free, and variables in formulas are impli
itlyuniversally quanti�ed. The term above 
an be read as follows in the logi
: \For all x, y, z, if x is less thany, then x+ z is less than y + z."ACL2 axiomatizes a subset of Common Lisp. An axiom relating fun
tions 
ar and 
ons is: (equal(
ar (
ons x y)) x). Theorems 
an be proven about axiomatized fun
tions. The inferen
e rules arepropositional 
al
ulus with equality and instantiation, and well-founded indu
tion up to �0. For example,instantiation of the above axiom yields the theorem: (equal (
ar (
ons 2 y)) 2).We make spe
ial use of the ternary fun
tion if, whi
h is axiomatized to be \if-then-else": (if x y z)is equal to z if x is equal to NIL, otherwise y. Sin
e terms 
ontaining if are extensively used in ACL2 (andLisp), there are 
onstru
ts to stru
ture su
h terms. For example, we use (
ond (a b) (
 d) : : : (x y))to stand for (if a b (if 
 d : : : (if x y NIL) : : : )). Boolean operations and, or, implies, et
. areaxiomatized using if:(equal (and x y) (if x y NIL))(equal (or x y) (if x x y))(equal (implies x y) (if x (if y T NIL) T))(equal (iff x y) (and (implies x y) (implies y x)))In this paper, we use standard mathemati
al notations to represent 
ertain fun
tions. We use in�x operators\=" for equal, \^" for and, \_" for or, \)" for implies, and \," for iff. Instead of writing (implies 
(equal � �)), we will write 
 ) (� = �). We also write (and x1 x2 : : : xn) to mean (and x1 (and x2... )) and similarly for (or x1 x2 : : : xn). If S is a set fe0; e1; : : : ; eng and M maps S to terms, then2



we write We2S M(e) and Ve2S M(e) to denote (or M(e1) M(e2) : : : M(en)) and (and M(e1) M(e2) : : :M(en)) respe
tively.ACL2 provides fa
ilities to 
onsistently introdu
e new axioms. New total fun
tions 
an be de�ned (oraxiomatized), like the fun
tion fa
torial below(fa
torial n) = (if (+ve n) (* n (fa
torial (- n 1))) 1)where (+ve n) returns T if n is a positive natural number, else NIL. The logi
 also supports mutuallyre
ursive fun
tion de�nitions. ACL2 further allows the introdu
tion of a fun
tion whi
h is only known tosatisfy some spe
i�ed axioms. We 
an introdu
e a fun
tion E that only satis�es the axiom: (+ve (E n))= T. Su
h axioms are 
alled 
onstraints, and E is then 
alled a 
onstrained fun
tion. A theorem about a
onstrained fun
tion f is provable for any fun
tion f̂ satisfying the 
onstraints. A 
onstrained fun
tion withno 
onstraint is termed generi
. If � is a theorem and �̂ is obtained from � by repla
ing o

urren
es of ageneri
 fun
tion g with any fun
tion ĝ of the same arity, then �̂ is a theorem.2.2 System Models and InvariantsRea
tive systems 
onsist of several 
omponents that perform on-going, non-terminating 
omputations whileintera
ting with an external environment. The \state" of the system at any time is given by the value ofea
h 
omponent. For example, 
onsider a trivial system with two 
omponents C0 and C1. C0 and C1 initiallyhave the value 1. At ea
h instant, they intera
t with an environment E and exe
ute as follows.� If E is NIL then C0 gets the previous value of C1; otherwise C0 is un
hanged.� If E is NIL then C1 is assigned to the value 42; otherwise C1 is un
hanged.Su
h systems 
an be modeled [5℄ by spe
ifying, for ea
h 
omponent C, a fun
tion (C n) that returns thevalue of C at time n. The external stimuli are modeled by generi
 fun
tions of n. We formalize time by twofun
tions, a 0-ary fun
tion t0 for \initial time", and a unary fun
tion t+ for \next time". The value of a
omponent at time (t+ n) 
an depend on other 
omponents at time n and the external stimuli at time (t+n). Equations 1-4 below de�ne the system above, and 
an be spe
i�ed using mutually re
ursive fun
tionde�nitions.1 Here E is a generi
 unary fun
tion where (E n) is the value supplied by the environment attime n.1. (C0 (t0)) = 12. (C1 (t0)) = 13. (C0 (t+ n)) = (if (E (t+ n)) (C0 n) (C1 n))4. (C1 (t+ n)) = (if (E (t+ n)) (C0 n) 42)We 
all a term � a temporal term if it has a single variable n representing time. A temporal term � is aninvariant if it does not evaluate to NIL for any n (i.e. �, T is a theorem). The goal of invariant proving isto show that a temporal term � is an invariant. For the system above, an invariant is �0 , (+ve (C0 n)).A dedu
tive method for invariant proving is to de�ne an indu
tive invariant. A unary fun
tion inv is anindu
tive invariant strengthening � if I1-I3 are theorems:I1: (inv (t0)) , TI2: (inv n) ) �I3: (inv n) ) (inv (t+ n))If some fun
tion inv is an indu
tive invariant strengthening �, then the invarian
e of � follows by indu
-tion on time n. For the example above, (inv n) = (and (+ve (C0 n)) (+ve (C1 n))) is an indu
tiveinvariant strengthening �0.1We a
tually need two other unary fun
tions, namely t- for \previous time" and tzp to 
he
k if the \
urrent time" is t0.We omit dis
ussion of these fun
tions for brevity.
3



