
Proving Invariants via Rewriting and Abstra
tion �Rob Sumners Sandip RayAdvan
ed Mi
ro Devi
es, In
. Department of Computer S
ien
esAustin, TX 78741 University of Texas at Austinrobert.sumners�amd.
om Austin, TX 78712sandip�
s.utexas.eduJuly 2005Abstra
tWe present a dedu
tive method for proving invariants of rea
tive systems. Our approa
h uses termrewriting to redu
e invariant proofs to rea
hability analysis on a �nite graph. This substantially auto-mates invariant proofs by obviating the need to de�ne indu
tive invariants while still bene�tting fromthe expressiveness of dedu
tive methods. We implement a pro
edure supporting this approa
h whi
hinterfa
es with the ACL2 theorem prover. The interfa
e a�ords sound extension of our pro
edure withrewrite rules based on proven theorems. We demonstrate the method in the veri�
ation of
a
he
oheren
eproto
ols.1 MotivationThe goal of invariant proving is to show that a
ertain target property of a rea
tive system is an invariant.Invariant proving is a key problem in formal veri�
ation. Veri�
ation of safety properties
an be redu
ed tothe proof of an invariant. Even in the proofs of liveness properties, one typi
ally needs to establish someauxiliary invarian
e
ondition.Invariant proving is diÆ
ult for both model
he
king and theorem proving. The model
he
king ap-proa
h involves a (symboli
 or expli
it) sear
h to
he
k if all the rea
hable system states satisfy the targetproperty. If the number of states is tra
table, the pro
ess is automati
 usually with the additional bene�tof
ounterexample generation when the veri�
ation fails. However, the method is limited in pra
ti
e bystate explosion. The theorem proving approa
h involves strengthening the target property to an indu
tiveinvariant. This approa
h is generally insensitive to state explosion but in pra
ti
e
an require signi�
antuser intera
tion for de�ning the indu
tive invariant. In addition, indu
tive invariants are brittle and oftenrequire extensive modi�
ation to mat
h design
hanges. However, theorem provers support expressive logi
swhi
h allow users to su

in
tly de�ne systems, properties, and any additional fun
tions and lemmas thatenable eÆ
ient proofs.We present a method to bridge the automation gap between theorem proving and model
he
king, whilestill preserving the expressiveness of theorem proving. We use term rewriting to redu
e an invariant proof tothe rea
hability analysis of a �nite graph; the graph is a predi
ate abstra
tion [1℄ of the system. Rewriting isguided by rewrite rules that relate the di�erent fun
tions used to model the system. The rules are sele
tedfrom theorems proven by a theorem prover.Our approa
h transfers the user responsibility from de�ning indu
tive invariants to designing rules thatmanipulate fun
tions used in system de�nitions. How does this redu
e manual e�ort? Proving rewrite rulesdoes require human intera
tion. However, while indu
tive invariants are de�ned by a user for a spe
i�
�Support for this work was provided in part by the SRC under
ontra
t 02-TJ-1032.1

system, rewrite rules are proven fa
ts about the fun
tions used to model the system and
an be used inother systems using the same fun
tions. It is
ustomary for the users of a theorem prover to design rulesthat simplify terms whi
h arise during proofs [2, 3℄. We found that most of the rules ne
essary for our workare generi
, and already available as proven theorems in a dedu
tive setting. Note that sin
e the logi
 ofa theorem prover is unde
idable, any
olle
tion of rules is in
omplete and it may be ne
essary for the userto extend or re�ne the existing rules and de�nitions. However, feedba
k from our pro
edure assists in thedevelopment of these extensions and re�nements whi
h, in our experien
e,
an be reused in the veri�
ationof similar systems.Our pro
edure is interfa
ed with the ACL2 theorem prover [4℄. ACL2 has been used to verify several
ommer
ial systems [5, 6℄, and we make use of rewrite rules that have been proven in these e�orts. However,ACL2 is not
riti
al to our method; it is used primarily as a me
hanized logi
 with whi
h we are familiar.We believe that our pro
edure
an be easily ported to other theorem provers.The remainder of the paper is organized as follows. In Se
tion 2, we des
ribe the ACL2 logi
 and illustrateour method with a simple example. We present our pro
edure in Se
tion 3. In Se
tion 4, we demonstratethe method in proving invariants of
a
he
oheren
e proto
ols. In Se
tion 5, we dis
uss related work. We
on
lude in Se
tion 6. An implementation of the pro
edure, and the proofs des
ribed in this paper areavailable from the web page of the se
ond author [7℄.2 Ba
kground and OverviewIn this se
tion, we review the ACL2 logi
, and illustrate our method to prove invariants of rea
tive systemsmodeled in ACL2. This paper is not about ACL2; our overview only provides a formal
ontext for our work.Readers interested in ACL2 are referred to [4℄ for a
omprehensive des
ription.2.1 The ACL2 Logi
ACL2 is a �rst-order logi
 of re
ursive fun
tions with a syntax similar to Lisp. A term is a variable, a
onstant,or the appli
ation of an n-ary fun
tion f to n terms, written (f t1 t2 : : : tn). The set of
onstants is openbut in
ludes integers, strings, and symbols T and NIL denoting boolean true and false. Formulas in the logi
are represented by terms. For example, the term (with variables x, y, z)(implies (< x y) (< (+ x z) (+ y z)))represents a formula about arithmeti
. The syntax is quanti�er-free, and variables in formulas are impli
itlyuniversally quanti�ed. The term above
an be read as follows in the logi
: \For all x, y, z, if x is less thany, then x+ z is less than y + z."ACL2 axiomatizes a subset of Common Lisp. An axiom relating fun
tions
ar and
ons is: (equal(
ar (
ons x y)) x). Theorems
an be proven about axiomatized fun
tions. The inferen
e rules arepropositional
al
ulus with equality and instantiation, and well-founded indu
tion up to �0. For example,instantiation of the above axiom yields the theorem: (equal (
ar (
ons 2 y)) 2).We make spe
ial use of the ternary fun
tion if, whi
h is axiomatized to be \if-then-else": (if x y z)is equal to z if x is equal to NIL, otherwise y. Sin
e terms
ontaining if are extensively used in ACL2 (andLisp), there are
onstru
ts to stru
ture su
h terms. For example, we use (
ond (a b) (
 d) : : : (x y))to stand for (if a b (if
 d : : : (if x y NIL) : : :)). Boolean operations and, or, implies, et
. areaxiomatized using if:(equal (and x y) (if x y NIL))(equal (or x y) (if x x y))(equal (implies x y) (if x (if y T NIL) T))(equal (iff x y) (and (implies x y) (implies y x)))In this paper, we use standard mathemati
al notations to represent
ertain fun
tions. We use in�x operators\=" for equal, \^" for and, _" for or, \)" for implies, and \," for iff. Instead of writing (implies
(equal � �)), we will write
) (� = �). We also write (and x1 x2 : : : xn) to mean (and x1 (and x2...)) and similarly for (or x1 x2 : : : xn). If S is a set fe0; e1; : : : ; eng and M maps S to terms, then2

