
Copyright

by

Min Sik Kim

2005

The Dissertation Committee for Min Sik Kim
certifies that this is the approved version of the following dissertation:

Building and Maintaining Overlay Networks for

Bandwidth-Demanding Applications

Committee:

Simon S. Lam, Supervisor

Michael D. Dahlin

Mohamed G. Gouda

Aloysious K. Mok

Scott Nettles

Building and Maintaining Overlay Networks for

Bandwidth-Demanding Applications

by

Min Sik Kim, B.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2005

Acknowledgments

This work was supported by National Science Foundation grants CNS-

0434515, ANI-0319168, and ANI-9977267, and Texas Advanced Research Pro-

gram 003658-0439-2001.

iv

Building and Maintaining Overlay Networks for

Bandwidth-Demanding Applications

Publication No.

Min Sik Kim, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Simon S. Lam

The demands of Internet applications have grown significantly in terms

of required resources and types of services. Overlay networks have emerged

to accommodate such applications by implementing more services on top of

IP (Internet Protocol). However, while overlay networks are successful in

circumventing limitations of IP, the task of building and maintaining an over-

lay network is still challenging. In an overlay network, participating hosts

are virtually fully-connected through the underlying Internet. However, since

the quality of overlay connections varies, the performance of the overlay net-

work is dependent on which connections are chosen to be utilized. Therefore,

maintaining a “good” overlay network topology is crucial in achieving high

performance.

To demonstrate how much performance gain can be achieved through

topology changes, a distributed algorithm to build an overlay multicast tree

v

is proposed for streaming media distribution. The algorithm finds an opti-

mal tree such that the average bandwidth of receivers is maximized under an

abstract network model. However, increasing bandwidth does not necessarily

lead to a better overlay topology; in overlay networks, interference between

overlay connections should be taken into account. Since such interference

occurs when different overlay connections pass through a congested link si-

multaneously, detecting congestion shared by multiple overlay connections is

necessary to avoid bottlenecks.

For shared congestion detection, a novel technique called DCW (De-

lay Correlation with Wavelet denoising) is proposed. Previous techniques to

detect shared congestion have limitations in applying to overlay networks;

they assume a common source or destination node, drop-tail queueing, or

a single point of congestion. However, DCW is applicable to any pair of

paths on the Internet without such limitations. It employs a signal processing

method, wavelet denoising, to separate queueing delay caused by network con-

gestion from various other delay variations. The proposed technique is eval-

uated through both simulations and Internet experiments. They show that

for paths with a common synchronization point, DCW provides faster conver-

gence and higher accuracy while using fewer packets than previous techniques.

Furthermore, DCW is robust and accurate without a synchronization point;

more specifically, it can tolerate a synchronization offset of up to one second

between two packet flows.

Because DCW is designed to detect shared congestion between a pair

vi

of paths, there is a concern about scalability when it is used in a large-scale

overlay network. To cluster N paths, a straightforward approach of using

pairwise tests would require O(N2) time complexity. To address this issue, a

scalable approach to cluster Internet paths using multidimensional indexing is

presented. By storing per-path data in a multidimensional space indexed using

a tree-like structure, the computational complexity of clustering is reducible

to O(N logN). The indexing overhead can be further improved by reducing

dimensionality of the space through the wavelet transform. Computation cost

is kept low by using the same wavelet transform for both denoising in DCW

and dimensionality reduction. The proposed approach is evaluated using sim-

ulations and found to be effective for large N . The tradeoff between indexing

overhead and clustering accuracy is shown empirically.

As a case study, an algorithm that improves overlay multicast topology

is designed. Because overlay multicast forwards data without support from

routers, data may be delivered multiple times over the same physical link,

causing a bottleneck. This problem is more serious for applications demanding

high bandwidth such as multimedia distribution. Although such bottlenecks

can be removed by overlay topology changes, a näıve approach may create

bottlenecks in other parts of the network. The proposed algorithm removes all

bottlenecks caused by the redundant data delivery of overlay multicast, detect-

ing such bottlenecks using DCW. In a case where the source rate is constant

and the available bandwidth of each link is not less than the rate, the algorithm

guarantees that every node receives at the full source rate. Simulation results

vii

show that even in a network with a dense receiver population, the algorithm

finds a tree that satisfies all the receiving nodes while other heuristic-based

approaches often fail. A similar approach to finding bottlenecks and removing

them through topology changes is applicable to other types of overlay net-

works. This research will enable bandwidth-demanding applications to build

more efficient overlay networks to achieve higher throughput.

viii

Table of Contents

Acknowledgments iv

Abstract v

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Overlay Networks . 1

1.2 Overlay Multicast . 2

1.3 Finding Bottlenecks . 4

1.4 Toward Internet-Wide Applications 5

1.5 Overlay Multicast Revisited 6

Chapter 2. Maximizing Bandwidth for Multimedia Distribu-
tion 7

2.1 Network Model . 10

2.1.1 Abstract model . 11

2.1.2 Fair Contribution Requirement 13

2.1.3 Tree evaluation . 15

2.2 Optimal Tree Algorithms . 16

2.2.1 Centralized algorithm 16

2.2.2 Distributed algorithm 24

2.3 Optimal Tree Protocol . 28

2.3.1 Joins . 28

2.3.2 Tree information update 29

2.3.3 Node leaves and failures 35

2.3.4 Rate adaptation . 36

ix

2.4 Evaluation of the Optimal Tree Protocol 36

2.4.1 How good is the optimal tree? 37

2.4.2 Convergence speed . 39

2.4.3 Bandwidth measurement errors 42

2.5 Summary . 45

Chapter 3. Detecting Network Bottlenecks 46

3.1 Basic Shared Congestion Detection Technique 48

3.1.1 Two-path model . 48

3.1.2 Cross-correlation . 49

3.1.3 Basic technique implementation 50

3.1.4 Limitations . 51

3.1.5 Related work on shared congestion detection 54

3.2 Wavelet Denoising . 55

3.2.1 Nature of delay data in time and frequency domain . . . 56

3.2.2 Wavelet transform and denoising 59

3.2.3 Selection of wavelet basis 62

3.2.3.1 Instantaneous SNR 63

3.2.3.2 Minimizing adverse effects of synchronization offset 64

3.3 Implementation of DCW . 65

3.3.1 Sampling rate . 67

3.3.2 Limiting synchronization offset 68

3.3.3 Threshold for binary decision 69

3.4 Performance Evaluation . 71

3.4.1 Probing with a common source 72

3.4.1.1 Detection accuracy 75

3.4.1.2 Effects of clock skew 76

3.4.2 Probing with no common endpoint 77

3.4.2.1 Effects of synchronization offset 78

3.4.2.2 Threshold value and false positive/negative . . 81

3.4.2.3 Comparison with low-pass filtering 83

3.4.3 Multiple points of congestion 84

3.4.4 Internet experiments . 87

3.5 Summary . 88

x

Chapter 4. Scalable Internet Path Clustering 90

4.1 Related Work on Path Clustering 91

4.2 Clustering Using a Multidimensional Space 93

4.2.1 Mapping delay sequences into a multidimensional space 95

4.2.2 Choice of an indexing scheme 96

4.2.3 Dimensionality reduction 98

4.2.4 Reusing results of wavelet denoising 100

4.3 Basic Implementation Steps 101

4.3.1 Measuring and processing delay samples 102

4.3.2 Path clustering . 102

4.4 Performance Evaluation . 104

4.4.1 Shared congestion threshold 106

4.4.2 Dimensionality . 107

4.4.3 Scalability . 110

4.5 Summary . 112

Chapter 5. Eliminating Bottlenecks 114

5.1 Two-Layer Network Model . 115

5.1.1 Underlying network . 115

5.1.2 Overlay multicast tree 116

5.1.3 Bottleneck . 116

5.2 Bottleneck Elimination Algorithm 117

5.2.1 Inter-path shared bottleneck 119

5.2.2 Intra-path shared bottleneck 122

5.2.3 Shared bottleneck elimination 125

5.3 Bottleneck Elimination Protocol 126

5.3.1 Shared congestion removal 126

5.3.2 Information update . 128

5.3.3 Membership management 128

5.4 Evaluation . 129

5.4.1 Tree performance comparison 130

5.4.2 Convergence speed . 135

5.4.3 Effects of Measurement Errors 138

5.5 Summary . 141

xi

Chapter 6. Conclusion 142

Bibliography 145

Index 154

Vita 155

xii

List of Tables

2.1 Variables . 13

2.2 State variables of node x . 24

2.3 Messages of Distributed-Optimal-Tree (0 ≤ i ≤ n) 24

xiii

List of Figures

2.1 Abstract network model . 11

2.2 Centralized algorithm . 17

2.3 Converted trees . 21

2.4 Distributed algorithm . 23

2.5 Optimal trees vs. random trees 38

2.6 Convergence time vs. p . 40

2.7 Evolution of average incoming rate 41

2.8 Average incoming rates at the beginning and after 50 rounds . 41

2.9 Measurement errors and achieved average incoming rate 42

2.10 Tree improvement with measured bandwidth 43

3.1 Two paths sharing links . 48

3.2 Cross-correlation coefficient between two delay sequences vs.
synchronization offset . 52

3.3 Simple topology with a common source 52

3.4 Time series of one-way delay of a single-hop path 56

3.5 Power spectral densities of time series of delay data with light
traffic and heavy traffic . 57

3.6 A schematic description of localized time-frequency characteris-
tics for a data signal (horizontally hatched area) and a wavelet
basis (vertically hatched area) 63

3.7 Differential ISNR between congestion signal and other noise for
Daubechies wavelets . 65

3.8 Shared congestion detection procedure 66

3.9 Effect of sampling rate . 68

3.10 Cross-correlation coefficient distributions 70

3.11 Topology with a common source 72

3.12 Convergence with a common source and drop-tail queues . . . 74

3.13 Effects of clock skew . 77

xiv

3.14 Topology with no common endpoint 77

3.15 Effect of synchronization offset 78

3.16 The effect of wavelet denoising on cross-correlation with syn-
chronization offset . 79

3.17 ROC with and without wavelet denoising 82

3.18 ROC performance versus synchronization offset with and with-
out wavelet denoising . 82

3.19 Convergence of low-pass filtering and wavelet denoising for in-
dependent congestion . 83

3.20 Positive Ratio with multiple points of congestion 85

3.21 Experimental topology on the Internet 87

3.22 Convergence with Internet traces 88

4.1 Mapping delay sequences into a multidimensional space 94

4.2 Energy distribution of wavelet coefficients 99

4.3 Clustering algorithm . 103

4.4 Network topology . 104

4.5 Impact of threshold on the false positive rate 106

4.6 Impact of threshold on the false negative rate 107

4.7 Impact of threshold on the clustering accuracy 108

4.8 Tradeoff between accuracy and dimensionality 109

4.9 Overhead of high dimensionality 109

4.10 Clustering time . 111

5.1 Ramification point . 117

5.2 (a) Inter- and (b) intra-path shared bottlenecks 118

5.3 Removal of an inter-path shared bottleneck 120

5.4 Removal of an intra-path shared bottleneck 123

5.5 Link stress distribution . 132

5.6 Link load distribution . 132

5.7 Receiving rate distribution . 133

5.8 RDP distribution . 134

5.9 Convergence after nodes join 135

5.10 Convergence after nodes leave 136

xv

5.11 Convergence after available bandwidth change 137

5.12 Receiving rate increase as a tree converges 137

5.13 Effects of errors in bandwidth estimation 139

5.14 Effects of false positive in shared congestion 140

5.15 Effects of false negative in shared congestion 140

xvi

Chapter 1

Introduction

As the Internet grows in scale, the demands of its applications also grow

in terms of required resources and types of services. Traditional applications

such as e-mail, FTP (File Transfer Protocol), and WWW (World Wide Web)

consume more bandwidth than they used to, and recent multimedia applica-

tions have more stringent requirements in terms of transmission rate, packet

loss, and delay. While a number of proposals including many RFCs (Requests

for Comments) related to QoS (Quality of Service) and IP Multicast have been

made to add support for these applications to the Internet, few of them have

been actually deployed. Even those few have very limited availability, and it

is unlikely to improve much in the future.

1.1 Overlay Networks

After years of unsuccessful efforts to deploy IP-level support for various

application requirements, overlay networks have emerged as an alternative. In

overlay networks, end hosts maintain connections among them, and implement

services such as QoS and IP multicast on top of IP. While overlay networks

are successful in circumventing limitations of IP, building and maintaining an

1

overlay network is still challenging. In an overlay network, participating hosts

are virtually fully-connected through the underlying Internet. However, since

the quality of overlay connections varies, the performance of the overlay net-

work is dependent on which connections are chosen to be utilized. Therefore,

maintaining a “good” overlay network topology is crucial in achieving high

performance.

Selecting overlay connections requires information on their characteris-

tics provided by the underlying network. Those characteristics are estimated

through network measurements. Hence, the goal of this dissertation is two fold:

to develop network measurement and analysis techniques to obtain required in-

formation, and to design overlay network protocols exploiting the information

to improve overlay topology for bandwidth-demanding applications.

1.2 Overlay Multicast

As a representative bandwidth-demanding applications, Chapter 2 se-

lects multimedia streaming of Internet radio and television stations. In the

past, they have been operated by companies with high-performance dedicated

servers. However, the availability of broadband access and increasing comput-

ing performance of PCs have made it feasible for individuals to run their own

radio stations. As a result, thousands of channels are serving multimedia on

the Internet.1

1See Icecast (http://yp.icecast.org/) and SHOUTcast (http://www.shoutcast.com/).

2

These stations require one-way data transmission to a large number of

receivers, to which an overlay network, more specifically overlay multicast, is

an effective solution. In overlay multicast, participants form an overlay dis-

tribution tree in the application layer and perform multicasting among them-

selves. The main advantage is that it does not require multicast support from

the underlying network. The overlay multicast tree can be constructed on top

of any network that provides a unicast transport service. This dissertation

takes overlay multicast as a representative example of bandwidth-demanding

applications, and proposes algorithms and techniques to improve its perfor-

mance.

A major challenge in overlay network design is to build an overlay

topology that can provide high bandwidth.2 In overlay multicast, data may

be delivered multiple times over the same physical link because multicast for-

warding is performed without support from routers. It may result in a bottle-

neck on the link, especially in applications demanding high bandwidth such as

multimedia distribution. A straightforward way to avoid such a bottleneck is

to measure the bandwidth of each overlay connection, and choose those with

large bandwidth as tree edges. However, such heuristics looking for local op-

tima may not lead to a global optimum. Chapter 2 will present a distributed

algorithm that builds a tree in which the average bandwidth from the root

node, computed over all receivers in the tree, is maximized [34]. The algo-

rithm ensures that the multicast tree always heads toward a global optimum.

2For simplicity, we will use bandwidth and available bandwidth interchangeably.

3

Though each node behaves for its own good based on local information, the

tree approaches a global optimal state as it evolves. Convergence of the tree

to an optimal tree was proved using an abstract network model.

1.3 Finding Bottlenecks

Increasing bandwidth does not necessarily lead to a better overlay

topology; in overlay networks, interference between overlay connections should

be taken into account. Overlay networks usually consist of a large number of

end hosts and unicast flows through overlay connections between them. These

unicast flows have different source and destination nodes, and may interfere

with each other by sharing one or more intermediate links. In overlay multi-

cast, for example, such interference is very likely because data is often delivered

multiple times by different flows over the same physical link. Then the link

would become a bottleneck, which throttles the throughput of the entire sub-

tree of downstream receivers. Locating such bottlenecks can improve overlay

network topology significantly. If an overlay network is able to identify them

by finding out which overlay connections are sharing them, it can change the

overlay topology to avoid the bottlenecks and improve the overall throughput.

There are many applications of overlay networks that would benefit, including

overlay multicast, file download from multiple servers, overlay QoS routing,

and exploiting path diversity.

The basic primitive required for bottleneck identification is to decide

whether two paths are sharing a congested (bottleneck) link or not. There

4

have been many techniques to detect shared congestion [24, 30, 45], but they

require that the two tested paths share an endpoint, either at the source or at

the sink. Thus, they cannot be used for general overlay networks. In Chapter 3,

a novel technique, DCW (Delay Correlation with Wavelet denoising), without

such a drawback will be presented. It is able to detect shared congestion

between almost any pair of Internet paths by employing a signal processing

technique—wavelet denoising [32].

1.4 Toward Internet-Wide Applications

DCW can be used to find “better” overlay connections in overlay net-

works. However, its requirement that the shared congestion detection should

be performed for every congested pair of paths limits its application to large-

scale systems; O(N2) tests are required to detect all shared congestion among

N paths. There have been studies to reduce complexity by performing per-

cluster tests instead of per-path tests [30, 54], but they still need O(N2) tests

in the worst case, and also in the average case if each path shares links with a

very small fraction of the other paths, which is common in large-scale overlay

networks.

To reduce the computational complexity, Chapter 4 introduces an effi-

cient clustering algorithm that groups paths sharing the same bottleneck into

the same cluster [33]. The algorithm stores measurement data for each path

into a multidimensional space, where data sets from paths sharing congestion

are located closely to each other. Because the data sets are indexed using

5

a tree-like structure, adding paths and searching neighbors in the space take

sub-polynomial time. Hence, the algorithm can reduce the computational com-

plexity of shared congestion detection for N paths from O(N2) to O(N logN),

making the shared congestion detection technique more scalable.

1.5 Overlay Multicast Revisited

DCW, with multidimensional indexing, enables to identify bottlenecks

in a scalable manner. Identified bottlenecks can be eliminated by replacing

overlay connections passing through them with other, under-utilized connec-

tions. However, it should be done very carefully. Suppose a tree edge is cut in

overlay multicast. Then another edge must be added to maintain connectivity.

But the newly added edge may cause another bottleneck. Even worse, elimi-

nating the new bottleneck may reincarnate the old one, resulting in oscillation

of the overlay topology. In the case of overlay multicast, it is possible to re-

move all bottlenecks shared by multiple overlay connections without incurring

such oscillation. Chapter 5 will present an algorithm that always terminates,

and on termination there remains no such bottleneck in the multicast tree [35].

Furthermore, since the algorithm is very careful not to increase depth of the

tree unnecessarily with changing the tree topology, it maintains short relative

delay, comparable to that of the tree built by a greedy algorithm that optimizes

delay.

6

Chapter 2

Maximizing Bandwidth for Multimedia

Distribution

Internet radio and television stations require significant bandwidth to

support delivery of high quality audio and video streams to a large number of

receivers. Overlay multicast enables them to reduce bandwidth consumption

at the station’s side.

Many overlay multicast systems have been proposed for different target

applications. Each of them has its own way to create a distribution tree. Of

the ones that try to perform tree optimization, they generally fall into one of

two categories depending on which metric they emphasize in tree construction,

i.e., reducing delay or increasing throughput.1

Consider a set of nodes (end systems) that form an overlay on the Inter-

net. In systems with the goal of reducing delay [4, 8, 9, 41], a mesh consisting

of all nodes and selected overlay connections is first constructed. Then the

nodes measure Internet delays of the overlay connections, and run a routing

algorithm, such as the distance vector algorithm, to find best paths from each

node to others on the mesh.

1The throughput of a distribution tree is a notion we will make more precise later.

7

In one system with the goal of increasing throughput [28], overlay con-

nections with high (available) bandwidth are first chosen as edges of the distri-

bution tree. Then the system keeps trying to increase the bandwidth between

each pair of nodes by modifying the tree topology. Unlike systems with the

goal of reducing delay, for which the distance vector algorithm is proved to

lead to an optimal state, the proposal in [28] lacks an algorithmic method to

achieve an optimal solution. In another proposal [12], a centralized algorithm

was presented to compute, for a given graph, a “maximal bottleneck” spanning

tree rooted at a given vertex.

Since increasing throughput is more important than reducing delay in

one-way multimedia delivery, it is desirable to have a distributed algorithm

that finds a tree with “maximal throughput.” However, this is not a straight-

forward task due to the difficulties described below.

The first is the result of a fundamental limitation of today’s Internet,

namely: there is no simple mechanism to measure the bandwidth available to a

flow between two nodes. Generally, many packets need to be sent to detect the

congestion status of a path as well as how much bandwidth a flow can use with-

out adversely affecting other flows. In other words, bandwidth measurement

requires a lot more traffic than delay measurement in the Internet. Therefore,

in designing the distributed algorithm, we should avoid measuring the band-

width of too many logical links. Thus, the first difficulty we encounter is how

to choose logical links that need to be measured. If we choose too few, we

may be unable to find an optimal tree due to insufficient information. On the

8

other hand, if we choose too many, there would be substantial measurement

overhead on the network.

Another difficulty is node failures. Because overlay multicast depends

on participating nodes, which are user machines, rather than routers, it is

likely that many nodes leave the multicast group during a session. Losing some

nodes would definitely change the optimal tree; thus the algorithm should be

designed to be adaptive, with the ability to re-compute a new optimal tree

without too much additional overhead.

This chapter presents a distributed algorithm that builds a tree in which

the average receiving rate, computed over all receivers in the tree, is maxi-

mized. Convergence of the tree to an optimal tree is proved under certain net-

work model assumptions. Protocols that implement the proposed distributed

algorithm are then designed to address the difficulties discussed above. In the

protocols, each node measures bandwidth from at most O(logn) nodes, where

n is the number of nodes in the tree. The distribution tree is continuously up-

dated as it converges towards an optimal tree. When there is a node failure,

the protocols will adapt and the distribution tree will start converging towards

a new optimal tree.

The algorithm is evaluated experimentally by simulation. Simulation

results show that significant bandwidth gain is obtained within a relatively

short time duration. The optimal tree derived achieves an average receiving

rate (per receiver) as much as 30 times that of a random tree depending on

the network configuration. The simulation results also demonstrate how the

9

average receiving rate increases as the distribution tree evolves. For a topology

consisting of 51 end hosts and 100 routers, it takes about eighty seconds to

get close to the maximum. Considering the usual playback time of audio and

video streams, we believe this is reasonably fast.

2.1 Network Model

It is difficult to find a simple model capturing all aspects of the Internet.

In building a streaming media distribution tree, however, our main concern

is bandwidth. In other words, our goal is to find a tree that provides the

largest (available) bandwidth we can utilize. Accordingly, the development of

a network model focuses on this aspect.

Even when we limit our concern to bandwidth only, there are still many

factors to be considered. Available bandwidth is determined by many parame-

ters. In particular, the available bandwidth between two nodes is a function of

the underlying Internet topology and existing traffic. Based upon the follow-

ing observations, we abstract away detailed topology and traffic information

in our network model.2

• Usually access links are bottlenecks causing congestion while backbone

links are loss-free [51].

• An access link has incoming and outgoing bandwidths that do not affect

2This abstraction is needed by the theorems in Section 2.2, but not by the protocol
implementation in Section 2.3.

10

each other.

An access link means a link that connects a host or its local area network

to the network of its ISP. We use these observations to simplify our model.

Since congestion occurs mainly on access links, we assume that the bandwidth

available to a flow between two nodes is determined by the congestion status

of the access links of the nodes. The links in between add delay, but do not

limit the bandwidth of the flow. Based on these observations, we propose an

abstract model.

2.1.1 Abstract model

b i
in

node i

b i
out

Internet

Figure 2.1: Abstract network model

A visual representation of our model is shown in Figure 2.1. A node is

connected to the Internet through an access link, which has a pair of parame-

ters: incoming and outgoing bandwidths. The incoming bandwidth of a node

is the bandwidth from the ISP to the node, and the outgoing bandwidth is the

bandwidth from the node to its ISP. In Figure 2.1, bini represents the incoming

bandwidth of the access link of node i, and bout
i the outgoing bandwidth. A

configuration of our network model is defined to be M = (N,B), where N is

a set of nodes and B is the set, {(bini , b
out
i), i ∈ N}. N has n + 1 elements: a

11

sender and n receivers. For convenience in presenting algorithms, we assume

N = {0, 1, 2, . . . , n}, where 0 represents the sender, and {1, 2, . . . , n} receivers.

