
Proving Invariants via Rewriting and Abstration �Rob Sumners Sandip RayAdvaned Miro Devies, In. Department of Computer SienesAustin, TX 78741 University of Texas at Austinrobert.sumners�amd.om Austin, TX 78712sandip�s.utexas.eduJuly 2005AbstratWe present a dedutive method for proving invariants of reative systems. Our approah uses termrewriting to redue invariant proofs to reahability analysis on a �nite graph. This substantially auto-mates invariant proofs by obviating the need to de�ne indutive invariants while still bene�tting fromthe expressiveness of dedutive methods. We implement a proedure supporting this approah whihinterfaes with the ACL2 theorem prover. The interfae a�ords sound extension of our proedure withrewrite rules based on proven theorems. We demonstrate the method in the veri�ation of ahe ohereneprotools.1 MotivationThe goal of invariant proving is to show that a ertain target property of a reative system is an invariant.Invariant proving is a key problem in formal veri�ation. Veri�ation of safety properties an be redued tothe proof of an invariant. Even in the proofs of liveness properties, one typially needs to establish someauxiliary invariane ondition.Invariant proving is diÆult for both model heking and theorem proving. The model heking ap-proah involves a (symboli or expliit) searh to hek if all the reahable system states satisfy the targetproperty. If the number of states is tratable, the proess is automati usually with the additional bene�tof ounterexample generation when the veri�ation fails. However, the method is limited in pratie bystate explosion. The theorem proving approah involves strengthening the target property to an indutiveinvariant. This approah is generally insensitive to state explosion but in pratie an require signi�antuser interation for de�ning the indutive invariant. In addition, indutive invariants are brittle and oftenrequire extensive modi�ation to math design hanges. However, theorem provers support expressive logiswhih allow users to suintly de�ne systems, properties, and any additional funtions and lemmas thatenable eÆient proofs.We present a method to bridge the automation gap between theorem proving and model heking, whilestill preserving the expressiveness of theorem proving. We use term rewriting to redue an invariant proof tothe reahability analysis of a �nite graph; the graph is a prediate abstration [1℄ of the system. Rewriting isguided by rewrite rules that relate the di�erent funtions used to model the system. The rules are seletedfrom theorems proven by a theorem prover.Our approah transfers the user responsibility from de�ning indutive invariants to designing rules thatmanipulate funtions used in system de�nitions. How does this redue manual e�ort? Proving rewrite rulesdoes require human interation. However, while indutive invariants are de�ned by a user for a spei��Support for this work was provided in part by the SRC under ontrat 02-TJ-1032.1



system, rewrite rules are proven fats about the funtions used to model the system and an be used inother systems using the same funtions. It is ustomary for the users of a theorem prover to design rulesthat simplify terms whih arise during proofs [2, 3℄. We found that most of the rules neessary for our workare generi, and already available as proven theorems in a dedutive setting. Note that sine the logi ofa theorem prover is undeidable, any olletion of rules is inomplete and it may be neessary for the userto extend or re�ne the existing rules and de�nitions. However, feedbak from our proedure assists in thedevelopment of these extensions and re�nements whih, in our experiene, an be reused in the veri�ationof similar systems.Our proedure is interfaed with the ACL2 theorem prover [4℄. ACL2 has been used to verify severalommerial systems [5, 6℄, and we make use of rewrite rules that have been proven in these e�orts. However,ACL2 is not ritial to our method; it is used primarily as a mehanized logi with whih we are familiar.We believe that our proedure an be easily ported to other theorem provers.The remainder of the paper is organized as follows. In Setion 2, we desribe the ACL2 logi and illustrateour method with a simple example. We present our proedure in Setion 3. In Setion 4, we demonstratethe method in proving invariants of ahe oherene protools. In Setion 5, we disuss related work. Weonlude in Setion 6. An implementation of the proedure, and the proofs desribed in this paper areavailable from the web page of the seond author [7℄.2 Bakground and OverviewIn this setion, we review the ACL2 logi, and illustrate our method to prove invariants of reative systemsmodeled in ACL2. This paper is not about ACL2; our overview only provides a formal ontext for our work.Readers interested in ACL2 are referred to [4℄ for a omprehensive desription.2.1 The ACL2 LogiACL2 is a �rst-order logi of reursive funtions with a syntax similar to Lisp. A term is a variable, a onstant,or the appliation of an n-ary funtion f to n terms, written (f t1 t2 : : : tn). The set