we write We2S M(e) and Ve2S M(e) to denote (or M(e1) M(e2) : : : M(en)) and (and M(e1) M(e2) : : :M(en)) respe
tively.ACL2 provides fa
ilities to
onsistently introdu
e new axioms. New total fun
tions
an be de�ned (oraxiomatized), like the fun
tion fa
torial below(fa
torial n) = (if (+ve n) (* n (fa
torial (- n 1))) 1)where (+ve n) returns T if n is a positive natural number, else NIL. The logi
 also supports mutuallyre
ursive fun
tion de�nitions. ACL2 further allows the introdu
tion of a fun
tion whi
h is only known tosatisfy some spe
i�ed axioms. We
an introdu
e a fun
tion E that only satis�es the axiom: (+ve (E n))= T. Su
h axioms are
alled
onstraints, and E is then
alled a
onstrained fun
tion. A theorem about a
onstrained fun
tion f is provable for any fun
tion f̂ satisfying the
onstraints. A
onstrained fun
tion withno
onstraint is termed generi
. If � is a theorem and �̂ is obtained from � by repla
ing o

urren
es of ageneri
 fun
tion g with any fun
tion ĝ of the same arity, then �̂ is a theorem.2.2 System Models and InvariantsRea
tive systems
onsist of several
omponents that perform on-going, non-terminating
omputations whileintera
ting with an external environment. The \state" of the system at any time is given by the value ofea
h
omponent. For example,
onsider a trivial system with two
omponents C0 and C1. C0 and C1 initiallyhave the value 1. At ea
h instant, they intera
t with an environment E and exe
ute as follows.� If E is NIL then C0 gets the previous value of C1; otherwise C0 is un
hanged.� If E is NIL then C1 is assigned to the value 42; otherwise C1 is un
hanged.Su
h systems
an be modeled [5℄ by spe
ifying, for ea
h
omponent C, a fun
tion (C n) that returns thevalue of C at time n. The external stimuli are modeled by generi
 fun
tions of n. We formalize time by twofun
tions, a 0-ary fun
tion t0 for \initial time", and a unary fun
tion t+ for \next time". The value of a
omponent at time (t+ n)
an depend on other
omponents at time n and the external stimuli at time (t+n). Equations 1-4 below de�ne the system above, and
an be spe
i�ed using mutually re
ursive fun
tionde�nitions.1 Here E is a generi
 unary fun
tion where (E n) is the value supplied by the environment attime n.1. (C0 (t0)) = 12. (C1 (t0)) = 13. (C0 (t+ n)) = (if (E (t+ n)) (C0 n) (C1 n))4. (C1 (t+ n)) = (if (E (t+ n)) (C0 n) 42)We
all a term � a temporal term if it has a single variable n representing time. A temporal term � is aninvariant if it does not evaluate to NIL for any n (i.e. �, T is a theorem). The goal of invariant proving isto show that a temporal term � is an invariant. For the system above, an invariant is �0 , (+ve (C0 n)).A dedu
tive method for invariant proving is to de�ne an indu
tive invariant. A unary fun
tion inv is anindu
tive invariant strengthening � if I1-I3 are theorems:I1: (inv (t0)) , TI2: (inv n)) �I3: (inv n)) (inv (t+ n))If some fun
tion inv is an indu
tive invariant strengthening �, then the invarian
e of � follows by indu
-tion on time n. For the example above, (inv n) = (and (+ve (C0 n)) (+ve (C1 n))) is an indu
tiveinvariant strengthening �0.1We a
tually need two other unary fun
tions, namely t- for \previous time" and tzp to
he
k if the \
urrent time" is t0.We omit dis
ussion of these fun
tions for brevity.
3