Consider a distribution tree consisting of the nodes in N . The root

of the tree is node 0, the sender. An intermediate node in the tree has one

incoming connection from its parent and one or more outgoing connections to

its children. We assume that the outgoing link bandwidth is allocated equally

to its children. Let ci denote the number of children of node i. We make the

following assumption on bi,j, the edge bandwidth from node i to a child node

j, for every edge in the distribution tree.

Edge Bandwidth Assumption Each node i is characterized by bini and bout
i

such that if node j is a child of node i in the tree, then bi,j = min
(

1
ci
bout
i , binj

)

,

where i = 0, 1, . . . , n, j = 1, 2, . . . , n, and i 6= j.

If backbone links are not congested, then the bottleneck between two

nodes should be one of the access links at either end. Therefore, we abstract

away Internet topology and traffic by this assumption, and consider only access

link bandwidths in our abstract model. (This abstraction is used by our theo-

rems in section 2.2. In our protocol implementation, described in section 2.3,

bi,j is obtained by measuring the available bandwidth from node i to node j.)

The three quantities defined above are determined by access link char-

acteristics. We define two more quantities in the context of a distribution tree.

The incoming (receiving) rate of node i is defined to be the minimum of edge

12

bandwidths on the path from the root node to node i:

rin
i = min

k=1,...,l
bik−1,ik (2.1)

where (0 = i0, i1, . . . , il = i) is a path from the root node 0 to node i. The

outgoing (sending) rate of node i is defined as follows.

rout
i = min

(

rin
i ,

1

ci
bout
i

)

(2.2)

Table 2.1 summarizes the variables we have defined in this section.

Variable Description
bini incoming access link bandwidth of node i
bout
i outgoing access link bandwidth of node i
bi,j edge bandwidth from node i to node j
rin
i incoming rate of node i

rout
i outgoing rate of node i
ci number of children of node i

Table 2.1: Variables

2.1.2 Fair Contribution Requirement

The centralized and distributed algorithms presented in section 2.2 are

“greedy” algorithms. For these algorithms, in order for the distribution tree

to converge to a global optimum, rather than a local optimum, the following

condition is needed.3

3See proof of Theorem 2.2.1 in Section 2.2.1.

13

Fair Contribution Requirement If bini > binj , then 1
ci
bout
i > 1

cj
bout
j , for

i, j ∈ {1, 2, . . . , n}, i 6= j.

This requirement states that a node that receives more should provide

more to each of its children. Suppose this requirement is not satisfied by a

node that has a large incoming access link bandwidth and, relatively, a very

small outgoing access link bandwidth. (This is typical of an ADSL access

link.) If this node is placed high (closer to the root) in the distribution tree,

selected by the greedy approach on the basis of its large incoming bandwidth

without regard to its small outgoing bandwidth, then it is possible that the

tree would fail to converge to the global optimum. Thus, before using one

of the algorithms in section 2.2 to find a distribution tree, the values of bini

and bout
i , for i = 1, 2, . . . , n should be chosen such that the Fair Contribution

Requirement is satisfied.

In particular, for a node with an ADSL access link, the incoming band-

width should be reduced to a value such that the node’s incoming and outgoing

bandwidth values conform to the Fair Contribution Requirement. On the other

hand, if a node, say i, has a very large outgoing access link bandwidth relative

to its incoming access link bandwidth, it would be desirable to choose a large

value for ci so long as the Fair Contribution Requirement is not violated.

We name this requirement “Fair Contribution” because, assuming that

ci is the same, for all i, the requirement states that a node that receives more

from the system should provide more to the system. We consider this to be a

14

basic fairness principle for peer-to-peer networks.

2.1.3 Tree evaluation

The incoming rate of each receiver is a good measure for evaluating a

distribution tree, because it represents the amount of data that can be de-

livered from the root to the receiver per unit time. Given a network model

M = (N,B) and a tree consisting of the nodes in N , we can compute the

incoming rate for every node except the root. A list of these rates is called a

rate vector :

R = (rin
1 , r

in
2 , . . . , r

in
n) . (2.3)

Note that each tree has an associated rate vector.

We can compare distribution trees by comparing their rate vectors.

However, it is difficult to determine which vector is better. The best vector for

one receiver is not necessarily the best for another. We can define a partial or-

der as follows: For rate vectors, R1 = (r1
1, r

1
2, . . . , r

1
n) and R2 = (r2

1, r
2
2, . . . , r

2
n),

R1 ≥ R2 if and only if r1
i ≥ r2

i for all i, 1 ≤ i ≤ n. With the partial order,

although we do not know in general which rate vector is “best,” it should be

clear that if there is a best vector, it must be a rate vector that is not less

than any other rate vector. However, for a given network model M , there are

usually more than one such “locally optimum” rate vectors. Trying to find one

of these is too conservative a strategy. If we stop after finding a rate vector

that is not less than any other, we may overlook another that increases a large

amount of rate for one receiver by sacrificing a little for another. To take the

15

overall rate increase into account, we will evaluate a distribution tree by its

average incoming rate 1
n

∑n
i=1 r

in
i . In the next section, we present a centralized

algorithm and then a distributed algorithm to find a distribution tree that

maximizes the average incoming rate of receivers.

2.2 Optimal Tree Algorithms

We define an optimal distribution tree to be a tree that maximizes

the average incoming rate of a receiver. Given an abstract network model,

M = (N,B), we can find an optimal distribution tree by enumerating all

trees. However, it is an infeasible approach even with a reasonable size N

since there are exponentially many trees. We need more efficient algorithms

to find an optimal tree.

In this section, we will first present a centralized algorithm and prove

that it computes an optimal tree. Next we present a distributed version of the

algorithm and prove that it converges to a tree that has the same rate vector

as the optimal tree computed by the centralized algorithm. That is, the tree

obtained by the distributed algorithm also maximizes the average incoming

rate of a receiver.

2.2.1 Centralized algorithm

Figure 2.2 shows the centralized algorithm to find an optimal distri-

bution tree. X is a set of nodes that can accommodate more children, and

Y a set of nodes that are not added to the tree yet. Initially, only node 0,

16

Centralized-Optimal-Tree

1 T ← ∅

2 X ← {0}
3 Y ← N − {0}
4 rin

0 ←∞
5 while Y 6= ∅

6 do v ← a node in X such that rout
v = maxi∈X r

out
i

7 w ← a node in Y such that binw = maxi∈Y b
in
i

8 T ← T ∪ {(v, w)}
9 X ← X ∪ {w}

10 Y ← Y − {w}
11 if |{x|(v, x) ∈ T}| = cv
12 then X ← X − {v}
13 return T

Figure 2.2: Centralized algorithm

the root node, is in X, and all other nodes are in Y . In each iteration, the

algorithm selects a node that can provide the highest outgoing rate in X, and

a node that has the highest incoming access link bandwidth in Y . The edge

connecting them is then added to the tree T . If the node selected in X cannot

accept a child any more, it is deleted from X.

This algorithm is similar to the centralized algorithm in [12] in that

both algorithms are based upon the greedy method [13]. However, both our

abstract model and objective function for optimization are different from the

ones in [12].

Theorem 2.2.1. With Edge Bandwidth Assumption and Fair Contribution

Requirement,

Centralized-Optimal-Tree yields a tree T that maximizes the average

17

incoming rate 1
n

∑n
i=1 r

in
i .

Proof Let T be the tree built with Centralized-Optimal-Tree and R =

(rin
1 , r

in
2 , . . . , r

in
n) its rate vector. Suppose that T ∗ is a tree that maximizes the

average incoming rate and that its rate vector is R∗ = (rin
1
∗
, rin

2
∗
, . . . , rin

n
∗
).

Without loss of generality, we assume that (1, 2, . . . , n) is the order in which

receiver nodes are added to the tree T by the algorithm. We will show that T ∗

can be transformed into T without changing the average incoming rate, which

proves that T also maximizes the average incoming rate.

We use induction on the number of steps in transforming T ∗ into T .

Let Tk denote the transformed tree after k steps. Then we prove that Tk has

the following properties for all k, where 0 ≤ k ≤ n.

P1. The subgraph consisting of nodes 0, 1, . . . , k and edges between them in

Tk is equal to the corresponding subgraph in T .

P2. The average incoming rate of Tk is equal to that of T ∗.

The base case is trivial. After step 0, the transformed tree T0 is T ∗

itself. Clearly, both P1 and P2 are satisfied by T0.

Induction hypothesis : Tk−1 satisfies both P1 and P2.

Given the hypothesis, we will show how to construct Tk that satisfies

both P1 and P2.

18

Let the rate vector of Tk−1 be R′ = (rin
1
′
, rin

2
′
, . . . , rin

n
′
). By the induction

hypothesis, rin
i
′
= rin

i for all i, 1 ≤ i ≤ k − 1. The comparison of rin
k and rin

k
′

gives two cases: (i) rin
k < rin

k
′
and (ii) rin

k ≥ rin
k
′
. We first show that (i) leads

to a contradiction.

Assuming (i), let node j be the first node on the path from the root to

node k in Tk−1 that is not in {0, 1, 2, . . . , k − 1}. If j = k, k’s parent in Tk−1

must be in {0, . . . , k− 1}, and have an outgoing rate larger than k’s parent in

T to satisfy (i). This is impossible because k’s parent should have the largest

outgoing rate among the remaining nodes when it is selected by Line 6. If

j > k, then rin
j
′
≥ rin

k
′

because k is j’s descendant. From this and (i), we

conclude rin
j
′
> rin

k , which means j should have been chosen by Line 7 instead

of k in building T . It contradicts the assumption that T is obtained by the

algorithm.

Since (i) is impossible, (ii) must hold. Consider k’s position in T .

(Case 1) If the same position in Tk−1 is empty, then Tk satisfying P1 is

obtained by moving k’s subtree (a tree rooted at k) to that empty position in

Tk−1. This move does not decrease any incoming rate for nodes in k’s subtree

because of (ii). Note that no tree can have a larger average incoming rate

than that of T ∗ because T ∗ is an optimal tree. Since P2 in the induction

hypothesis guarantees that the average incoming rates of Tk−1 and T ∗ are

equal, Tk cannot have a larger average incoming rate than that of Tk−1. Thus

the average incoming rate of Tk must be equal to that of Tk−1, which proves

that Tk satisfies P2.

19

(Case 2) If k’s position in T is occupied by node l in Tk−1, there are

two possibilities depending on whether k is l’s descendant or not.

(Case 2–1) If k is l’s descendant, Tk satisfying P1 is obtained by ex-

changing k and l in Tk−1. As we have shown in Case 1, the average incoming

rate of Tk cannot exceed that of Tk−1 due to the induction hypothesis (P2).

Therefore, to prove that Tk satisfies P2, it suffices to show that the average

incoming rate of Tk is larger than or equal to that of Tk−1.

By (ii), k’s incoming rate does not decrease. Since k and its location

have been selected in Lines 6 and 7 to maximize the incoming rate of the

chosen node, we know the following inequality holds.

rin
k ≥ rin

l

′
(2.4)

Besides, since k is selected in Line 7, bink ≥ binl and accordingly 1
ck
bout
k ≥ 1

cl
bout
l

by the Fair Contribution Requirement. This and Eq. 2.4 imply that rout
k ≥ rout

l

by definition (Eq. 2.2). Therefore, the incoming rates of the nodes on the path

from l to k in Tk−1 do not decrease. There is also no change to the incoming

rates of k’s descendants in Tk−1 because their ancestors remain same except

the order. The only concern is node l.

To calculate l’s new incoming rate, suppose that p and q are parents of

l and k in Tk−1, respectively. The left tree in Figure 2.3 represents Tk−1, and

the right Tk. The area surrounded with a dotted line is the common part of

T and Tk−1, and contains nodes 1, 2, . . . , k − 1.

20

l

m

k
q

m

0 0

k

p p

l
q

Figure 2.3: Converted trees

Then rout
p = rout

p
′
≥ rout

q
′
by the algorithm. Because the new incoming

rate of l is min
(

rout
q

′
, binl
)

by the Edge Bandwidth Assumption, there are two

cases depending on which value is the smaller. If rout
q

′
≥ binl , l’s new incoming

rate after exchange will be binl , which is not less than the previous value because

l cannot get more than its incoming bandwidth. If rout
q

′
< binl , l’s new incoming

rate will be rout
q

′
, which is equal to rin

k
′
, since binl ≤ bink by Line 7. In this case

the net effect for k’s and l’s incoming rates is as follows.

(k’s rate change) + (l’s rate change)

= (rin
k − r

in
k

′
) +

(

rin
k

′
− rin

l

′
)

≥ 0 (by Eq. 2.4)

Therefore Tk satisfies both P1 and P2 for Case 2–1.

(Case 2–2) If k is not l’s descendant, Tk satisfying P1 is obtained by

exchanging k’s subtree and l’s subtree in Tk−1. As in Case 2–1, we will prove

that Tk satisfies P2 by showing that the average incoming rate of Tk is larger

than or equal to that of Tk−1.

21

As we showed in Case 2–1, k’s incoming rate does not decrease by

exchange. Accordingly, the incoming rates of k’s descendants do not decrease.

We also showed that the sum of k’s and l’s incoming rates does not decrease.

Thus, it suffices to show that the incoming rates of l’s descendants do not

decrease.

Before calculating the incoming rate changes of l’s descendants, we

claim

rout
q

′
≥ min

(

bink ,
1

ck
bout
k

)

. (2.5)

If not, there exists in Tk−1 a bottleneck node m on the path from 0 to q such

that rout
m

′
is equal to rout

q
′
and m’s parent has a larger outgoing rate than rout

q
′
.

(m can be q itself.) It means we can achieve a higher average incoming rate

by exchanging node m and node k, which contradicts that Tk−1 maximizes the

average incoming rate (P2).

We know binl ≤ bink by Line 7, and accordingly 1
cl
bout
l ≤ 1

ck
bout
k by

the Fair Contribution Requirement. By this and Eq. 2.5, we get rout
q

′
≥

min
(

binl ,
1
cl
bout
l

)

. Since q provides a higher rate than l can forward to its

children, the incoming rates of l’s descendants do not decrease. Therefore, Tk

satisfies both P1 and P2 for Case 2–2.

We have proved the inductive step for Tk. By induction, Tn has the

same average incoming rate as T ∗. Since Tn = T by P1, T is a tree that

maximizes the average bandwidth.

22

Distributed-Optimal-Tree

⊲ Code for node x (0 ≤ x ≤ n).
1 periodic probe:
2 choose a random ancestor a ∈ A

3 if min(rin
a , ba,x) > rin

x

4 then send 〈probe; x, rin
x , bin

x , bout
x , cx〉 to a

5 upon receiving 〈probe; y, rin
y , bin

y , bout
y , cy〉:

6 if y 6∈ C and rin
y < rout

x

7 then if |C| < cx or minv∈C rout
v < min

(

rout
x , bin

y , 1
cy

bout
y

)

8 then NewChild ← y

9 else if minv∈C bx,v > rin
y

10 then m← a random child
11 send 〈probe; y, rin

y , bin
y , bout

y , cy〉 to node m

12 else ignore the 〈probe〉 message
13 else ignore the 〈probe〉 message

14 upon receiving 〈child, y〉 or NewChild 6= Nil:
15 if NewChild 6= Nil

16 then y ← NewChild

17 NewChild ← Nil

18 C ← C ∪ {y}
19 if |C| > cx

20 then find l such that bx,l = minv∈C bx,v

21 C ← C − {l}
22 if y 6= l

23 then send 〈accept; x〉 to y

24 find i such that bx,i = maxv∈C bx,v

25 send 〈child; l〉 to node i

26 else send 〈accept; x〉 to y

27 upon receiving 〈accept; y〉:
28 send 〈leave; x〉 to node p

29 p← y

30 upon receiving 〈leave; y〉:
31 C ← C − {y}

Figure 2.4: Distributed algorithm

23

2.2.2 Distributed algorithm

In a distributed version of our algorithm, each node maintains O(logn)

states about its ancestors in the tree. The distributed algorithm is specified

by the actions of each node, presented in Figure 2.4, where node x denotes

some node in N . State variables maintained by node x are shown in Table 2.2.

Protocol messages sent and received between nodes are shown in Table 2.3.

Variable Description
p parent
C set of children
A set of ancestors
binx incoming access link bandwidth of node x
bout
x outgoing access link bandwidth of node x
bx,c bandwidth from node x to a child c (c ∈ C)
cx maximum number of children
rin
x incoming rate of node x

rout
x outgoing rate of node x
ba,x bandwidth from an ancestor a to node x (a ∈ A)
rin
a incoming rate of an ancestor a (a ∈ A)

Table 2.2: State variables of node x

Message Meaning
Sender

〈probe; i, rin
i , bin

i , bout
i , cy〉 The receiver is asked to be a new parent of node i.

i or receiver’s parent

〈child; i〉 The receiver is asked to accept node i as a child.
receiver’s parent

〈accept; i〉 Node i has accepted the receiver as its child.
i

〈leave; i〉 Node i is no longer a child of the receiver.
i

Table 2.3: Messages of Distributed-Optimal-Tree (0 ≤ i ≤ n)

24

Initially, we assume that the state variables, p and C, in each node have

been assigned values such that the nodes in N form a random tree rooted at

node 0. The variables, p and C, are updated as shown in code for node x

in Figure 2.4. In our abstract network model, bini , bout
i , and ci, are known

constants, for all i ∈ N , and they satisfy the Fair Contribution Requirement.

Also, bi,j , for all i, j ∈ N , are known constants, and they satisfy the Edge

Bandwidth Assumption. (In our protocol implementation of the distributed

algorithm, presented in Section 2.3, we describe several protocols that provide

node x with up-to-date values of its variables.)

The code for node x in Figure 2.4 consists of five parts. In the first

part (Lines 1–4), node x chooses an ancestor randomly. Random choice does

not compromise algorithm correctness as long as the root node has nonzero

probability to be chosen. It only affects how fast a tree converges to an optimal

distribution tree. If the chosen ancestor can be a better parent than its current

one, node x sends a 〈probe〉message to the ancestor. The second part (Lines 5–

13) describes the actions taken when a node receives a 〈probe〉 message. If the

node cannot provide a higher rate than the current incoming rate of the probing

node, the message is discarded. If it has room for a new child or the probing

node is able to provide a higher rate to child nodes than one of the children

of x, it accepts the probing node by setting NewChild to the probing node,

which activates the third part of its code. Otherwise, the 〈probe〉 message is

forwarded to a node chosen randomly among its children. The reception of a

〈child〉 message is handled in the third part (Lines 14–26). The new node is

25

added to the children set, and the worst child (lowest edge bandwidth) is cut

and forwarded to the best child. The fourth part (Lines 27–29) handles the

reception of an 〈accept〉 message from a new parent, and the last part (Lines

30–31) handles the reception of a 〈leave〉 message from a child.

Theorem 2.2.2. With Edge Bandwidth Assumption and Fair Contribution

Requirement,

Distributed-Optimal-Tree makes the distribution tree converge to a tree

that has the same rate vector as the one obtained with Centralized-Optimal-

Tree.

Proof Let T be the tree constructed by Centralized-Optimal-Tree.

We first prove a stronger version of the theorem under the assumption that

all incoming and outgoing bandwidths are distinct. The stronger version is

that, with Distributed-Optimal-Tree, a tree rooted at node 0 converges

to T . Without loss of generality, we assume that (1, 2, . . . , n) is the order

in which receiver nodes are added to T by Centralized-Optimal-Tree.

We use induction on the node sequence (0, 1, . . . , n). The base case is triv-

ial, because node 0 is the same for both Distributed-Optimal-Tree and

Centralized-Optimal-Tree.

Induction hypothesis : Distributed-Optimal-Tree has constructed

a tree T ′ such that the tree (embedded in T ′) consisting of nodes 0, 1, . . . , k−1

and edges between them is the same as the corresponding tree embedded in

T .

26

Given the hypothesis, we will show that T ′ evolves into a tree such

that nodes 0, 1, . . . , k satisfy the same condition as in the hypothesis. We note

that none of nodes 0, 1, . . . , k−1 will move because their 〈probe〉 messages are

discarded in Lines 6–7 of the distributed algorithm.

Consider node k in T ′. If k is already at the same position in T ′ as it

is in T , the induction step is done. Otherwise, k’s incoming rate in T ′ must

be lower than k’s incoming rate in T because T is an optimal tree and all

bandwidths are distinct (no tie). Eventually k sends a 〈probe〉 message to 0

because 0 clearly satisfies the condition in Line 3 if k is not at an optimal

position. (Sending a 〈probe〉 message to a non-root ancestor can accelerate

the convergence, without compromising this proof.) k cannot receive more

in T ′ than it does in T because all such positions are filled out by nodes

1, 2, . . . , k− 1. However, it keeps sending 〈probe〉 messages until it reaches k’s

parent in T . Since k is the best node among the remaining ones, k beats any

other node in Line 7 and moves to its optimal position.

We have proved the inductive step. By induction on the node sequence

0, 1, . . . , n, each node moves into its optimal position, resulting in forming a

tree equal to T .

If bandwidths are not distinct, we may encounter ties. Exchanging

nodes with the same incoming and outgoing bandwidths, however, does not

affect their incoming rates. Therefore, Distributed-Optimal-Tree makes

an arbitrary tree converge to a tree with the same rate vector as T .

27

2.3 Optimal Tree Protocol

We have proved that Distributed-Optimal-Tree finds an optimal

tree for the abstract network model. To implement the algorithm, however,

several protocols are needed to initialize state variables in each node and mea-

sure up-to-date values of these variables, namely: the Join protocol, the Edge

Bandwidth Measurement protocol, the Bottleneck Discovery protocol, and the

Ancestor Token protocol.

2.3.1 Joins

The distributed algorithm is assumed to begin with a tree consisting of

all participating nodes, which is unrealistic. For implementation, we provide

the Join protocol which specifies how a joining node finds an existing tree node

to which it attaches as a child.

For streaming media distribution, we assume that each joining node

knows the root (sender) address, which can be obtained through an out-of-

band channel, such as WWW. When the root receives a join request from a

node, say x, x 6= 0, the root accepts x as a child if the root has fewer children

than c0. Otherwise, the root replies to the request with the address of one of

its children, say node i. Then the joining node sends a join request to i. The

above procedure repeats until the joining node is accepted by some node in

the tree. With this protocol, the processing overhead of a join is distributed

over all nodes and the sender’s load is much reduced. Note that this protocol

allows a joining node to join the tree if it knows the address of any existing

28

node in the tree. Therefore, the sender’s load can be further reduced by simply

announcing addresses of other tree nodes, in addition to the sender, over the

out-of-band channel.

When the request of a joining node, say x, is accepted by a tree node,

say y, y sends to x a range of sequence numbers indicating the part of the

data stream currently available from y. Then x sends to y a chosen starting

sequence number in the range, and y starts data transmission. After joining

the tree, the state variables of x (1 ≤ x ≤ n) are initialized as follows: p = y,

cx = 2, C = ∅, A = ∅, binx = bout
x =∞, and rin

x = rout
x = 0. The root node has

the same initial values except one: rin
0 = ∞. After initialization, node x can

begin executing the algorithm in Figure 2.4 to try to find its optimal position

in the tree.

2.3.2 Tree information update

To run Distributed-Optimal-Tree, state variables in node x that

were assumed to be up-to-date in the algorithm should be explicitly measured

or calculated. We describe several more protocols and explain below how to

estimate these variables.