2.3 Overview of Our Approa
hConsider proving for the system above that �0 is an invariant. Instead of manually de�ning an indu
tiveinvariant, our approa
h \dis
overs" the relevant terms by rewriting. The term T0 below is the result ofrewriting the term �00 (whi
h is the term �0 with n repla
ed by (t+ n)) using equation 3 along with thefollowing equation 5: (+ve (if x y z)) = (if x (+ve y) (+ve z)).T0 , (if (E (t+ n)) (+ve (C0 n)) (+ve (C1 n)))We treat T0 as a boolean 
ombination of (E (t+ n)), (+ve (C0 n)), and (+ve (C1 n)), and 
lassify (+ve(C1 n)) as a new temporal term �1. Using equations 4 and 5, and the 
omputed fa
t (+ve 42) = T, wesimilarly rewrite �01 (that is, �1 with n repla
ed by (t+ n)) toT1 , (if (E (t+ n)) (+ve (C0 n)) T)T0 and T1 spe
ify how �0 and �1 are \updated" at time n. We make this expli
it by 
onstru
ting thefollowing mapping N from variables to terms:N(v0) , (if e v0 v1); N(v1) , (if e v0 T)N is obtained by repla
ing terms �0, �1, and (E (t+ n)) in T0 and T1 with v0, v1, and e respe
tively.Informally, variables in the domain of N (namely, v0 and v1) \tra
k" the temporal terms of interest (namely,�0 and �1), while other variables (namely, e) represent terms that are abstra
ted (namely, (E (t+ n))).N spe
i�es a dire
ted graph G as follows. The nodes are mappings from fv0; v1g to the set fT; NILg.The mapping Z , [v0 7! T; v1 7! T℄, 
orresponding to values of �0 and �1 at time (t0), is the initial node.For nodes p , [v0 7! x; v1 7! y℄ and p0 , [v0 7! x0; v1 7! y0℄, there is an edge from p to p0 if for someeb 2 fT; NILg, x0 = (if eb x y) and y0 = (if eb x T).We then prove that �0 is an invariant by 
he
king that v0 is mapped to T in ea
h node p rea
hable fromnode Z. Noti
e that G is a predi
ate abstra
tion of this example system.3 Pro
edureWe introdu
e some notations before des
ribing our pro
edure. We use [a 7! �; b 7! �℄, where a and b aredistin
t, to denote a �nite mapping � with domain fa; bg and range f�; �g so that �(a) = � and �(b) = �.We use dom(�) to denote the domain of �. Given mappings �1 and �2 on disjoint domains, �1 [ �2 denotestheir union: if �1 , [a 7! �; b 7! �℄ and �2 , [
 7! 
℄, then �1 [ �2 , [a 7! �; b 7! �; 
 7! 
℄.Let �(�) be the set of variables in term � . If �(�) is empty, � is 
alled a ground term. For term � andmapping � from variables to terms, �=� is the term obtained by repla
ing every variable v 2 dom(�) in �with �(v). Term � is 
alled a boolean term if it is (i) a variable, or (ii) one of T or NIL, or (iii) a term (if� � 
) where �, �, and 
 are boolean terms. For a given set V of variables, B(V ) is the set of mappingsfrom V to fT; NILg.Given a temporal term �0, our pro
edure �rst returns three mappings �, N , and Z from variables toterms su
h that the following hold:C1: dom(N) � dom(�); Z 2 B(dom(N)).C2: �(v0) = �0 for some v0 2 dom(N).C3: For ea
h v 2 dom(N), N(v) is a boolean term.C4: For ea
h v 2 dom(N), �(N(v)) � dom(�).C5: For ea
h v 2 dom(N), �(v)=[n 7! (t+ n)℄, N(v)=� is a theorem.C6: For ea
h v 2 dom(N), �(v)=[n 7! (t0)℄, Z(v) is a theorem.In our example, � , [v0 7! (+ve (C0 n)); v1 7! (+ve (C1 n)); e 7! (E (t+ n))℄. We then 
onstru
t adire
ted abstra
tion graph G as follows:G1: The set of nodes in G is the set B(dom(N)).G2: The mapping Z is the initial node.G3: Let V , dom(�)ndom(N). There is an edge from node p to node q if there exists i 2 B(V ) su
h that for allv 2 dom(N), N(v)=[p [ i℄, q(v) is a theorem. 4