2.3 Overview of Our Approa
hConsider proving for the system above that �0 is an invariant. Instead of manually de�ning an indu
tiveinvariant, our approa
h \dis
overs" the relevant terms by rewriting. The term T0 below is the result ofrewriting the term �00 (whi
h is the term �0 with n repla
ed by (t+ n)) using equation 3 along with thefollowing equation 5: (+ve (if x y z)) = (if x (+ve y) (+ve z)).T0 , (if (E (t+ n)) (+ve (C0 n)) (+ve (C1 n)))We treat T0 as a boolean
ombination of (E (t+ n)), (+ve (C0 n)), and (+ve (C1 n)), and
lassify (+ve(C1 n)) as a new temporal term �1. Using equations 4 and 5, and the
omputed fa
t (+ve 42) = T, wesimilarly rewrite �01 (that is, �1 with n repla
ed by (t+ n)) toT1 , (if (E (t+ n)) (+ve (C0 n)) T)T0 and T1 spe
ify how �0 and �1 are \updated" at time n. We make this expli
it by
onstru
ting thefollowing mapping N from variables to terms:N(v0) , (if e v0 v1); N(v1) , (if e v0 T)N is obtained by repla
ing terms �0, �1, and (E (t+ n)) in T0 and T1 with v0, v1, and e respe
tively.Informally, variables in the domain of N (namely, v0 and v1) \tra
k" the temporal terms of interest (namely,�0 and �1), while other variables (namely, e) represent terms that are abstra
ted (namely, (E (t+ n))).N spe
i�es a dire
ted graph G as follows. The nodes are mappings from fv0; v1g to the set fT; NILg.The mapping Z , [v0 7! T; v1 7! T℄,
orresponding to values of �0 and �1 at time (t0), is the initial node.For nodes p , [v0 7! x; v1 7! y℄ and p0 , [v0 7! x0; v1 7! y0℄, there is an edge from p to p0 if for someeb 2 fT; NILg, x0 = (if eb x y) and y0 = (if eb x T).We then prove that �0 is an invariant by
he
king that v0 is mapped to T in ea
h node p rea
hable fromnode Z. Noti
e that G is a predi
ate abstra
tion of this example system.3 Pro
edureWe introdu
e some notations before des
ribing our pro
edure. We use [a 7! �; b 7! �℄, where a and b aredistin
t, to denote a �nite mapping � with domain fa; bg and range f�; �g so that �(a) = � and �(b) = �.We use dom(�) to denote the domain of �. Given mappings �1 and �2 on disjoint domains, �1 [�2 denotestheir union: if �1 , [a 7! �; b 7! �℄ and �2 , [
 7!
℄, then �1 [�2 , [a 7! �; b 7! �;
 7!
℄.Let �(�) be the set of variables in term � . If �(�) is empty, � is
alled a ground term. For term � andmapping � from variables to terms, �=� is the term obtained by repla
ing every variable v 2 dom(�) in �with �(v). Term � is
alled a boolean term if it is (i) a variable, or (ii) one of T or NIL, or (iii) a term (if� �
) where �, �, and
 are boolean terms. For a given set V of variables, B(V) is the set of mappingsfrom V to fT; NILg.Given a temporal term �0, our pro
edure �rst returns three mappings �, N , and Z from variables toterms su
h that the following hold:C1: dom(N) � dom(�); Z 2 B(dom(N)).C2: �(v0) = �0 for some v0 2 dom(N).C3: For ea
h v 2 dom(N), N(v) is a boolean term.C4: For ea
h v 2 dom(N), �(N(v)) � dom(�).C5: For ea
h v 2 dom(N), �(v)=[n 7! (t+ n)℄, N(v)=� is a theorem.C6: For ea
h v 2 dom(N), �(v)=[n 7! (t0)℄, Z(v) is a theorem.In our example, � , [v0 7! (+ve (C0 n)); v1 7! (+ve (C1 n)); e 7! (E (t+ n))℄. We then
onstru
t adire
ted abstra
tion graph G as follows:G1: The set of nodes in G is the set B(dom(N)).G2: The mapping Z is the initial node.G3: Let V , dom(�)ndom(N). There is an edge from node p to node q if there exists i 2 B(V) su
h that for allv 2 dom(N), N(v)=[p [i℄, q(v) is a theorem. 4

C3 and C4 imply that N(v)=[p [i℄ is a ground boolean term; thus the edge relation from G3
an bedetermined by evaluation. We now show how the invarian
e of �0 redu
es to rea
hability in G and how we
ompute �, N , and Z.For node p of G, we de�ne the minterm of p, denoted by M(p), as:M(p) , Vv2dom(N)(�(v), p(v))Let nbrs(p) denote the set of all nodes q su
h that there is an edge from p to q. From G3 and C5 thefollowing
an be shown to be a theorem.M(p)) (Wq2nbrs(p)M(q))=[n 7! (t+ n)℄ (1)Let R(p) be the set of all nodes rea
hable from p. Sin
e for any node q 2 R(p), R(q) � R(p), it followsfrom (1) that the following is a theorem.(Wq2R(p)M(q))) (Wq2R(p)M(q))=[n 7! (t+ n)℄ (2)Claim 1 below is well-known, and follows from the de�nition of indu
tive invariants using (2) and C6, andlets us
on
lude the invarian
e of �0 by
he
king if p(v0) = T for ea
h p 2 R(Z).Claim 1 If for every node p 2 R(Z), p(v0) = T then (inv n) = (Wq2R(Z)M(q)) is an indu
tive invariantstrengthening �0.To
ompute �, N , and Z whi
h satisfy C1-C6, we will de�ne pro
edures rewrt and
hop with the followingproperties. Given term � , rewrt(�) returns term �� su
h that � , �� is a theorem. Given term � andmapping � from �(�) to terms,
hop(�; �) returns a pair h�0; �i where � is a boolean term and �0 is a mappingfrom variables to terms su
h that the following properties hold: (a) �=�0 is synta
ti
ally equal to � , and (b)For v 2 dom(�), �0(v) = �(v). We then
ompute � and N as follows.Initially � := [v0 7! �0℄; N := [℄;while 9v 2 dom(�)ndom(N) su
h that (statep(�(v)) = T)let v 2 dom(�)ndom(N) su
h that (statep(�(v)) = T)h�; �i :=
hop(rewrt(�(v)=[n 7! (t+ n)℄);�)N := N [[v 7! �℄end whileReturn h�; NiRe
all that the value of a
omponent at time (t+ n) depends on the
omponents at time n and the externalstimuli at time (t+ n). Hen
e if (t+ n) o