Edge bandwidth bx,c The edge bandwidth from a node x to its child node

c is measured with the Edge Bandwidth Measurement protocol. To avoid

introducing extra traffic, this protocol measures bandwidth from actual data

transmission. When the data stream is forwarded on the distribution tree

29

from node x to node c, x transmits data packets using the congestion control

mechanism of TCP.4 In the data stream, there are marker packets, or markers,

inserted by the root. In between two consecutive markers, 32 kB of data are

transmitted. A marker has three fields: seq from, seq to, and r in. The

last field, r in, is the incoming rate of the node who sends the marker; this

field, updated at every node, is used by the Bottleneck Discovery protocol to

be described below. seq from and seq to are set by the root and they do not

change. They contain the sequence numbers of the data packet following this

marker, and the data packet preceding the next marker.

When node c receives a marker, the time is recorded. Then node c

tries to determine when it finishes receiving the 32 kB of data packets that

follow this marker. The finishing time is detected either by the arrival of the

next marker or a data packet whose sequence number is larger than or equal

to seq to. Node c calculates throughput from the amount of data received

divided by the elapsed time from receiving the marker to receiving the last data

packet. Node c then sends to x a protocol message containing the smaller of

this throughput value and binx . This smaller value is used as an estimate of

bx,c at both nodes. Edge bandwidth measurements are carried out by node c

for every data interval in between consecutive markers. (Note that in node x,

until it has receive bx,c from c for the first time, c is excluded whenever node

x compares its children to select one of them in the distributed algorithm.)

4Our data transport protocol does not use other features of TCP, such as reliability.

30

Throughput is a convenient metric for available bandwidth, used in

some previous studies [22, 28]. Other available bandwidth estimation methods

[19, 27] can also be used instead in our protocols. A disadvantage of using

throughput to estimate bandwidth is that x should have received all of the

data packets between two markers before it forwards the first marker to c.

Otherwise, data transmission rate may be limited by the receiving rate of x,

rather than the bandwidth between x and c. It certainly increases latency.

Although we can avoid this latency by using dummy data to measure bx,c, we

let x wait to use the actual data stream because our protocols are designed

for bandwidth-intensive applications.

Outgoing access link bandwidth bout
x bout

x is estimated as follows.

bout
x =

{ cx

|C|

∑

c∈C bx,c if C 6= ∅

∞ otherwise
(2.6)

where C is x’s set of children. When |C| = cx, the above estimate is simply

the total edge bandwidth and might be inaccurate if the outgoing access link is

not saturated. At an intermediate node in a distribution tree, there is usually

more outgoing traffic than incoming traffic because the node has more than one

child. Besides, an access link with more outgoing bandwidth than incoming

bandwidth is rare. Therefore outgoing links are likely to be congested and

the total edge bandwidth would be a good estimate for the outgoing access

link bandwidth. When |C| < cx, the above formula tends to overestimate bout
x

and accordingly gives an advantage to x in finding its position in the tree.

However, in the case that x is located higher in the tree than it should be, x

31

has a higher probability to get a new child. Eventually C of x becomes full

and the inaccuracy is corrected.

Number of children cx and incoming access link bandwidth binx Ini-

tially cx is set to 2. To satisfy Fair Contribution Requirement, binx is assigned to

be 1
cx
bout
x . Although this is a stronger condition than that in Fair Contribution

Requirement, it is simple and easy to implement. In this case, if node x is

willing to support more children without reducing its current incoming rate,

it can increase cx while not violating Fair Contribution Requirement so long

as the following condition is satisfied.

binx =
1

cx
bout
x > rin

x (2.7)

The reason is as follows. When x increases cx, it should decrease binx to the

new value of 1
cx
bout
x to satisfy Fair Contribution Requirement. The reduced

binx might cause the optimal position of x to be moved to another position by

the algorithm. However, rin
x remains unchanged, since any node y on the path

from the root to x has a higher or equal incoming bandwidth, i.e. biny ≥ binx .

Because 1
cy
bout
y = biny ≥ binx , the new incoming rate of x is limited only by its

own incoming bandwidth, binx , which by Eq. 2.7 is not smaller than the previous

incoming rate of x.

Incoming rate rin
x The incoming rate of node x is provided by our Bottle-

neck Discovery protocol as follows. As mentioned in the presentation of edge

bandwidth measurements, the root node sends a marker packet periodically.

32

The last field of the marker, r in, is set to “infinity” by the root. When a

node, say i, receives the marker from its parent p, it compares r in in the

marker and bp,i measured by i. If bp,i is smaller, i overwrites r in with bp,i;

otherwise, it is left unchanged. The updated marker is then forwarded by i to

its child nodes. Thus, after the marker reaches node x and has been updated

by x, r in contains the minimum edge bandwidth on the path from the root

to node x, which is rin
x .

Outgoing rate rout
x When node x has rin

x , bout
x , and cx, r

out
x is obtained

directly from Eq. 2.2.

Ancestor information A, rin
a , ba,x State variables containing information

about ancestors are used only in the first part (Lines 1–4) of Distributed-

Optimal-Tree, where node x finds an ancestor, say a, to probe. The edge

bandwidth ba,x should be known in Line 3 for x to decide if ancestor a can

provide a higher rate. Since each node knows edge bandwidths from its parent

to itself and from itself to its children only from the Edge Bandwidth Mea-

surement protocol, ba,x needs to be measured separately. A concern is that

measuring ba,x may overwhelm node a if many descendants ask a to perform

measurement simultaneously. So, instead of letting x choose a arbitrarily, we

design the Ancestor Token protocol which takes care of choosing an ancestor

in Line 2 and measuring ba,x in Line 3 of the algorithm.

In the Ancestor Token protocol, node a sends out a token (packet)

33

whenever a has one or more children. The token contains rin
a . The token is

passed to a’s descendants as follows. When node a issues a token, it selects

a child randomly, and passes the token to the child. When node x receives a

token from a, it also passes the token to a randomly selected child if a is its

parent. Otherwise, it either keeps the token with probability p, or forwards

the token to a randomly selected child with probability 1 − p. If x is a leaf

node, it always keeps the token. Keeping the token means that x choose a in

Line 2. While x has the token from a, it is entitled to measure ba,x. Note that

x retrieves rin
a from the token, which is needed in Line 3.

The measurement procedure is similar to the one in the Edge Band-

width Measurement protocol. Each node is expected to store in its buffer at

least two consecutive marker packets and all data packets in between them.

Node x sends a protocol message to a requesting measurement and data trans-

mission to x. Then a transmits the first marker, data packets, and last marker.

(Note that the markers carry rin
a needed by x.) ba,x is estimated as in the Edge

Bandwidth Measurement protocol. One difference is that the end of data

transmission is detected by timeout in case the second marker is lost.

After ba,x has been measured or the token is lost (detected by timeout),

a is ready to issue a new one. By adjusting how often tokens are issued, each

node can control the amount of traffic used for bandwidth measurement from

itself to descendants.

After getting rin
a and ba,x, x runs the remaining part (Lines 3–4) of

the algorithm. Note that the Ancestor Token protocol removes the need for

34

keeping information on ancestors. That is, A is no longer needed to run the

algorithm, and rin
a and ba,x are provided or measured when needed. Therefore

the amount of information kept by each node is O(cx).

2.3.3 Node leaves and failures

In overlay multicast, we should pay more attention to node failures,

because end systems are less reliable than routers in IP multicast. Therefore,

it is critical to have address information about ancestor nodes. In our im-

plementation, an important side effect when a node issues a token packet is

propagating the node’s address to descendant nodes. When a node has lost its

parent, it is desirable for the node to contact its closest ancestor in the tree.

We add a field called distance into the token packet to enable each node

to construct a path from the root to itself. distance is initially set to 0 by

the node issuing a token, and incremented by one by every node receiving it.

Each node caches a list of ancestors containing their addresses and distances.

Note that these are soft states to help recovery from node failures; with the

Ancestor Token protocol, there is no longer any need for A in our algorithm

implementation. If a node detects the loss of its parent by timeout, it sends

a join message to nodes in its ancestor cache starting from the closest one. In

the case of a voluntary leave, a leaving node sends its parent’s address to all

its children, so that they can send join messages to their grandparent.

35

2.3.4 Rate adaptation

In an optimal distribution tree, a node farther from the root has a lower

incoming rate. Thus it may be necessary for a node to make the data stream

forwarded to its child have a lower rate than the rate of the data stream it

receives. A straightforward way to deal with this situation is to transcode

the data stream whenever its rate should be lowered [36]. However, it may

impose too much processing overhead on nodes. A better solution is to use

hierarchical encoding.

Multimedia data are often encoded in layers, such that the sender pro-

vides a base layer and many enhancement layers. A receiver then subscribes

to the base layer and upper layers to the extent allowed by its incoming rate.

If a server makes as many layers as receivers, then every receiver can fully

utilize its available bandwidth. On the other hand, with a small number of

layers, a tree topology change might not lead to quality improvement if the

new incoming rate of a node does not exceed the cumulative rate of the next

layer. However, Yang et al. have shown that 80% of the average incoming rate

can be utilized with a few (4 or 5) layers if the rates of layers are chosen care-

fully [52]. This indicates that available bandwidth increase is likely to improve

quality for receivers when layered encoding is used.

2.4 Evaluation of the Optimal Tree Protocol

To evaluate our protocols, we run simulations using several distribu-

tions of access link bandwidths. There are various types of access links rang-

36

ing from 56 kbps telephone lines to dedicated high-speed lines with bandwidth

higher than 1Mbps. Distribution of access link bandwidths also varies. In

the simulations, we use the following distributions that include both slow

(< 56 kbps ≈ 0.05 Mbps) and fast (≥ 5Mbps) links. Similar distributions

have been used in previous multicast studies [29, 52].

• A uniform distribution over the interval [0.05, 5).

• A normal distribution with mean 2 and standard deviation 2.

• A bimodal distribution consisting of two normal distributions. The

means are 0.05 and 2.5, and the standard deviations are 0.02 and 2,

respectively. In our simulations, twenty percent of the receivers are se-

lected from the first normal distribution.

2.4.1 How good is the optimal tree?

The first question to investigate is whether it is worthwhile to compute

an optimal tree. Randomly-constructed trees are compared with optimal trees

to show that an optimal tree actually increases the average incoming rate

significantly.

A random tree is a tree built with a given number of nodes, whose access

link bandwidths are drawn from one of the three distributions described above.

An optimal tree with the same set of nodes is computed using Centralized-

Optimal-Tree. We plot the average incoming rates of both trees in Fig-

ure 2.5, with the number of nodes varied from 100 to 800. Each point in the

37

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

O
pt

im
al

 T
re

e
A

ve
ra

ge
 In

co
m

in
g

R
at

e

Random Tree Average Incoming Rate

100 nodes

800 nodes

Uniform
Normal

Bimodal

Figure 2.5: Optimal trees vs. random trees

figure represents the mean over ten simulations.

Though the actual values depend on distributions, an optimal tree has

a much higher average incoming rate than a random tree. With the bimodal

distribution, an optimal tree achieves a rate 30 times higher than the rate of

a random tree. Note that random trees with the bimodal distribution have

lower average incoming rates than those with the normal distribution, even

though the mean of the bimodal distribution is larger than that of the normal

distribution. The reason is that twenty percent of the nodes drawn from

the bimodal distribution have very small bandwidths. It means that a small

fraction of low bandwidth users can significantly slow down a large part of

the tree. In this case, tree improvement is critical for the performance of

38

bandwidth-intensive multicast applications.

Another thing to notice in Figure 2.5 is that the average incoming rate

decreases (moves toward the origin) as the number of nodes increases. Such

decrease is more noticeable for random trees. The corresponding decrease for

optimal trees is, however, relatively small. Therefore, a tree with more nodes

gets more benefit by computing an optimal tree.

2.4.2 Convergence speed

Even when the average incoming rate of an optimal tree is much higher

than that of a random tree, how fast a random tree converges to an optimal tree

is more important in practice. In this section, we investigate factors related

to the convergence speed, especially the token keeping probability p and the

number of nodes.

The convergence speed is heavily dependent on how tokens are dis-

tributed, because they give each node chances to relocate itself. Token dis-

tribution is governed by the Ancestor Token protocol with parameter p, the

probability for a node to keep a token. Figure 2.6 shows how long it takes to

achieve 80% of the maximum average incoming rate with different p values.

Each point represents an average over ten runs. To measure elapsed time in

the simulations, we use a round as a time unit. A round is the period dur-

ing which each node issues a token once. We assume that every node issues

tokens periodically. One round should be long enough for token propagation

and edge bandwidth measurement. We also assume that edge bandwidth mea-

39

surements are accurate in this section. The effect of inaccurate measurements

will be discussed in Section 2.4.3.

 0

 100

 200

 300

 400

 500

 600

 700

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
on

ve
rg

en
ce

 T
im

e
(R

ou
nd

s)

p

100 nodes
200 nodes
400 nodes
800 nodes

Figure 2.6: Convergence time vs. p

As shown in Figure 2.6, p should be large in order for fast increase of

average incoming rate. With a small p, most tokens are used by leaf nodes, and

the majority of the probe messages caused by those tokens are discarded in the

second part (Lines 5–13) of Distributed-Optimal-Tree. In simulations

with p larger than 0.9, the speed gain in achieving 80% of the maximum

becomes negligible. So we use p = 0.9 in later simulations.

Figure 2.7 demonstrates how the average incoming rate changes over

time when p = 0.9. A tree has 500 nodes, and the average incoming rate of the

tree is normalized with respect to the maximum average incoming rate. The

evolution of average incoming rate looks similar for all bandwidth distributions.

Convergence to the maximum value takes hundreds of rounds. However, most

benefits of the algorithm can be achieved within a short duration, about 50

rounds. To show that convergence time is not sensitive to the number of nodes,

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

N
or

m
al

iz
ed

 A
ve

ra
ge

 In
co

m
in

g
R

at
e

Time (rounds)

Uniform
Normal

Bimodal

Figure 2.7: Evolution of average incoming rate

we plot the normalized average incoming rate both at the beginning and after

50 rounds in Figure 2.8. The normalized average incoming rate of each point

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800

N
or

m
al

iz
ed

 A
ve

ra
ge

 In
co

m
in

g
R

at
e

Number of Nodes

at the beginning

after 50 rounds

Uniform
Normal

Bimodal

Figure 2.8: Average incoming rates at the beginning and after 50 rounds

is obtained by taking the average of 10 runs.

Again, all three trees with different bandwidth distributions show sim-

ilar behaviors. Note that the average incoming rates after 50 rounds decreases

as the number of nodes increases from 100 to 800. However, the decrease speed

41

is slow. The average incoming rate for 800 nodes is 10% less than that for 100

nodes. Besides, the initial average incoming rates also decrease as the number

of nodes increases; in fact, the amount of decrease is more than 30% from 100

nodes to 800 nodes. Therefore, the convergence speed is actually higher for a

larger group.

These simulations show that the benefits of an optimal tree are signif-

icant and that most of them are achievable within a relatively short time.

2.4.3 Bandwidth measurement errors

We assumed that edge bandwidth measurements are accurate in the

simulations presented in Section 2.4.2. In practice, however, edge bandwidth

measurements may contain errors. These errors would adversely affect our

protocols and lead to a sub-optimal tree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
at

io
 o

f A
ve

ra
ge

 In
co

m
in

g
R

at
es

Coefficient of Variation of Measured Edge Bandwidth

Uniform
Normal

Bimodal

Figure 2.9: Measurement errors and achieved average incoming rate

In Figure 2.9, we investigate the impact of inaccurate bandwidth mea-

surements on the average incoming rate. The tree has 500 nodes. Whenever a

42

node measures an edge bandwidth, the value is drawn from the normal distri-

bution with a mean value equal to the accurate edge bandwidth. We change

the coefficient of variation (CoV) of the normal distribution to vary the degree

of errors. The ratio of the average incoming rates (after 50 rounds) for trees

with inaccurate and accurate measurement is plotted in Figure 2.9.

The ratio of the average incoming rates decreases linearly as CoV in-

creases. In order to achieve a ratio higher than 0.8, CoV should not exceed 0.3.

Some congestion control protocols designed to avoid sending rate fluctuations

have sending rate CoV lower than 0.3 [53]; therefore, the throughput of one

of these protocols would be suitable for edge bandwidth estimation in our al-

gorithm implementation. Protocols with larger CoV like the AIMD (additive

increase/multiplicative decrease) protocol of TCP can also be used by having

sufficiently large measurement timescale to decrease CoV [18].

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 In
co

m
in

g
R

at
es

 (
kb

ps
)

Time (Seconds)

Uniform
Normal

Bimodal

Figure 2.10: Tree improvement with measured bandwidth

Figure 2.10 shows the average incoming rate traces using AIMD through-

43

put to estimate edge bandwidths. The simulations are run using the ns-2 sim-

ulator [17] for a topology generated with the Transit-Stub model of Georgia

Tech Internetwork Topology Models (GT-ITM) [6]. The topology contains

100 routers: 75 stub routers and 25 transit routers. 51 nodes are added to

the topology. One of them is the sender, and the other nodes are receivers.

Access link bandwidths are drawn from the uniform, normal, and bimodal

distributions described at the beginning of this section. Due to large varia-

tion in throughput measurements, the average incoming rate curves show large

fluctuations. One thing to notice is that the average incoming rate is much

lower than the average of the bandwidth distribution. The first reason is, as

we have mentioned before, that measurement errors result in a low average in-

coming rate. The second is that throughput measurements with 32 kB blocks

give a significantly lower value than the actual edge bandwidth, especially for

those with high bandwidth; a 32 kB block may fail to saturate such a high

bandwidth edge. Due to low link utilization, the measured edge bandwidth

becomes much lower than the actual value, and the average incoming rate is

also lower than it should be. However, the algorithm is still effective because

all it needs is relative comparison among edge bandwidths.

Even with the inaccurate bandwidth measurements, the curves in Fig-

ure 2.10 look similar to those in Figure 2.7. In Figure 2.10, the average incom-

ing rate increases for about eighty seconds and stays at a relatively stable level.

Since the usual playback time of audio and video streams exceeds minutes and

even hours, we believe this is acceptable.

44

2.5 Summary

Finding a good tree topology is critical for the performance of bandwidth-

intensive multicast applications. In this chapter, a distributed algorithm has

been proposed to build a tree in the application layer, and proved that it finds

an optimal tree, which maximizes the average incoming rate of receivers under

certain network model assumptions. Unlike other approaches using heuristics

to find a local optimum, the proposed algorithm is always heading towards the

global optimum. Protocols have been described to implement the algorithm

on the Internet. Since a node does not keep any hard state in our implemen-

tation, it is resilient to membership changes and failures. Any node can take

care of join requests in the same way as the root does, and can easily recover

from leaves or failures of other nodes.

The protocol implementation has room for improvement, especially in

bandwidth measurement. The AIMD throughput has large variations, caused

in part by short-term unfairness of the protocol and in part by interference from

other flows. The former is avoidable by adopting a more fair and smoother

protocol such as TFRC [21] and TEAR [43]. Because a basic assumption of

the proposed algorithm is that a node can measure the bandwidth between

another node and itself, a more accurate and stable estimation technique will

lead to better algorithm performance.

45

Chapter 3

Detecting Network Bottlenecks

In general overlay networks, maximizing bandwidth is often not feasible

nor desirable. Each overlay connection needs a different amount of bandwidth,

and providing more than that may result in wasting the extra bandwidth.

Therefore, instead of assuming that access links are always bottlenecks, finding

bottlenecks dynamically and adjusting topology will be a better, more general

solution.

Knowledge of network bottlenecks can be used to improve the topology

of overlay networks significantly. If an overlay network is able to determine

which overlay connections are causing congestion by sharing the same link, it

can change the topology to avoid such bottlenecks. Such network congestion

of a link shared by multiple paths is called shared congestion.

Techniques for inferring shared congestion use two kinds of information

from feedback: packet loss and delay. Techniques based on packet loss assume

bursty packet loss [24, 45]. Thus, they work well with drop-tail queues and

lossy links, but are slow and inaccurate with low loss rate or with other queue-

ing disciplines, such as RED (Random Early Detection). Techniques based on

delay [30, 45] show more robust behavior in such an environment. They are

46

adequate for the case where two flows have a common source or a common des-

tination. The major weakness of both kinds of techniques is that they require

that the two tested paths share an endpoint, usually at the source. Thus, they

cannot be used for general overlay networks.

In this chapter, a novel technique (delay correlation with wavelet de-

noising or DCW) to detect shared congestion between two Internet paths is

proposed. Like previous techniques, it is based on a simple observation: two

paths sharing congested links have high correlation between their one-way

delays. However, näıve correlation measurements may be inaccurate, due to

random fluctuation of queueing delay and mild congestion on non-shared links.

In our technique, these interfering delay variations are filtered out with wavelet

denoising, a signal processing method for separating signal from noise.

The proposed technique is evaluated through extensive simulations and

Internet experiments. When two paths have a common source, for which pre-

vious approaches can also detect shared congestion, our technique shows fast

convergence with fewer packets. It takes at most 10 seconds to reach near 100%

accuracy with both drop-tail and RED queues, while previous techniques often

take longer or fail. We also show that our technique maintains its accuracy

without a common endpoint; more specifically, it tolerates a synchronization

offset between flows of up to one second, which is achievable on the Internet.

47

3.1 Basic Shared Congestion Detection Technique

A basic technique introduced in this section detects shared congestion

using cross-correlation. This technique is effective when clocks of the nodes

measuring delay are synchronized and there is only one point of congestion.

With this as a basis, a general technique that tolerates a large synchronization

offset and allows multiple points of congestion is developed in Section 3.2.

3.1.1 Two-path model

Xsrc

Ysrc

Xdst

Ydst

S T

dX = DX − dS , dY = DY − dS

dS

DX

DY

Figure 3.1: Two paths sharing links

Two paths sharing links on the Internet are illustrated in Figure 3.1.

Paths X from Xsrc to Xdst and Y from Ysrc to Ydst are sharing links between

S and T . Let the one-way delay of path X be DX , and that of path Y be

DY . Each of them has two components: dS, the delay from S to T , and the

remainder denoted by dX or dY .

DX = dS + dX

DY = dS + dY
(3.1)

A key observation is that the delay of a congested link has large fluc-

tuations due to queueing delay changes, while the delay of a link with light

48

load is relatively stable. A persistently congested link may have stable delay

because its queue is persistently full. However, a measurement study shows

that packet loss processes caused by congestion are better thought of as spikes

rather than persistent congestion periods, and that loss runs of most spikes are

shorter than 220ms [55]. It confirms that a congested link shows large fluc-

tuations in delay. In order to detect shared congestion, we need to determine

whether such fluctuations occur between S and T .

3.1.2 Cross-correlation

Our basic technique is based on the observation that measured delays

of two paths show strong correlation if the paths share one or more congested

links, and little correlation if they do not share any congested links [45]. Sup-

pose that paths X and Y in Figure 3.1 are sharing congested links between

S and T , and that the other links are lightly loaded. Then DX and DY will

show strong similarity, since the only strongly varying component dS is shared

by both paths. On the other hand, if congestion occurs on links other than

the links between S and T , DX and DY become independent.

We use the cross-correlation coefficient to measure such similarity. Let

{xi} and {yi} be one-way delay sequences of paths X and Y , respectively,

assuming that each 〈xi, yi〉 pair was measured at the same time. Then their

cross-correlation coefficient XCORxy is defined as follows.

XCORxy =

∑m
i=1(xi − x̄)(yi − ȳ)

√

∑m
i=1(xi − x̄)2

∑m
i=1(yi − ȳ)2

(3.2)

49

Note that XCORxy = 1 if both dX and dY are constant and dS is not constant

(shared congestion), and XCORxy = 0 if dS is constant and dX or dY varies

independently (no shared congestion). Of course, other network effects could

make XCORxy = 1 in the absence of shared congestion, or make XCORxy = 0

in the presence of shared congestion. We follow earlier work by assuming that

this rarely happens [45]; further Internet experimentation is required.