C3 and C4 imply that N(v)=[p [ i℄ is a ground boolean term; thus the edge relation from G3 
an bedetermined by evaluation. We now show how the invarian
e of �0 redu
es to rea
hability in G and how we
ompute �, N , and Z.For node p of G, we de�ne the minterm of p, denoted by M(p), as:M(p) , Vv2dom(N)(�(v), p(v))Let nbrs(p) denote the set of all nodes q su
h that there is an edge from p to q. From G3 and C5 thefollowing 
an be shown to be a theorem.M(p)) (Wq2nbrs(p)M(q))=[n 7! (t+ n)℄ (1)Let R(p) be the set of all nodes rea
hable from p. Sin
e for any node q 2 R(p), R(q) � R(p), it followsfrom (1) that the following is a theorem.(Wq2R(p)M(q))) (Wq2R(p)M(q))=[n 7! (t+ n)℄ (2)Claim 1 below is well-known, and follows from the de�nition of indu
tive invariants using (2) and C6, andlets us 
on
lude the invarian
e of �0 by 
he
king if p(v0) = T for ea
h p 2 R(Z).Claim 1 If for every node p 2 R(Z), p(v0) = T then (inv n) = (Wq2R(Z)M(q)) is an indu
tive invariantstrengthening �0.To 
ompute �, N , and Z whi
h satisfy C1-C6, we will de�ne pro
edures rewrt and 
hop with the followingproperties. Given term � , rewrt(�) returns term �� su
h that � , �� is a theorem. Given term � andmapping � from �(�) to terms, 
hop(�; �) returns a pair h�0; �i where � is a boolean term and �0 is a mappingfrom variables to terms su
h that the following properties hold: (a) �=�0 is synta
ti
ally equal to � , and (b)For v 2 dom(�), �0(v) = �(v). We then 
ompute � and N as follows.Initially � := [v0 7! �0℄; N := [℄;while 9v 2 dom(�)ndom(N) su
h that (statep(�(v)) = T)let v 2 dom(�)ndom(N) su
h that (statep(�(v)) = T)h�; �i := 
hop(rewrt(�(v)=[n 7! (t+ n)℄);�)N := N [ [v 7! �℄end whileReturn h�; NiRe
all that the value of a 
omponent at time (t+ n) depends on the 
omponents at time n and the externalstimuli at time (t+ n). Hen
e if (t+ n) o

urs as a subterm of a term � , then � involves an external stimulus.Call a temporal term � a state predi
ate if it does not 
ontain (t+ n) or the appli
ation of the spe
ial fun
tionhide in any subterm; otherwise we 
all � an input predi
ate. We use hide for user-guided abstra
tions, andwe will dis
uss it in Se
tion 3.1. Pro
edure statep(�) above returns T if � is a state predi
ate, otherwise itreturns NIL. We 
ompute Z as follows: for a ground term � , let val(�) 2 fT; NILg where � , val(�) is atheorem, then Z(v) , val(�(v)=[n 7! (t0)℄) for ea
h v 2 dom(N).It remains for us to des
ribe rewrt and 
hop. Pro
edure rewrt is a term rewriter. It transforms a term� into another term �� using the system de�nitions and theorems as follows. A de�nition or theorem ofthe form 
 ) (� = �) where �, �, and 
 are terms, is treated as a rewrite rule.2 The rule is appli
ableto term � if there is a mapping b from variables to terms su
h that (
=b , T) is a theorem and �=b issynta
ti
ally equal to �; �=b is the result of the appli
ation. Sin
e inferen
e rules of the logi
 in
lude equalityand instantiation, if �� is a result of rewriting �, then � = �� (and hen
e � , ��) is a theorem. A rewriterapplies rules to a term until no rule is appli
able. The resulting term is a normal form. In general rewritingis a non-deterministi
 pro
ess, but rewrt implements rewriting that is prin
ipally inside-out (arguments of aterm are rewritten before the term), and ordered (rules are applied in a �xed total order). The pro
edurerewrt also in
orporates some 
ongruen
e-based reasoning and gives spe
ial treatment to the fun
tion hide.Terms T0 and T1 in Se
tion 2.3 are normal forms.We now simply de�ne 
hop as the following re
ursive pro
edure whi
h traverses the appli
ations of if ina term and repla
es the non-if subterms with new variables while updating the mapping � a

ordingly.2A de�nition is of the form � = � and is treated as the rewrite rule: T) (� = �).5