of onstants is openbut inludes integers, strings, and symbols T and NIL denoting boolean true and false. Formulas in the logiare represented by terms. For example, the term (with variables x, y, z)(implies (< x y) (< (+ x z) (+ y z)))represents a formula about arithmeti. The syntax is quanti�er-free, and variables in formulas are impliitlyuniversally quanti�ed. The term above an be read as follows in the logi: \For all x, y, z, if x is less thany, then x+ z is less than y + z."ACL2 axiomatizes a subset of Common Lisp. An axiom relating funtions ar and ons is: (equal(ar (ons x y)) x). Theorems an be proven about axiomatized funtions. The inferene rules arepropositional alulus with equality and instantiation, and well-founded indution up to �0. For example,instantiation of the above axiom yields the theorem: (equal (ar (ons 2 y)) 2).We make speial use of the ternary funtion if, whih is axiomatized to be \if-then-else": (if x y z)is equal to z if x is equal to NIL, otherwise y. Sine terms ontaining if are extensively used in ACL2 (andLisp), there are onstruts to struture suh terms. For example, we use (ond (a b) ( d) : : : (x y))to stand for (if a b (if  d : : : (if x y NIL) : : : )). Boolean operations and, or, implies, et. areaxiomatized using if:(equal (and x y) (if x y NIL))(equal (or x y) (if x x y))(equal (implies x y) (if x (if y T NIL) T))(equal (iff x y) (and (implies x y) (implies y x)))In this paper, we use standard mathematial notations to represent ertain funtions. We use in�x operators\=" for equal, \^" for and, \_" for or, \)" for implies, and \," for iff. Instead of writing (implies (equal � �)), we will write  ) (� = �). We also write (and x1 x2 : : : xn) to mean (and x1 (and x2... )) and similarly for (or x1 x2 : : : xn). If S is a set fe0; e1; : : : ; eng and M maps S to terms, then2



we write We2S M(e) and Ve2S M(e) to denote (or M(e1) M(e2) : : : M(en)) and (and M(e1) M(e2) : : :M(en)) respetively.ACL2 provides failities to onsistently introdue new axioms. New total funtions an be de�ned (oraxiomatized), like the funtion fatorial below(fatorial n) = (if (+ve n) (* n (fatorial (- n 1))) 1)where (+ve n) returns T if n is a positive natural number, else NIL. The logi also supports mutuallyreursive funtion de�nitions. ACL2 further allows the introdution of a funtion whih is only known tosatisfy some spei�ed axioms. We an introdue a funtion E that only satis�es the axiom: (+ve (E n))= T. Suh axioms are alled onstraints, and E is then alled a onstrained funtion. A theorem about aonstrained funtion f is provable for any funtion f̂ satisfying the onstraints. A onstrained funtion withno onstraint is termed generi. If � is a theorem and �̂ is obtained from � by replaing ourrenes of ageneri funtion g with any funtion ĝ of the same arity, then �̂ is a theorem.2.2 System Models and InvariantsReative systems onsist of several omponents that perform on-going, non-terminating omputations whileinterating with an external environment. The \state" of the system at any time is given by the value ofeah omponent. For example, onsider a trivial system with two omponents C0 and C1. C0 and C1 initiallyhave the value 1. At eah instant, they interat with an environment E and exeute as follows.� If E is NIL then C0 gets the previous value of C1; otherwise C0 is unhanged.� If E is NIL then C1 is assigned to the value 42; otherwise C1 is unhanged.Suh systems an be modeled [5℄ by speifying, for eah omponent C, a funtion (C n) that returns thevalue of C at time n. The external stimuli are modeled by generi funtions of n. We formalize time by twofuntions, a 0-ary funtion t0 for \initial time", and a unary funtion t+ for \next time". The value of aomponent at time (t+ n) an depend on other omponents at time n and the external stimuli at time (t+n). Equations 1-4 below de�ne the system above, and an be spei�ed using mutually reursive funtionde�nitions.1 Here E is a generi unary funtion where (E n) is the value supplied by the environment attime n.1. (C0 (t0)) = 12. (C1 (t0)) = 13. (C0 (t+ n)) = (if (E (t+ n)) (C0 n) (C1 n))4. (C1 (t+ n)) = (if (E (t+ n)) (C0 n) 42)We all a term � a temporal term if it has a single variable n representing time. A temporal term � is aninvariant if it does not evaluate to NIL for any n (i.e. �, T is a theorem). The goal of invariant proving isto show that a temporal term � is an invariant. For the system above, an invariant is �0 , (+ve (C0 n)).A dedutive method for invariant proving is to de�ne an indutive invariant. A unary funtion inv is anindutive invariant strengthening � if I1-I3 are theorems:I1: (inv (t0)) , TI2: (inv n) ) �I3: (inv n) ) (inv (t+ n))If some funtion inv is an indutive invariant strengthening �, then the invariane of � follows by indu-tion on time n. For the example above, (inv n) = (and (+ve (C0 n)) (+ve (C1 n))) is an indutiveinvariant strengthening �0.1We atually need two other unary funtions, namely t- for \previous time" and tzp to hek if the \urrent time" is t0.We omit disussion of these funtions for brevity.