One of the properties of the cross-correlation coefficient is that its value

is independent of any constant component of {xi} or {yi} and dominated

by components with large fluctuations. It matches well with our purpose to

determine if any of the shared links has large delay fluctuations. Also note

that, due to this property, no clock synchronization between the source and

destination nodes of paths X and Y is required in measuring one-way delay

between them. However, clock skew may affect measurement. We will examine

the effects of clock skew on shared congestion detection in Section 3.4.1.2. In

this section, we assume that there is no clock skew.

3.1.3 Basic technique implementation

The basic technique consists of two stages: sampling and processing.

In the sampling stage, Xsrc sends to Xdst a sequence of UDP packets with a

timestamp, starting at time t0 with its own clock. Each such UDP packet is

called a probe packet . Probe packets are sent at a constant rate until t0 + T ,

where T is the probe interval. On receiving a probe packet, Xdst calculates

one-way delay and sends it, with the original timestamp, back to Xsrc. Then

50

Xsrc records the one-way delay together with the timestamp as a delay sample.

Missing samples are linearly interpolated from neighboring samples, because if

missing samples are discarded, Xi and Yi are very likely out of synchronization

from then on. The sampling stage ends when the last delay sample from Xdst

is received (or upon timeout if the last probe or the reply to it is lost). Ysrc

and Ydst also collect delay samples in the same way.

In the processing stage, the cross-correlation coefficient of two sequences

of delay samples is computed as defined in Eq. 3.2. The actual procedure to

gather delay sequences collected by different nodes is application-dependent.

For example, in application-layer multicast, a common ancestor node of Xsrc

and Ysrc in the multicast tree can gather and process delay sequences.

3.1.4 Limitations

Applicability of the basic technique is limited because it makes two

assumptions that generally do not hold for the Internet.

The first assumption is that the two delay sequences are synchronized.

Ideally, the basic technique expects packets measuring xi and yi to pass through

S at the same time. To achieve this, the endpoints would need precisely syn-

chronized clocks, and to predict the delays from Xsrc and Ysrc to S. However,

one-way delays cannot be measured without network support, and network

clock synchronization protocols are not accurate enough for our purposes, since

they still allow errors up to half of the round-trip time between the nodes [39].

To quantify such synchronization errors, we define synchronization offset as

51

the time difference between arrivals of two probe packets at S, one sent by Xsrc

at time t with Xsrc’s clock and the other by Ysrc at time t with Ysrc’s clock. As

the synchronization offset increases, the delay sequences collected by the two

nodes show less and less correlation.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Synchronization offset (ms)

X
C

O
R

Mean

5%-95%

Figure 3.2: Cross-correlation coefficient between two delay sequences vs. syn-
chronization offset

Figure 3.2 illustrates this; it plots the cross-correlation coefficient for

two paths sharing a congested link as synchronization offset rises from 0 to 1

second. Each point is the mean coefficient over 300 simulations; the bars show

5th and 95th percentiles. In each simulation, two delay sample sequences

Xsrc

Ysrc

Xdst

Ydst

on-off on-off

on-off

Figure 3.3: Simple topology with a common source

were collected for 100 seconds on the topology shown in Figure 3.3 using

ns-2 [17]. The bandwidth of every link was 1.5Mb/s, and its propagation

52

delay was chosen randomly between 20ms and 30ms for each simulation. The

delay sequences represent one-way delays of two paths, from Xsrc to Xdst and

from Ysrc to Ydst. Pareto ON-OFF CBR (constant bit rate) flows were used

as background traffic, because then the congestion level could be controlled

easily by changing the number of flows. The average ON and OFF times were

selected uniformly between 0.2 and 3 seconds. The CBR rate was selected

uniformly between 20 and 40 kb/s, and its Pareto shape parameter was 1.2.

The loss rate of the shared link was about 10%; the other links did not have

any loss. Without synchronization offset, the mean cross-correlation between

the two delay sequences is about 0.99. However, the mean cross-correlation

drops as synchronization offset increases so that a 600ms synchronization offset

results in half of the mean cross-correlation without offset.

The second assumption required by the basic technique is that queueing

delay variation on non-congested links is close to zero. If such delay variation

is not negligible, it confuses the basic technique and will give an obscure cross-

correlation coefficient not close to zero or one. Then it is difficult to determine

the threshold to differentiate shared congestion and independent congestion

cases.

In Section 3.2, we propose wavelet denoising to enhance the basic tech-

nique. It effectively filters out delay variations in non-congested links and

short-term fluctuations that confuse the basic technique, as well as negative

effects of synchronization offset. With the combination of wavelet denoising

and cross-correlation, our new technique can detect shared congestion for paths

53

with a large synchronization offset and varying delays at non-congested links.

It also determines quickly when there is no shared congestion.

3.1.5 Related work on shared congestion detection

Previous approaches to detect shared congestion using probe packet

streams are also based on the assumption of strong correlation between packet

delays or losses of two paths that share a bottleneck. Thus these approaches

have the same limitation as our basic technique, i.e., two probe packet streams

should be synchronized for such technique to be effective.

Rubenstein et al. proposed two techniques, one based on one-way delays

and the other based on packet losses [45]. These techniques assume that the

paths being probed share a common end point (either source or destination).

The delay-based technique uses a Poisson process with an average interval of

40ms to generate a sequence of delay samples. When two delay sequences

are obtained for different paths, an auto-measure Ma is computed from the

delays of pairs of adjacent packets in the first sequence. A cross-measure Mx

is computed from a new delay sequence obtained by merging the two delay

sequences. Only adjacent packet pairs with the first element in each pair

from the first sequence and the second element in each pair from the second

sequence are used in computing Mx. If Ma < Mx, it is inferred that the two

paths are sharing a congested point. In their loss-based technique, Ma and Mx

are conditional probabilities that a packet is lost when its following packet is

lost. In their simulations, the delay-based technique was always more robust

54

than the loss-based one.

Harfoush et al. [24, 25] proposed a loss-based technique that outper-

forms the loss-based technique of Rubenstein et al. In their technique, a com-

mon source sends a packet pair back-to-back at 15Hz. The probability that

only the second packet is lost is computed from packet losses. If the probabil-

ity exceeds the threshold of 0.4, two it is inferred that the paths are sharing a

congested point.

A different problem on detecting shared points of congestion was posed

and investigated by Katabi et al [30]. They consider a large number of sources

that send to a common destination. The paths form a tree rooted at the

destination. Some of the tree nodes (routers) are bottlenecks such that every

path goes through exactly one of the bottlenecks. They presented a passive

measurement technique, based upon the entropy of packet interarrival times,

to group sources into different clusters, one for each bottleneck along the way.

Another approach to address a similar problem using the Markovian probing

technique was presented by Younis and Fahmy [54].

3.2 Wavelet Denoising

To provide efficient solutions to network problems, various types of

signal processing techniques have been employed for modeling [44] and analy-

sis [1, 11, 26] of Internet traffic. However, they are mainly used to infer static

or long-term network information from a large set of data collected over a long

time span. In order to obtain dynamic information such as congestion status

55

in a timely manner, techniques capable of on-line processing and fast response

are required.

In this section, we first examine the time series of packet delay in a flow

and its characteristics. Based on these characteristics, we introduce a signal

processing technique—wavelet denoising [15]—that overcomes limitations of

the basic cross-correlation technique in Section 3.1.4. Wavelet denoising takes

the original delay time series, and generates another time series with reduced

interfering fluctuations that might affect cross-correlation adversely. Finally,

we discuss a procedure to find a wavelet basis that minimizes negative effects

of synchronization offset.

3.2.1 Nature of delay data in time and frequency domain

0 5 10 15 20 25 30 35 40 45 50
0

5

10

(a) Light traffic

Sample time (sec.)

Q
u

e
u

e
in

g
 d

e
la

y
 (

m
s
)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60
(b) Heavy and light traffic

Sample time (sec.)

Q
u

e
u

e
in

g
 d

e
la

y
 (

m
s
)

Heavy traffic
Light traffic

Figure 3.4: Time series of one-way delay of a single-hop path

Figure 3.4 demonstrates an example set of time series of packet delay for

a link with two different congestion levels. The source and destination nodes

were connected through a 1.5Mb/s link on ns-2. The delay between them was

56

measured using UDP packets as explained in Section 3.1.3. The time series

in Figure 3.4(a) is the one-way delay under light traffic load (76 ON-OFF

CBR flows, no packet loss) while the time series added in Figure 3.4(b) is

the delay under heavy traffic load (92 ON-OFF CBR flows, loss rate between

2% and 10%). ON-OFF CBR flow parameter settings were identical to those

described in Section 3.1.4. The 95th percentile of loss run length for heavy

traffic load was about 180ms, which is close to the Internet measurement

result (220ms) in [55].1 Observe that the one-way delay with light traffic is a

noise-like waveform with small amplitude, while the delay with heavy traffic

shows an irregular pulse pattern with larger amplitude. Such pulses result

from network congestion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

Frequency (Hz)

N
o
rm

a
liz

e
d
 p

o
w

e
r

Light traffic
Heavy traffic

Figure 3.5: Power spectral densities of time series of delay data with light
traffic and heavy traffic

The corresponding frequency domain power spectral densities of the

1Loss run lengths were measured using a Poisson packet stream with a rate of 50Hz.

57

individual time series, normalized to unity area, are provided in Figure 3.5. In

the frequency domain, the delay with heavy traffic shows larger amplitude at

low frequencies than the delay with light traffic. Such large amplitude com-

ponents at low frequencies correspond to the irregular pulses in Figure 3.4(b),

caused by congestion, while others are introduced by the randomness of queue

behavior, well-demonstrated in Figure 3.4(a). Therefore, for a proper assess-

ment of network traffic under congestion via delay data, it is necessary to

reduce the effects associated with random queue behavior which corrupts the

traffic delays in both the time and frequency domains. In addition, if a syn-

chronization offset is introduced in delay sampling, the measure of network

traffic via delay will be less reliable.

If we are only interested in extracting the large amplitude components

at low frequencies, a simple low-pass filter seems to be an intuitive solution.

Low-pass filtering would smooth the delay signals, increasing cross-correlation

when there is shared congestion. On the other hand, low-pass filtering may fail

to diagnose non-shared congestion cases. Consider the extreme case that there

is no congestion on either path. In such a case, near-zero cross-correlation is

expected since the delay signals will be dominated by random queue behavior.

However, simple low-pass filtering may over-smooth the signal, resulting in an

inappropriately high value of cross-correlation. This is because the frequency

spectrum in network delay data varies in a dynamic fashion due to the fact

that network traffic changes in time. Therefore, any attempt to mitigate the

interference effects should include an approach based on both time and fre-

58

quency (or scale) analysis, e.g., the wavelet transform. Hence, we use wavelet

denoising rather than simple filtering. We will show an empirical comparison

between simple low-pass filtering and wavelet denoising in Section 3.4.2.3.

We will show that wavelet denoising is highly effective for the purpose

of detecting shared congestion. A major advantage of wavelet denoising is that

it preserves the dominant characteristics of one-way delay and filters out non-

dominant ones in a time and scale localized manner, thus it can deal with the

time-varying spectrum of network delay data. Therefore, even when there is no

congestion, wavelet denoising preserves strong transients at high frequencies

and thus maintains low cross-correlation between denoised signals.

There may exist other signal processing techniques that perform as

well as or better than wavelet denoising. Much more investigation is needed

to evaluate the large number of signal processing techniques in the literature.

3.2.2 Wavelet transform and denoising

The wavelet transform is a signal processing technique that represents a

transient or non-stationary signal in terms of time and scale distribution. Due

to its light computational complexity, the wavelet transform is an excellent

tool for on-line data compression, analysis, and denoising.

Assume that a signal f(t) is contaminated by an additive noise n(t);

then the measured data is x(t) = f(t) + n(t). The measured time series x(t)

can be represented as an orthonormal expansion with wavelet basis ψi,j(t) =

59

2−i/2ψ(2−it− j) as follows [14]:

x(t) =

∞
∑

i=−∞

∞
∑

j=−∞

X i
jψi,j(t) (3.3)

where the wavelet coefficients are calculated from

X i
j =

∫ ∞

−∞

x(t)ψi,j(t) dt . (3.4)

Note that X i
j is the discrete wavelet transform of x(t) at scale i and at transla-

tion j, and represents how x(t) is correlated with the i scaled and j translated

basis function.

Two cases should be taken into account to achieve robust and reliable

cross-correlation results. When there is congestion, the slowly varying con-

gestion information (at high scale) should be extracted from the delay data,

which are corrupted by synchronization offset and random queue behavior.

Without congestion, strong random transients should be extracted to ensure

a low correlation. Wavelet denoising is capable of selecting the desired signal

while removing others in each case.

Wavelet denoising lets us build a nonlinear approximation of the signal

f(t) using the wavelet coefficients of the measured data x(t). The wavelet

coefficients for the measured data x(t) = f(t) + n(t) become X i
j = F i

j + N i
j ,

where F i
j =

∫∞

−∞
f(t)ψi,j(t) dt and N i

j =
∫∞

−∞
n(t)ψi,j(t) dt. Then f̃(t), an

approximation of the signal f(t), is obtained from the wavelet coefficients of

the measured data x(t) by suppressing noise with a nonlinear thresholding

function, dT . In this dissertation, we employ a soft thresholding operation on

60

dT with the following definition [15]:

dT (x) =

x− T if x ≥ T

x+ T if x ≤ −T

0 if |x| < T .

(3.5)

The value of the threshold T is determined by the variance of the noise

σ2 [15] and the number of samples N using T = σ
√

2 logeN , as proposed

by Donoho [16]. Then the denoised signal f̃(t) is obtained by applying the

threshold to the wavelet coefficients X i
j in Eq. 3.3.

f̃(t) =

∞
∑

i=−∞

∞
∑

j=−∞

dT (X i
j)ψi,j(t) (3.6)

Soft thresholding plays a key role in the approximation of the traf-

fic delay data under congestion. If there is shared congestion, the dominant

low frequency term, which corresponds to the true traffic congestion informa-

tion, will exhibit relatively large wavelet coefficient values at high scale (low

frequency) so that true traffic information will remain after the thresholding

operation. Meanwhile, the high frequency components, which can be assumed

to be the effects of random queue behavior, will have relatively small wavelet

coefficients at low scale (high frequency), and will be filtered by the threshold-

ing operation. Soft thresholding also has the effect of smoothing the transient

irregular peaks in the delay data. In the basic cross-correlation technique,

randomly occurring peaks in the delay data could have a dominant delete-

rious effect on the cross-correlation value. Wavelet denoising smooths these

irregular peaks, making the cross-correlation value more robust. On the other

61

hand, when there is no congestion, delay variations caused by random queue

behavior will have relatively large wavelet coefficient values, and thus will be

preserved by soft thresholding.

3.2.3 Selection of wavelet basis

The wavelet transform provides a time and scale localized representa-

tion of a measured time series; however, the time and scale resolution of the

representation depends on the selection of a wavelet basis. Hence, in order

to get the most robust and reliable results from wavelet analysis including

wavelet denoising, it is crucial to select the best basis function for wavelet de-

composition [47]. In this dissertation, selection of a wavelet basis is confined

to be within the Daubechies family of wavelets, which are widely used due to

its simplicity of implementation. Other wavelets and their tradeoffs between

performance and complexity need more investigation.

The correlation between a data signal and a wavelet basis is deter-

mined by time and frequency localized characteristics. Such characteristics

of a data signal and wavelet basis can be represented by the time and fre-

quency localized moments, which enable the approximation of the individual

time-frequency signal elements as a Gabor logon [50]. Then the trace of the

signal elements on the time-frequency plane is defined as an elliptic curve as

shown in Figure 3.6. In this section, we define a metric, instantaneous SNR

(signal-to-noise ratio), to indicate how closely a wavelet basis matches a data

signal on the time-frequency plane. Then the metric is used to select a wavelet

62

C

D1

D2

Time duration (seconds) T

F
re

q
u
en

cy
b
an

d
w

id
th

(H
z)

Figure 3.6: A schematic description of localized time-frequency characteristics
for a data signal (horizontally hatched area) and a wavelet basis (vertically
hatched area)

basis that minimizes the adverse effects of synchronization offset.

3.2.3.1 Instantaneous SNR

Figure 3.6 provides a schematic description of localized time and fre-

quency characteristics for a data signal and wavelet basis. The quarter ellipse

including C and D1 represents the localized time-frequency characteristics of

the data signal, and the quarter ellipse including C and D2 represents those

of the wavelet basis. For the two quarter ellipses to be well-matched, the size

of the common area C should be large while the discrepancy D = D1 + D2

should be small. To quantify how closely the time-frequency characteristics

of a data signal and wavelet basis match, we postulate a transient resolution

index named “instantaneous SNR” whose dimension is dB/sec:

ISNR =
1

T
10 log10

C

D
. (3.7)

T is the time duration of the wavelet basis [47] shown in Figure 3.6. ISNR

provides a measure of similarity between the data signal and wavelet basis

63

within the time frame of the wavelet basis function.

3.2.3.2 Minimizing adverse effects of synchronization offset

In our application, the measured data consists of two parts, slowly-

varying congestion information and interference from random queue behavior

and synchronization offset; such interference can be mitigated by employing a

soft thresholding technique in wavelet denoising. We can further reduce the

interference from synchronization offset by choosing a wavelet basis carefully.

Synchronization offset in the delay data can be interpreted as the differ-

ence of the time-shifted version of delay data and the original one. Therefore,

the synchronization offset depends on the characteristics of the original data.

Hence, the basis ψi,j(t) should be chosen to maximize the ISNR of f(t) and

ψi,j(t), and minimize the ISNR of n(t) and ψi,j(t), where f(t) is the delay

changes caused by network congestion and n(t) is the interference caused by

the synchronization offset. Therefore, it suffices to find the basis that max-

imizes the difference between the two ISNRs, which we call the differential

ISNR. However, since the true f(t) and n(t) are not available directly, an

approximation is required; we used the delay data of a congested path as f(t),

and the difference between the delay data and its shifted version as an approx-

imation of n(t) = f(t) − f(t − ∆max), where ∆max is the maximum possible

synchronization error (1 second in this dissertation). More discussion on the

maximum possible synchronization error is presented in Section 3.3.3.

In Figure 3.7, we plot the differential ISNR for Daubechies wavelets 2

64

2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Wavelet index

D
if
fe

re
n

ti
a

l
IS

N
R

 (
d

B
/s

e
c
)

Figure 3.7: Differential ISNR between congestion signal and other noise for
Daubechies wavelets

through 10. The delay sequences were obtained by repeating the simulation

used to draw Figure 3.4(b) 120 times to approximate f(t), and the interference

n(t) is directly computed from f(t). Each point in Figure 3.7 is the mean

value of the differential ISNR for the 120 sequences. As shown in the figure,

Daubechies wavelet 6 has the highest differential ISNR, which implies that

it is best matched with congestion information and least matched with the

noise due to synchronization offset on the time-frequency plane. Therefore,

the Daubechies wavelet 6 basis will be employed for wavelet denoising in this

dissertation.

3.3 Implementation of DCW

The procedure of our wavelet-based technique is illustrated in Fig-

ure 3.8. The wavelet-based technique has the same sampling stage as described

in Section 3.1.3. The sampling stage produces two sequences of delay samples,

65

x0 y0

X0 Y0

X Y

x y

XCORxy

Delay Sampling for Path X Delay Sampling for Path Y

Wavelet Transform Wavelet Transform

Denoising Denoising

Inverse Wavelet Transform Inverse Wavelet Transform

Cross-correlation

Detection

Figure 3.8: Shared congestion detection procedure

x0 and y0.
2 The processing stage uses wavelet denoising (wavelet transform,

denoising, and inverse wavelet transform) to produce new, denoised sequences

x and y, as explained above. The cross-correlation coefficient XCORxy is

computed from x and y. (The computational overhead of these operations

is very low. We found that when delay samples were collected at 10Hz for

100 seconds for each of two paths, a machine with a 2.53GHz Intel Pentium

4 CPU took only a few milliseconds to finish the operations.) As in the ba-

sic technique, the procedure to gather delay sequences for different paths is

application-dependent and out of the scope of this dissertation.

There are three issues to discuss in implementing the wavelet-based

technique: the delay sampling rate, synchronization offset between delay se-

2We use a lower-case bold letter to represent a delay sequence, and an upper-case bold
letter to represent a sequence of wavelet coefficients.

66

quences, and the threshold for the binary decision.

3.3.1 Sampling rate

There is a trade-off in choosing the sampling rate of a delay sequence.

High-rate sampling is more accurate but incurs a large overhead on the net-

work. On the other hand, low-rate sampling has little overhead while being

slow to converge. To investigate the effect of sampling rate on performance,

we performed simulations with different sampling rates on the topology shown

in Figure 3.3. The sequence of delay samples for each path was processed

with our wavelet denoising method. To minimize effects from synchronization

offset, we used a topology with a common source. The source nodes were

co-located and their clocks were synchronized. A full evaluation involving

synchronization offset will be presented in Section 3.4. Each link had a band-

width of 1.5Mb/s, and ON-OFF CBR flow parameter settings were identical

to those in Section 3.1.4. To simulate shared congestion, we put 100 ON-OFF

CBR flows on the shared link, and 60 on the other two links. With 60 flows,

no packet loss was observed. The loss rate with 100 flows varied between 2%

and 12%. For independent congestion, we put 60 ON-OFF CBR flows on the

shared link, and 100 on the others.

Figure 3.9 plots the mean cross-correlation coefficient over 500 experi-

ments for five different sampling rates. The behavior consistent over all sam-

pling rates is that the coefficients converge either to one or to zero as more

and more samples are collected. With all sampling rates except 1Hz, the

67

0.01 0.1 1 10 100
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

X
C

O
R

100 Hz shared
25 Hz shared
15 Hz shared
10 Hz shared
1 Hz shared
100 Hz independent
25 Hz independent
15 Hz indenpendent
10 Hz independent
1 Hz independent

Figure 3.9: Effect of sampling rate

cross-correlation coefficient converges within 10 seconds. Their variance is

also small; after 5 seconds, the interval between the 5th and 95th percentile

values with shared congestion never overlaps with the corresponding interval

with independent congestion for every rate but 1Hz.

Since our technique is implemented in user space, the granularity of a

timer in an operating system kernel should also be taken into account. Though

recent operating systems provide clock rate of 100Hz, older ones have only

10Hz. From the figure, we conclude that a sampling rate of 10Hz is fast

enough in convergence and feasible to implement on most operating systems.

3.3.2 Limiting synchronization offset

There is a synchronization offset in the two sequences of delay sam-

ples collected. However, using simple techniques, the synchronization offset

between any two paths on the Internet can usually be limited to 1 second.

In Figure 3.1, the synchronization offset of two paths, from Xsrc to Xdst and

from Ysrc to Ydst, is caused by (i) the difference of the delay from Xsrc to S

68

and the delay from Ysrc to S, and (ii) the clock difference between Xsrc and

Ysrc. (i) is bounded by the maximum one-way delay on the network, and (ii)

by half the round-trip time between Xsrc and Ysrc since the clocks in these two

nodes can be synchronized by exchanging packets. So the maximum offset is

roughly the maximum round-trip time on the network. Measurement studies

including one by CAIDA3 confirm that round-trip time is less than 1 second

for the vast majority of paths on the Internet.

3.3.3 Threshold for binary decision

Though cross-correlation itself is a reasonable measure of shared con-

gestion, in situations where a binary answer is preferred, a threshold should

be set. Since cross-correlation converges to one (or zero) for shared (or in-

dependent) congestion as in Figure 3.9, our technique is not sensitive to the

threshold in such cases. However, because synchronization offset reduces cor-

relation of paths sharing a congested link (as shown in Figure 3.2), it is still

important to investigate an appropriate value for the threshold.

