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Abstract

We present the results of an extensive computational study of an I/O-optimal cache-oblivious
LCS (longest common subsequence) algorithm developed by Chowdhury and Ramachandran. Three
variants of the algorithm were implemented (CO denoting the fastest variant) along with the widely
used linear-space LCS algorithm by Dan Hirschberg (denoted Hi). Both algorithms were tested on
both random and real-world (CFTR DNA) sequences consisting upto 2 million symbols each, and
timing and caching data were obtained on three state-of-the-art architectures (Intel Xeon, AMD
Opteron and SUN UltraSparc-III+). In our experiments:

• CO ran a factor of 2 to 6 times faster than Hi.

• Hi incurred upto 4,000 times more L1 cache misses and upto 30,000 times more L2 cache misses
than CO when run on pairs of sequences consisting of 1 million symbols each.

• CO executed 40%-50% fewer machines instructions than Hi.

• Unlike Hi, CO was able to conceal the effects of caches on its running time; its actual running
time could be predicted quite accurately from its theoretical time complexity.

• CO was less sensitive to alphabet size than Hi.

These results suggest that CO and the algorithmic technique employed by CO can be of practical
use in many fields including sequence alignment in computational biology.

1 Introduction

Memory in modern computers is typically organized in a hierarchy with registers in the lowest level
followed by L1 cache, L2 cache, L3 cache, main memory, and disk, with the access time of each memory
level increasing with its level. The two-level I/O model [1] is a simple abstraction of this hierarchy
that consists of an internal memory of size M , and an arbitrarily large external memory partitioned
into blocks of size B. The I/O complexity of an algorithm is the number of blocks transferred between
these two levels. The I/O model successfully captures the situation where I/O operations between two
levels of the memory hierarchy dominate the running time of the algorithm. The cache-oblivious model
[8] is an extension of this model with the additional requirement that algorithms must not use the
knowledge of M and B. A cache-oblivious algorithm is flexible and portable, and simultaneously adapts
to all levels of a multi-level memory hierarchy. A well-designed cache-oblivious algorithm typically has
the feature that whenever a block is brought into internal memory it contains as much useful data as
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possible (‘spatial locality’), and also the feature that as much useful work as possible is performed on
this data before it is written back to external memory (‘temporal locality’).

The problem of finding the longest common subsequence (LCS) of two given sequences has a classic
Dynamic Programming (DP) solution [6] that runs in Θ(mn) time, uses Θ(mn) space and performs
Θ

(

mn
B

)

block transfers when working on two sequences of lengths m and n. The LCS problem arises in
a wide range of applications in many apparently unrelated fields including computer science, molecular
biology, mathematics, speech recognition, gas chromatography, bird song analysis, etc [24, 22]. Perhaps
the widely used Unix file comparison program diff [14] is the most familiar application in computer
science that uses an LCS algorithm. The LCS problem is especially prominent in molecular biology
in sequence alignment. One of the central problems in genome analysis is to find a maximum-length
subsequence of two genomes either under the standard LCS metric or under a refined metric that
assigns costs to mismatches, or allows insertions and deletions. Many of these variants can be solved
by a dynamic programming algorithm with the same structure as the one for LCS, but with somewhat
different computation associated with the steps [6, 16, 26, 24, 22].

It has been shown in [2, 12, 17] that the LCS problem cannot be solved in o (mn) time if the
elementary comparison operation is of type ‘equal/unequal’ and the alphabet size is unrestricted.

However, if the alphabet size is fixed the theoretically fastest known algorithm runs in O
(

mn
log min (m,n)

)

time [19] which is unfortunately not suitable for practical implementations. Faster algorithms exist for
different special cases of the problem [4].

In most applications, however, the quadratic space required by an LCS algorithm is a more
contraining factor than its quadratic running time [10]. For example, one can wait for a week or even
a month for finding an LCS of two sequences of length 1 million each, but one can hardly afford the
several terabytes of RAM required by the algorithm. Fortunately, there are linear space implementations
[11, 15, 3] of the LCS algorithm, but the I/O complexity remains Ω

(

mn
B

)

and the running time
roughly doubles. Hirschberg’s space-reduction technique [11] for the DP-based LCS algorithm has
become the most widely used trick for reducing the space complexity of similar DP-based algorithms in
computational biology [18, 20, 26, 16].