urs as a subterm of a term � , then � involves an external stimulus.Call a temporal term � a state predi
ate if it does not
ontain (t+ n) or the appli
ation of the spe
ial fun
tionhide in any subterm; otherwise we
all � an input predi
ate. We use hide for user-guided abstra
tions, andwe will dis
uss it in Se
tion 3.1. Pro
edure statep(�) above returns T if � is a state predi
ate, otherwise itreturns NIL. We
ompute Z as follows: for a ground term � , let val(�) 2 fT; NILg where � , val(�) is atheorem, then Z(v) , val(�(v)=[n 7! (t0)℄) for ea
h v 2 dom(N).It remains for us to des
ribe rewrt and
hop. Pro
edure rewrt is a term rewriter. It transforms a term� into another term �� using the system de�nitions and theorems as follows. A de�nition or theorem ofthe form
) (� = �) where �, �, and
 are terms, is treated as a rewrite rule.2 The rule is appli
ableto term � if there is a mapping b from variables to terms su
h that (
=b , T) is a theorem and �=b issynta
ti
ally equal to �; �=b is the result of the appli
ation. Sin
e inferen
e rules of the logi
 in
lude equalityand instantiation, if �� is a result of rewriting �, then � = �� (and hen
e � , ��) is a theorem. A rewriterapplies rules to a term until no rule is appli
able. The resulting term is a normal form. In general rewritingis a non-deterministi
 pro
ess, but rewrt implements rewriting that is prin
ipally inside-out (arguments of aterm are rewritten before the term), and ordered (rules are applied in a �xed total order). The pro
edurerewrt also in
orporates some
ongruen
e-based reasoning and gives spe
ial treatment to the fun
tion hide.Terms T0 and T1 in Se
tion 2.3 are normal forms.We now simply de�ne
hop as the following re
ursive pro
edure whi
h traverses the appli
ations of if ina term and repla
es the non-if subterms with new variables while updating the mapping � a

ordingly.2A de�nition is of the form � = � and is treated as the rewrite rule: T) (� = �).5

hop(� ,�) , If � = (if � �
)let h�; �1i :=
hop(�; �)h�; �2i :=
hop(�; �)h�; �3i :=
hop(
; �)Return h�; (if �1 �2 �3)iElse If (9v 2 dom(�) : �(v) = �) Return h�; viElse let u =2 dom(�) Return h� [[u 7! � ℄; uiWe
on
lude this des
ription with a note on
onvergen
e. The
omputation of � and N need not
onverge.In pra
ti
e, we attempt to rea
h
onvergen
e within a user-spe
i�ed bound. Why not
oer
e terms on whi
h
onvergen
e has not been rea
hed to input predi
ates? We have found that su
h
oer
ions typi
ally result in
oarse abstra
tion graphs and spurious failures. We prefer to rely on user
ontrol and perform su
h
oer
ionsonly via user-guided abstra
tions.3.1 Observations and ExtensionsOur method primarily relies on rewrite rules to simplify terms. Even in our example in Se
tion 2, equation 5is
riti
al to rewrite �00 to T0. Otherwise, the normal form T00 , (+ve (if (E (t+ n)) (C0 n) (C1 n)))would be
lassi�ed as an input predi
ate whi
h leads to a spurious failure.This trivial example illustrates an important aspe
t of our approa
h. Equation 5 is a
riti
al but generi
\fa
t" about +ve and if, independent of the system analyzed. Equation 5, known as an if-lifting rule, wouldusually be stored in a library of
ommon rules. While generi
 rules
an normalize most terms, it is importantfor s
alability that the pro
edure provide
ontrol to fa
ilitate generation of manageable graphs. We nowdis
uss one feature, user-guided abstra
tion, that a�ords
ontrol by
oer
ing terms to input predi
ates.We omit other features that our implementation supports, su
h as use of rewriting for assume-guaranteereasoning and
ase splitting, sin
e we do not use them in the examples in this paper.User-guided abstra
tion is a
hieved via a spe
ial fun
tion hide. In the logi
, hide is the identity fun
tion:(hide x) = x. However, the rewrt pro
edure will immediately return any term (hide �) as a normal form.To see how this a�ords
oer
ion,
onsider a system with
omponents A0, A1, A2, et
., where A0 is spe
i�edas follows:1. (A0 (t0)) = 12. (A0 (t+ n)) = (if (+ve (A1 n)) (A0 n) 42)A0 is assigned 42 if the previous value of A1 is not a positive integer, and otherwise is un
hanged. Considerproving that P0 , (+ve (A0 n)) is an invariant. Our pro
edure will dis
over the term P1 , (+ve (A1 n))and attempt to rewrite (+ve (A1 (t+ n))), thereby possibly exploring other
omponents. But P1 is ir-relevant to the invarian
e of P0. This irrelevan
e
an be suggested by the user with the rule: (+ve (A1n)) = (hide (+ve (A1 n))). Sin
e hide is the identity fun
tion, proving this rule is trivial. The rule hasthe e�e
t of \wrapping" hide around (+ve (A1 n)) to
reate a normal form whi
h is
oer
ed as an inputpredi
ate (hide (+ve (A1 n))) produ
ing a trivial abstra
tion graph.3.2 Rea
hability Che
kingThe abstra
tion graph is
he
ked by rea
hability analysis. Our rea
hability implementation is an on-the-
y, breadth-�rst sear
h. While less eÆ
ient than
ommer
ial model
he
kers, our simple
he
ker has beensuÆ
ient to verify the examples in Se
tion 4. Note that any model
he
ker
an be interfa
ed with our workby translating the abstra
tion graph to a program understandable by the
he
ker. We have implementedinterfa
es for VIS [8℄, Caden
e SMV [9℄, and NuSMV [10℄. Our
he
ker also
ontains additional features toprovide user feedba
k, su
h as pruning
ounterexamples to only report predi
ates that are relevant to thefailures in the rea
hability
he
k.We have also found that it is important to leverage the predi
ate dis
overy pro
edure to limit explorationof irrelevant paths during sear
h. Re
all that user-guided abstra
tion
an redu
e nodes in the graph by6