hop(� ,�) , If � = (if � � 
)let h�; �1i := 
hop(�; �)h�; �2i := 
hop(�; �)h�; �3i := 
hop(
; �)Return h�; (if �1 �2 �3)iElse If (9v 2 dom(�) : �(v) = � ) Return h�; viElse let u =2 dom(�) Return h� [ [u 7! � ℄; uiWe 
on
lude this des
ription with a note on 
onvergen
e. The 
omputation of � and N need not 
onverge.In pra
ti
e, we attempt to rea
h 
onvergen
e within a user-spe
i�ed bound. Why not 
oer
e terms on whi
h
onvergen
e has not been rea
hed to input predi
ates? We have found that su
h 
oer
ions typi
ally result in
oarse abstra
tion graphs and spurious failures. We prefer to rely on user 
ontrol and perform su
h 
oer
ionsonly via user-guided abstra
tions.3.1 Observations and ExtensionsOur method primarily relies on rewrite rules to simplify terms. Even in our example in Se
tion 2, equation 5is 
riti
al to rewrite �00 to T0. Otherwise, the normal form T00 , (+ve (if (E (t+ n)) (C0 n) (C1 n)))would be 
lassi�ed as an input predi
ate whi
h leads to a spurious failure.This trivial example illustrates an important aspe
t of our approa
h. Equation 5 is a 
riti
al but generi
\fa
t" about +ve and if, independent of the system analyzed. Equation 5, known as an if-lifting rule, wouldusually be stored in a library of 
ommon rules. While generi
 rules 
an normalize most terms, it is importantfor s
alability that the pro
edure provide 
ontrol to fa
ilitate generation of manageable graphs. We nowdis
uss one feature, user-guided abstra
tion, that a�ords 
ontrol by 
oer
ing terms to input predi
ates.We omit other features that our implementation supports, su
h as use of rewriting for assume-guaranteereasoning and 
ase splitting, sin
e we do not use them in the examples in this paper.User-guided abstra
tion is a
hieved via a spe
ial fun
tion hide. In the logi
, hide is the identity fun
tion:(hide x) = x. However, the rewrt pro
edure will immediately return any term (hide �) as a normal form.To see how this a�ords 
oer
ion, 
onsider a system with 
omponents A0, A1, A2, et
., where A0 is spe
i�edas follows:1. (A0 (t0)) = 12. (A0 (t+ n)) = (if (+ve (A1 n)) (A0 n) 42)A0 is assigned 42 if the previous value of A1 is not a positive integer, and otherwise is un
hanged. Considerproving that P0 , (+ve (A0 n)) is an invariant. Our pro
edure will dis
over the term P1 , (+ve (A1 n))and attempt to rewrite (+ve (A1 (t+ n))), thereby possibly exploring other 
omponents. But P1 is ir-relevant to the invarian
e of P0. This irrelevan
e 
an be suggested by the user with the rule: (+ve (A1n)) = (hide (+ve (A1 n))). Sin
e hide is the identity fun
tion, proving this rule is trivial. The rule hasthe e�e
t of \wrapping" hide around (+ve (A1 n)) to 
reate a normal form whi
h is 
oer
ed as an inputpredi
ate (hide (+ve (A1 n))) produ
ing a trivial abstra
tion graph.3.2 Rea
hability Che
kingThe abstra
tion graph is 
he
ked by rea
hability analysis. Our rea
hability implementation is an on-the-
y, breadth-�rst sear
h. While less eÆ
ient than 
ommer
ial model 
he
kers, our simple 
he
ker has beensuÆ
ient to verify the examples in Se
tion 4. Note that any model 
he
ker 
an be interfa
ed with our workby translating the abstra
tion graph to a program understandable by the 
he
ker. We have implementedinterfa
es for VIS [8℄, Caden
e SMV [9℄, and NuSMV [10℄. Our 
he
ker also 
ontains additional features toprovide user feedba
k, su
h as pruning 
ounterexamples to only report predi
ates that are relevant to thefailures in the rea
hability 
he
k.We have also found that it is important to leverage the predi
ate dis
overy pro
edure to limit explorationof irrelevant paths during sear
h. Re
all that user-guided abstra
tion 
an redu
e nodes in the graph by6




oer
ing temporal terms to input predi
ates. However, the pro
ess 
an in
rease the number of edges in thegraph. To 
ombat this, the abstra
tion pro
edure 
omputes for ea
h node p (on-the-
y) a set of representativeinput valuations, that is, valuations of input predi
ates that are relevant in determining nbrs(p). If � is
oer
ed to an input using hide, it 
ontributes to an edge from p only if some q 2 nbrs(p) depends on theinput variable 
orresponding to (hide �). In addition, we �lter exploration of spurious paths by usingrewrt to determine provably in
onsistent 
ombinations of state and input predi
ates. For example, assumethat for some s 2 dom(N), �(s) , (equal (f n) (g n)), and for i0; i1 2 dom(�)ndom(N), �(i0) ,(equal (f n) (i (t+ n))) and �(i1) , (equal (g n) (i (t+ n))). Then for node p su
h that p(s) =NIL, �ltering avoids exploration of edges in whi
h both i0 and i1 are mapped to T.4 DemonstrationIn this se
tion, we demonstrate the use of our approa
h to verify 
a
he 
oheren
e proto
ols. For dida
ti
reasons, we �rst 
onsider a simple ESI proto
ol, and show in some detail the rewrite rules used to generatethe abstra
tion graph. We then dis
uss how the same approa
h is used to verify a more 
ompli
ated proto
ol.4.1 A Simple ESI Proto
olIn our ESI model, an unbounded number of 
lient pro
esses 
ommuni
ate with a single 
ontroller pro
ess toa