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2.3 Overview of Our ApproahConsider proving for the system above that �0 is an invariant. Instead of manually de�ning an indutiveinvariant, our approah \disovers" the relevant terms by rewriting. The term T0 below is the result ofrewriting the term �00 (whih is the term �0 with n replaed by (t+ n)) using equation 3 along with thefollowing equation 5: (+ve (if x y z)) = (if x (+ve y) (+ve z)).T0 , (if (E (t+ n)) (+ve (C0 n)) (+ve (C1 n)))We treat T0 as a boolean ombination of (E (t+ n)), (+ve (C0 n)), and (+ve (C1 n)), and lassify (+ve(C1 n)) as a new temporal term �1. Using equations 4 and 5, and the omputed fat (+ve 42) = T, wesimilarly rewrite �01 (that is, �1 with n replaed by (t+ n)) toT1 , (if (E (t+ n)) (+ve (C0 n)) T)T0 and T1 speify how �0 and �1 are \updated" at time n. We make this expliit by onstruting thefollowing mapping N from variables to terms:N(v0) , (if e v0 v1); N(v1) , (if e v0 T)N is obtained by replaing terms �0, �1, and (E (t+ n)) in T0 and T1 with v0, v1, and e respetively.Informally, variables in the domain of N (namely, v0 and v1) \trak" the temporal terms of interest (namely,�0 and �1), while other variables (namely, e) represent terms that are abstrated (namely, (E (t+ n))).N spei�es a direted graph G as follows. The nodes are mappings from fv0; v1g to the set fT; NILg.The mapping Z , [v0 7! T; v1 7! T℄, orresponding to values of �0 and �1 at time (t0), is the initial node.For nodes p , [v0 7! x; v1 7! y℄ and p0 , [v0 7! x0; v1 7! y0℄, there is an edge from p to p0 if for someeb 2 fT; NILg, x0 = (if eb x y) and y0 = (if eb x T).We then prove that �0 is an invariant by heking that v0 is mapped to T in eah node p reahable fromnode Z. Notie that G is a prediate abstration of this example system.3 ProedureWe introdue some notations before desribing our proedure. We use [a 7! �; b 7! �℄, where a and b aredistint, to denote a �nite mapping � with domain fa; bg and range f�; �g so that �(a) = � and �(b) = �.We use dom(�) to denote the domain of �. Given mappings �1 and �2 on disjoint domains, �1 [ �2 denotestheir union: if �1 , [a 7! �; b 7! �℄ and �2 , [ 7! ℄, then �1 [ �2 , [a 7! �; b 7! �;  7! ℄.Let �(�) be the set of variables in term � . If �(�) is empty, � is alled a ground term. For term � andmapping � from variables to terms, �=� is the term obtained by replaing every variable v 2 dom(�) in �with �(v). Term � is alled a boolean term if it is (i) a variable, or (ii) one of T or NIL, or (iii) a term (if� � ) where �, �, and  are boolean terms. For a given set V of variables, B(V ) is the set of mappingsfrom V to fT; NILg.Given a temporal term �0, our proedure �rst returns three mappings �, N , and Z from variables toterms suh that the following hold:C1: dom(N) � dom(�); Z 2 B(dom(N)).C2: �(v0) = �0 for some v0 2 dom(N).C3: For eah v 2 dom(N), N(v) is a boolean term.C4: For eah v 2 dom(N), �(N(v)) � dom(�).C5: For eah v 2 dom(N), �(v)=[n 7! (t+ n)℄, N(v)=� is a theorem.C6: For eah v 2 dom(N), �(v)=[n 7! (t0)℄, Z(v) is a theorem.In our example, � , [v0 7! (+ve (C0 n)); v1 7! (+ve (C1 n)); e 7! (E (t+ n))℄. We then onstrut adireted abstration graph G as follows:G1: The set of nodes in G is the set B(dom(N)).G2: The mapping Z is the initial node.G3: Let V , dom(�)ndom(N). There is an edge from node p to node q if there exists i 2 B(V ) suh that for allv 2 dom(N), N(v)=[p [ i℄, q(v) is a theorem. 4



C3 and C4 imply that N(v)=[p [ i℄ is a ground boolean term; thus the edge relation from G3 an bedetermined by evaluation. We now show how the invariane of �0 redues to reahability in G and how weompute �, N , and Z.For node p of G, we de�ne the minterm of p, denoted by M(p), as:M(p) , Vv2dom(N)(�(v), p(v))Let nbrs(p) denote the set of all nodes q suh that there is an edge from p to q. From G3 and C5 thefollowing an be shown to be a theorem.M(p)) (Wq2nbrs(p)M(q))=[n 7! (t+ n)℄ (1)Let R(p) be the set of all nodes reahable from p. Sine for any node q 2 R(p), R(q) � R(p), it followsfrom (1) that the following is a theorem.(Wq2R(p)M(q))) (Wq2R(p)M(q))=[n 7! (t+ n)℄ (2)Claim 1 below is well-known, and follows from the de�nition of indutive invariants using (2) and C6, andlets us onlude the invariane of �0 by heking if p(v0) = T for eah p 2 R(Z).Claim 1 If for every node p 2 R(Z), p(v0) = T then (inv n) = (Wq2R(Z)M(q)) is an indutive invariantstrengthening �0.To ompute �, N , and Z whih satisfy C1-C6, we will de�ne proedures rewrt and hop with the followingproperties. Given term � , rewrt(�) returns term �� suh that � , �� is a theorem. Given term � andmapping � from �(�) to terms, hop(�; �) returns a pair h�0; �i where � is a boolean term and �0 is a mappingfrom variables to terms suh that the following properties hold: (a) �=�0 is syntatially equal to � , and (b)For v 2 dom(�), �0(v) = �(v). We then ompute � and N as follows.Initially � := [v0 7! �0℄; N := [℄;while 9v 2 dom(�)ndom(N) suh that (statep(�(v)) = T)let v 2 dom(�)ndom(N) suh that (statep(�(v)) = T)h�; �i := hop(rewrt(�(v)=[n 7! (t+ n)℄);�)N := N [ [v 7! �℄end whileReturn h�; NiReall that the value of a omponent at time (t+ n) depends on the omponents at time n and the externalstimuli at time (t+ n). Hene if (t+ n) ours as a subterm of a term � , then � involves an external stimulus.Call a temporal term � a state prediate if it does not ontain (t+ n) or the appliation of the speial funtionhide in any subterm; otherwise we all � an input prediate. We use hide for user-guided abstrations, andwe will disuss it in Setion 3.1. Proedure statep(�) above returns T if � is a state prediate, otherwise itreturns NIL. We