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Abstract. For a robot in a dynamic environment, the ability to detect
motion is crucial. Although legs are arguably the most versatile means
of locomotion for a robot, and thus the best suited to an unknown or
changing domain, existing methods for motion detection either require
that the robot have wheels or that its walking be extremely slow and
tightly constrained. This paper presents a method for detecting motion
from a quadruped robot walking at its top speed. The method is based
on a neural network that learns to predict optic flow at each timestep,
thus allowing anomalies to be detected. The system is demonstrated to
be capable of detecting motion in the robot’s surroundings.

1 Introduction

The ability to detect motion is important to a robot in a novel or changing
environment. Motion can potentially be a very large clue about which parts of
the environment are interesting or dangerous. For example, consider a consumer
robot in the home, such as the commercially available Sony Aibo[1]. Motion can
give it clues to where humans are located in its environment, which will help
it interact with them more effectively. It can also be used to direct the robot’s
attention to potential danger, such as a stack of books sliding off of a desk or the
family dog preparing to pounce on it. As another example, consider a surveillance
robot [2]. The importance of motion detection in this case should be readily
apparent, since this is the primary mechanism on which modern surveillance
systems are based.

If a robot is to be able to deal with truly novel environments, it is also an
advantage for the robot to have legs rather than wheels. Legs allow traversal of
highly uneven surfaces. A legged robot can step over obstacles or climb stairs,
whereas analogous feats are often impossible for a wheeled robot. However, the
motion of a legged robot is not as smooth as that of a wheeled robot. This
introduces additional challenges for detecting motion in the world from such a
robot while it is moving.

The main contribution of this paper is a method for detecting motion from
a quadruped robot while it is walking at its maximum speed (approximately
34cm/sec). Our method is inspired by that of Lewis [3], but differs in several



ways and is shown to be effective in a less constrained environment with a
significantly faster-moving robot.

The remainder of this paper is organized as follows. Section 2 gives a back-
ground and describes related work. Section 3 details our method for detecting
external motion. Section 4 describes the setup of the system used in the exper-
iments, as well as the details of the experiments themselves. Section 5 shows
the results of these experiments, and Section 6 discusses these results as well as
possible directions for the future. Section 7 concludes with a brief examination
of the contributions of this work.

2 Background and Related Work

2.1 Optic Flow

Optic flow is a way of describing the apparent motion between two images of
the same scene taken in quick succession. It is typically expressed as a vector
field, with a two-dimensional vector for each pixel in the first image, representing
vertical and horizontal displacement. These vectors give a complete description
of where each pixel in the first image appears to have moved to in the second
image.

The relationship between the apparent motion in two dimensions and the
actual motion in three dimensions is non-trivial. Sometimes it is difficult to
determine whether the motion is the result of the camera moving or objects in
the scene moving. In other cases, it is clear that an object is moving and not the
camera, but the actual direction of the object’s motion cannot be determined
because only part of the object is visible (this is known as the aperture problem).

For an intuitive understanding of some of these issues, consider a passenger
looking out the right-hand side window of a car at an adjacent vehicle while s/he
is waiting for a stoplight to turn green. Without prior knowledge, the scenes s/he
perceives if the car appears to move to the left could be interpreted in a number
of ways – the other car might be moving forward and the passenger’s car might
still be stationary, or the other car might be stopped and our passenger might
be moving backwards, or both cars might be moving (forward or backwards)
at different rates. It is clear that while the optic flow field contains a wealth of
knowledge, interpretation of those fields can be difficult.

Optic flow is formulated in terms of instantaneous (in space and time) image
intensity gradients. The key formula defining the optic flow between two images
in a sequence is

It+dt(x + u(x, y), y + v(x, y)) = It(x, y), (1)

where It(x, y) is the image intensity at each pixel at time t, It+dt(x, y) is the
image intensity at time (t + dt), u(x, y) is the horizontal flow at each pixel, and
v(x, y) is the vertical flow at each pixel. Thus the horizontal and vertical optic
flow generate a “mapping” between corresponding pixels in the two images.



A perfect solution to the optic flow formula is rarely available because of
noise in the input images and other effects like occlusion. Instead of looking
for a total solution, most approaches attempt to minimize the error in equation
(1) summed over all pixels in the image. Computation of optic flow is an under-
constrained problem, so in addition to minimizing the error in the pixel matching
between images, a smoothness constraint is typically added. This constraint is
justified because for images of real-world objects (which are, in general, smooth
and connected) we can expect the optic flow field to be smooth at almost every
pixel. The objective function for optimization then becomes
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The correctness and smoothness components to the optimization are clearly vis-
ible as the first and second group of terms in the objective function, respectively.
As the optic flow field generates a more accurate matching between pixel inten-
sities in the two images, the first group of terms will decrease towards zero. As
the field becomes smoother (showing less variation between adjacent pixels), the
second group of terms will decrease towards zero. The relative importance of
these terms is regulated by the parameter λ. Because its formulation is based
on local gradient information, computation of the optic flow field is often more
accurate when images are only incrementally different.