In [7] we present a cache-oblivious implementation of the basic dynamic programming LCS
algorithm. Our algorithm continues to run in O(mn) time and uses O(m + n) space, but it performs
only O

(

mn
BM

)

block transfers. We show that our algorithm is I/O-optimal in that it performs the
minimum number of block transfers (to within a constant factor) of any implementation of the dynamic
programming algorithm for LCS. This algorithm can be adapted to solve the edit distance problem
[13, 6] within the same bounds; this latter problem asks for the minimum cost of an edit sequence that
transforms a given sequence into another one with the allowable edit operations being insertion, deletion
and substitution of symbols each having a cost based on the symbol(s) on which it is to be applied.

Our Results. We present the results of an extensive empirical study of the cache-oblivious LCS
algorithm given in [7]. We implemented three variants of the algorithm (denoting the fastest variant by
CO) along with the widely used linear-space LCS algorithm by Hirschberg (denoted Hi) [11]. We ran
both algorithms on both random and real-world sequences consisting upto 2 million symbols each, and
obtained timing and caching data on three state-of-the-art architectures: Intel Xeon, AMD Opteron
and SUN UltraSparc-III+.

On random sequences CO ran a factor of 2 to 6 times faster than Hi and consistently executed
40%-50% fewer machines instructions. As expected, CO exhibited a far better cache performance than
Hi: when run on sequences of length 1 million or more CO incurred only a small fraction of cache misses
( 1
4000 for L1 cache and 1

30,000 for L2 cache) compared to Hi. Unlike Hi, CO was able to conceal the
effects of caches on its running time; its actual running time could be predicted quite accurately from



its theoretical time complexity. Moreover, CO appeared to be less sensitive to alphabet size than Hi.
On real-world DNA sequences (CFTR gene sequences [25]), too, CO ran about 2 times faster than Hi.

Our experimental results suggest that CO and the algorithmic technique employed by CO can be
of practical value in many application areas including sequence alignment in computational biology.

Related Work. In [4], Bergroth et al. conducted an empirical study of the running times of different
LCS algorithms. However, they excluded linear-space algorithms from their study, and considered
sequences of length at most 4000. If only the length of the LCS is needed, and not an actual subsequence,
the technique for cache-oblivious stencil computation presented in [9] can achieve the same time, space
and I/O bounds as our algorithm. Experimental results show that the algorithm runs upto 7 times
faster than the standard algorithm [9].

In [5] an empirical study of a DP-based cache-oblivious optimal matrix chain multiplication
algorithm was conducted. A cache-oblivious algorithm for Floyd-Warshall’s APSP algorithm is given
in [21] and experimental results show that the algorithm runs upto 10 times faster than the standard
Floyd-Warshall algorithm.

2 Experimental Setup

2.1 Test Data Sets. In our experiments we used two kinds of sequences:

• Random Sequences. We used random sequences of lengths ranging from 210 (≈ one thousand)
to 221 (≈ 2 million) drawn from alphabets of sizes 26 (i.e., the English alphabet) and 4 (i.e., the
set {A,C,G, T} of DNA bases).

• Real-world Sequences. We used sequences from 11 species (baboon, cat, chicken, chimpanzee,
cow, dog, fugu, human, mouse, rat and zebrafish) generated for the genomic segment harboring
the cystic fibrosis transmembrane conductance regulator (CFTR) gene [25]. The lenghts of the
sequences ranged from 0.42 million to 1.80 million.

2.2 Computing Environment. We ran our experiments on the following three architectures:

• Intel Xeon. A four processor 3.06 GHz Intel Xeon shared memory machine with 4 GB of RAM
and running Linux 2.4.29. Each processor had an 8 KB L1 data cache (4-way set associative) and
an on-chip 512 KB unified L2 cache (8-way). The block size was 64 bytes for both caches.

• AMD Opteron. A dual processor 2.4 GHz AMD Opteron shared memory machine with 4 GB
of RAM and running Linux 2.4.29. Each processor had a 64 KB L1 data cache (2-way) and an
on-chip 1 MB unified L2 cache (8-way). The block size was 64 bytes for both caches.