ompute Z as follows: for a ground term � , let val(�) 2 fT; NILg where � , val(�) is atheorem, then Z(v) , val(�(v)=[n 7! (t0)℄) for eah v 2 dom(N).It remains for us to desribe rewrt and hop. Proedure rewrt is a term rewriter. It transforms a term� into another term �� using the system de�nitions and theorems as follows. A de�nition or theorem ofthe form  ) (� = �) where �, �, and  are terms, is treated as a rewrite rule.2 The rule is appliableto term � if there is a mapping b from variables to terms suh that (=b , T) is a theorem and �=b issyntatially equal to �; �=b is the result of the appliation. Sine inferene rules of the logi inlude equalityand instantiation, if �� is a result of rewriting �, then � = �� (and hene � , ��) is a theorem. A rewriterapplies rules to a term until no rule is appliable. The resulting term is a normal form. In general rewritingis a non-deterministi proess, but rewrt implements rewriting that is prinipally inside-out (arguments of aterm are rewritten before the term), and ordered (rules are applied in a �xed total order). The proedurerewrt also inorporates some ongruene-based reasoning and gives speial treatment to the funtion hide.Terms T0 and T1 in Setion 2.3 are normal forms.We now simply de�ne hop as the following reursive proedure whih traverses the appliations of if ina term and replaes the non-if subterms with new variables while updating the mapping � aordingly.2A de�nition is of the form � = � and is treated as the rewrite rule: T) (� = �).5



hop(� ,�) , If � = (if � � )let h�; �1i := hop(�; �)h�; �2i := hop(�; �)h�; �3i := hop(; �)Return h�; (if �1 �2 �3)iElse If (9v 2 dom(�) : �(v) = � ) Return h�; viElse let u =2 dom(�) Return h� [ [u 7! � ℄; uiWe onlude this desription with a note on onvergene. The omputation of � and N need not onverge.In pratie, we attempt to reah onvergene within a user-spei�ed bound. Why not oere terms on whihonvergene has not been reahed to input prediates? We have found that suh oerions typially result inoarse abstration graphs and spurious failures. We prefer to rely on user ontrol and perform suh oerionsonly via user-guided abstrations.3.1 Observations and ExtensionsOur method primarily relies on rewrite rules to simplify terms. Even in our example in Setion 2, equation 5is ritial to rewrite �00 to T0. Otherwise, the normal form T00 , (+ve (if (E (t+ n)) (C0 n) (C1 n)))would be lassi�ed as an input prediate whih leads to a spurious failure.This trivial example illustrates an important aspet of our approah. Equation 5 is a ritial but generi\fat" about +ve and if, independent of the system analyzed. Equation 5, known as an if-lifting rule, wouldusually be stored in a library of ommon rules. While generi rules an normalize most terms, it is importantfor salability that the proedure provide ontrol to failitate generation of manageable graphs. We nowdisuss one feature, user-guided abstration, that a�ords ontrol by oering terms to input prediates.We omit other features that our implementation supports, suh as use of rewriting for assume-guaranteereasoning and ase splitting, sine we do not use them in the examples in this paper.User-guided abstration is ahieved via a speial funtion hide. In the logi, hide is the identity funtion:(hide x) = x. However, the rewrt proedure will immediately return any term (hide �) as a normal form.To see how this a�ords oerion, onsider a system with omponents A0, A1, A2, et., where A0 is spei�edas follows:1. (A0 (t0)) = 12. (A0 (t+ n)) = (if (+ve (A1 n)) (A0 n) 42)A0 is assigned 42 if the previous value of A1 is not a positive integer, and otherwise is unhanged. Considerproving that P0 , (+ve (A0 n)) is an invariant. Our proedure will disover the term P1 , (+ve (A1 n))and attempt to rewrite (+ve (A1 (t+ n))), thereby possibly exploring other omponents. But P1 is ir-relevant to the invariane of P0. This irrelevane an be suggested by the user with the rule: (+ve (A1n)) = (hide (+ve (A1 n))). Sine hide is the identity funtion, proving this rule is trivial. The rule hasthe e�et of \wrapping" hide around (+ve (A1 n)) to reate a normal form whih is oered as an inputprediate (hide (+ve (A1 n))) produing a trivial abstration graph.3.2 Reahability ChekingThe abstration graph is heked by reahability analysis. Our reahability implementation is an on-the-y, breadth-�rst searh. While less eÆient than ommerial model hekers, our simple heker has beensuÆient to verify the examples in Setion 4. Note that any model heker an be interfaed with our workby translating the abstration graph to a program understandable by the heker. We have implementedinterfaes for VIS [8℄, Cadene SMV [9℄, and NuSMV [10℄. Our heker also ontains additional features toprovide user feedbak, suh as pruning ounterexamples to only report prediates that are relevant to thefailures in the reahability hek.We have also found that it is important to leverage the prediate disovery proedure to limit explorationof irrelevant paths during searh. Reall that user-guided abstration an redue nodes in the graph by6