Optic flow is often computed via iterative relaxation, by one variation or
another of an approach developed by Horn and Schunk in the 1980’s [4]. In this
approach, the proposed solution is initialized, and on each iteration, the solu-
tion is refined by propagating information from each pixel to its local neighbors
through a local averaging of the optic flow field. This process is guided by the
equations

uk(i, j) = ūk−1(i, j) − Ix(i, j)
P (i, j)

D(i, j)

vk(i, j) = v̄k−1(i, j) − Iy(i, j)
P (i, j)

D(i, j)

P = Ixū + Iy v̄

D = λ2 + I2
x + I2

y

In these equations, uk(i, j) and vk(i, j) are the kth iteration’s estimates of
the horizontal and vertical flow at pixel (i,j), and f̄(x, y) is the local average of
function f(·) near pixel (x,y). Iteration continues until a convergence condition is
reached or a maximum number of iterations, kmax, have occurred. This 25-year-
old approach continues to be one of the more common and effective methods of
optic flow computation, although many alternatives have been studied.



2.2 Optic Flow in Navigation

Optic flow can be extremely useful in navigation and obstacle detection, and
several groups have used it for these purposes in robots [5, 6]. In general, the
robots are wheeled (or airborne) instead of legged, which means that their typical
motion is smoother. This makes normal optic flow easier to characterize, so
abnormalities such as the ones caused by obstacles can readily be detected.

A method for detecting obstacles in the walking path of a bipedal robot using
optic flow information was developed by Lewis [3]. In this method, a neural
network uses the robot’s joint angles and gait phase to predict optic flow events.
This prediction is compared to observed optic flow events, and any significant
difference between the two indicates that an obstacle has been detected.

The success of Lewis’s approach indicates that optic flow can be a source of
useful information even on legged robots. It also indicates that neural networks
have promise as a tool for overcoming the difficulty of characterizing normal
optic flow on legged robots, as discussed above. But Lewis’s experiments take
place in a very constrained environment. The robot is tethered so that it walks
in a circle, and its camera is fixed at a slight downward angle so that it is always
focusing on the ground slightly in front of it, which is the same at all points
around the circle (with the exception of the obstacles it must detect during the
testing phase). It also walks very slowly (2cm/sec).

In order to be generally useful, a motion detection method for a legged robot
must not be subject to these constraints. If the robot cannot move freely through
non-uniform environments and still detect motion, there is little benefit to us-
ing a legged robot at all – a wheeled robot or even a stationary camera could
probably do the same task more reliably. In addition, a robot should ideally
not have to slow down its own movements in order to accommodate the motion
detection algorithm. The method presented here is effective on a freely moving
robot walking at its top speed (34cm/sec). The chief ways in which it differs
from Lewis’s approach are: i) it operates on the raw optic flow field rather than
on preprocessed data, or optic flow “events”; and ii) a substantial postprocessing
step has been added as part of comparing the neural network’s prediction to the
actual observed optic flow. It is not clear to what extent our predictor neural
network differs from that of Lewis, because details of his architecture are not
available.

3 Method Architecture

Our method is depicted in Figure 1. First, the optic flow in the image is cal-
culated. The resulting vector field is then given as input to a neural network
along with information about the current position in the robot’s walk cycle and
readings from its three accelerometers. This neural network outputs a prediction
of the optic flow to be seen in the next image. When the robot receives this next
image, the optic flow is calculated and compared with the network’s prediction.
A postprocessing algorithm then looks for discontinuities in the difference be-



Image t Image t+1

Optic flow
calculation

neural net
Predictor

Difference and
postprocessing

Z −1

Accelerometer and
walk phase data

tflow t+1predicted flow

Motion

Fig. 1. The architecture of our method for detecting moving objects in the robot’s
environment. Z

−1 is a one-step delay operator.

tween the calculated and predicted optic flow to determine where in the image
externally moving objects are present.

3.1 Optic Flow

We did not compute optic flow in real-time on the Aibo. Instead, training and
testing sequences alike were transferred to a set of image files on a desktop
PC’s hard disk. Image sequences were then loaded off the disk, the optic flow
calculations were run, and the resulting flow fields were stored back to the disk
for later use in training or comparison against predicted flow.