oer
ing temporal terms to input predi
ates. However, the pro
ess
an in
rease the number of edges in thegraph. To
ombat this, the abstra
tion pro
edure
omputes for ea
h node p (on-the-
y) a set of representativeinput valuations, that is, valuations of input predi
ates that are relevant in determining nbrs(p). If � is
oer
ed to an input using hide, it
ontributes to an edge from p only if some q 2 nbrs(p) depends on theinput variable
orresponding to (hide �). In addition, we �lter exploration of spurious paths by usingrewrt to determine provably in
onsistent
ombinations of state and input predi
ates. For example, assumethat for some s 2 dom(N), �(s) , (equal (f n) (g n)), and for i0; i1 2 dom(�)ndom(N), �(i0) ,(equal (f n) (i (t+ n))) and �(i1) , (equal (g n) (i (t+ n))). Then for node p su
h that p(s) =NIL, �ltering avoids exploration of edges in whi
h both i0 and i1 are mapped to T.4 DemonstrationIn this se
tion, we demonstrate the use of our approa
h to verify
a
he
oheren
e proto
ols. For dida
ti
reasons, we �rst
onsider a simple ESI proto
ol, and show in some detail the rewrite rules used to generatethe abstra
tion graph. We then dis
uss how the same approa
h is used to verify a more
ompli
ated proto
ol.4.1 A Simple ESI Proto
olIn our ESI model, an unbounded number of
lient pro
esses
ommuni
ate with a single
ontroller pro
ess toa

ess memory blo
ks (or
a
he lines). Ca
he lines
onsist of addressable data. A
lient
an read the datafrom an address if its
a
he
ontains the
orresponding line. A
lient a
quires a
a
he line by sending a �llrequest to the
ontroller; su
h requests are tagged for Ex
lusive or Shared a

ess. A
lient with shared a

ess
an only load data in the
a
he line. A
lient with ex
lusive a

ess
an also store data. The
ontroller
anrequest a
lient to Invalidate or
ush a
a
he line and if the line was ex
lusive then its
ontents are
opiedba
k to memory. The key equations in the ESI model de�nition are shown in Fig. 1. Fun
tions mem,
a
he,ex
l, and valid model the following
omponents:� (mem
 n) is the
ontent of line
 in the memory at time n.� (
a
he p
 n) is the
ontent of line
 in the
a
he of pro
ess p at time n.� (valid
 n) is the set of pro
esses having a
opy of line
 at time n.� (ex
l
 n) is the set of pro
esses having an ex
lusive
opy of
 at time n.We model external stimuli with generi
 unary fun
tions p, op, addr, and data:� (p n) is the index of the pro
ess s
heduled at time n� (op n) is the a
tion taken by (p n). It
an be "load", "store", "fille", "fills", or "flush"; "fille" and"fills" represent ex
lusive and shared �ll requests.� If (op n) = "store", then (p n) writes (data n) at (addr n) in its
a
hed blo
k.Noti
e that we use set and re
ord operations insert, drop, get, put, et
., to de�ne the model. Thisemphasizes the importan
e of rewrite rules to normalize terms built out of the fun
tions used in the systemmodels. For these operations, su
h rules are available in ACL2 [2℄ and the following are some useful rules:(in e (insert a s)) = (or (in e s) (equal e a))(in e (drop a s)) = (and (in e s) (/= e a))(get a (put b v r)) = (if (equal a b) v (get a r))The property we verify is
oheren
e: reading from an address returns the value most re
ently written. Wespe
ify
oheren
e as an invariant as follows. Let R and A be generi
 0-ary fun
tions representing an arbitraryreading pro
ess and an arbitrary address. We then de�ne unary fun
tions D and
oherent in Fig. 2. (D n)is the last value that was stored to address (A) at time n, and (
oherent n) remains true as long as a loadby (R) from (A) returns (D n). Thus,
oheren
e follows from the proof that (
oherent n) is an invariant.The
areful reader will noti
e that in Fig. 1, membership in the set (ex
l
 n) is tested using thefun
tion in1. In the logi
, in1 is simply set membership: (in1 e s) = (in e s), where (in e s) returnsT if e is a member of set s, else NIL. The fun
tion in1 is expe
ted to apply to sets that are either empty orsingleton. We utilize this expe
tation with the following rule:7

(mem
 (t+ n)) (valid
 (t+ n))= =(
ond (
ond((/= (
line (addr (t+ n))
) ((/= (
line (addr (t+ n))
))(mem
 n)) (valid
 n))((and (equal (op (t+ n)) "flush") ((and (equal (op (t+ n)) "flush")(in1 (p (t+ n)) (ex
l
 n))) (e-in1 (p (t+ n)) (ex
l
 n)))(
a
he (p (t+ n)) n)) (drop (p (t+ n)) (valid
 n)))(T (mem
 n)))) ((or (and (equal (op (t+ n)) "fills")(empty (ex
l
 n)))(
a
he p
 (t+ n)) (and (equal (op (t+ n)) "fille")= (empty (valid
 n))))(
ond (insert (p (t+ n)) (valid
 n)))((/= (
line (addr (t+ n)))
) (T (valid
 n)))(
a
he
 n))((/= (p (t+ n)) p) (ex
l
 (t+ n))(
a
he p
 n)) =((or (and (equal (op (t+ n)) "fills") (
ond(empty (ex
l
 n))) ((/= (
line (addr (t+ n)))
)(and (equal (op (t+ n)) "fille") (ex
l
 n))(empty (valid
 n)))) ((and (equal (op (t+ n)) "flush")(mem
 n)) (e-in1 (p (t+ n)) (ex
l
 n)))((and (equal (op (t+ n)) "store") (drop (p (t+ n)) (ex
l
 n)))(in1 p (ex
l
 n))) ((and (equal (op (t+ n)) "fille")(put (addr (t+ n)) (data (t+ n)) (empty (valid
 n)))(
a
he p
 n))) (insert (p (t+ n)) (ex
l
 n)))(T (
a
he p
 n))) (T (ex
l
 n)))Figure 1: A model of the ESI proto
ol. Fun
tion
line is generi
; (
line a) is assumed to return theindex of the
a
he line
ontaining address a. Fun
tions insert and drop are de�ned to be set insertion anddeletion, in and in1
he
k set membership, and empty is a test for emptyset. Fun
tion put models \re
ordupdate", so that (put a v r) is re
ord r
hanged to map key a to value v. (e-in1 e s) is de�ned to be(or (empty s) (in1 e s)), and (/= x y) is de�ned to be (not (equal x y)).(in1 e s) = (
ond ((empty s) nil)((singleton s) (equal e (
hoose s)))(T (hide (in1 e s))))Here (
hoose s) returns somemember s if s is a non-empty set, and (singleton s)
he
ks if s is a singleton.This rule shows how rewrite rules and stru
tured de�nitions
an
onvey proto
ol-level assumptions (namely,that (ex
l
 n) is always empty or singleton) to the abstra
tion pro
ess without limiting expressiveness.Appli
ation of the rule
auses terms involving in1 to be rewritten to introdu
e a
ase-split for the
aseswhere the set is empty, singleton, or otherwise, and
oer
es the third
ase to an input predi
ate.With the rules above, our pro
edure proves that (
oherent n) is an invariant. The abstra
tion graph isde�ned on 9 state predi
ates (Fig. 3) and 25 input predi
ates. The sear
h traverses 133 edges exploring 11nodes and the proof takes a
ouple of se
onds. Without edge pruning, the sear
h explores 48 nodes. Noti
ethat the rule about in1 is
ru
ial not only to abstra
t the irrelevant
ase, but also to introdu
e the relevantstate predi
ate 9; this predi
ate \tra
ks" the fa
t that the value stored in address (A) at the lo
al
a
heof an arbitrary pro
essor (not ne
essarily (R)) at time n is equal to (D n). Fa
tors like this have made itdiÆ
ult for fully automati
 de
ision pro
edures to abstra
t \pro
essor indi
es" in past work in abstra
tion,and underline the importan
e of using an expressive logi
 to de�ne the ne
essary fun
tions for modeling8