oering temporal terms to input prediates. However, the proess an inrease the number of edges in thegraph. To ombat this, the abstration proedure omputes for eah node p (on-the-y) a set of representativeinput valuations, that is, valuations of input prediates that are relevant in determining nbrs(p). If � isoered to an input using hide, it ontributes to an edge from p only if some q 2 nbrs(p) depends on theinput variable orresponding to (hide �). In addition, we �lter exploration of spurious paths by usingrewrt to determine provably inonsistent ombinations of state and input prediates. For example, assumethat for some s 2 dom(N), �(s) , (equal (f n) (g n)), and for i0; i1 2 dom(�)ndom(N), �(i0) ,(equal (f n) (i (t+ n))) and �(i1) , (equal (g n) (i (t+ n))). Then for node p suh that p(s) =NIL, �ltering avoids exploration of edges in whih both i0 and i1 are mapped to T.4 DemonstrationIn this setion, we demonstrate the use of our approah to verify ahe oherene protools. For didatireasons, we �rst onsider a simple ESI protool, and show in some detail the rewrite rules used to generatethe abstration graph. We then disuss how the same approah is used to verify a more ompliated protool.4.1 A Simple ESI ProtoolIn our ESI model, an unbounded number of lient proesses ommuniate with a single ontroller proess toaess memory bloks (or ahe lines). Cahe lines onsist of addressable data. A lient an read the datafrom an address if its ahe ontains the orresponding line. A lient aquires a ahe line by sending a �llrequest to the ontroller; suh requests are tagged for Exlusive or Shared aess. A lient with shared aessan only load data in the ahe line. A lient with exlusive aess an also store data. The ontroller anrequest a lient to Invalidate or ush a ahe line and if the line was exlusive then its ontents are opiedbak to memory. The key equations in the ESI model de�nition are shown in Fig. 1. Funtions mem, ahe,exl, and valid model the following omponents:� (mem  n) is the ontent of line  in the memory at time n.� (ahe p  n) is the ontent of line  in the ahe of proess p at time n.� (valid  n) is the set of proesses having a opy of line  at time n.� (exl  n) is the set of proesses having an exlusive opy of  at time n.We model external stimuli with generi unary funtions p, op, addr, and data:� (p n) is the index of the proess sheduled at time n� (op n) is the ation taken by (p n). It an be "load", "store", "fille", "fills", or "flush"; "fille" and"fills" represent exlusive and shared �ll requests.� If (op n) = "store", then (p n) writes (data n) at (addr n) in its ahed blok.Notie that we use set and reord operations insert, drop, get, put, et., to de�ne the model. Thisemphasizes the importane of rewrite rules to normalize terms built out of the funtions used in the systemmodels. For these operations, suh rules are available in ACL2 [2℄ and the following are some useful rules:(in e (insert a s)) = (or (in e s) (equal e a))(in e (drop a s)) = (and (in e s) (/= e a))(get a (put b v r)) = (if (equal a b) v (get a r))The property we verify is oherene: reading from an address returns the value most reently written. Wespeify oherene as an invariant as follows. Let R and A be generi 0-ary funtions representing an arbitraryreading proess and an arbitrary address. We then de�ne unary funtions D and oherent in Fig. 2. (D n)is the last value that was stored to address (A) at time n, and (oherent n) remains true as long as a loadby (R) from (A) returns (D n). Thus, oherene follows from the proof that (oherent n) is an invariant.The areful reader will notie that in Fig. 1, membership in the set (exl  n) is tested using thefuntion in1. In the logi, in1 is simply set membership: (in1 e s) = (in e s), where (in e s) returnsT if e is a member of set s, else NIL. The funtion in1 is expeted to apply to sets that are either empty orsingleton. We utilize this expetation with the following rule:7



(mem  (t+ n)) (valid  (t+ n))= =(ond (ond((/= (line (addr (t+ n)) ) ((/= (line (addr (t+ n)) ))(mem  n)) (valid  n))((and (equal (op (t+ n)) "flush") ((and (equal (op (t+ n)) "flush")(in1 (p (t+ n)) (exl  n))) (e-in1 (p (t+ n)) (exl  n)))(ahe (p (t+ n)) n)) (drop (p (t+ n)) (valid  n)))(T (mem  n)))) ((or (and (equal (op (t+ n)) "fills")(empty (exl  n)))(ahe p  (t+ n)) (and (equal (op (t+ n)) "fille")= (empty (valid  n))))(ond (insert (p (t+ n)) (valid  n)))((/= (line (addr (t+ n))) ) (T (valid  n)))(ahe  n))((/= (p (t+ n)) p) (exl  (t+ n))(ahe p  n)) =((or (and (equal (op (t+ n)) "fills") (ond(empty (exl  n))) ((/= (line (addr (t+ n))) )(and (equal (op (t+ n)) "fille") (exl  n))(empty (valid  n)))) ((and (equal (op (t+ n)) "flush")(mem  n)) (e-in1 (p (t+ n)) (exl  n)))((and (equal (op (t+ n)) "store") (drop (p (t+ n)) (exl  n)))(in1 p (exl  n))) ((and (equal (op (t+ n)) "fille")(put (addr (t+ n)) (data (t+ n)) (empty (valid  n)))(ahe p  n))) (insert (p (t+ n)) (exl  n)))(T (ahe p  n))) (T (exl  n)))Figure 1: A model of the ESI protool. Funtion line is generi; (line a) is assumed to return theindex of the ahe line ontaining address a. Funtions insert and drop are de�ned to be set insertion anddeletion, in and in1 hek set membership, and empty is a test for emptyset. Funtion put models \reordupdate", so that (put a v r) is reord r hanged to map key a to value v. (e-in1 e s) is de�ned to be(or (empty s) (in1 e s)), and (/= x y) is de�ned to be (not (equal x y)).(in1 e s) = (ond ((empty s) nil)((singleton s) (equal e (hoose s)))(T (hide (in1 e s))))Here (hoose s) returns somemember s if s is a non-empty set, and (singleton s) heks if s is a singleton.This rule shows how rewrite rules and strutured de�nitions an onvey protool-level assumptions (namely,that (exl  n) is always empty or singleton) to the abstration proess without limiting expressiveness.Appliation of the rule auses terms involving in1 to be rewritten to introdue a ase-split for the aseswhere the set is empty, singleton, or otherwise, and oeres the third ase to an input prediate.With the rules above, our proedure proves that (oherent n) is an invariant. The abstration graph isde�ned on 9 state prediates (Fig. 3) and 25 input prediates. The searh traverses 133 edges exploring 11nodes and the proof takes a ouple of seonds. Without edge pruning, the searh explores 48 nodes. Notiethat the rule about in1 is ruial not only to abstrat the irrelevant ase, but also to introdue the relevantstate prediate 9; this prediate \traks" the fat that the value stored in address (A) at the loal aheof an arbitrary proessor (not neessarily (R)) at time n is equal to (D n). Fators like this have made itdiÆult for fully automati deision proedures to abstrat \proessor indies" in past work in abstration,and underline the importane of using an expressive logi to de�ne the neessary funtions for modeling8