ess memory blo
ks (or 
a
he lines). Ca
he lines 
onsist of addressable data. A 
lient 
an read the datafrom an address if its 
a
he 
ontains the 
orresponding line. A 
lient a
quires a 
a
he line by sending a �llrequest to the 
ontroller; su
h requests are tagged for Ex
lusive or Shared a

ess. A 
lient with shared a

ess
an only load data in the 
a
he line. A 
lient with ex
lusive a

ess 
an also store data. The 
ontroller 
anrequest a 
lient to Invalidate or 
ush a 
a
he line and if the line was ex
lusive then its 
ontents are 
opiedba
k to memory. The key equations in the ESI model de�nition are shown in Fig. 1. Fun
tions mem, 
a
he,ex
l, and valid model the following 
omponents:� (mem 
 n) is the 
ontent of line 
 in the memory at time n.� (
a
he p 
 n) is the 
ontent of line 
 in the 
a
he of pro
ess p at time n.� (valid 
 n) is the set of pro
esses having a 
opy of line 
 at time n.� (ex
l 
 n) is the set of pro
esses having an ex
lusive 
opy of 
 at time n.We model external stimuli with generi
 unary fun
tions p, op, addr, and data:� (p n) is the index of the pro
ess s
heduled at time n� (op n) is the a
tion taken by (p n). It 
an be "load", "store", "fille", "fills", or "flush"; "fille" and"fills" represent ex
lusive and shared �ll requests.� If (op n) = "store", then (p n) writes (data n) at (addr n) in its 
a
hed blo
k.Noti
e that we use set and re
ord operations insert, drop, get, put, et
., to de�ne the model. Thisemphasizes the importan
e of rewrite rules to normalize terms built out of the fun
tions used in the systemmodels. For these operations, su
h rules are available in ACL2 [2℄ and the following are some useful rules:(in e (insert a s)) = (or (in e s) (equal e a))(in e (drop a s)) = (and (in e s) (/= e a))(get a (put b v r)) = (if (equal a b) v (get a r))The property we verify is 
oheren
e: reading from an address returns the value most re
ently written. Wespe
ify 
oheren
e as an invariant as follows. Let R and A be generi
 0-ary fun
tions representing an arbitraryreading pro
ess and an arbitrary address. We then de�ne unary fun
tions D and 
oherent in Fig. 2. (D n)is the last value that was stored to address (A) at time n, and (
oherent n) remains true as long as a loadby (R) from (A) returns (D n). Thus, 
oheren
e follows from the proof that (
oherent n) is an invariant.The 
areful reader will noti
e that in Fig. 1, membership in the set (ex
l 
 n) is tested using thefun
tion in1. In the logi
, in1 is simply set membership: (in1 e s) = (in e s), where (in e s) returnsT if e is a member of set s, else NIL. The fun
tion in1 is expe
ted to apply to sets that are either empty orsingleton. We utilize this expe
tation with the following rule:7