(D (t0)) = (get (A) (mem (t0)))(
oherent (t0)) = T(D (t+ n)) = (if (and (equal (addr (t+ n)) (A))(equal (op (t+ n)) "store")(in1 (p (t+ n)) (ex
l (
line (addr (t+ n))) n)))(data n)(D n))(
oherent (t+ n)) = (if (and (equal (p (t+ n)) (R))(equal (addr (t+ n)) (A))(equal (op (t+ n)) "load")(in (R) (valid (
line (addr (t+ n))) n)))(equal (get (A) (
a
he (R) (
line (A)) n)) (D n))(
oherent n))Figure 2: De�nition of fun
tions D and
oherent for the ESI model. Fun
tion get is the \re
ord a

ess"operation; (get k r) returns the value stored with key k in re
ord r1. (
oherent n)2. (valid (
line (A)) n)3. (in (R) (valid (
line (A)) n))4. (ex
l (
line (A)) n)5. (singleton (ex
l (
line (A)) n))6. (equal (
hoose (ex
l (
line (A)) n)) (R))7. (equal (D n) (get (A) (mem (
line (A)) n)))8. (equal (D n) (get (A) (
a
he (R) (
line (A)) n)))9. (equal (D n) (get (A) (
a
he (
hoose (ex
l (
line (A)) n))(
line (A)) n)))Figure 3: State Predi
ates Dis
overed for the ESI Modeltarget systems.4.2 A More Elaborate Ca
he Coheren
e Proto
olWe now
onsider a more elaborate system and observe how
on
epts from the ESI model are reused withlittle \overhead". The system is based on the proto
ol de�ned by S. German. In this system, the
ontroller(named home),
ommuni
ates with
lients via three
hannels 1, 2, and 3. Clients make
a
he requests (�llrequests) on
hannel 1. Home grants
a
he a

ess (�ll responses) to
lients on
hannel 2; it also uses
hannel 2to send invalidation (
ush) requests. Clients send
ush responses on
hannel 3, sometimes with data.The German proto
ol has been studied extensively by the formal veri�
ation
ommunity [11, 12, 13℄. Theoriginal implementation has single-entry
hannels. In UCLID, indexed predi
ates were used [14℄ to verify aversion in whi
h
hannels are modeled as unbounded FIFOs. Our system is inspired by the version withunbounded FIFOs. However, sin
e we have not built rules to reason dire
tly about unbounded FIFOs, wemodify the proto
ol to use
hannels of bounded size, and prove, in addition to
oheren
e, that the imposed
hannel bounds are never ex
eeded in our model. As in our ESI model, we also model the memory.Our model is roughly divided into three sets of fun
tions spe
ifying the state of the
lients, the home
ontroller, and the
hannels. The state of the
lients is de�ned by the following fun
tions:� (
a
he p
 n) is the
ontent of line
 in the
a
he of
lient p at time n.� (valid
 n) is the set of
lients having a
opy of line
 at time n.� (ex
l
 n) is the set of
lients whi
h have ex
lusive a

ess of
 at time n.9

Home maintains a
entral dire
tory whi
h enables it to \de
ide" whether it
an safely grant ex
lusive orshared a

ess to a
a
he line. It also maintains a list of pending invalidate requests it must send, and thestate of the memory. The state of home is spe
i�ed by the following fun
tions:� (h-valid
 n) is the set of
lients whi
h have a