When cross-correlation coefficients of delay sample sequences with shared

and independent congestion are close to each other, two types of errors may

occur: false positives and false negatives. The former is the case where the

technique reports shared congestion when there is no shared congested link,

and the latter is the case where it reports non-shared congestion when there is

one or more congested links shared by two paths. The error rate of each type

3Available at http://www.caida.org/tools/measurement/skitter/RSSAC/.

69

can be estimated from distributions of cross-correlation coefficients for shared

and independent congestion. Then the threshold can be adjusted to minimize

the total cost of errors using Bayesian testing. Our implementation assumes

that the cost of false positive and the cost of false negative are equal, and min-

imizes the total error rate, which is the sum of the false positive ratio and the

false negative ratio. Actual costs may differ from application to application.

To determine the best threshold value, we need an estimate of the

synchronization offset for any two paths on the Internet. According to mea-

surements by CAIDA, most paths from the F DNS root server to its customers

have round-trip time less than 300ms. Considering that customer hosts of a

DNS root server are close to the server, we take 600ms as the target synchro-

nization offset to optimize the threshold for. More investigation is needed on

the actual distribution of round-trip times, and the relationship between the

target offset and the accuracy of the binary decision.

0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

XCOR

D
e

n
s
it
y

Independent
Shared

Figure 3.10: Cross-correlation coefficient distributions

Figure 3.10 shows the distributions of cross-correlation coefficients with

600ms synchronization offset. The distributions were obtained from the same

70

delay sequences used in Section 3.3.1. We used the delay samples collected

during the first 10 seconds, with the sampling rate of 10Hz. The left his-

togram represents the distribution for independent congestion, and the right

one for shared congestion. If we approximate the histograms with normal

distributions, they intersect when the cross-correlation coefficient (XCOR) is

0.512, which would be the threshold value that minimizes the total error rate.

(The error rate is not sensitive to the choice of the threshold value as long as

the threshold is between 0.3 and 0.6, because XCOR is rarely close to 0.512.)

We use this value as the threshold in later experiments, unless stated other-

wise. We will investigate the effect of the threshold on false positive and false

negative ratio in Section 3.4.2.

3.4 Performance Evaluation

In simulations, we compare our technique against two representative

techniques: a delay-based approach of Rubenstein et al. [45] and a loss-based

one of Harfoush et al. [24, 25]. Below we refer to them respectively as MP

(Markovian probing) and BP (Bayesian probing). See Section 3.1.5 for de-

scriptions of both techniques.

We define Positive Ratio as a metric to represent the accuracy of each

technique.

Positive Ratio =
of answers indicating shared congestion

of experiments
(3.8)

If an experimental setup involves shared congestion, Positive Ratio should be

close to one; otherwise, it should be close to zero.

71

We first compare our technique with MP and BP when paths share a

common source node and have either shared congestion or independent con-

gestion only. Then we investigate how they perform in more challenging en-

vironments involving paths not sharing a common source or destination and

multiple points of congestion. Finally, we present initial results on the perfor-

mance of our technique on the Internet.

3.4.1 Probing with a common source

Both MP and BP assume that there is a common source (or a common

destination for MP). For such a topology, clocks for the two paths can be

synchronized and two samples can be merged into one in chronological order.

This is a critical requirement for both techniques. In fact, BP requires the

stronger condition that two probe packets with different destinations must be

sent back-to-back.

Xsrc

Ysrc

Xdst

Ydst

1 2 3
4

6

5

7 8

Figure 3.11: Topology with a common source

Figure 3.11 shows a network topology where two paths share a source

node. Each link has a bandwidth of 1.5Mb/s. A similar topology was used in

simulations for MP [45]. We ran experiments for the following three scenarios

depending on the type of background traffic.

72

Long-lived TCP flows A small number of long-lived TCP flows

are used to cause congestion, and non-congested links are left idle. In shared

congestion cases, a link is chosen from links 1 through 3, and 20 TCP flows are

created to traverse the link. In independent congestion cases, links 1 through

3 are idle, and the other links have TCP flows, of which the number is chosen

uniformly between 0 and 20.

ON-OFF CBR flows A large number of ON-OFF CBR flows are

used as background traffic. The congestion level is controlled with the number

of such flows. For shared congestion, a link chosen from links 1 through 3 has

100 ON-OFF CBR flows. The number of ON-OFF CBR flows on the other

links is chosen uniformly between 31 and 70. For independent congestion, links

1 through 3 have ON-OFF CBR flows between 31 and 70, and the other links

between 61 to 100. The same parameter settings of ON-OFF CBR flows as in

Section 3.1.4 are used.

Short-lived TCP flows A large number of short-lived TCP flows,

created by ns-2’s web traffic generator, are used as background traffic. The

generated traffic consists of many “web sessions,” in each of which a client node

continually downloads from a server a web page containing multiple objects.

For shared congestion, a link chosen from links 1 through 3 has 250 web sessions

created by 25 web servers and 250 clients. The number of web sessions on the

other links is chosen uniformly between 1 and 25. For independent congestion,

links 1 through 3 have web sessions between 1 and 25, and the other links have

web sessions between 151 and 250.

73

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

P
os

iti
ve

 R
at

io

Time (sec)

(a) Long-lived TCP background

DCW shared
MP shared
BP shared

DCW independent
MP independent
BP independent

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

P
os

iti
ve

 R
at

io

Time (sec)

(b) ON/OFF CBR background

DCW shared
MP shared
BP shared

DCW independent
MP independent
BP independent

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

P
os

iti
ve

 R
at

io

Time (sec)

(c) Short-lived TCP background

DCW shared
MP shared
BP shared

DCW independent
MP independent
BP independent

Figure 3.12: Convergence with a common source and drop-tail queues

74

3.4.1.1 Detection accuracy

Figure 3.12 plots Positive Ratio of each technique over 500 experiments

as time progresses when links are using drop-tail queues. In the legend, DCW

refers to our delay correlation technique with wavelet denoising. With long-

lived TCP background, MP is fast in detecting both shared and independent

congestion, while BP is relatively slow in both cases. DCW is slightly faster

than MP for shared congestion, but as slow as BP for independent congestion.

MP is the fastest in detecting independent congestion, in this case and many

others below, because relatively small delay fluctuations on independent links

can make the cross-measure Mx smaller than Ma. We will show this in Sec-

tions 3.4.2 and 3.4.3. Overall, every technique works well and reaches accuracy

of over 90% within 10 seconds.

With ON-OFF CBR background traffic, however, all three techniques

are slower in detecting shared congestion than with long-lived TCP back-

ground traffic. For DCW and MP, this is because non-congested links have

small queueing delay fluctuations. For DCW, such fluctuations add noise to

delay samples; for MP, they change the order in the merged samples and thus

decrease Mx. Nevertheless, since DCW removes most noise through wavelet

denoising, its degradation is not as severe as MP’s. BP experiences the most

notable degradation among the three; though it is the fastest for independent

congestion, its Positive Ratio for shared congestion is still less than 0.6 after

100 seconds. This is because our ON-OFF CBR background flows include

some with very short ON/OFF time, while all ON-OFF CBR flows in the

75

simulations of [24] have relatively long ON time—2 seconds. BP requires the

probability that both packets in a packet pair are lost to be high to detect

shared congestion. A longer ON time means a queue remains full for a long

time causing both packets in the pair to be dropped. However, it is less likely

with short ON time. That leaves DCW to be the only technique that reaches

90% accuracy after 10 seconds with ON-OFF CBR background. Degradation

of BP is even more pronounced with short-lived TCP background, because a

loss period is even shorter in that scenario. As a result, BP fails to detect

shared congestion. On the other hand, DCW and MP are not affected much.

In the same simulations with links using RED [32], DCW and MP

showed similar performance as with drop-tail queues. However, BP did not

work at all with RED queues. Its problem with RED was already pointed

out using ON-OFF CBR flows [24], but the problem was more serious in our

simulations because their simulation setup had a higher loss rate and smaller

queues, which means that a RED queue’s behavior was close to that of a

drop-tail queue. Neither DCW nor MP had such a problem; they maintained

performance as good as with drop-tail queues.

3.4.1.2 Effects of clock skew

The clock skew between two hosts measuring delay may affect the cross-

correlation coefficient value, reducing the Positive Ratio for shared congestion.

Figure 3.13 shows that the cross-correlation coefficient (XCOR) decreases as

the maximum time skew during the measurement (100 seconds) increases,

76

0 200 400 600 800 1000 1200 1400 1600
0.5

0.6

0.7

0.8

0.9

1

Maximum time skew (ms)

X
C

O
R

Mean

5%-95%

Figure 3.13: Effects of clock skew

using the simulation data for Figure 3.12(b). Nevertheless, XCOR is still close

to 0.9 when the maximum time skew is 1 second. As this corresponds to

gaining more than 14 minutes every day, clock skew is expected to be much

less, and thus its effects on XCOR is negligible.

3.4.2 Probing with no common endpoint

Xsrc

Ysrc

Xdst

Ydst

S

Figure 3.14: Topology with no common endpoint

The topology in Figure 3.14 is an extended version of that in Fig-

ure 3.11. The paths have different source and destination nodes. Delay sam-

ples collected at different nodes cannot be synchronized because of two reasons.

77

First, the clocks of node Xsrc and node Ysrc are not synchronized. Second, the

delay from Xsrc to S is different from the delay from Ysrc to S.

3.4.2.1 Effects of synchronization offset

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
os

iti
ve

 R
at

io

Synchronization Offset (ms)

(a) Long-lived TCP background

DCW
MP

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
os

iti
ve

 R
at

io

Synchronization Offset (ms)

(b) ON-OFF CBR background

DCW
MP

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
os

iti
ve

 R
at

io

Synchronization Offset (ms)

(c) Short-lived TCP background

DCW
MP

Figure 3.15: Effect of synchronization offset

To investigate the effect of synchronization offset between two paths, we

plot, in Figure 3.15, the Positive Ratio for experiments with shared congestion

as we increase the synchronization offset for all three types of background

traffic. The original sets of delay samples were obtained from the two paths

on the topology in Figure 3.11; the synchronization offset was added to the

set of delay samples between Ysrc and Ydst. Only the overlapping portions

were used. BP is excluded; its Positive Ratio with shared congestion is 0.2

78

or less even with 10ms offset [24], due to its requirement that two packets

(for different paths) be sent back-to-back. Because MP is slower than DCW

in Positive Ratio convergence for shared congestion, MP may exhibit lower

performance because of low accuracy if the number of delay samples is not

large. Thus, detection used delay samples belonging to the first 100 seconds

of the overlapping period to ensure that both MP and DCW had near-100%

accuracy. The Positive Ratio drops to zero between 30ms and 70ms for MP,

and between 1 sec and 2 sec for DCW. The sharp decrease of MP happens

in the [30ms, 70ms] interval because the average probe rate in MP is 25Hz,

equivalent to 40ms inter-departure time. Therefore, if the offset exceeds that

value, most packets in a merged sequence are out of order, and the cross-

measure Mx becomes low. Though we plot the results for drop-tail queues

only, the results for RED queues are similar.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Synchronization offset (ms)

X
C

O
R

Before wavelet denoising
After wavelet denoising

Threshold

Figure 3.16: The effect of wavelet denoising on cross-correlation with synchro-
nization offset

Next, we examine how wavelet denoising helps our technique in tol-

79

erating a large synchronization offset. The dotted curve and vertical bars

crossing it in Figure 3.16 are copied from Figure 3.2, which shows the cross-

correlation coefficients without wavelet denoising. We processed the data used

in Figure 3.2 with our wavelet denoising, and plotted cross-correlation co-

efficient versus synchronization offset. The solid curve represents the mean

cross-correlation coefficients, and the vertical bars indicate the 5th and 95th

percentile values. Without wavelet denoising, the cross-correlation of the de-

lay sequences decays very fast with increase of synchronization offset; with a

600ms offset, the mean coefficient approaches the horizontal line representing

the threshold (0.512). This means that the cross-correlation technique without

denoising is only as good as a random decision at this point. However, the

cross-correlation of the delay sequences after wavelet denoising is less sensitive

to the synchronization offset, so that one can properly determine the state of

congestion even with a fair amount of synchronization offset between the data.

On the other hand, for independent congestion, the mean cross-correlation co-

efficients are not affected by wavelet denoising and are almost zero regardless

of the synchronization offset.

Since synchronization offset may vary during delay measurements, we

also performed an experiment with a randomized synchronization offset. For

a given value of average synchronization offset m, the actual synchronization

offset for a particular pair of packets in the two sequences of an experiment

was chosen randomly over the interval [0, 2m]. The mean cross-correlation

results were almost the same as those in Figure 3.16; the variances were larger

80

due to the presence of randomized synchronization offsets.

3.4.2.2 Threshold value and false positive/negative

We use the receiver operating characteristic (ROC) curves to show the

effect of the threshold value on false positive and false negative ratio in the

presence of synchronization offset. ROC is a performance test methodology

that measures the probability of detection PD against the probability of false

positive PF [48]. In our application, they are defined as follows for a certain

threshold value of cross-correlation TXCOR.

PD = P (XCOR ≥ TXCOR | shared congestion)
PF = P (XCOR ≥ TXCOR | independent congestion)

(3.9)

ROC performance can be graphically detected for all possible values of thresh-

old TXCOR; as we move along an ROC curve from the lower-left corner to the

upper-right corner, the threshold varies from 1 to −1. The dashed straight

line is the characteristics of the worst case, where the detection probability PD

equals the false positive probability PF .

Figure 3.17 has two ROC curves drawn using the DCW simulation data

for Figure 3.12. An offset of 600ms was added to one of the delay sequences

of each experiment. The dotted curve is an ROC curve before wavelet denois-

ing, and the solid curve is after denoising. Since our technique converges in

10 seconds, delay samples for the first 10 seconds were used to compute the

cross-correlation coefficient. With wavelet denoising, our technique shows an

improved curve (higher detection probability PD with the same false positive

probability PF) compared with the curve without denoising.

81

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pf

P
d

Before wavelet denoising
After wavelet denoising

Figure 3.17: ROC with and without wavelet denoising

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

Synchronization offset (ms)

R
O

C
 a

re
a

Before wavelet denoising
After wavelet denoising

Figure 3.18: ROC performance versus synchronization offset with and without
wavelet denoising

82

Note that the area under the curve, called the ROC area, provides a

quantitative measure of performance for comparison of different curves; the

area of an ideal curve is 1, while the area of a random decision maker is

1
2
. Figure 3.18 demonstrates the effect of wavelet denoising for different syn-

chronization offsets using ROC area. Two curves show the ROC area with

and without wavelet denoising as the synchronization offset increases. With

tight synchronization, wavelet denoising makes little difference. As the off-

set increases, however, the basic technique curve drops to 0.6 at an offset of

1 second, becoming close to random decision. On the other hand, the technique

with denoising degrades smoothly, maintaining 0.8 at the 1 second offset.

3.4.2.3 Comparison with low-pass filtering

-1

-0.5

 0

 0.5

 1

 1 10 100

X
C

O
R

Time (sec)

MA
DCW

Figure 3.19: Convergence of low-pass filtering and wavelet denoising for inde-
pendent congestion

When congestion occurs on shared links, wavelet denoising makes cross-

correlation evaluation more robust by smoothing delay data curves. We tested

a simpler mechanism to achieve this smoothing, namely a simple low-pass filter.

83

With suitable parameters, a moving average was able to provide similar im-

provement as wavelet denoising for cases with shared congestion. (We set the

span of the moving average to 1.1 sec, which provides the same improvement

as wavelet denoising for the experiments of Figure 3.16.) The problem with

this filter appears in experiments with independent congestion. Figure 3.19

shows the convergence of the cross-correlation coefficient for the moving aver-

age (MA) and DCW when there is independent congestion in the experiment

of Figure 3.12(b). Each point is the mean coefficient over 500 simulations;

the bars show 5th and 95th percentiles. The mean coefficient of the moving

average at 100 seconds is still 0.6, while that of DCW is almost zero from

the beginning. That is, a simple low-pass filter may over-smooth transients

at small scales, and thus require more delay samples to detect independent

congestion. The ability of wavelet denoising to preserve strong transients at

both small and large scales is critical for fast convergence in both shared and

independent congestion scenarios.

3.4.3 Multiple points of congestion

So far, queueing delay variation on non-congested links was filtered

out with wavelet denoising. However, if non-congested links have significant

queueing delay variation, or there is more than one point of congestion, the de-

lay variation on such links cannot be eliminated, and makes shared congestion

detection more difficult. In fact, it is unclear what ‘shared congestion’ should

mean under such conditions. Therefore, instead of deciding whether a tech-

84

nique detects shared congestion correctly, we investigate how the technique

responds as the degree of shared congestion changes. One possible metric to

represent the degree of shared congestion is how large the loss rate on shared

links is compared with that on non-shared links. Hence, we define a new quan-

tity called shared loss rate ratio. Let the loss rate of the shared portion of two

paths be Lshared, and the loss rate of the non-shared portion of the first path

to be L1 and the second path L2. Then the shared loss rate ratio is defined as

follows.

Ls =
Lshared

Lshared + max(L1, L2)
(3.10)

If Lshared > 0 and L1 = L2 = 0, then Ls becomes 1; if Lshared = 0 and at least

one of L1 and L2 is not zero, then Ls becomes 0. If there is no loss at all, then

Ls is defined as 0, indicating no shared congestion.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
os

iti
ve

 R
at

io

Shared Loss Rate Ratio

DCW
MP
BP

Figure 3.20: Positive Ratio with multiple points of congestion

In the following simulation, we used the topology in Figure 3.3. The

number of ON-OFF CBR background flows on each link was chosen uniformly

between 81 and 100, resulting in loss rate between 0 and 12%, and delay

85

samples were collected for 100 seconds. Ls was computed from the actual loss

rates of the links. 1000 experiments were classified into 10 groups depending

on the interval their Ls belonged to. If Ls of an experiment is in [0, 0.1) then

it is in the first group, if in [0.1, 0.2) then the second, and so on. If Ls = 1, the

experiment is in the same group as those with Ls in [0.9, 1). Positive Ratio

(defined in Eq. 3.8) was calculated over all experiments in the same group.

The results for DCW, MP, and BP are presented in Figure 3.20.

Positive Ratio of DCW is only about 0.1 when Ls < 0.1, but 0.8 or

larger when Ls ≥ 0.3. Thus, DCW has a cut-off at Ls = 0.2 differentiating

shared and independent congestion. MP shows very different behavior. Posi-

tive Ratio is 0 for most intervals, and only 0.1 for the last one. Since we know

that Positive Ratio of MP reaches 1 after 100 seconds if Ls = 1, this indicates

that MP answers positively (meaning shared congestion) only when Ls is very

close to 1. In other words, MP always gives a negative answer if there are

multiple points of congestion, regardless of the degree of shared congestion.

BP gives more and more positive answers as Ls increase, but does not have

any sharp increase as such DCW has. Therefore, for those applications requir-

ing a cut-off in shared congestion detection, DCW is preferred. However, the

preferred cut-off value depends on the application. DCW can be customized

for applications with different needs by adjusting its the threshold. Some ap-

plications need to determine whether two paths share all congested links [2],

which corresponds to Ls = 1. In this case, MP would be a good choice.

86

3.4.4 Internet experiments

We applied our technique to a large-scale network, the Internet. Our

preliminary Internet experiments involved six end hosts. Figure 3.21 shows

their abstract topology. Note that each hop in the figure may consist of multi-

ple physical hops. Three hosts, A1, A2, and A3, are located in Austin, Texas,

U.S.A. The other three hosts, K, T , and H , are located in Korea, Taiwan,

and Hong Kong, respectively.

K

T

H

A1

A2

A3

Figure 3.21: Experimental topology on the Internet

Delay samples were collected from the paths from A1 to K and from

A2 to T between October 28 and November 2, 2003. We can reasonably

conclude that there was no congested link because no probe packet was lost

during measurement. In order to create a shared bottleneck, we opened 40

TCP sessions between H and A3. The loss rate was about 5% while they were

running. Since both paths experienced a similar loss rate, we conclude that

the congestion occurred on one of the shared links.

The Positive Ratio for shared congestion and independent congestion

(or no congestion in this case) is shown in Figure 3.22. The delay samples were

collected for 15 seconds, and time was adjusted with measured clock difference

87

0.1 1 10
0

0.2

0.4

0.6

0.8

1

Time (seconds)

P
os

iti
ve

 R
at

io

Shared
Independent

Figure 3.22: Convergence with Internet traces

between A1 and A2 by exchanging packets between them. Each experiment

was repeated 100 times to calculate the Positive Ratio. The result resembles

what we obtained through simulations. The accuracy of our technique exceeds

80% using the samples for the first 3 seconds, and reaches 98% after 8 seconds.

This experiment shows that our technique works well with real back-

ground traffic, and also that it diagnoses non-shared congestion correctly even

when there is no congestion. However, the experiment was performed with

limited settings, which included long-delay transpacific links and proximity of

source nodes. Additional experiments are needed for more diverse environ-

ments.

3.5 Summary

Network resources are better utilized when multiple flows cooperate.

However, such cooperation is feasible only when flows sharing a congested

88

bottleneck can be identified. Previously proposed techniques had limitations,

including a common endpoint and (sometimes) drop-tail routers. But they are

not effective under other conditions, such as RED queueing, multiple points

of congestion, or paths with different sources and destinations.

A robust shared congestion detection technique was proposed in this

chapter, based on wavelet denoising and cross-correlation, namely DCW. The

denoising process effectively removes noise and makes our technique more re-

silient to synchronization offset, which confuses other techniques. In simula-

tions with shared congestion, DCW achieves faster convergence and broader

application than previous techniques, while using fewer probe packets. Exper-

iments on the Internet confirmed the simulation results. Many applications

requiring topology construction in the application layer will benefit from the

proposed delay correlation technique with wavelet denoising.

89

Chapter 4

Scalable Internet Path Clustering

The topology of an overlay network can be improved by identifying

shared bottlenecks using DCW. Such bottlenecks in an overlay network are

avoidable if the overlay network clusters connections that share the same bot-

tleneck link, and replaces a subset of connections in each cluster with other

connections not sharing the cluster’s bottleneck.

However, DCW has been designed to detect shared congestion between

two paths only. To cluster N paths, the straightforward approach of using

pairwise tests would require O(N2) time complexity. There are other ap-

proaches proposed to reduce time complexity by performing per-cluster tests

instead of per-path tests [30, 54]. In these approaches, one representative per

cluster is maintained, and shared congestion detection is performed between a

new path and each cluster representative to determine which cluster the new

path should belong to. However, for reasons discussed in Section 4.1, these

approaches are not applicable to large-scale overlay networks.

This chapter presents a scalable approach to cluster paths by shared

congestion based on DCW. In this approach, measurement data are stored

into a multidimensional space, where each data set collected from a network

90

path is represented as a point. The most important characteristic of this space

is that points are located closely if their corresponding network paths are shar-

ing congestion. Due to this characteristic, finding all paths sharing congestion

with a given path can be replaced with neighbor search in the space. Because

points in the space are indexed using a tree-like structure, adding paths and

searching neighbors takes sub-polynomial time. As a result, the computational

complexity of clustering N paths can be improved to O(N logN). The index-

ing overhead can be further improved by reducing the dimensionality of the

space through wavelet transform. Computation time is kept low because we

can use the same wavelet transform for both wavelet denoising and dimension-

ality reduction. The tradeoff between dimensionality and clustering accuracy

is investigated.

4.1 Related Work on Path Clustering

Among studies on identifying bottlenecks, FlowMate [54] and the entropy-

based approach [30] have objectives that are most like the objective in this

chapter.

FlowMate is based on the technique proposed by Rubenstein et al. [45]

for shared congestion detection. Given two paths, a sequence of delay samples

is obtained for each path. If correlation between successive packets in the first

sequence is higher than correlation between the two sequences, it is inferred

that the two paths are sharing a congested point. When clustering paths,

FlowMate maintains a “representative” path in each cluster, and applies the

91

shared congestion detection technique to a new path and the representative

of each cluster, instead of every path in the cluster, to reduce computational

complexity.