(mem 
 (t+ n)) (valid 
 (t+ n))= =(
ond (
ond((/= (
line (addr (t+ n)) 
) ((/= (
line (addr (t+ n)) 
))(mem 
 n)) (valid 
 n))((and (equal (op (t+ n)) "flush") ((and (equal (op (t+ n)) "flush")(in1 (p (t+ n)) (ex
l 
 n))) (e-in1 (p (t+ n)) (ex
l 
 n)))(
a
he (p (t+ n)) n)) (drop (p (t+ n)) (valid 
 n)))(T (mem 
 n)))) ((or (and (equal (op (t+ n)) "fills")(empty (ex
l 
 n)))(
a
he p 
 (t+ n)) (and (equal (op (t+ n)) "fille")= (empty (valid 
 n))))(
ond (insert (p (t+ n)) (valid 
 n)))((/= (
line (addr (t+ n))) 
) (T (valid 
 n)))(
a
he 
 n))((/= (p (t+ n)) p) (ex
l 
 (t+ n))(
a
he p 
 n)) =((or (and (equal (op (t+ n)) "fills") (
ond(empty (ex
l 
 n))) ((/= (
line (addr (t+ n))) 
)(and (equal (op (t+ n)) "fille") (ex
l 
 n))(empty (valid 
 n)))) ((and (equal (op (t+ n)) "flush")(mem 
 n)) (e-in1 (p (t+ n)) (ex
l 
 n)))((and (equal (op (t+ n)) "store") (drop (p (t+ n)) (ex
l 
 n)))(in1 p (ex
l 
 n))) ((and (equal (op (t+ n)) "fille")(put (addr (t+ n)) (data (t+ n)) (empty (valid 
 n)))(
a
he p 
 n))) (insert (p (t+ n)) (ex
l 
 n)))(T (
a
he p 
 n))) (T (ex
l 
 n)))Figure 1: A model of the ESI proto
ol. Fun
tion 
line is generi
; (
line a) is assumed to return theindex of the 
a
he line 
ontaining address a. Fun
tions insert and drop are de�ned to be set insertion anddeletion, in and in1 
he
k set membership, and empty is a test for emptyset. Fun
tion put models \re
ordupdate", so that (put a v r) is re
ord r 
hanged to map key a to value v. (e-in1 e s) is de�ned to be(or (empty s) (in1 e s)), and (/= x y) is de�ned to be (not (equal x y)).(in1 e s) = (
ond ((empty s) nil)((singleton s) (equal e (
hoose s)))(T (hide (in1 e s))))Here (
hoose s) returns somemember s if s is a non-empty set, and (singleton s) 
he
ks if s is a singleton.This rule shows how rewrite rules and stru
tured de�nitions 
an 
onvey proto
ol-level assumptions (namely,that (ex
l 
 n) is always empty or singleton) to the abstra
tion pro
ess without limiting expressiveness.Appli
ation of the rule 
auses terms involving in1 to be rewritten to introdu
e a 
ase-split for the 
aseswhere the set is empty, singleton, or otherwise, and 
oer
es the third 
ase to an input predi
ate.With the rules above, our pro
edure proves that (
oherent n) is an invariant. The abstra
tion graph isde�ned on 9 state predi
ates (Fig. 3) and 25 input predi
ates. The sear
h traverses 133 edges exploring 11nodes and the proof takes a 
ouple of se
onds. Without edge pruning, the sear
h explores 48 nodes. Noti
ethat the rule about in1 is 
ru
ial not only to abstra
t the irrelevant 
ase, but also to introdu
e the relevantstate predi
ate 9; this predi
ate \tra
ks" the fa
t that the value stored in address (A) at the lo
al 
a
heof an arbitrary pro
essor (not ne
essarily (R)) at time n is equal to (D n). Fa
tors like this have made itdiÆ
ult for fully automati
 de
ision pro
edures to abstra
t \pro
essor indi
es" in past work in abstra
tion,and underline the importan
e of using an expressive logi
 to de�ne the ne
essary fun
tions for modeling8



(D (t0)) = (get (A) (mem (t0)))(
oherent (t0)) = T(D (t+ n)) = (if (and (equal (addr (t+ n)) (A))(equal (op (t+ n)) "store")(in1 (p (t+ n)) (ex
l (
line (addr (t+ n))) n)))(data n)(D n))(
oherent (t+ n)) = (if (and (equal (p (t+ n)) (R))(equal (addr (t+ n)) (A))(equal (op (t+ n)) "load")(in (R) (valid (
line (addr (t+ n))) n)))(equal (get (A) (
a
he (R) (
line (A)) n)) (D n))(
oherent n))Figure 2: De�nition of fun
tions D and 
oherent for the ESI model. Fun
tion get is the \re
ord a

ess"operation; (get k r) returns the value stored with key k in re
ord r1. (
oherent n)2. (valid (
line (A)) n)3. (in (R) (valid (
line (A)) n))4. (ex
l (
line (A)) n)5. (singleton (ex
l (
line (A)) n))6. (equal (
hoose (ex
l (
line (A)) n)) (R))7. (equal (D n) (get (A) (mem (
line (A)) n)))8. (equal (D n) (get (A) (
a
he (R) (
line (A)) n)))9. (equal (D n) (get (A) (
a
he (
hoose (ex
l (
line (A)) n))(
line (A)) n)))Figure 3: State Predi
ates Dis
overed for the ESI Modeltarget systems.4.2 A More Elaborate Ca
he Coheren
e Proto
olWe now 
onsider a more elaborate system and observe how 
on
epts from the ESI model are reused withlittle \overhead". The system is based on the proto
ol de�ned by S. German. In this system, the 
ontroller(named home), 
ommuni
ates with 
lients via three 
hannels 1, 2, and 3. Clients make 
a
he requests (�llrequests) on 
hannel 1. Home grants 
a
he a