The optic flow fields for training the neural network and for comparing
against predicted output were computed by a Matlab implementation of Horn &
Schunk’s iterative relaxation algorithm described above. Identical parameters, λ

= 1.0 and kmax = 1000, were used to compute all training and testing data. Our
choice of optic flow parameters resulted in very smooth fields. While generally
smooth fields might be expected given the Aibo’s known motion characteristics
and environment, additional work will be performed in the future to understand
whether using parameters that generate more rapidly-varying optic flow fields
could allow more accurate motion discrimination.



3.2 Predictor Neural Network

The neural network shown in Figure 1 accepts three types of information as
input. The first is an optic flow field. The second is a single number indicating
the robot’s position in the walk cycle at the time of the second of the two images
used to calculate this optic flow field. The third is a set of accelerometer data
corresponding to the same image. In our experiments, we use a simple recurrent
network architecture 3 (see Figure 2).

Hidden layer

Previous hidden layer

(copy)

Input layer (actual optic flow at time , walk phase and accelerometer info)t

Output layer (predicted optic flow at time )t+1

Fig. 2. The simple recurrent network used to predict optic flow. All projections are
full and feed-forward, except for the projection from the hidden layer to the previous
hidden layer. This arrow instead indicates a direct copy of the hidden layer contents
into the previous hidden layer. In this way, some context is kept in the network.

The network is trained on sequences of optic flow fields, which are generated
from sequences of robot camera images in which there is no external motion.
Thus, the network is effectively learning to produce what the next optic flow
field should look like if there is no external motion, given the last optic flow
field observed and information about the robot’s acceleration and position in
the walk cycle. By comparing this prediction to the actual optic flow observed
at the next time step during performance, we can see which parts of the image
exhibit unpredictable motion, which gives us information about where objects
moving relative to the world can be found in the image.

3.3 Postprocessing

Consider the vector field resulting from taking the (vector) difference of the
predicted and actual optic flow fields. If we take the magnitude of each of the

3 Informal experimentation indicated that this gives some improvement in perfor-
mance over a three layer feed-forward network. However, such a non-recurrent net-
work is capable of some success at this task.



elements of this vector field, we obtain a matrix of the same size, which we will
refer to as the difference field.

The discontinuous motion of the robot’s camera and the noisy nature of real-
world sensor data make the optic flow prediction task quite difficult. Although
the neural network typically does a reasonable job of predicting optic flow for
image sequences containing no external motion, its prediction is occasionally
entirely wrong. This means that the naive approach – simply taking the size of
the difference field at each point to be the likelihood of external motion at that
point – will not suffice.

However, these magnitudes do give us some useful information. Because the
neural network is trained with images from a world in which nothing other than
the robot itself is moving, all of its targets during training were optic flow fields
with coherent motion. So, assuming the images contain no external motion, even
when the network makes a wrong prediction that prediction will be more or less
“equally wrong” at all points. If there is external motion in the scene, however,
there will often be sharp discontinuities in the difference field, which can be
discovered by running an edge detection algorithm on each difference field.

The edge detection we use in our postprocessing step is rather unconven-
tional. Many edge detection algorithms are designed to find the best edges in
an image, even if that image has only poor candidates for edges. However, if
there are no sharp edges in the difference field at some timestep, this probably
indicates that there is no motion in the image. Therefore, in this case we want
our postprocessing algorithm not to find any edges. To this end, we first make a
binary version of the difference field by finding its maximum element and then
replacing every element which is extremely far away from this maximum4 with
a zero and replacing the rest with ones. Then a conventional edge detection al-
gorithm is run over this binary difference field (in our experiments we use the
Laplacian of Gaussian method).

4 Experimental Procedure

The images used in our experiments all come from a Sony Aibo ERS-7 walking
across a standard 2004 RoboCup legged league field [7]. The Aibo has three
degrees of freedom in each of its four legs as well as its head. It has a CMOS
camera in the head, from which we are able to capture approximately 25 images
per second. The robot always starts close to the center of the yellow goal facing
outward toward the field center (although not always in the exact same location)
and then walks most of the way across the field5 using the fastest available for-
ward walk (approximately 34cm/sec). Due to the Aibo’s slight left-right weight

4 In practice, to be “extremely far away from the maximum,” an element must be very
close to zero and the maximum over the difference field must be quite large. This
enforces that all edges which will be found in the next step will correspond to very
sharp edges in the original difference field.

5 The length of these trajectories is constrained by the amount of memory available
on the Aibo.



asymmetry, the forward walk curves slightly to the right over long distances.
Thus a typical trajectory looks like the one depicted in Figure 3.