The entropy-based approach was designed to cluster flows from a large

number of sources to a common destination. Thus the paths used by the flows

form a tree rooted at the destination. It is assumed that each path contains

exactly one bottleneck. For each path, inter-packet arrival times are measured

at the destination. For each path, it calculates the average entropy for every

cluster assuming the path is in that cluster. Then the path is moved to the

cluster with the minimum average entropy.

Both approaches [30, 54] are inappropriate for large overlay networks for

the following reasons. First, while overlay networks consist of a large number

of paths with different sources and destinations, these approaches can only

cluster paths that share a common end point, FlowMate at the source and

the entropy-based approach at the destination. Moreover, the latter requires

the amount of cross traffic to be low. More specifically, for the entropy-based

approach to be robust, more than 20% of the traffic at the bottleneck should

arrive at the common destination.

Second, suppose the N paths to be clustered share a common end

point. The worst-case computational complexity of these two approaches is

still O(N2) because both of them use a clustering algorithm similar to K-Means

clustering [37] with a low complexity only when the number of clusters is small.

In a large-scale overlay network, however, there exist many independent paths

92

(each of which is a cluster) in addition to multi-path clusters. Therefore, the

number of clusters is likely to be large.

4.2 Clustering Using a Multidimensional Space

In the proposed approach to path clustering, DCW [32] is used to detect

shared congestion. In DCW, a sequence of one-way delay samples, called a

delay sequence, is measured for each path. The DCW procedure for detecting

shared congestion between two paths is shown in Figure 3.8.

As shown in Figure 3.8, the measured delay sequences, denoted by x0

and y0, are denoised using wavelet transform. Let the denoised delay sequences

be x and y. Then the cross-correlation coefficient XCORxy between them is

computed. DCW decides that the two paths share congestion if XCORxy is

larger than a specified threshold value, XCORthreshold.

A major disadvantage of DCW when applied to a large number of

paths is that the cross-correlation coefficient must be computed for every pair

of paths, which does not scale well. To avoid pairwise computation, we make

use of a data structure, where delay sequences are stored in such a way that

given a path, all other paths sharing congestion with the path are found and

retrieved easily. For this purpose, we use a multidimensional space.

Suppose that delay samples were collected from three different paths:

X, Y , and Z. Then we denoise them to obtain x, y, and z, respectively. Ac-

cording to the DCW procedure in Figure 3.8, we should compute XCORxy,

93

XCORyz, and XCORzx. For better scalability, however, we instead map each

denoised delay sequence to a point in a multidimensional space. A critical con-

dition that the multidimensional space must satisfy is that points correspond-

ing to strongly-correlated sequences should be located closely. For example,

delay
sequences

x

y

z

sharing
congestion

points in
a multidimensional space

Figure 4.1: Mapping delay sequences into a multidimensional space

as shown in Figure 4.1, if x and y are strongly-correlated (because X and Y

share congestion) and z is not, x and y should be mapped into points close

to each other while z should be mapped to a point far from them. Then, in

this space, all sequences that have strong correlation with a given sequence (in

other words, all paths that share congestion with a given path) can be identi-

fied by searching neighbors of the point corresponding to the given sequence

(or path). More specifically, we need a mapping such that the Euclidean dis-

tance between two points in the multidimensional space is a monotonically

decreasing function of the cross-correlation coefficient between the denoised

94

delay sequences mapped to those points. With such a mapping, all the points

within the radius corresponding to XCORthreshold in the multidimensional space

must represent delay sequences of the paths sharing congestion.

Challenges of this approach are to find a multidimensional space with

the desired property and to support efficient insertion and neighbor search

operations in that space.

4.2.1 Mapping delay sequences into a multidimensional space

Given two paths, X and Y , let their delay sequences after denoising be

the following:

x = (x1, x2, . . . , xm)

y = (y1, y2, . . . , ym)

Then the cross-correlation coefficient between them is computed using Eq. 3.2.

The goal is to map the delay sequences x and y into two points x̃ and ỹ in

an m-dimensional Euclidean space so that the distance between x̃ and ỹ is

a monotonically decreasing function of XCORxy. This is achieved with the

following mapping.

x̃ =
(x1 − x̄, x2 − x̄, . . . , xm − x̄)

√
∑m

i=1(xi − x̄)2
(4.1)

ỹ =
(y1 − ȳ, y2 − ȳ, . . . , ym − ȳ)

√

∑m
i=1(yi − ȳ)2

(4.2)

Let x̃ = (x̃1, x̃2, . . . , x̃m) and ỹ = (ỹ1, ỹ2, . . . , ỹm). Then, by Eq. 4.1 and

95

4.2, the distance Dx̃ỹ between x̃ and ỹ is derived as follows.

Dx̃ỹ =

√

√

√

√

m
∑

i=1

(x̃i − ỹi)2

=

√

√

√

√

m
∑

i=1

x̃2
i − 2

m
∑

i=1

x̃iỹi +

m
∑

i=1

ỹ2
i

=

√

1−
2
∑m

i=1(xi − x̄)(yi − ȳ)
√

∑m
i=1(xi − x̄)2

√

∑m
i=1(yi − ȳ)2

+ 1

This is simplified using Eq. 3.2 to be

Dx̃ỹ =
√

2 (1−XCORxy) . (4.3)

Therefore, given two delay sequences x and y, the distance between their map-

pings x̃ and ỹ is a monotonically decreasing function of the cross-correlation

coefficient between x and y.

The paths sharing congestion (or having the cross-correlation coefficient

greater than XCORthreshold) with a given path can be found by searching for

neighbors of the path within the following radius.

Dthreshold =
√

2 (1− XCORthreshold) (4.4)

The impact of this radius on clustering accuracy is investigated in Section 4.4.1.

4.2.2 Choice of an indexing scheme

By mapping delay sequences into a multidimensional space, pairwise

computation of cross-correlation coefficients becomes unnecessary; inserting

96

delay sequences into the multidimensional space and searching for neighbors

within a radius replace the pairwise computations. This means that the com-

plexity of those two operations, insertion and neighbor search, is critical to

the overall performance. In this section, we introduce an index structure to

facilitate them.

It is known that a well-designed multidimensional indexing scheme can

insert N points in O(N logN) time and perform neighbor search within a

sphere in O(logN) time [3]. Many indexing schemes have been proposed

to store and manage multidimensional data, including the R-tree [20], R+-

tree [46], R*-tree [5], SS-tree [49], and SR-tree [31]. As their names suggest,

they are all based on a tree-like index structure with a similar insertion al-

gorithm. However, each has a different search performance mainly because

they employ different bounding shapes, which encompass the data in a sub-

tree. The R-tree and its successors use rectangles as bounding shapes, and

the SS-tree uses bounding spheres instead. The SR-tree integrates bounding

rectangles and spheres to enhance the performance of neighbor search, espe-

cially for high-dimensional data. Since the SR-tree outperforms other schemes

in neighbor search [31], it is used as the multidimensional indexing structure

in the experiments presented in this dissertation.

Note that the clustering algorithm we propose does not depend on a spe-

cific indexing scheme; any multidimensional indexing scheme that efficiently

performs insertion and neighbor search can be used.

97

4.2.3 Dimensionality reduction

To achieve high accuracy in detecting shared congestion, delay samples

need to be collected for more than 10 seconds at a sampling rate of 10Hz [32].

This means that the number of elements in a delay sequence is over 100,

and so is the dimensionality of the multidimensional space. However, such

high dimensionality increases the overhead of path clustering based on the

multidimensional space, because the performance of multidimensional indexing

deteriorates as the dimensionality of the data sets increases [31].

In our mapping between delay sequences and points in the multidimen-

sional space, each delay sample corresponds to one coordinate of a point. This

means that reducing dimensionality is equivalent to discarding delay samples,

which immediately results in lower accuracy. Since all delay samples are con-

sidered to be “equally important,” discarding any of them is equally harmful

to accuracy. However, wavelet coefficients can break this symmetry. Using

wavelet coefficients instead of time series enables efficient proximity search

with lower dimensionality than that of using all delay samples. This is possi-

ble by utilizing wavelet coefficients at only large scales which bear information

for slow-varying pattern of delay sequences [42].

Let the discrete wavelet transform1 of x̃ be

X̃ = (X̃1, X̃2, . . . , X̃m) = DWT (x̃) . (4.5)

1Depending on the wavelet transform, the number of wavelet coefficients may be slightly
different from the number of elements in x̃.

98

One problem in mapping X̃ instead of x̃ to a multidimensional space is that

the relationship between the distance in the multidimensional space and the

corresponding cross-correlation coefficient shown in Eq. 4.3 may not hold any

more. Fortunately, if we choose DWT in Eq. 4.5 to be an orthonormal wavelet

transform, the Euclidean distance between two time series is equal to the dis-

tance between their wavelet coefficients [38].

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Scale

N
or

m
al

iz
ed

 e
ne

rg
y

di
st

rib
ut

io
n

Figure 4.2: Energy distribution of wavelet coefficients

Figure 4.2 shows the energy (i.e. information) distribution of delay

time series obtained from a congested link using ns-2 [17]. Most of the energy

is concentrated on large-scale wavelet coefficients and any remaining energy

is distributed sparsely over small-scale wavelet coefficients. Therefore, using

wavelet coefficients only at large scales can achieve performance comparable to

using all coefficients, while effectively reducing dimensionality. We will show

empirically in Section 4.4.2 how many dimensions are needed to achieve good

performance.

99

4.2.4 Reusing results of wavelet denoising

DCW uses discrete wavelet transform based on the Daubechies wavelet [32],

which is orthonormal [14]. Therefore, we may use in DWT (x̃) the same dis-

crete wavelet transform that is used for denoising in Figure 3.8 to keep the

computation cost low. In fact, X̃ = DWT (x̃) can be obtained directly from

X = DWT (x) without any need to compute x̃.

Let X = DWT (x1 − x̄, x2 − x̄, . . . , xm − x̄). Then

X̃ = DWT (x̃) (4.6)

= DWT

(

(x1 − x̄, x2 − x̄, . . . , xm − x̄)
√
∑m

i=1(xi − x̄)2

)

(4.7)

=
DWT (x1 − x̄, x2 − x̄, . . . , xm − x̄)

√
∑m

i=1(xi − x̄)2
(4.8)

=
X

‖X‖
. (4.9)

Since the discrete wavelet transform is a linear operation,

X = DWT (x1 − x̄, x2 − x̄, . . . , xm − x̄)

= DWT (x1, x2, . . . , xm)− DWT (x̄, x̄, . . . , x̄)

= X− x̄DWT (I)

where I = (1, 1, . . . , 1).

For indexing with wavelet coefficients at the K largest scales, we use

only their corresponding coefficients from the above calculation. Thus, the

100

final sequence to be stored in the multidimensional space is

X̃′ = (X̃1, X̃2, . . . , X̃k) (4.10)

where k is the number of wavelet coefficients corresponding to the K largest

scales.

4.3 Basic Implementation Steps

An actual implementation of path clustering consists of the following

steps:

1. Select network paths to measure delay.

2. Measure delay samples to get x0 for each path.

3. Process x0 to obtain a wavelet coefficient vector with reduced dimen-

sionality, X̃′.

4. Collect X̃′ for each selected path.

5. Cluster paths.

The first and fourth steps are application-dependent. For example, in the case

of overlay multicast, delay is measured at every congested edge of a multicast

tree, and each internal node of the tree collects data from its child nodes.

In this section, we will only describe the application-independent steps,

i.e., what a node measuring delay should do (the second and third steps), and

how a node collecting data performs clustering (the last step).

101

4.3.1 Measuring and processing delay samples

Either a source or destination of a path measures one-way delay with

sampling frequency of 10Hz as recommended by DCW [32]. Delay samples (x0

in Figure 3.8) are collected for 12.8 seconds to make the number of samples

a power of 2 for calculation convenience. Then x0 is converted into X̃′ by

(i) using the wavelet transform, (ii) performing denoising, and (iii) applying

Eq. 4.9–4.10. Only X̃′ for the path is submitted to the node that clusters

paths.

4.3.2 Path clustering

In general, a clustering problem is NP-hard [23]. However, since we

know Dthreshold, the maximum radius of a cluster defined in Eq. 4.4, we can

design a simple and efficient algorithm for path clustering. The pseudo code

is presented in Figure 4.3.

The algorithm begins with two sets: P , a set of X̃′ for all paths, and S,

initially empty and implemented with a multidimensional space indexed as de-

scribed in Section 4.2. For notational simplicity, we use p to denote a member

of P . We assume that the multidimensional indexing scheme being used (SR-

tree [31] in our experiments) supports two operations: Insert(S, p) which

adds a point p to the space S, and Nearest-Neighbor-In-Sphere(S, p)

which searches in S for the nearest neighbor of p among points in the sphere

centered at p with radius Dthreshold. The latter returns one of them if there are

multiple nearest neighbors, and nil if there is no neighbor in the sphere.

102

Path-Clustering(P)

1 ⊲ P is a set of X̃′ for all paths.
2 S ← ∅

3 for each p ∈ P
4 s← Nearest-Neighbor-In-Sphere(S, p)
5 if s = nil
6 Insert(S, p)
7 Cp ← {p}
8 P ← P − {p}
9 for each p ∈ P

10 s← Nearest-Neighbor-In-Sphere(S, p)
11 Cs ← Cs ∪ {p}
12 return {Cs|s ∈ S}

Figure 4.3: Clustering algorithm

For each member p in P , the algorithm tests if any point stored in the

multidimensional space is closer than the threshold from p. If none, the path

represented by p does not share congestion with any of the paths corresponding

to the previously inserted points, and thus it is added to S to create a new

cluster. If there is a point closer than Dthreshold, ignore p because p should

belong to an existing cluster. In this way, after the first loop (Lines 3–8), S

contains a set of points such that every point in P shares congestion with at

lease one point in S while the points in S do not share congestion with one

another. Each point inserted into S represents the center of a cluster. For

each cluster, a set (Cp in Line 7) containing its center point is created to store

points belonging to the cluster.

The second loop (Lines 9–11) identifies the members of each cluster.

For each member p in P , the cluster of the closest center s in S is selected,

103

and p is added to the selected cluster, Cs.

Finally, a set of all clusters is returned (Line 12).

For performance reason, our implementation always keeps the entire

SR-tree in memory, although the original proposal for the SR-tree assumes

that the tree is maintained on disk.

Note that the algorithm selects only one cluster for each path, whereas

a path may belong to multiple clusters. If finding all clusters is more desirable,

Lines 10 and 11 should be modified so that p is added to every cluster of which

the center is in the sphere.

4.4 Performance Evaluation

In evaluating the proposed path clustering approach, the main focus is

on the performance of clustering and various tradeoffs with different parameter

values.

s

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16

Figure 4.4: Network topology

We analyze the performance of the proposed approach using simulation

104

data from ns-2 with the topology shown in Figure 4.4. The bandwidth of each

link is 1.5Mbps. To create background traffic, a different amount of short-

lived TCP traffic is added to each link. TCP flows are created by ns-2’s web

traffic generator.

One-way delay samples are measured on 16 paths, from node s to node

ri for 1 ≤ i ≤ 16. Along the path from node s to each ri, at most one link is

selected as a congested link, which is used by a large number of web sessions

simultaneously, resulting in a loss rate between 5 and 10%. The number of

web sessions is chosen uniformly between 180 and 250. The other links have

less than 70 web sessions and no packet is lost. Every experiment was repeated

500 times to get an average.

Given N paths, we use the following as performance metrics for accu-

racy.

False positive rate Among N(N − 1)/2 pairs of paths, the false positive

rate is the fraction of path pairs such that the two paths in a pair do not

share congestion with each other but belong to the same cluster.

False negative rate The fraction of path pairs such that the two paths in a

pair share congestion with each other but belong to different clusters.

Clustering accuracy The fraction of path pairs that are neither false posi-

tives nor false negatives.

In this section, we use these metrics to study the impact of the threshold

105

on neighbor search and the required dimensionality to maintain a reasonable

accuracy. We also investigate the scalability of our clustering approach by

comparing against clustering with pairwise operations.

4.4.1 Shared congestion threshold

0.75 0.8 0.85 0.9 0.95
0

0.01

0.02

0.03

0.04

0.05

0.06

Threshold

F
al

se
 P

os
iti

ve

Dim=18
Dim=36
Dim=61
Dim=101
Dim=170

Figure 4.5: Impact of threshold on the false positive rate

The cross-correlation coefficient threshold (XCORthreshold) affects both

false positive and false negative rates directly, because the threshold deter-

mines the radius of neighbor search in clustering. A smaller radius (larger

threshold) means more clusters with finer granularity, and accordingly it is

less likely to get false positives. This observation is demonstrated in Fig-

ure 4.5, which shows the false positive rate versus threshold for a range of

dimensionality between 18 and 170. The false positive rate decreases as the

threshold increases for every dimensionality. It is especially prominent with

the lowest dimensionality, 18.

106

0.75 0.8 0.85 0.9 0.95
0

0.01

0.02

0.03

0.04

0.05

0.06

Threshold

F
al

se
 N

eg
at

iv
e

Dim=18
Dim=36
Dim=61
Dim=101
Dim=170

Figure 4.6: Impact of threshold on the false negative rate

Similarly, in Figure 4.6, the false negative rate increases as the thresh-

old increases because a smaller radius leads to more clusters than needed.

Therefore, there is clearly a tradeoff to be made between the false positive and

false negative rates. The clustering accuracy is also affected by the threshold

as shown in Figure 4.7. Depending on the dimensionality, a threshold between

0.75 and 0.9 maximizes the clustering accuracy.

Note that false positives are tolerable for some applications, but they

may be completely intolerable for others [2]. So are false negatives. Therefore,

an appropriate choice of threshold will vary from application to application.

4.4.2 Dimensionality

Dimensionality is another important parameter that affects performance.

Because using fewer dimensions means that ignored dimensions cannot con-

tribute to separating paths any more, the false positive rate increases as di-

107

0.75 0.8 0.85 0.9 0.95
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Threshold

C
lu

st
er

in
g

A
cc

ur
ac

y

Dim=18
Dim=36
Dim=61
Dim=101
Dim=170

Figure 4.7: Impact of threshold on the clustering accuracy

mensionality decreases, while the false negative rate decreases.

Figures 4.5 and 4.6 shows that, with a low threshold (below 0.85), the

decrease in the false positive rate as dimensionality increases is larger than the

increase in the false negative rate. Therefore, the overall clustering accuracy

is usually better with higher dimensionality as shown in Figure 4.8. With a

high threshold (above 0.9), however, it is the opposite; the clustering accuracy

gets worse with more dimensions. The reason is as follows. More dimensions

often contribute to separating paths. However, if a threshold is high (meaning

a small radius), the false positive rate is negligible, which means that the

separations caused by additional dimensions are more likely to become false

negatives than to correct false positives.

Even with a low threshold, increasing dimensionality is not the best

choice. The overhead of maintaining the index structure must be taken into

108

0 20 40 60 80 100 120 140 160
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Dimensionality

C
lu

st
er

in
g

A
cc

ur
ac

y

Th=0.75
Th=0.80
Th=0.85
Th=0.90
Th=0.95

Figure 4.8: Tradeoff between accuracy and dimensionality

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

900

Dimensionality

N
or

m
al

iz
ed

 C
P

U
 ti

m
e

of paths = 16
of paths = 32
of paths = 64
of paths = 128
of paths = 256
of paths = 512
of paths = 1024

Figure 4.9: Overhead of high dimensionality

109

account; it is well-known that high dimensionality often incurs significant over-

head in multidimensional indexing. To demonstrate this, we plot in Figure 4.9

the CPU time required for clustering as a function of dimensionality. Since

the actual CPU time depends on many factors, we normalize it so that the

CPU time of the fastest case (16 paths with 18 dimensions) is equal to one

unit of time. With a C++ implementation on a Pentium 2GHz machine, one

unit of time is about 5 milliseconds.

Figure 4.9 shows that the CPU time increases rapidly as the number

of dimensions increases, especially with a large number of paths. Hence, the

dimensionality should be kept minimal as long as the false positive and nega-

tive rates are acceptable. Considering the results in Figures 4.5, 4.6, and 4.8,

we believe that 36 dimensions are more than sufficient in most applications,

and that 18 dimensions are reasonable if used with a high threshold.

4.4.3 Scalability

The main goal of the proposed clustering approach is to achieve better

scalability than the use of pairwise comparisons. While the multidimensional

indexing improves the theoretical bound on time complexity, it would be more

interesting to study when and how much the proposed approach outperforms

the use of pairwise comparisons.

In Figure 4.10, we compare the proposed multidimensional indexing ap-

proach against the pairwise approach. Both approaches use DCW as a shared

congestion detection technique. We plot the CPU time required for clustering

110

(a) Small-scale clustering

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

55

of paths

N
or

m
al

iz
ed

 C
P

U
 ti

m
e

SR−tree Dim=18
SR−tree Dim=36
SR−tree Dim=61
SR−tree Dim=101
SR−tree Dim=170
Pairwise

(b) Large-scale clustering

100 200 300 400 500 600 700 800 900 1000

200

400

600

800

1000

1200

1400

1600

1800

of paths

N
or

m
al

iz
ed

 C
P

U
 ti

m
e

SR−tree Dim=18
SR−tree Dim=36
SR−tree Dim=61
SR−tree Dim=101
SR−tree Dim=170
Pairwise

Figure 4.10: Clustering time

111

versus the number of paths for different dimensionalities. Two different scales,

less than 70 paths in Figure 4.10(a) and up to 1024 paths in Figure 4.10(b), are

considered. The CPU time is normalized so that the case with 18 dimensions

and 16 paths takes 1 unit of time.

The comparison for a small number of paths presented in Figure 4.10(a)

shows the overhead caused by multidimensional indexing. The multidimen-

sional indexing approach takes nontrivial time to maintain a complicated data

structure. Therefore, the pairwise approach is faster if 61 or more dimensions

are used to cluster less than about 30 paths. However, due to its better time

complexity, our approach exhibits better performance when the number of

paths gets larger. Notice that the difference in slope between curves due to

different time complexity.

This better CPU time performance is clearer when the curves are ex-

tended in Figure 4.10(b). Because of its O(N2) complexity, the pairwise ap-

proach curve diverges from the other curves as the number of paths increases.

The CPU time increase with dimensionality is significant, and low dimension-

alities incur a fairly small overhead. Since the difference between 18 and 36

dimensions in terms of accuracy is rather large as observed in Figure 4.7, 36

dimensions would be a reasonable choice in practice.

4.5 Summary

For large-scale distributed systems such as overlay networks, it is cru-

cial to identify bottlenecks in the network so as to allocate network resources

112

efficiently. However, previously proposed techniques to detect network bottle-

necks shared by multiple paths do not scale well because they handle only two

paths at a time. In this chapter, a novel approach to cluster paths sharing

congestion was proposed. The proposed approach employs multidimensional

indexing and wavelet transform for better scalability. It outperforms previous

approaches when dealing with more than tens of paths. The granularity of

clustering is controllable by adjusting the neighbor search radius. Tradeoffs

between time-space complexity and accuracy with different dimensionalities

were investigated. Many overlay networks will benefit from scalable path clus-

tering by using the clustering information to improve its topology and, in turn,

overall throughput.

113

Chapter 5

Eliminating Bottlenecks

Previous chapters presented how to identify bottlenecks in overlay net-

works in a scalable manner. In this chapter, the proposed approach is applied

to overlay multicast to remove bottlenecks from a multicast tree, without re-

lying on the requirements used in Chapter 2.