ess (�ll responses) to 
lients on 
hannel 2; it also uses 
hannel 2to send invalidation (
ush) requests. Clients send 
ush responses on 
hannel 3, sometimes with data.The German proto
ol has been studied extensively by the formal veri�
ation 
ommunity [11, 12, 13℄. Theoriginal implementation has single-entry 
hannels. In UCLID, indexed predi
ates were used [14℄ to verify aversion in whi
h 
hannels are modeled as unbounded FIFOs. Our system is inspired by the version withunbounded FIFOs. However, sin
e we have not built rules to reason dire
tly about unbounded FIFOs, wemodify the proto
ol to use 
hannels of bounded size, and prove, in addition to 
oheren
e, that the imposed
hannel bounds are never ex
eeded in our model. As in our ESI model, we also model the memory.Our model is roughly divided into three sets of fun
tions spe
ifying the state of the 
lients, the home
ontroller, and the 
hannels. The state of the 
lients is de�ned by the following fun
tions:� (
a
he p 
 n) is the 
ontent of line 
 in the 
a
he of 
lient p at time n.� (valid 
 n) is the set of 
lients having a 
opy of line 
 at time n.� (ex
l 
 n) is the set of 
lients whi
h have ex
lusive a

ess of 
 at time n.9



Home maintains a 
entral dire
tory whi
h enables it to \de
ide" whether it 
an safely grant ex
lusive orshared a

ess to a 
a
he line. It also maintains a list of pending invalidate requests it must send, and thestate of the memory. The state of home is spe
i�ed by the following fun
tions:� (h-valid 
 n) is the set of 
lients whi
h have a

ess to line 
 at time n.� (h-ex
l 
 n) is the 
lient whi
h has ex
lusive a

ess to line 
 at time n.� (
urr-
md 
 n) is the pending request for line 
 at time n.� (
urr-
lient 
 n) is the most re
ent 
lient requesting for line 
 at n.� (mem 
 n) is the value of line 
 in the memory at time n.� (invalid 
 n) is a re
ord mapping 
lient identi�ers to the state of a pending invalidate request at time n. It 
anbe \none pending", or \pending and not sent", or \invalidate request sent", or \invalidate responsesent". This fun
tion models part of the state of home and part of the state of the 
hannels 2 and 3 (namely,invalidate requests and responses).Finally, the states of the three 
hannels are spe
i�ed by the following fun
tions (in addition to invalidabove):� (
h1 p 
 n) is the requests sent from 
lient p for line 
 at time n.� (
h2-sh 
 n) is the set of 
lients with a shared �ll response in 
hannel 2.� (
h2-ex 
 n) is the set of 
lients with an ex
lusive �ll response in 
hannel 2.� (
h2-data p 
 n) is the data sent to 
lient p with �ll responses.� (
h3-data p 
 n) is the data sent from 
lient p with the invalidate responses.At any time n, one of the following 12 a
tions is sele
ted to exe
ute nondeterministi
ally: (1) a 
lient sends ashared �ll request on 
hannel 1, (2) a 
lient sends an ex
lusive �ll request on 
hannel 1, (3) home pi
ks a �llrequest from 
hannel 1, (4) home sends an invalidate request on 
hannel 2, (5) a 
lient sends an invalidateresponse on 
hannel 3, (6) home re
eives an invalidate response on 
hannel 3, (7) home sends an ex
lusive�ll response on 
hannel 2, (8) home sends a shared response on 
hannel 2, (9) a 
lient re
eives a shared�ll response from 
hannel 2, (10) a 
lient re
eives a shared ex
lusive response from 
hannel 2, (11) a 
lientperforms a store, and (12) a 
lient performs a load.The 
oheren
e property we proved for this system is the same as that for ESI (Fig. 2). Although thissystem is more elaborate than ESI (and hen
e an indu
tive invariant, if manually 
onstru
ted, is verydi�erent), the rules from our libraries (in
luding the set and re
ord rules mentioned in Se
tion 4.1) aredire
tly appli
able. Further, a lesson learned from the ESI model is reused and we test membership in sets(
h2-ex 
 n) and (ex
l 
 n) using in1. A similar rule is used to 
ause a 
ase split on the re
ord a

essoperations for (invalid 
 n). With these rules, our pro
edure 
an prove 
oheren
e along with the bounded
hannel invariant. The abstra
tion graph for 
oheren
e is de�ned by 46 state and 117 input predi
ates. Therea
hability 
he
k explores 7000 nodes and about 300 thousand edges, and the proof is 
ompleted in lessthan 2 minutes on a modern desktop ma
hine running Linux. The proof of the bounded 
hannel invariant
ompleted in less time on a smaller abstra
tion graph.5 Comparison with Related WorkOur method generates predi
ate abstra
tions using rewriting. Predi
ate abstra
tion involves 
reating anabstra
t model whose state variables 
orrespond to predi
ates in the 
on
rete system. The idea is derivedfrom the more general notion of abstra
t interpretations [15℄. Graf and Saidi [1℄ made the idea expli
itand used it to verify 
ommuni
ation proto
ols in PVS. Predi
ate abstra
tions have been used re
ently inSLAM [16℄ and BLAST [17℄ to verify devi
e drivers and C programs, and in UCLID [18, 14℄ to verifyunbounded state systems.The key di�eren
e between these approa
hes and ours is in the method employed for predi
ate dis
overy,that is, 
omputation of the predi
ates ne
essary for 
onstru
tion of the abstra
t model. Predi
ate dis
overyin PVS [1, 19℄ involves on-the-
y validity 
he
ks using the theorem prover. While this allows spe
i�
ation10