ess to line
 at time n.� (h-ex
l
 n) is the
lient whi
h has ex
lusive a

ess to line
 at time n.� (
urr-
md
 n) is the pending request for line
 at time n.� (
urr-
lient
 n) is the most re
ent
lient requesting for line
 at n.� (mem
 n) is the value of line
 in the memory at time n.� (invalid
 n) is a re
ord mapping
lient identi�ers to the state of a pending invalidate request at time n. It
anbe \none pending", or \pending and not sent", or \invalidate request sent", or \invalidate responsesent". This fun
tion models part of the state of home and part of the state of the
hannels 2 and 3 (namely,invalidate requests and responses).Finally, the states of the three
hannels are spe
i�ed by the following fun
tions (in addition to invalidabove):� (
h1 p
 n) is the requests sent from
lient p for line
 at time n.� (
h2-sh
 n) is the set of
lients with a shared �ll response in
hannel 2.� (
h2-ex
 n) is the set of
lients with an ex
lusive �ll response in
hannel 2.� (
h2-data p
 n) is the data sent to
lient p with �ll responses.� (
h3-data p
 n) is the data sent from
lient p with the invalidate responses.At any time n, one of the following 12 a
tions is sele
ted to exe
ute nondeterministi
ally: (1) a
lient sends ashared �ll request on
hannel 1, (2) a
lient sends an ex
lusive �ll request on
hannel 1, (3) home pi
ks a �llrequest from
hannel 1, (4) home sends an invalidate request on
hannel 2, (5) a
lient sends an invalidateresponse on
hannel 3, (6) home re
eives an invalidate response on
hannel 3, (7) home sends an ex
lusive�ll response on
hannel 2, (8) home sends a shared response on
hannel 2, (9) a
lient re
eives a shared�ll response from
hannel 2, (10) a
lient re
eives a shared ex
lusive response from
hannel 2, (11) a
lientperforms a store, and (12) a
lient performs a load.The
oheren
e property we proved for this system is the same as that for ESI (Fig. 2). Although thissystem is more elaborate than ESI (and hen
e an indu
tive invariant, if manually
onstru
ted, is verydi�erent), the rules from our libraries (in
luding the set and re
ord rules mentioned in Se
tion 4.1) aredire
tly appli
able. Further, a lesson learned from the ESI model is reused and we test membership in sets(
h2-ex
 n) and (ex
l
 n) using in1. A similar rule is used to
ause a
ase split on the re
ord a

essoperations for (invalid
 n). With these rules, our pro
edure
an prove
oheren
e along with the bounded
hannel invariant. The abstra
tion graph for
oheren
e is de�ned by 46 state and 117 input predi
ates. Therea
hability
he
k explores 7000 nodes and about 300 thousand edges, and the proof is
ompleted in lessthan 2 minutes on a modern desktop ma
hine running Linux. The proof of the bounded
hannel invariant
ompleted in less time on a smaller abstra
tion graph.5 Comparison with Related WorkOur method generates predi
ate abstra
tions using rewriting. Predi
ate abstra
tion involves
reating anabstra
t model whose state variables
orrespond to predi
ates in the
on
rete system. The idea is derivedfrom the more general notion of abstra
t interpretations [15℄. Graf and Saidi [1℄ made the idea expli
itand used it to verify
ommuni
ation proto
ols in PVS. Predi
ate abstra
tions have been used re
ently inSLAM [16℄ and BLAST [17℄ to verify devi
e drivers and C programs, and in UCLID [18, 14℄ to verifyunbounded state systems.The key di�eren
e between these approa
hes and ours is in the method employed for predi
ate dis
overy,that is,
omputation of the predi
ates ne
essary for
onstru
tion of the abstra
t model. Predi
ate dis
overyin PVS [1, 19℄ involves on-the-
y validity
he
ks using the theorem prover. While this allows spe
i�
ation10

of arbitrary formulas as predi
ates, it
an be prohibitively expensive. Other predi
ate abstra
tion methodsemploy a more
omputational approa
h. SLAM and BLAST use boolean programs with a
ontrol-
owskeleton similar to the original system, UCLID uses weakest liberal pre
onditions and index variables, andDas and Dill [20℄ use
ounterexample analysis. To our knowledge, all these methods enfor
e some restri
tionon the language to express systems and target properties. Our method, on the other hand, is motivatedto exploit the expressiveness a�orded by allowing predi
ates to be arbitrary �rst-order formulas, while stillbeing eÆ
ient in pra
ti
e. In our method, predi
ate dis
overy is based on instantiation of previously provenrewrite rules. Proving rewrite rules involves human e�ort; but su
h proofs are done \o� line" and do not
ontribute to the
ost of predi
ate
omputation. With an e�e
tive library of rules, our method is eÆ
ientin pra
ti
e. Our approa
h also disentangles heuristi
s for predi
ate dis
overy from the predi
ate abstra
tionpro
ess. However, the pro
ess might need user intera
tion to determine the ne
essity of a new rule orde�nition. We note that while predi
ate abstra
tions have been used both in our work and UCLID to verifyversions of the German proto
ol, the di�eren
e in expressive power of the two logi
s makes it diÆ
ult to
ompare them dire
tly. Our method requires user-provided rewrite rules, but also a�ords greater
ontrolover the stru
ture and form of the system de�nition and the eÆ
ien
y of predi
ate dis
overy.Our approa
h is similar in
on
ept to the work of Namjoshi and Khurshan [21℄. This method
omputespredi
ates by applying synta
ti
 transformations to a formula that represents weakest liberal pre
onditions;it is also the basis of indexed predi
ate dis
overy in UCLID [14℄. Our approa
h
an be viewed as a fo
used ands
alable implementation of this method using term rewriting for synta
ti
 transformation, with extensionsand heuristi
s to fa
ilitate generation of e�e
tive abstra
tions as required for pra
ti
al appli
ation.6 Con
lusionWe have presented a method for automating dedu
tive proofs of invariants for rea
tive systems. Our methodredu
es an invariant proof to the rea
hability analysis of an abstra
tion graph whi
h is a form of predi
ateabstra
tion of the original system. Manual de�nition of indu
tive invariants is not ne
essary. This makesinvariant proofs robust against
hanges arising from design evolution. The novelty of our method is in theuse of term rewriting to dis
over relevant predi
ates for the
onstru
tion of the abstra
tion graph. Sin
e themethod is based on symboli
 manipulation of terms, it is relatively insensitive to state explosion. Further,our implementation provides features to fa
ilitate
ontrol over the sear
h
ost of the abstra
tion graph.Our approa
h a�ords
exibility in predi
ate dis
overy by allowing the user to \plug in" di�erent librariesof rewrite rules. This makes it suitable for the veri�
ation of a large
lass of systems, without imposingrestri
tions on the language used. A key advantage of using dedu
tive reasoning over automati
 de
isionpro
edures is the expressiveness of the logi
. Expressiveness a�ords su