Fig. 3. A typical trajectory used in our experiments.

Instead of working with the full Aibo imaging resolution, we first reduced the
resolution by a factor of 6 in both the horizontal and vertical directions. We did
this by averaging 3-by-3-pixel blocks of half-resolution Aibo images. Images were
converted from full color to grayscale images before the optic flow computation,
but no other image preprocessing (histogram equalization, deblurring, etc.) was
performed.

As a result of the resolution reduction, the images and flow fields were 35
columns by 27 rows. Our intent in reducing the image resolution was to reduce
the complexity of the neural network that needed to be trained. As a side effect,
however, the optic flow computations also ran faster. Exact runtime performance
was not recorded, but computing the optic flow field for one frame pair required
approximately 1s of CPU time on a 1.8GHz desktop machine. Real-time per-
formance will require that our implementation be translated from Matlab to a
language more suitable for embedded operation on the Aibo, and that much
more attention be paid to efficient computation.

As discussed in Section 3.2, we used a simple recurrent architecture for the
predictor neural network. In our experiments, this network had a 200-unit hidden
layer. It was trained with backpropagation (using momentum) on data from six
runs of the robot on an empty field, where each run consisted of approximately
150 sequential images. Training of this network took approximately 1050 epochs.

5 Results

Figure 4 shows four sequential frames from one testing run of the system. The
robot in the foreground is moving at full speed; all other parts of the image are
stationary relative to the world. For comparison, Figure 5 shows some typical



Fig. 4. Four sequential frames from a testing run. The robot in the images is moving
to the left at full speed.

Fig. 5. Some typical errors on a field with no motion. In the run from which these
images were taken, in which there was no motion on the field, 83% of the frames were
correctly labeled as containing no motion.

errors from a testing run with no external motion. In this testing run, 83% of
the frames were correctly labeled as containing no motion.

To judge the classification accuracy of our system, we applied our system to
four sets of images from trajectories of the sort shown in Figure 3. Two of these
runs contained one moving robot, one contained three moving robots, and one
contained no external motion. Each image in the four sets was divided into 9
sectors (see Figure 6), and each sector was labeled by hand as containing motion
or not. If less than 1/4 of the sector contained a moving object, the sector
was labeled as not containing motion. This ground truth was compared to the
motion detected by the system. Results are shown in Figure 7 and Figure 8.
Note that the postprocessing parameters have been tuned to an extreme which
eliminates as many false positive motion detections as possible. It is possible
to improve the classification accuracy of sectors containing motion by setting
these parameters to a less extreme value; however, this reduces the classification
accuracy of sectors not containing motion.

6 Discussion and Future Work

Observation has shown that the system detects motion more reliably when the
moving object is closer to the robot and moving more rapidly. Although this has
not been verified quantitatively, it would be a good topic for future investigation.
The fact that it is hard for the system to detect objects that are moving slowly
is understandable in light of the fact that the robot’s own motion is so rapid.
Additionally, the fact that proximity helps motion detection is reasonable not
only because near motion will appear more rapid in two dimensions, but also



Fig. 6. An example image showing division into sectors. The middle sector would not
be labeled as containing motion, because less than 1/4 of it contains moving objects.

because our system downsamples images so much – a moving object sufficiently
far away will appear as a single pixel whose color is changing slightly.

This suggests that a fruitful direction for the future may be to expand the
system to work with larger images. Although this will greatly increase the size
of the predictor neural network, we believe that this will not make training
intractable, in light of the fact that training time for the network at its current
size only requires a few hours of CPU time. We have already discovered that optic
flow calculation over a half-resolution image (as opposed to the 1/6 resolution
images we are currently using) is reasonable.

Another direction for future work is real-time implementation on an Aibo
robot. This is actually quite plausible, given the size of the images we are working
with. The Aibo has a 576 MHz 64 bit RISC processor which allows for significant
amounts of onboard computation. Although the computation required to process
the images would reduce the rate at which we can capture images, it is likely
that a slower gait could compensate for this.

7 Conclusion

A method has been presented for detecting external motion from a quadruped
robot while it is walking freely and quickly. It has been demonstrated that this
method can successfully detect such motion. Although the system does not run
in real-time onboard the robot, it is able to handle real-world sensor data, and
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Fig. 7. Classification accuracy for image sectors containing motion. Parameters have
been tuned to decrease false positives as far as possible. The x-axis corresponds to the
number of edge pixels in a sector required for motion to be detected in that sector.

it is able to process this data with a speed which indicates that future onboard
implementation of our method is not outside the realm of possibility.
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