(D (t0)) = (get (A) (mem (t0)))(oherent (t0)) = T(D (t+ n)) = (if (and (equal (addr (t+ n)) (A))(equal (op (t+ n)) "store")(in1 (p (t+ n)) (exl (line (addr (t+ n))) n)))(data n)(D n))(oherent (t+ n)) = (if (and (equal (p (t+ n)) (R))(equal (addr (t+ n)) (A))(equal (op (t+ n)) "load")(in (R) (valid (line (addr (t+ n))) n)))(equal (get (A) (ahe (R) (line (A)) n)) (D n))(oherent n))Figure 2: De�nition of funtions D and oherent for the ESI model. Funtion get is the \reord aess"operation; (get k r) returns the value stored with key k in reord r1. (oherent n)2. (valid (line (A)) n)3. (in (R) (valid (line (A)) n))4. (exl (line (A)) n)5. (singleton (exl (line (A)) n))6. (equal (hoose (exl (line (A)) n)) (R))7. (equal (D n) (get (A) (mem (line (A)) n)))8. (equal (D n) (get (A) (ahe (R) (line (A)) n)))9. (equal (D n) (get (A) (ahe (hoose (exl (line (A)) n))(line (A)) n)))Figure 3: State Prediates Disovered for the ESI Modeltarget systems.4.2 A More Elaborate Cahe Coherene ProtoolWe now onsider a more elaborate system and observe how onepts from the ESI model are reused withlittle \overhead". The system is based on the protool de�ned by S. German. In this system, the ontroller(named home), ommuniates with lients via three hannels 1, 2, and 3. Clients make ahe requests (�llrequests) on hannel 1. Home grants ahe aess (�ll responses) to lients on hannel 2; it also uses hannel 2to send invalidation (ush) requests. Clients send ush responses on hannel 3, sometimes with data.The German protool has been studied extensively by the formal veri�ation ommunity [11, 12, 13℄. Theoriginal implementation has single-entry hannels. In UCLID, indexed prediates were used [14℄ to verify aversion in whih hannels are modeled as unbounded FIFOs. Our system is inspired by the version withunbounded FIFOs. However, sine we have not built rules to reason diretly about unbounded FIFOs, wemodify the protool to use hannels of bounded size, and prove, in addition to oherene, that the imposedhannel bounds are never exeeded in our model. As in our ESI model, we also model the memory.Our model is roughly divided into three sets of funtions speifying the state of the lients, the homeontroller, and the hannels. The state of the lients is de�ned by the following funtions:� (ahe p  n) is the ontent of line  in the ahe of lient p at time n.� (valid  n) is the set of lients having a opy of line  at time n.� (exl  n) is the set of lients whih have exlusive aess of  at time n.9



Home maintains a entral diretory whih enables it to \deide" whether it an safely grant exlusive orshared aess to a ahe line. It also maintains a list of pending invalidate requests it must send, and thestate of the memory. The state of home is spei�ed by the following funtions:� (h-valid  n) is the set of lients whih have aess to line  at time n.� (h-exl  n) is the lient whih has exlusive aess to line  at time n.� (urr-md  n) is the pending request for line  at time n.� (urr-lient  n) is the most reent lient requesting for line  at n.� (mem  n) is the value of line  in the memory at time n.� (invalid  n) is a reord mapping lient identi�ers to the state of a pending invalidate request at time n. It anbe \none pending", or \pending and not sent", or \invalidate request sent", or \invalidate responsesent". This funtion models part of the state of home and part of the state of the hannels 2 and 3 (namely,invalidate requests and responses).Finally, the states of the three hannels are spei�ed by the following funtions (in addition to invalidabove):� (h1 p  n) is the requests sent from lient p for line  at time n.� (h2-sh  n) is the set of lients with a shared �ll response in hannel 2.� (h2-ex  n) is the set of lients with an exlusive �ll response in hannel 2.� (h2-data p  n) is the data sent to lient p with �ll responses.� (h3-data p  n) is the data sent from lient p with the invalidate responses.At any time n, one of the following 12 ations is seleted to exeute nondeterministially: (1) a lient sends ashared �ll request on hannel 1, (2) a lient sends an exlusive �ll request on hannel 1, (3) home piks a �llrequest from hannel 1, (4) home sends an invalidate request on hannel 2, (5) a lient sends an invalidateresponse on hannel 3, (6) home reeives an invalidate response on hannel 3, (7) home sends an exlusive�ll response on hannel 2, (8) home sends a shared response on hannel 2, (9) a lient reeives a shared�ll response from hannel 2, (10) a lient reeives a shared exlusive response from hannel 2, (11) a lientperforms a store, and (12) a lient performs a load.The oherene property we proved for this system is the same as that for ESI (Fig. 2). Although thissystem is more elaborate than ESI (and hene an indutive invariant, if manually onstruted, is verydi�erent), the rules from our libraries (inluding the set and reord rules mentioned in Setion 4.1) arediretly appliable. Further, a lesson learned from the ESI model is reused and we test membership in sets(h2-ex  n) and (exl  n) using in1. A similar rule is used to ause a ase split on the reord aessoperations