Overlay multicast systems provide more flexibility in topology construc-

tion, but consume more bandwidth of an underlying network because data is

often delivered multiple times over the same physical link, causing a bottleneck.

This problem is more serious for applications demanding high bandwidth such

as multimedia distribution. One way to mitigate the problem is to limit the

fan-out of internal nodes in a multicast tree [7]. However, deciding the right

number of children is non-trivial; fan-out should be a function of the available

bandwidth to each child and the network topology. Furthermore, a bottleneck

may be caused by overlay connections from different source (parent) nodes. In

such a case, fan-out has little to do with the bottleneck. Therefore, a better

way to avoid bottlenecks is to identify them by finding overlay connections

in the multicast tree that traverse those bottlenecks using DCW, and remove

them by changing the multicast tree topology.

114

In this chapter, an algorithm that removes all bottlenecks shared by

multiple overlay connections is presented. In the case where the source rate is

constant and the available bandwidth of each link is not less than the source

rate, our algorithm guarantees that every node receives at the full source

rate. The algorithm is implemented in a distributed fashion, and compared

with other heuristically-built multicast trees using various performance met-

rics. Simulation results show that even in a network with a dense receiver

population, the proposed algorithm finds a tree that satisfies all the receiving

nodes while other heuristic-based approaches often fail.

5.1 Two-Layer Network Model

The network model in this chapter consists of two layers. The lower

layer represents the underlying traditional network with links and nodes, where

routing between nodes is done through the lowest-cost path. The upper layer

is an overlay network, where a subset of the nodes in the lower layer form a

multicast tree.

5.1.1 Underlying network

An underlying network is given as a directed graph G = (N,L), where

N is a set of nodes in the network, and L is a set of unidirectional links

between two nodes in N . Each link (m,n) ∈ L has two properties: B(m,n),

the bandwidth of the link available to overlay multicast, and c(m,n), the cost

of the link. The cost is a positive constant and used as a routing metric to

115

compute shortest paths. We assume symmetric routing, i.e. c(m,n) = c(n,m).

Given two nodes u and v in N , the shortest path between them is

specified as a set of links PL(u, v) = {(u, n1), (n1, n2), . . . , (ni, v)} chosen to

minimize the total cost of the links in the set. If there are more than one

such path, we assume that the routing algorithm always selects the same path

among them.

5.1.2 Overlay multicast tree

A multicast tree is built on top of the underlying network G, using a set

of end-hosts H . H is a subset of N , and consists of end-hosts participating the

multicast session. The multicast tree is represented as a set T = {(u, v)|u, v ∈

H , v is a child of u in the tree}. We call each element of T an edge of the tree.

Similarly to PL, PT is defined as a path in a multicast tree T . Formally,

PT (u, v) = {(u, h1), (h1, h2), . . . , (hi, v)}, where PT (u, v) ⊂ T .

5.1.3 Bottleneck

We model multicast traffic as a set of flows; every edge of an overlay

multicast tree has an associated flow for data delivery. Each flow f has a

source node Src(f), a sink node Snk(f), and the rate of the flow Rate(f).

Let F (m,n) be a set of flows passing through the link (m,n) ∈ L.

Formally, F (m,n) = {f |(m,n) ∈ PL(Src(f), Snk(f))}. A link (m,n) is a

bottleneck of the multicast session if and only if B(m,n) <
∑

f∈F (m,n) Rate(f).

The bottleneck link (m,n) is also called a shared bottleneck if multiple flows

116

are passing through the link, or |F (m,n)| > 1, where the notation |S| denotes

the number of elements of a set (or vector) S.

5.2 Bottleneck Elimination Algorithm

The goal of our algorithm is to remove shared bottlenecks in a multicast

tree, so that they cannot throttle throughput. In the algorithm we assume that

each bottleneck shared by multiple flows can be detected accurately using a

technique such as DCW [32]. Before we describe the algorithm, we define

notation to be used in explanation.

·

Ram(u) ·

·

u

· ·

·

·

Ram(u) u

· ·

·

Figure 5.1: Ramification point

• r ∈ H denotes the root node of a multicast tree.

• d(u, v) is the distance between u and v on T , namely d(u, v) = |PT (u, v)|.

• Parent(u) is the parent node of u in the tree.

• SLeaf (u) is one of the shallowest leaves in a subtree rooted at u. In other

words, SLeaf (u) is a leaf node closest to u in the subtree.

117

• Ram(u) is the node that has caused ramification of the branch of u in

the tree, or ∅ if there is no such node. Formally, Ram(u) is a node along

the path from r to u such that Parent(Ram(u)) has more than one child,

and all the nodes between Ram(u) and Parent(u), inclusively, have only

one child. See Fig. 5.1.

(a) (b)u1

·

u2

v2 ·

·

v1

· ·

u1

v1

u2

v2 ·

·

·

· ·

Figure 5.2: (a) Inter- and (b) intra-path shared bottlenecks

Shared bottlenecks need to be treated differently depending on their

relative locations in the tree. There are two types of shared bottlenecks:

intra-path and inter-path shared bottlenecks, as shown in Fig. 5.2, where

thick arrows represent flows sharing the same bottleneck. Suppose that a

link (m,n) ∈ L is a shared bottleneck. Then there exist two edges (u1, v1) and

(u2, v2) such that (u1, v1), (u2, v2) ∈ T and (m,n) ∈ PL(u1, v1) ∩ PL(u2, v2).

Without loss of generality, we assume d(r, u1) ≤ d(r, u2). A shared bottle-

neck (m,n) is called an intra-path shared bottleneck of (u1, v1) and (u2, v2) if

(u1, v1) ∈ PT (r, u2), and otherwise an inter-path shared bottleneck . In this

section, we describe first the algorithm for the more general case, inter-path

shared bottlenecks, and then the algorithm for intra-path shared bottlenecks.

118

By applying these algorithms iteratively, we can remove all shared bottlenecks

in a finite number of iterations. To make sure that it terminates, we will

prove that the tree after each iteration is different from any tree in previous

iterations.

For proof, we define two properties of a multicast tree: the leaf dis-

tance vector and total cost. The leaf distance vector is defined as D =

(d(r, u1), d(r, u2), . . . , d(r, uk)), where u1, u2, . . . , uk are all the leaf nodes in

T , and d(r, ui) ≤ d(r, ui+1) for every i < k. Distance vectors are ordered as

follows. For two distance vectors, D and D′, D precedes D′ (D ≺ D′) if and

only if (i) |D| > |D′|, or (ii) |D| = |D′| and D precedes D′ in lexicographical

order.

The second property, total cost C, is defined to be the sum of costs of

all edges in the tree, where the cost of an edge is the sum of all link costs along

the edge. Formally, C =
∑

(u,v)∈T

∑

(m,n)∈PL(u,v) c(m,n). For each link shared

by multiple edges, its link cost is counted multiple times.

5.2.1 Inter-path shared bottleneck

The algorithm to remove an inter-path shared bottleneck is shown in

Fig. 5.3. See also Fig. 5.2(a) for illustration. When an inter-path shared

bottleneck is detected between two edges (u1, v1) and (u2, v2), the edge farther

from the root, (u2, v2), is removed and the detached subtree rooted at v2 is

moved to the subtree rooted at v1. If the shallowest leaf in v1’s subtree is not

deeper than v2, then it is chosen as the node to which v2’s subtree is attached.

119

In this way, we can avoid increasing the fan-out of an internal node, which

may affect flows from the node to the existing child nodes. However, since

we do not want the tree to become too tall, we also avoid attaching v2 to a

very deep node. Therefore, if the shallowest leaf of v1 is deeper than v2, v2

is attached to a node on the path from v1 to its shallowest leaf such that the

depth of v2 increases at most by one.

Remove-Inter-Path-Shared-Bottleneck

1 ⊲ (u1, v1) and (u2, v2) in T are sharing a bottleneck,
and d(r, u1) ≤ d(r, u2).

2 if d(r, SLeaf (v1)) ≤ d(r, v2)
3 T ← T ∪ {SLeaf (v1), v2} − {(u2, v2)}
4 else
5 t← a node such that d(r, t) = d(r, v2) and

∃PT (u1, t) 6= ∅, PT (u1, t) ⊂ PT (u1, SLeaf (v1))
6 T ← T ∪ {(t, v2)} − {(u2, v2)}
7 if {(u2, x)|(u2, x) ∈ T} = ∅

8 u, v ← Parent(Ram(u2)),Ram(u2)
9 c← arg mini∈{w|Parent(w)=u,w 6=v} d(i, SLeaf (i))

10 T ← T ∪ {(SLeaf (c), v)} − {(u, v)}

Figure 5.3: Removal of an inter-path shared bottleneck

If u2 becomes a leaf after removing (u2, v2), we relocate its branch (the

path from Ram(u2) to u2) under another leaf in Lines 8–10, because leaving

behind u2’s branch may cause oscillation. Suppose that the edge added to

connect v2 to the tree causes another shared bottleneck. Then it is possi-

ble that v2 is detached once again and moved back to u2, if u2 is the chosen

shallowest leaf in this case. Thus the change made to remove the shared bot-

tleneck between (u1, v1) and (u2, v2) is reverted, and it revives the bottleneck

120

that we removed earlier. By relocating u2’s branch when u2 becomes a leaf,

we can avoid such oscillations. The following lemma states that the leaf dis-

tance vector before Remove-Inter-Path-Shared-Bottleneck algorithm

always precedes that after Remove-Inter-Path-Shared-Bottleneck.

Lemma 5.2.1. Let D and D′ denote leaf distance vectors before and after

Remove-Inter-Path-Shared-Bottleneck respectively. Then we have

D ≺ D′.

Proof There are two cases depending on d(r, SLeaf(v1)) and d(r, v2).

Case 1. d(r, SLeaf(v1)) ≤ d(r, v2)

If u2 has more than one child, the number of leaf nodes decreases by

one in Line 3 . Otherwise, the condition in Line 7 is satisfied, and hence it

decreases in Line 10. Note that removing (u, v) does not increase the number

of leaf nodes because u = Parent(Ram(u2)) has more than one children by the

definition of Ram. Therefore, D ≺ D′ holds.

Case 2. d(r, SLeaf(v1)) > d(r, v2)

In this case, t in Line 5 is not a leaf node; thus Line 6 does not decrease

the number of leaf nodes. Since d(r, t) = d(r, u2) + 1, the depth of every leaf

node in the subtree of v2 increases by one when the subtree is moved by Line 6.

If u2 becomes a leaf node in Line 6, the path from Ram(u2) to u2 is relocated

under another leaf node in Line 10. Note that the depth of every node between

121

Ram(u2) and u2 increases after relocation. As a result, |D| is equal to |D′|,

but some elements in D are replaced with larger values, resulting in D ≺ D′.

Therefore, D ≺ D′ in both cases.

5.2.2 Intra-path shared bottleneck

Figure 5.4 presents the algorithm to remove an intra-path shared bottle-

neck. See also Fig. 5.2(b) for illustration. Some intra-path shared bottlenecks

may be treated like inter-path shared bottlenecks, but others should be treated

differently.

In the case of an intra-path shared bottleneck, the shallowest leaf of

v1 may be v2 itself or a node in its subtree. If v1’s shallowest leaf is not in

v2’s subtree, Remove-Inter-Path-Shared-Bottleneck is applied to at-

tach v2 to the shallowest leaf of u1. Otherwise, we have two cases in Line 4,

depending on whether there is any branch between v1 and v2. If there is, v2’s

subtree is attached under that branch similarly as in an inter-path shared bot-

tleneck case. Otherwise, it becomes a child of a node in the middle so that the

depth of v2 in increased at most by one. As in Lemma 5.2.1, this ensures that

the leaf distance vector before Remove-Intra-Path-Shared-Bottleneck

precedes that after Remove-Intra-Path-Shared-Bottleneck.

If there is no branch between v1 and v2, edges (u1, v1) and (u2, v2) are

replaced with (u1, u2) and (v1, v2), and the edges in the middle are reversed so

that the flow traverses in the opposite direction in Lines 15–16. Shortest-path

routing guarantees that this reduces the total cost.

122

Remove-Intra-Path-Shared-Bottleneck

1 ⊲ (u1, v1) and (u2, v2) in T are sharing a bottleneck,
and d(r, u1) ≤ d(r, u2).

2 if SLeaf (v1) 6= SLeaf (v2)
3 Remove-Inter-Path-Shared-Bottleneck

4 else if Ram(v1) 6= Ram(v2)
5 u, v ← Parent(Ram(v2)),Ram(v2)
6 c← arg mini∈{w|Parent(w)=u,w 6=v} d(i, SLeaf (i))
7 if d(u, SLeaf (c)) ≤ d(r, u) + d(v, v2) + 1
8 T ← T ∪ {(SLeaf (c), v2)} − {(u2, v2)}
9 else

10 t← a node such that
d(r, t) = d(r, u) + d(v, v2) + 1 and
PT (u, t) ⊂ PT (u, SLeaf (c))

11 T ← T ∪ {(t, v2)} − {(u2, v2)}
12 if {(u2, x)|(u2, x) ∈ T} = ∅

13 T ← T ∪ {(SLeaf (c), v)} − {(u, v)}
14 else
15 T ← T ∪ {(u1, u2), (v1, v2)} − {(u1, v1), (u2, v2)}
16 ∀(x, y) ∈ PT (v1, u2), T ← T ∪ {(y, x)} − {(x, y)}

Figure 5.4: Removal of an intra-path shared bottleneck

From the two cases above, we conclude the following lemma.

Lemma 5.2.2. Let D and D′ denote leaf distance vectors before and after

Remove-Intra-Path-Shared-Bottleneck respectively, and C and C ′ be

total costs before and after Remove-Intra-Path-Shared-Bottleneck.

Then we have either D ≺ D′ or D = D′ and C < C ′.

Proof If SLeaf (v1) 6= SLeaf (v2) in Line 2, D ≺ D′ holds by Lemma 5.2.1.

Otherwise, there are the following two cases.

Case 1. Ram(v1) 6= Ram(v2)

123

When the condition in Line 7 holds, Line 8 does not increase the number

of leaf nodes. If u2 becomes a new leaf node by Line 8, then the number of leaf

nodes is decreased again in Line 13. Hence the net effect is always negative.

If the condition in Line 7 does not hold, Line 11 either maintains the same

number of leaf nodes or increases by one. In the case of increase, it is decreased

back in Line 13. Thus the number of leaf nodes always remain same. However,

the depth of every node in the subtree rooted at v2 increased by 1 due to the

way t is chosen. Therefore, D ≺ D′ always holds.

Case 2. Ram(v1) = Ram(v2)

The condition means that every node between v1 and u2, inclusively,

has only one child. In other words, the path from v1 to u2 is just a list.

Then we reverse the order of the list, and connect it upside down. Since leaf

nodes are not affected by this change, we know D = D′. Consider C and

C ′. Note that (u1, v1) and (u2, v2) are sharing a bottleneck link. Suppose the

bottleneck link is (α, β). Then PL(u1, v1) = PL(u1, α) ∪ {(α, β)} ∪ PL(β, v1)

and PL(u2, v2) = PL(u2, α) ∪ {(α, β)} ∪ PL(β, v2). Hence, the total cost of

these two edges is
∑

(m,n)∈PL(u1,α) c(m,n) + c(α, β) +
∑

(m,n)∈PL(β,v1) c(m,n) +
∑

(m,n)∈PL(u2,α) c(m,n)+c(α, β)+
∑

(m,n)∈PL(β,v2) c(m,n). After Remove-Intra-

Path-Shared-Bottleneck, the edges (u1, v1) and (u2, v2) are removed, and

(u1, u2) and (v1, v2) are added. The cost for other links remains same be-

cause it is symmetric. Since PL(u1, u2) is the shortest path between the two

nodes, the cost along the path is not larger than the cost of the path going

124

through α. In other words,
∑

(m,n)∈PL(u1,α) c(m,n) +
∑

(m,n)∈PL(u2,α) c(m,n) ≥
∑

(m,n)∈PL(u1,u2)
c(m,n). Similarly,

∑

(m,n)∈PL(β,v1) c(m,n)+
∑

(m,n)∈PL(β,v2) c(m,n) ≥
∑

(m,n)∈PL(v1,v2) c(m,n). Because c(α, β) > 0, the cost after Remove-Intra-

Path-Shared-Bottleneck is strictly less than the cost before.

Therefore, D ≺ D′, or D = D′ and C < C ′.

5.2.3 Shared bottleneck elimination

Using the previous two lemmas, we prove that our algorithm removes

all shared bottlenecks from a multicast tree.

Theorem 5.2.3. By applying Remove-Inter-Path-Shared-

Bottleneck or Remove-Intra-Path-Shared-Bottleneck iteratively,

all shared bottlenecks will be removed in a finite number of iterations.

Proof If there exists a shared bottleneck in a multicast tree, either Remove-

Inter-Path- or Remove-Intra-Path-Shared-Bottleneck can always

be applied to remove it. Each of them changes the leaf distance vector or

decreases the total cost while maintaining the same leaf distance vector by

Lemma 5.2.1 and Lemma 5.2.2. For a leaf distance vector D, there are only a

finite number of leaf distance vectors D′ such that D ≺ D′. And the total cost

C can be reduced only a finite number of times because it is lower-bounded,

and each time the amount of reduction is also lower-bounded by the minimum

link cost, which is a non-zero constant. Therefore, all shared bottlenecks are

removed within a finite number of iterations.

125

Note that our algorithms remove shared bottlenecks, providing that the

available bandwidth B and cost c of each link remain constant. In practice,

however, since available bandwidth keeps varying and the set of participating

hosts H changes, the multicast tree that the algorithm converges to may also

change. Nevertheless, we believe that an algorithm that converges to the

desired target in a static environment is a good starting point for a dynamic

environment, and we will show empirically that the actual protocol based

on our algorithm is in fact able to adapt as available bandwidth and node

membership changes occur.

5.3 Bottleneck Elimination Protocol

Our algorithm is based on the assumptions that a shared bottleneck is

detectable, that information such as shallowest nodes and ramification points is

available, and that each execution of Remove-Inter-Path-Shared-Bottleneck

or Remove-Intra-Path-Shared-Bottleneck does not interfere with an-

other execution. In this section, we explain how these assumptions can be

satisfied in a protocol implementation. In addition, we briefly describe how

our protocol handles node joins and leaves in a dynamic environment.

5.3.1 Shared congestion removal

In real networks, a shared bottleneck is a congested link shared by

multiple flows belonging to the same multicast session. DCW [32] determines

whether two flows are sharing such “shared congestion” with high accuracy

126

(> 95%) if one-way delay for each flow is measured for 10 seconds with a

sampling frequency of 10Hz. It tolerates a synchronization offset up to one

second between different flows, which is achievable with loose synchronization

among participating nodes as follows.

For loose synchronization, each non-root node sends a packet to its

parent periodically, and the parent replies with a timestamp. On receiving

the reply, the node calculates the round-trip time and sets its clock to the

timestamp plus half the round-trip time.

Shared congestion is detected and removed on a round-basis. The start

time of each round is publicized by the root node; each node obtains infor-

mation on the epoch T0 and round interval Tr from its parent, and starts a

round at T0 + nTr with its local clock, where n is an integer. In every round,

a node performs the following three tasks sequentially. (i) At the beginning

of each round, one-way delay from a node to each of its children that are ex-

periencing congestion is sampled for 10 seconds with a frequency of 10Hz as

recommended for DCW [32]. (ii) After measurement, a node waits for reports

from all child nodes; the reports contain delay samples of edges experiencing

congestion in the subtree of the corresponding child node. Once all reports

are received, the node selects edge pairs such that the edges in each pair share

a bottleneck link with each other. The node must ensure that executions of

the bottleneck removal algorithms do not interfere with each other. Since bot-

tleneck elimination relocates nodes in the subtree of Ram(v2) only, the node

can select as many pairs as it can, as long as such subtrees of selected pairs do

127

not overlap. Then, among all congested edges in its subtree, the node reports

delay samples of those edges that “would not interfere” with selected pairs.

Because edges involved in removing a bottleneck are (u1, v1) and those in the

subtrees of Ram(v2) and v2 only, shared bottlenecks in other edges can be re-

moved concurrently. Therefore, the node sends to its parent the delay samples

of those congested edges that are not involved in removing a bottleneck of any

selected pair. (iii) Finally, the node removes shared bottlenecks in its subtree

by running the algorithm for every selected pair.

5.3.2 Information update

The algorithm requires that each node v should know d(r, v), SLeaf (v),

and Ram(v). These values are updated at each node u by exchanging infor-

mation with its parent and with its child nodes when the values change. An

information update packet from a parent u and a child v contains d(r, u) and

Ram(v), which are used to update v’s local information on d(r, v) and Ram(v).

Similarly, an information update packet from a child v to its parent u contains

SLeaf (v), and u updates SLeaf (u), d(u, SLeaf (u)), SLeaf (v), d(u, SLeaf (v)),

and the child node whose subtree SLeaf (v) belongs to.

5.3.3 Membership management

We assume that a joining node obtains the address of the root node

through an out-of-band channel, such as WWW. When it sends a join request

to the root node, it is accepted as a temporary child. If the new node does not

128

experience congestion during the next round, it becomes a permanent child.

Otherwise it is forwarded to one of the existing children of the root node.

This procedure is propagated along the tree until the joining node becomes a

permanent child of an existing node. One concern is that congestion caused

by a temporary child may affect other children. This can be avoided if a

parent node uses a priority queue for its outgoing flows, in which packets to

the temporary child have lower priority than others.

When a node leaves, its children become temporary children of the

parent of the leaving node. Then the temporary children are treated as joining

nodes. Node failures are handled in the same way.

5.4 Evaluation

For evaluation, the proposed protocol is compared against two heuristic-

based schemes. The first one optimizes the multicast tree using bandwidth

estimation as in Overcast [28]. Each node estimates available bandwidth from

the grandparent, parent and its siblings using 10 kB TCP throughput, and

then relocates below the one with the highest estimation. However, 10 kB TCP

throughput does not have very strong correlation with available bandwidth.

Taking into account that a path chosen using 10 kB TCP throughput provides

only half of the bandwidth of the best path [40], we optimistically assume that

the bandwidth estimation has maximum error of 20%.

The second heuristic scheme is based on delay measurement. It is simi-

lar to the bandwidth-based one except that it selects the node with the shortest

129

delay instead of the highest bandwidth and that the number of children each

node can have is limited to four to avoid high fan-out.

For fair comparison, we also introduce errors in shared congestion de-

tection. Since our goal is to show that our protocol performs better than

heuristic-based ones, we conservatively assume that the detection error is 5%,

which is higher than actual error rate (almost zero when measurement inter-

val is longer than 10 seconds) of DCW [32]. Then we measure performance of

each scheme using a flow-level simulator we wrote, where bandwidth allocation

to flows is max-min fair. The relationship between the tree performance and

error rate will also be presented.

5.4.1 Tree performance comparison

To demonstrate tree performance under heavy load, we run simulations

on a network with a dense receiver population. The network topology is gen-

erated with GT-ITM [6]. There are 24 transit routers, 576 stub routers, and

1152 hosts participating in the multicast session. The bandwidth (Mbps) of

each link is randomly drawn from four different intervals: [300, 1400) between

transit routers, [40, 70) between a transit and a stub router, [5, 15) between

stub routers, and [1, 5) between a stub router and an end host. The source

rate is set to 1Mbps. Initially, the tree consists of the source (root) host only.

All the other hosts then join the tree.

We use the following metrics to evaluate a multicast tree.

130

Link stress The number of flows in a multicast session that traverse a phys-

ical link. Defined in [10].

Link load The sum of required rates for all flows in a link divided by the

bandwidth of the link.

Relative delay penalty (RDP) The ratio of the delay from the root to a

node in a tree to the unicast delay between the same nodes. Defined in

[10].

Receiving rate The max-min fair rate assigned to a flow from the root to a

node divided by the maximum rate of the flow (the source rate).