of arbitrary formulas as predi
ates, it 
an be prohibitively expensive. Other predi
ate abstra
tion methodsemploy a more 
omputational approa
h. SLAM and BLAST use boolean programs with a 
ontrol-
owskeleton similar to the original system, UCLID uses weakest liberal pre
onditions and index variables, andDas and Dill [20℄ use 
ounterexample analysis. To our knowledge, all these methods enfor
e some restri
tionon the language to express systems and target properties. Our method, on the other hand, is motivatedto exploit the expressiveness a�orded by allowing predi
ates to be arbitrary �rst-order formulas, while stillbeing eÆ
ient in pra
ti
e. In our method, predi
ate dis
overy is based on instantiation of previously provenrewrite rules. Proving rewrite rules involves human e�ort; but su
h proofs are done \o� line" and do not
ontribute to the 
ost of predi
ate 
omputation. With an e�e
tive library of rules, our method is eÆ
ientin pra
ti
e. Our approa
h also disentangles heuristi
s for predi
ate dis
overy from the predi
ate abstra
tionpro
ess. However, the pro
ess might need user intera
tion to determine the ne
essity of a new rule orde�nition. We note that while predi
ate abstra
tions have been used both in our work and UCLID to verifyversions of the German proto
ol, the di�eren
e in expressive power of the two logi
s makes it diÆ
ult to
ompare them dire
tly. Our method requires user-provided rewrite rules, but also a�ords greater 
ontrolover the stru
ture and form of the system de�nition and the eÆ
ien
y of predi
ate dis
overy.Our approa
h is similar in 
on
ept to the work of Namjoshi and Khurshan [21℄. This method 
omputespredi
ates by applying synta
ti
 transformations to a formula that represents weakest liberal pre
onditions;it is also the basis of indexed predi
ate dis
overy in UCLID [14℄. Our approa
h 
an be viewed as a fo
used ands
alable implementation of this method using term rewriting for synta
ti
 transformation, with extensionsand heuristi
s to fa
ilitate generation of e�e
tive abstra
tions as required for pra
ti
al appli
ation.6 Con
lusionWe have presented a method for automating dedu
tive proofs of invariants for rea
tive systems. Our methodredu
es an invariant proof to the rea
hability analysis of an abstra
tion graph whi
h is a form of predi
ateabstra
tion of the original system. Manual de�nition of indu
tive invariants is not ne
essary. This makesinvariant proofs robust against 
hanges arising from design evolution. The novelty of our method is in theuse of term rewriting to dis
over relevant predi
ates for the 
onstru
tion of the abstra
tion graph. Sin
e themethod is based on symboli
 manipulation of terms, it is relatively insensitive to state explosion. Further,our implementation provides features to fa
ilitate 
ontrol over the sear
h 
ost of the abstra
tion graph.Our approa
h a�ords 
exibility in predi
ate dis
overy by allowing the user to \plug in" di�erent librariesof rewrite rules. This makes it suitable for the veri�
ation of a large 
lass of systems, without imposingrestri
tions on the language used. A key advantage of using dedu
tive reasoning over automati
 de
isionpro
edures is the expressiveness of the logi
. Expressiveness a�ords su

in
t system de�nitions and powerfulproof te
hniques. Our work is geared towards exploiting this advantage, while still providing substantialautomation in pra
ti
e. In our work, we found that most of the rules ne
essary for e�e
tive appli
ationof our tool are generi
 theorems about fun
tions used in modeling the target system, and, in the 
ontextof ACL2 proofs, available in existing libraries. Further, the 
on
epts behind ne
essary \system-spe
i�
"abstra
tions 
an also be reused for similar systems. Note, however, that the target system must be modeledwith some dis
ipline so that rules 
an be designed to normalize terms built out of fun
tions used in themodel. If a 
omponent is modeled at a \low level" with fun
tions for whi
h rules are diÆ
ult to design, thenit might be ne
essary to provide a more dis
iplined alternative de�nition. However, su
h low-level modelsare rarely designed manually, but rather are generated by 
ompilers for higher-level languages. Our methodis appli
able to systems at the level at whi
h they are modeled.In future work, we plan to apply this method to verify more detailed systems. In parti
ular, we areworking on applying the method to verify invariants of a pipelined implementation of the Y86 pro
essor [22℄developed at CMU.
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