for (invalid  n). With these rules, our proedure an prove oherene along with the boundedhannel invariant. The abstration graph for oherene is de�ned by 46 state and 117 input prediates. Thereahability hek explores 7000 nodes and about 300 thousand edges, and the proof is ompleted in lessthan 2 minutes on a modern desktop mahine running Linux. The proof of the bounded hannel invariantompleted in less time on a smaller abstration graph.5 Comparison with Related WorkOur method generates prediate abstrations using rewriting. Prediate abstration involves reating anabstrat model whose state variables orrespond to prediates in the onrete system. The idea is derivedfrom the more general notion of abstrat interpretations [15℄. Graf and Saidi [1℄ made the idea expliitand used it to verify ommuniation protools in PVS. Prediate abstrations have been used reently inSLAM [16℄ and BLAST [17℄ to verify devie drivers and C programs, and in UCLID [18, 14℄ to verifyunbounded state systems.The key di�erene between these approahes and ours is in the method employed for prediate disovery,that is, omputation of the prediates neessary for onstrution of the abstrat model. Prediate disoveryin PVS [1, 19℄ involves on-the-y validity heks using the theorem prover. While this allows spei�ation10



of arbitrary formulas as prediates, it an be prohibitively expensive. Other prediate abstration methodsemploy a more omputational approah. SLAM and BLAST use boolean programs with a ontrol-owskeleton similar to the original system, UCLID uses weakest liberal preonditions and index variables, andDas and Dill [20℄ use ounterexample analysis. To our knowledge, all these methods enfore some restritionon the language to express systems and target properties. Our method, on the other hand, is motivatedto exploit the expressiveness a�orded by allowing prediates to be arbitrary �rst-order formulas, while stillbeing eÆient in pratie. In our method, prediate disovery is based on instantiation of previously provenrewrite rules. Proving rewrite rules involves human e�ort; but suh proofs are done \o� line" and do notontribute to the ost of prediate omputation. With an e�etive library of rules, our method is eÆientin pratie. Our approah also disentangles heuristis for prediate disovery from the prediate abstrationproess. However, the proess might need user interation to determine the neessity of a new rule orde�nition. We note that while prediate abstrations have been used both in our work and UCLID to verifyversions of the German protool, the di�erene in expressive power of the two logis makes it diÆult toompare them diretly. Our method requires user-provided rewrite rules, but also a�ords greater ontrolover the struture and form of the system de�nition and the eÆieny of prediate disovery.Our approah is similar in onept to the work of Namjoshi and Khurshan [21℄. This method omputesprediates by applying syntati transformations to a formula that represents weakest liberal preonditions;it is also the basis of indexed prediate disovery in UCLID [14℄. Our approah an be viewed as a foused andsalable implementation of this method using term rewriting for syntati transformation, with extensionsand heuristis to failitate generation of e�etive abstrations as required for pratial appliation.6 ConlusionWe have presented a method for automating dedutive proofs of invariants for reative systems. Our methodredues an invariant proof to the reahability analysis of an abstration graph whih is a form of prediateabstration of the original system. Manual de�nition of indutive invariants is not neessary. This makesinvariant proofs robust against hanges arising from design evolution. The novelty of our method is in theuse of term rewriting to disover relevant prediates for the onstrution of the abstration graph. Sine themethod is based on symboli manipulation of terms, it is relatively insensitive to state explosion. Further,our implementation provides features to failitate ontrol over the searh ost of the abstration graph.Our approah a�ords exibility in prediate disovery by allowing the user to \plug in" di�erent librariesof rewrite rules. This makes it suitable for the veri�ation of a large lass of systems, without imposingrestritions on the language used. A key advantage of using dedutive reasoning over automati deisionproedures is the expressiveness of the logi. Expressiveness a�ords suint system de�nitions and powerfulproof tehniques. Our work is geared towards exploiting this advantage, while still providing substantialautomation in pratie. In our work, we found that most of the rules neessary for e�etive appliationof our tool are generi theorems about funtions used in modeling the target system, and, in the ontextof ACL2 proofs, available in existing libraries. Further, the onepts behind neessary \system-spei�"abstrations an also be reused for similar systems. Note, however, that the target system must be modeledwith some disipline so that rules an be designed to normalize terms built out of funtions used in themodel. If a omponent is modeled at a \low level" with funtions for whih rules are diÆult to design, thenit might be neessary to provide a more disiplined alternative de�nition. However, suh low-level modelsare rarely designed manually, but rather are generated by ompilers for higher-level languages. Our methodis appliable to systems at the level at whih they are modeled.In future work, we plan to apply this method to verify more detailed systems. In partiular, we areworking on applying the method to verify invariants of a pipelined implementation of the Y86 proessor [22℄developed at CMU.