Below we show distributions of these metrics for trees built with the three

different schemes: delay heuristic, bandwidth heuristic, and our bottleneck-

free tree protocol. We run the bottleneck-free tree protocol until there is no

shared congestion. The delay heuristic scheme is run until the tree does not

change any more. However, the bandwidth heuristic may oscillate as shown

in Overcast [28] because changing tree topology affects bandwidth estimation.

Since Overcast becomes relatively stable after 20 rounds, we run the bandwidth

heuristic up to 30 rounds.

Figure 5.5 shows the link stress distribution for links used by the mul-

ticast session. Since the delay heuristic tends to build a tree well-matched

with the underlying topology, its link stress is far better than other schemes.

Note that the bottleneck-free tree shows the worst performance in terms of

131

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

C
D

F

Link stress

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free Tree

Figure 5.5: Link stress distribution

link stress. However, this does not necessarily mean that it is abusing the

network, because having a large number of flows in a link (high link stress) is

totally acceptable if the link has available bandwidth to accommodate all of

them. The next figure shows this point clearly.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Link load

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free Tree

Figure 5.6: Link load distribution

Figure 5.6 presents the distribution of link load, which is the amount

of bandwidth required to carry all flows traversing a link divided by the link’s

available bandwidth. Contrary to the previous result, the delay heuristic is

132

the worst among the three; on some links, the required bandwidth to support

the multicast session is more than 3.5 times the available bandwidth. This is

because the delay heuristic often chooses a link with small bandwidth if the

delay of a path going through the link is short. Note that link load with the

bottleneck-free tree is always less than one. The bandwidth heuristic maintains

similar performance as the bottleneck-free scheme, but some links have load

higher than one. Since each of such links throttles receiving rates of the entire

subtree connected upstream through the link, even a few of them may affect

a large number of receiving nodes.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Receiving rate

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free

Figure 5.7: Receiving rate distribution

In Fig. 5.7, the receiving rate distribution is shown. Due to high link

load, all the receiving nodes in the delay heuristic tree receive less than half of

the source rate. The distribution for the bandwidth heuristic shows the impact

of the few links with high load in Fig. 5.6; only less than 40% of the receiving

nodes can receive data at the full source rate. The other 60% experience quality

degradation due to bandwidth shortage. However, in the bottleneck-free tree,

133

100% of the receiving nodes receive at the full source rate since it maintains

link load less than one. Usually such gain in receiving rate comes with the cost

of longer delay. However, our algorithm is very careful in changing the tree

topology not to increase depth of a relocated node unnecessarily. As a result,

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

RDP

Delay Heuristic Tree
Bandwidth Heuristic Tree

Bottleneck Free Tree

Figure 5.8: RDP distribution

its RDP is only a little worse than the tree built with the delay heuristic,

as illustrated in the distribution of RDP in Fig. 5.8. Because the bandwidth

heuristic pays little attention to delay, its RDP is worse than the others.

We have to mention that this experiment regarding RDP is somewhat

unfair to the bandwidth heuristic; the relative delay of the bandwidth heuristic

would be better if rate allocation was TCP fair rather than max-min fair.

That is because TCP throughput is affected by round-trip time, and then by

choosing a path with high throughput, a short path is very likely to be chosen.

Nevertheless, since the 10 kB TCP throughput does not have strong correlation

with round-trip time [40], we do not expect significant improvement with TCP

fair rate allocation.

134

5.4.2 Convergence speed

The next aspect of our protocol to evaluate is its convergence speed.

The protocol defines a series of actions performed during each round, and thus

we use round as a unit to measure the convergence time. Because each round

of our protocol involves shared congestion detection, which takes ten seconds

to achieve high accuracy (> 95%), a round should be longer than that. Also,

the number of packet transmissions required for the last case in removing an

intra-path shared bottleneck, where edges are reversed along the path between

edges sharing the bottleneck, is equal to the length of the path. Therefore the

length of a round interval must be on the order of tens of seconds.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

R
ou

nd
s

Number of joins

Figure 5.9: Convergence after nodes join

Fig. 5.9 shows how long it takes for a tree to stabilize when n nodes

join. The convergence time increases linearly as the number of joining nodes

increases, reaching 300 round when 50 hosts join. This presents an upper

bound because in this scenario all the nodes first become children of the root

node resulting in shared congestion on most links close to the root. The

135

convergence time would be reduced if nodes are allowed to contact a non-root

node directly to join or the root node forwards the new node to a random

node, though the resulting tree might be taller.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

R
ou

nd
s

Number of leaves

Figure 5.10: Convergence after nodes leave

Unlike joins, concurrent leaves can be handled relatively easily. In

Fig. 5.10, we plot the convergence time when n hosts leave the tree. Except

for a few outliers, most cases take less than 20 rounds. This is because shared

bottlenecks in different subtrees can be eliminated concurrently.

Another question is that how long it takes to remove a new bottleneck

caused by external factors such as increased background traffic. Because of

the tree structure, a bottleneck close to the root usually affects a large number

of downstream nodes. Therefore, it is critical to remove the bottleneck early.

We plot in Fig. 5.11 the time it takes to remove bottlenecks with dif-

ferent depths in the tree. A new shared bottleneck was created by reducing

available bandwidth. As we expect, a bottleneck near a leaf (depth larger than

25) can be removed within a couple of rounds. On the other hand, a bottleneck

136

0

10

20

30

40

50

0 5 10 15 20 25 30

R
ou

nd
s

Depth of the link

Figure 5.11: Convergence after available bandwidth change

close to the root takes longer—up to ten rounds with a few outliers.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

R
ec

ei
vi

ng
 r

at
e

Rounds

Median 3-D
Average 3-D
Median 4-D

Average 4-D
Median 5-D

Average 5-D

Figure 5.12: Receiving rate increase as a tree converges

In real applications where available bandwidth changes dynamically

and nodes leave and join at any time, the tree is more likely to keep evolving

toward the moving target, rather than staying at the bottleneck-free state.

Therefore, it is important to increase receiving rate in early rounds of evolution.

In Figure 5.12, we demonstrate receiving rate changes as time elapses until the

tree converges to the bottleneck-free state. The initial trees are built randomly

137

with fixed degree. For each degree (3, 4, or 5), both median and average

receiving rates are plotted. Although it takes tens of rounds to converge, most

of the receiving rate increase is achieved within early half of the convergence

time.

5.4.3 Effects of Measurement Errors

All the three schemes we evaluated in Section 5.4.1 depend on network

measurements. In this section, we investigate the relationship between errors

in measurements and tree performance in terms of receiving rate. We exclude

the delay heuristic because delay measurement is relatively easy and accurate

compared with bandwidth measurement and shared congestion detection. The

network topology we use has 4 transit routers, 96 stub routers, and 192 end

hosts. The link bandwidth is uniformly distributed in the intervals [200, 100]

between transit routers, [15, 35] between a transit and a stub router, [5, 10]

between stub routers, and [1, 3] between a stub router and an end host.

Figure 5.13 shows the cumulative distributions of receiving rate for

the bandwidth heuristic with different levels of errors when every receiving

node joins through the root node. Although the receiving rates with higher

errors are less than those with lower errors, the difference is not significant.

This means that the poor performance of the bandwidth heuristic in earlier

simulations resulted from the weakness of the heuristic itself, not from the

20% error we introduced.

For shared congestion detection, there are two types of errors: false

138

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F

Receiving rate

Error= 0.0
Error = 0.16
Error = 0.32

Figure 5.13: Effects of errors in bandwidth estimation

positive and false negative. False positive means that two paths are considered

to be sharing congestion when they are not. Note that these errors are not as

serious as bandwidth estimation errors because both error rates are very low

in DCW if measurement period is longer than 10 seconds [32].

In the following simulations, we run the bottleneck-tree protocol with

different false positive and false negative ratio, starting with a randomly built

tree with degree of 3.

False positives may make the tree deeper because subtrees are moved

under a deeper node even without shared congestion. The effects are demon-

strated in Figure 5.14. However, we notice only a very slight increase of the

RDP as the error rate increases up to 6%.

The effect of false negatives is also negligible in the range from 0 to 6%,

as shown in Figure 5.15; this type of errors make the convergence slower due

to hidden shared bottlenecks, but only by a few rounds. Therefore, errors in

139

0

5

10

15

20

25

30

0 0.01 0.02 0.03 0.04 0.05 0.06

A
ve

ra
ge

 R
D

P

False positive

Figure 5.14: Effects of false positive in shared congestion

0

20

40

60

80

100

0 0.01 0.02 0.03 0.04 0.05 0.06

R
ou

nd
s

False negative

Figure 5.15: Effects of false negative in shared congestion

140

shared congestion detection less then 6%, which is achievable with DCW, do

not affect much the performance of our protocol.

Also note that, unlike the bandwidth heuristic, which only looks for a

local optimum and does not consider the source rate it should support, our

protocol eventually reaches the state where all receiving rates are as high as

the source rate, with or without errors.

5.5 Summary

In bandwidth-demanding multicast applications such as multimedia

distribution, it is critical for a user to receive at the full source rate so as

not to experience quality degradation. Though many heuristics to achieve

high receiving rate have been proposed, they often fail to provide required re-

ceiving rate. In this chapter, a new tree construction algorithm that removes

bottlenecks caused by the multicast session was proposed, and it was proved

that the algorithm removes every such bottleneck. If the available bandwidth

of each link is larger than the source rate, the algorithm guarantees that all

receiving nodes receive at the full source rate. Simulation results show that

our protocol maintains low link load and short delay penalty while providing

the maximum receiving rate.

141

Chapter 6

Conclusion

Building an efficient topology is crucial in overlay networks. Because

an overlay network consists of a large number of connections between par-

ticipating end hosts, having a topology that minimizes interference between

them is essential to achieve high throughput. This dissertation focuses on in-

ferring network characteristics and improving overlay network topology using

them. For bandwidth-demanding applications, one of the most critical net-

work characteristics is available bandwidth. Chapter 2 showed that knowledge

of available bandwidth could increase average available bandwidth of overlay

multicast significantly. By replacing low-bandwidth overlay connections with

high-bandwidth ones, the multicast tree built with the proposed algorithm

achieved 30 times higher average bandwidth than randomly built trees.

Although it demonstrated very well that an overlay network benefits

greatly from information on the underlying network characteristics, such an

algorithm does not take interference between overlay connections into consid-

eration, and therefore leads to suboptimal topology. Thus, how to identify

and avoid such interference was also studied.

DCW was proposed to identify interfering overlay connections using

142

a signal processing technique, wavelet denoising. It infers robustly whether

two Internet paths are sharing the same congested link or not. Due to the

denoising process making DCW tolerate synchronization offset up to one sec-

ond, DCW became an ideal solution for overlay networks which usually have

a large number of connections with different sources and destinations.

To apply DCW to more than two paths in a scalable manner, multi-

dimensional indexing was introduced. It stores data collected from each path

as a single point in a multidimensional space, and indexes it using a tree-like

structure. In this space, a neighbor search for a path retrieves all paths that

share congestion with it. The computational complexity of multidimensional

indexing was reduced by using a subset of wavelet coefficients that were more

relevant to shared congestion detection. For example, decreasing the num-

ber dimensions for indexing from 170 to 36 caused only a slight decrease of

detection accuracy. Experiments showed that the multidimensional indexing

outperformed the pairwise approach in clustering paths by shared congestion.

After clustering paths, an overlay network can avoid bottlenecks in its topology

by choosing at most one path in each cluster.

As a case study, an algorithm that improves overlay multicast topology

was designed. The proposed algorithm finds bottlenecks shared by multiple

overlay connections using DCW, and removes them from the multicast tree by

relocating involved subtrees. It was proved that there remains no such bottle-

neck in the tree upon termination of the algorithm. The tree built with the

algorithm also maintained low link load and shared delay penalty in simula-

143

tions. A similar approach to finding bottlenecks and removing them through

topology changes can be applied to other types of overlay networks. The tech-

niques and algorithms proposed in this dissertation will serve as a foundation

on which future applications can achieve higher throughput by building more

efficient overlay networks.

144

Bibliography

[1] Patrice Abry, Richard Baraniuk, Patrick Flandlin, Rudolf Riedi, and Dar-

ryl Veitch. Multiscale nature of network traffic. IEEE Signal Proessing

Magazine, 19(3):28–46, May 2002.

[2] Aditya Akella, Srinivasan Seshan, and Hari Balakrishnan. The impact

of false sharing on shared congestion management. In Proceedings of

the 11th IEEE International Conference on Network Protocols, November

2003.

[3] Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-time

tradeoffs for approximate spherical range counting. In Proceedings of

the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

535–544, January 2005.

[4] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy.

Scalable application layer multicast. In Proceedings of ACM SIGCOMM

2002, August 2002.

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The R*-tree: An efficient and robust access method for points

and rectangles. In Proceedings of ACM SIGMOD ’90, pages 322–331,

1990.

145

[6] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Model-

ing Internet topology. IEEE Communications Magazine, 35(6):160–163,

June 1997.

[7] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Row-

stron. Scribe: A large-scale and decentralized application-level multi-

cast infrastructure. IEEE Journal on Selected Areas in Communications,

20(8):100–110, October 2002.

[8] Yatin Chawathe and Mukund Seshadri. Broadcast Federation: an appli-

cation layer broadcast internetwork. In Proceedings of the 12th Interna-

tional Workshop on Network and Operating Systems Support for Digital

Audio and Video, May 2002.

[9] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. En-

abling conferencing applications on the Internet using an overlay multicast

architecture. In Proceedings of ACM SIGCOMM 2001, August 2001.

[10] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A

case for end system multicast. IEEE Journal on Selected Areas in Com-

munications, 20(8), October 2002.

[11] Mark Coates, Alfred O. Hero III, Robert Nowak, and Bin Yu. Internet

tomography. IEEE Signal Proessing Magazine, 19(3):47–65, May 2002.

[12] Reuven Cohen and Gideon Kaempfer. A unicast-based approach for

streaming multicast. In Proceedings of IEEE INFOCOM 2001, April

146

2001.

[13] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

duction to Algorithms, chapter 17. MIT Press, 1990.

[14] I. Daubechies. The wavelet transform, time-frequency localization and

signal analysis. IEEE Transactions on Information Theory, 36(5):961–

1005, September 1990.

[15] D. L. Donoho. De-noising by soft-thresholding. IEEE Transactions on

Information Theory, 41(3):613–627, May 1995.

[16] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet

shrinkage. Biometrika, 81:425–455, 1994.

[17] Kevin Fall and Kannan Varadhan, editors. The ns Manual. The VINT

Project, 2005.

[18] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. Equation-

based congestion control for unicast applications. In Proceedings of ACM

SIGCOMM 2000, August 2000.

[19] Mukul Goyal, Roch Guerin, and Raju Rajan. Predicting TCP through-

put from non-invasive network sampling. In Proceedings of IEEE INFO-

COM 2002, June 2002.

[20] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In Proceedings of ACM SIGMOD ’84, pages 47–57, 1984.

147

[21] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP friendly rate

control (TFRC): Protocol specification. RFC 3448, The Internet Society,

January 2003.

[22] Katrina M. Hanna, Nandini Natarajan, and Brian Neil Levine. Evalua-

tion of a novel two-step server selection metric. In Proceedings of the 9th

IEEE International Conference on Network Protocols, November 2001.

[23] Pierre Hansen and Brigitte Jaumard. Cluster analysis and mathematical

programming. Mathematical Programming, 79(1-3):191–215, 1997.

[24] Khaled Harfoush, Azer Bestavros, and John Byers. Robust identification

of shared losses using end-to-end unicast probe. In Proceedings of the 8th

IEEE International Conference on Network Protocols, November 2000.

[25] Khaled Harfoush, Azer Bestavros, and John Byers. Robust identifica-

tion of shared losses using end-to-end unicast probe. Technical Report

BUCS–TR–2001–001, Computer Science Department, Boston University,

Massachusetts, U.S.A., January 2001. Errata to the previous reference.

[26] Polly Huang, Anja Feldmann, and Walter Willinger. A non-instrusive,

wavelet-based approach to detecting network performance problems. In

Proceedings of the First ACM SIGCOMM Internet Measurement Work-

shop, pages 213–227, November 2001.

[27] Manish Jain and Constantionos Dovrolis. End-to-end available band-

width: measurement methodology, dynamics, and relation with TCP

148

throughput. In Proceedings of ACM SIGCOMM 2002, August 2002.

[28] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek,

and James W. O’Toole, Jr. Overcast: Reliable multicasting with an

overlay network. In Proceedings of 4th Symposium on Operating Systems

Design and Implementation, pages 197–212, October 2000.

[29] Tianji Jiang, Mostafa H. Ammar, and Ellen W. Zegura. Inter-receiver

fairness: a novel performance measure for multicast ABR sessions. In

Proceedings of ACM SIGMETRICS ’98, June 1998.

[30] Dina Katabi, Issam Bazzi, and Xiaowei Yang. A passive approach for

detecting shared bottlenecks. In Proceedings of the 10th IEEE Interna-

tional Conference on Computer Communications and Networks, October

2001.

[31] Norio Katayama and Shin’ichi Satoh. The SR-tree: An index structure

for high-dimensional nearest neighbor queries. In Proceedings of ACM

SIGMOD 1997, May 1997.

[32] Min Sik Kim, Taekhyun Kim, YongJune Shin, Simon S. Lam, and Ed-

ward J. Powers. A wavelet-based approach to detect shared congestion.

In Proceedings of ACM SIGCOMM 2004, August 2004.

[33] Min Sik Kim, Taekhyun Kim, YongJune Shin, Simon S. Lam, and Ed-

ward J. Powers. Scalable clustering of Internet paths by shared conges-

149

tion. Technical Report TR–05–25, Department of Computer Sciences,

The University of Texas at Austin, May 2005.

[34] Min Sik Kim, Simon S. Lam, and Dong-Young Lee. Optimal distribution

tree for Internet streaming media. In Proceedings of IEEE ICDCS 2003,

Providence, RI, May 2003.

[35] Min Sik Kim, Yi Li, and Simon S. Lam. Eliminating bottlenecks in

overlay multicast. In Proceedings of IFIP Networking 2005, pages 893–

905, May 2005.

[36] Zhijun Lei. Media transcoding for pervasive computing. In Proceedings

of the 9th ACM International Conference on Multimedia, September 2001.

[37] J. B. MacQueen. Some methods for classification and analysis of mul-

tivariate observations. In Proceedings of the 5th Berkeley Symposium

on Mathematical Statistics and Probability, pages 281–297. University of

California Press, 1967.

[38] Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic Press,

2nd edition, 1999.

[39] David L. Mills. Network time protocol (version 3) specification, imple-

mentation and analysis. RFC 1305, March 1992.

[40] T. S. Eugene Ng, Yang-hua Chu, Sanjay G. Rao, Kunwadee Sripanid-

kulchai, and Hui Zhang. Measurement-based optimization techniques

150

for bandwidth-demanding peer-to-peer systems. In Proceedings of IEEE

INFOCOM 2003, April 2003.

[41] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel.

ALMI: an application level multicast infrastructure. In Proceedings of the

3rd USENIX Symposium on Internet Technologies and Systems, March

2001.

[42] Ivan Popivanov and Renee J. Miller. Similarity search over time-series

data using wavelets. In Proceedings of the 18th International Conference

on Data Engineering, February 2002.

[43] Injong Rhee, Volkan Ozdemir, and Yung Yi. TEAR: TCP emulation

at receivers — flow control for multimedia streaming. Technical report,

Department of Computer Science, North Carolina State University, April

2000.

[44] Rudolf H. Riedi, Matthew S. Crouse, Vinay J. Ribeiro, and Richard G.

Baraniuk. A multifractal wavelet model with application to network

traffic. IEEE Transactions on Information Theory, 45(3):992–1018, 1990.

[45] Dan Rubenstein, Jim Kurose, and Don Towsley. Detecting shared con-

gestion of flows via end-to-end measurement. IEEE/ACM Transactions

on Networking, 10(3):381–395, June 2002.

[46] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-

tree: A dynamic index for multi-dimensional objects. In Proceedings

151

of the 13th International Conference on Very Large Data Bases, pages

507–518, 1987.

[47] YongJune Shin, Edward J. Powers, William M. Grady, and S. C. Bhatt.

Optimal Daubechies’ wavelet bases for detection of voltage sag in electric

power distribution and transmission systems. In Wavelet Applications in

Signal and Image Processing VII, SPIE, pages 873–883, July 1999.

[48] Harry L. Van Trees. Detection, Estimation, and Modulation Theory.

John Wiley & Sons, December 1968.

[49] David A. White and Ramesh Jain. Similarity indexing with the SS-tree.

In Proceedings of the 12th International Conference on Data Engineering,

pages 516–523. IEEE Computer Society, 1996.

[50] W. Williams. Uncertainty, information, and time-frequency distribu-

tions. In Advanced Signal Processing Algorithms, Architectures and Im-

plementations II, SPIE., pages 144–156, July 1991.

[51] Maya Yajnik, Jim Kurose, and Don Towsley. Packet loss correlation in

the MBone multicast network. In Proceedings of IEEE Global Internet

1996, November 1996.

[52] Y. Richard Yang, Min Sik Kim, and Simon S. Lam. Optimal partitioning

of multicast receivers. In Proceedings of the 8th IEEE International

Conference on Network Protocols, Osaka, Japan, November 2000.

152

[53] Y. Richard Yang, Min Sik Kim, and Simon S. Lam. Transient behav-

iors of TCP-friendly congestion control protocols. Computer Networks,

41(2):193–210, February 2003.

[54] Ossama Younis and Sonia Fahmy. Flowmate: Scalable on-line flow clus-

tering. IEEE/ACM Transactions on Networking, 13(2):288–301, April

2005.

[55] Yin Zhang, Nick Duffield, Vern Paxson, and Scott Shenker. On the

constancy of Internet path properties. In Proceedings of ACM SIGCOMM

Internet Measurement Workshop, November 2001.

153

Index

AIMD, 43

auto-measure, 54

bandwidth measurement, 42

Bayesian probing, 71

bottleneck, 116

BP, 71

clustering accuracy, 105

coefficient of variation, 43

CoV, 43

cross-correlation coefficient, 49

cross-measure, 54

Daubechies wavelets, 64

DCW, 47

delay sequence, 93

differential ISNR, 64

edge bandwidth, 12

Edge Bandwidth Assumption, 12

Fair Contribution Requirement, 14

false negative rate, 105

false positive rate, 105

FlowMate, 91

GT-ITM, 44, 130

incoming rate, 12

instantaneous SNR, 62, 63

inter-path shared bottleneck, 118

intra-path shared bottleneck, 118

ISNR, 63

link load, 131

link stress, 130

Markovian probing, 55, 71

max-min fair, 130

MP, 71

multidimensional indexing, 97

ns-2, 44, 52, 99

Overcast, 129, 131

Positive Ratio, 71

probe packet, 50

rate vector, 15

receiving rate, 131

RED, 46

relative delay penalty, 131

shared bottleneck, 116

shared congestion, 46

shared loss rate ratio, 85

SR-tree, 97

synchronization offset, 51

TEAR, 45

TFRC, 45

wavelet basis, 59

wavelet coefficient, 60

wavelet transform, 59

XCOR, 49

154

Vita

Min Sik Kim was born in Seoul, Korea on September 25, 1974, the son of

Youngsoon Shin and Taeshin Kim. After completing his work at Seoul Science

High School, Seoul, Korea, in 1993, he entered Seoul National University in

Seoul, Korea, and received the degree of Bachelor of Science in Engineering

in February 1996. During the years 1996 through 1998, he served in the

Republic of Korea Army. In August 1999, he entered the Graduate School of

The University of Texas at Austin.

Permanent address: 55-10 Yeokchon 2-Dong Eunpyeong-Gu
Seoul 122-900, Korea

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

155