in
t system de�nitions and powerfulproof te
hniques. Our work is geared towards exploiting this advantage, while still providing substantialautomation in pra
ti
e. In our work, we found that most of the rules ne
essary for e�e
tive appli
ationof our tool are generi
 theorems about fun
tions used in modeling the target system, and, in the
ontextof ACL2 proofs, available in existing libraries. Further, the
on
epts behind ne
essary \system-spe
i�
"abstra
tions
an also be reused for similar systems. Note, however, that the target system must be modeledwith some dis
ipline so that rules
an be designed to normalize terms built out of fun
tions used in themodel. If a
omponent is modeled at a \low level" with fun
tions for whi
h rules are diÆ
ult to design, thenit might be ne
essary to provide a more dis
iplined alternative de�nition. However, su
h low-level modelsare rarely designed manually, but rather are generated by
ompilers for higher-level languages. Our methodis appli
able to systems at the level at whi
h they are modeled.In future work, we plan to apply this method to verify more detailed systems. In parti
ular, we areworking on applying the method to verify invariants of a pipelined implementation of the Y86 pro
essor [22℄developed at CMU.
11

A
knowledgmentsWe thank Jared Davis, Robert Krug, Wilfred Legato, J Strother Moore, Erik Reeber, and Thomas Wahl forseveral
omments and suggestions.Referen
es[1℄ Graf, S., Saidi, H.: Constru
tion of Abstra
t State Graphs with PVS. In Grumberg, O., ed.: Computer-Aided Veri�
ation. Springer LNCS 1254 (1997) 72{83[2℄ Kaufmann, M., Sumners, R.: EÆ
ient Rewriting of Data Stru
tures in ACL2. In Borrione, D., kauf-mann, M., Moore, J.S., eds.: 3rd ACL2 Workshop. (2002)[3℄ Davis, J.: Finite Set Theory based on Fully Ordered Lists. In Kaufmann, M., Moore, J.S., eds.: 5thACL2 Workshop. (2004)[4℄ Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approa
h. Kluwer A
ademi
Publishers (2000)[5℄ Russino�, D.: A Case Study in Formal Veri�
ation of Register-Transfer Logi
 with ACL2: The FloatingPoint Adder of the AMD Athlon Pro
essor. In: Formal Methods in Computer-Aided Design. SpringerLNCS 1954 (2000) 3{36[6℄ Bro
k, B., Kaufmann, M., Moore, J.S.: ACL2 Theorems about Commer
ial Mi
ropro
essors. In:FMCAD 1996. Springer LNCS 1166 (1996) 275{293[7℄ (http://www.
s.utexas.edu/users/sandip/)[8℄ The VIS Group: VIS: A system for Veri�
ation and Synthesis. In Alur, R., Henzinger, T., eds.:Computer Aided Veri�
ation. Springer LNCS 1102 (1996)[9℄ M
Millan, K.: Symboli
 Model Che
king. Kluwer A
ademi
 Publishers (1993)[10℄ Cimatti, A., Clarke, E., Giun
higlia, F., Roveri, M.: NuSMV: A New Symboli
 Model Veri�er. In:Computer-Aided Veri�
ation. LNCS 1633 (1999) 495{499[11℄ Pnueli, A., Ruah, S., Zu
k, L.: Automati
 Dedu
tive Veri�
ation with Invisible Invariants. In Margaria,T., Yi, W., eds.: Tools and Algorithms for Constru
tion and Analysis of Systems. Volume SpringerLNCS 2031. (2001) 82{97[12℄ Emerson, E.A., Kahlon, V.: Exa
t and EÆ
ient Veri�
ation of Parameterized Ca
he Coheren
e Pro-to
ols. In: Corre
t Hardware Design and Veri�
ation Methods. Volume Springer LNCS 2860. (2002)247{262[13℄ Lahiri, S.K., Bryant, R.E.: Constru
ting Quanti�ed Invariants via Predi
ate Abstra
tion. In Stefen,B., Levi, G., eds.: Veri�
ation, Model Che
king and Abstra
tion. Springer LNCS 2937 (2004) 267{281[14℄ Lahiri, S.K., Bryant, R.E.: Indexed Predi
ate Dis
overy for Unbounded System Veri�
ation. In:Computer-Aided Veri�
ation. Springer LNCS 3117 (2004) 135{147[15℄ Cousot, P., Cousot, R.: Abstra
t Interpretation: A Uni�ed Latti
e Model for Stati
 Analysis of Pro-grams by Approximation or Analysis of Fixpoints. In: Prin
iples of Programming Languages, ACMPress (1977) 238{252[16℄ Ball, T., Rajamani, S.K.: Automati
ally Validating Temporal Safety Properties of Interfa
es. InDwyer, M.B., ed.: 8th International SPIN Workshop on Model Che
king of Software. Springer LNCS2057 (2001) 103{122 12

[17℄ Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstra
tion. In: Prin
iples of ProgrammingLanguages, ACM Press (2002) 58{70[18℄ Lahiri, S.K., Bryant, R.E., Cook, B.: A Symboli
 Approa
h to Predi
ate Abstra
tion. In: Computer-Aided Veri�
ation. Springer LNCS 2275 (2003) 141{153[19℄ Saidi, H., Shankar, N.: Abstra
t and model
he
k while you prove. In: Computer-Aided Veri�
ation.Springer LNCS 1633 (1999) 443{453[20℄ Das, S., Dill, D.L.: Counter-example Based Predi
ate Dis
overy in Predi
ate Abstra
tion. In: FMCAD2002. Springer LNCS 2517 (2002) 19{32[21℄ Namjoshi, K.S., Khurshan, R.P.: Synta
ti
 Program Transformations for Automati
 Abstra
tion. In:Computer-Aided Veri�
ation. Springer LNCS 1855 (2000) 435{449[22℄ Bryant, R.E., O'Hallaron, D.R.: Computer Systems: A Programmer's Perspe
tive. Prenti
e Hall (2003)

13