11



AknowledgmentsWe thank Jared Davis, Robert Krug, Wilfred Legato, J Strother Moore, Erik Reeber, and Thomas Wahl forseveral omments and suggestions.Referenes[1℄ Graf, S., Saidi, H.: Constrution of Abstrat State Graphs with PVS. In Grumberg, O., ed.: Computer-Aided Veri�ation. Springer LNCS 1254 (1997) 72{83[2℄ Kaufmann, M., Sumners, R.: EÆient Rewriting of Data Strutures in ACL2. In Borrione, D., kauf-mann, M., Moore, J.S., eds.: 3rd ACL2 Workshop. (2002)[3℄ Davis, J.: Finite Set Theory based on Fully Ordered Lists. In Kaufmann, M., Moore, J.S., eds.: 5thACL2 Workshop. (2004)[4℄ Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approah. Kluwer AademiPublishers (2000)[5℄ Russino�, D.: A Case Study in Formal Veri�ation of Register-Transfer Logi with ACL2: The FloatingPoint Adder of the AMD Athlon Proessor. In: Formal Methods in Computer-Aided Design. SpringerLNCS 1954 (2000) 3{36[6℄ Brok, B., Kaufmann, M., Moore, J.S.: ACL2 Theorems about Commerial Miroproessors. In:FMCAD 1996. Springer LNCS 1166 (1996) 275{293[7℄ (http://www.s.utexas.edu/users/sandip/)[8℄ The VIS Group: VIS: A system for Veri�ation and Synthesis. In Alur, R., Henzinger, T., eds.:Computer Aided Veri�ation. Springer LNCS 1102 (1996)[9℄ MMillan, K.: Symboli Model Cheking. Kluwer Aademi Publishers (1993)[10℄ Cimatti, A., Clarke, E., Giunhiglia, F., Roveri, M.: NuSMV: A New Symboli Model Veri�er. In:Computer-Aided Veri�ation. LNCS 1633 (1999) 495{499[11℄ Pnueli, A., Ruah, S., Zuk, L.: Automati Dedutive Veri�ation with Invisible Invariants. In Margaria,T., Yi, W., eds.: Tools and Algorithms for Constrution and Analysis of Systems. Volume SpringerLNCS 2031. (2001) 82{97[12℄ Emerson, E.A., Kahlon, V.: Exat and EÆient Veri�ation of Parameterized Cahe Coherene Pro-tools. In: Corret Hardware Design and Veri�ation Methods. Volume Springer LNCS 2860. (2002)247{262[13℄ Lahiri, S.K., Bryant, R.E.: Construting Quanti�ed Invariants via Prediate Abstration. In Stefen,B., Levi, G., eds.: Veri�ation, Model Cheking and Abstration. Springer LNCS 2937 (2004) 267{281[14℄ Lahiri, S.K., Bryant, R.E.: Indexed Prediate Disovery for Unbounded System Veri�ation. In:Computer-Aided Veri�ation. Springer LNCS 3117 (2004) 135{147[15℄ Cousot, P., Cousot, R.: Abstrat Interpretation: A Uni�ed Lattie Model for Stati Analysis of Pro-grams by Approximation or Analysis of Fixpoints. In: Priniples of Programming Languages, ACMPress (1977) 238{252[16℄ Ball, T., Rajamani, S.K.: Automatially Validating Temporal Safety Properties of Interfaes. InDwyer, M.B., ed.: 8th International SPIN Workshop on Model Cheking of Software. Springer LNCS2057 (2001) 103{122 12



[17℄ Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstration. In: Priniples of ProgrammingLanguages, ACM Press (2002) 58{70[18℄ Lahiri, S.K., Bryant, R.E., Cook, B.: A Symboli Approah to Prediate Abstration. In: Computer-Aided Veri�ation. Springer LNCS 2275 (2003) 141{153[19℄ Saidi, H., Shankar, N.: Abstrat and model hek while you prove. In: Computer-Aided Veri�ation.Springer LNCS 1633 (1999) 443{453[20℄ Das, S., Dill, D.L.: Counter-example Based Prediate Disovery in Prediate Abstration. In: FMCAD2002. Springer LNCS 2517 (2002) 19{32[21℄ Namjoshi, K.S., Khurshan, R.P.: Syntati Program Transformations for Automati Abstration. In:Computer-Aided Veri�ation. Springer LNCS 1855 (2000) 435{449[22℄ Bryant, R.E., O'Hallaron, D.R.: Computer Systems: A Programmer's Perspetive. Prentie Hall (2003)

13