• SUN Blade. A 1 GHz Sun Blade 2000/1000 (UltraSPARC-III+) with 1 GB of RAM and running
SunOS 5.9. The processor had an on-chip 64 KB L1 data cache (4-way) and an off-chip 8 MB L2
cache (2-way). The block sizes were 32 bytes for the L1 cache and 512 bytes for the L2 cache.

We used the Cachegrind profiler [23] for simulating cache effects on Intel Xeon. The caching data on the
Sun Blade was obtained using the cputrack utility that keeps track of hardware counters. All algorithms
were implemented in C using a uniform programming style and compiled using gcc with optimization
parameter -O3. Each machine was exclusively used for experiments (i.e., no other programs were running
on them), and on multi-processor machines only a single processor was used.

2.3 Overview of Algorithms Implemented. A sequence Z = 〈z1, z2, . . . zk〉 is called a subsequence
of another sequence X = 〈x1, x2, . . . xm〉 if there exists a strictly increasing function f : [1, 2, . . . , k] →
[1, 2, . . . ,m] such that for all i ∈ [1, k], zi = xf(i). A sequence Z is a common subsequence of sequences
X and Y if Z is a subsequence of both X and Y . Given two sequences X and Y , the Longest Common
Subsequence (LCS) problem asks for a maximum-length common subsequence of X and Y .



2.3.1 Classic Dynamic Programming Algorithm. Given two sequences X = 〈x1, x2, . . . xm〉 and
Y = 〈y1, y2, . . . yn〉, we define c[i, j] (0 ≤ i ≤ m, 0 ≤ j ≤ n) to be the length of an LCS of 〈x1, x2, . . . xi〉
and 〈y1, y2, . . . yj〉, which can be computed using the following recurrence relation (see, e.g., [6]):

c[i, j] =







0 if i = 0 or j = 0,
c[i − 1, j − 1] + 1 if i, j > 0 and xi = yj,
max(c[i, j − 1], c[i − 1, j]) if i, j > 0 and xi 6= yj.

(2.1)

The classic dynamic programming solution to the LCS problem which we will refer to as Classic-

LCS, is based on this recurrence relation, and computes the entries of c[0 . . . m, 0 . . . n] in row-major
order in Θ(mn) time and incurs O

(

mn
B

)

cache misses. Further, after all entries of c[0 . . . m, 0 . . . n] are
computed, we can trace back the sequence of decisions that led to the value computed for c[m,n], and
thus recover an LCS of X and Y in O(m + n) additional time, while incurring Θ(m + n) I/Os. Observe
that since the entries of any row of c depends only on the entries in the previous row, c[m, 0 . . . n] can
be computed using only O(n) extra space, and thus the length of an LCS can be computed in linear
space. However, the algorithm needs Θ(mn) space to compute an actual LCS sequence.

2.3.2 Hirschberg’s Linear Space Algorithm. Hirschberg [11] gives an O(m+n) space algorithm,
which finds an LCS in O(mn) time and O

(

mn
B

)

I/Os. We briefly describe the algorithm below.
If n = 1, the LCS can be determined in a single scan of X. Otherwise, let k =

⌊

n
2

⌋

,
Yf = 〈y1, y2, . . . yk〉 and Yb = 〈yn, yn−1, . . . yk+1〉. Hirschberg computes two arrays Lf [1 . . . m] and
Lb[1 . . . m], where for 1 ≤ i ≤ m, Lf [i] is the length of an LCS between 〈x1, x2, . . . xi〉 and Yf , and
Lb[i] is the length of an LCS between 〈x1, x2, . . . xi〉 and Yb. Observe that both Lf and Lb can be
computed in O (mn) time using only O (m) extra space (see section 2.3.1). Let j (1 ≤ j ≤ m) be
the smallest index such that Lf [j] + Lb[j] = max1≤i≤m (Lf [i] + Lb[i]). Then Hirschberg recursively
computes an LCS Z1 between 〈x1, x2, . . . xj〉 and 〈y1, y2, . . . yk〉, and Z2 between 〈xj+1, xj+2, . . . xm〉
and 〈yk+1, yk+2, . . . yn〉, and returns Z = Z1||Z2 as an LCS of X and Y .

Our Implementation. Our implementation of Hirschberg’s algorithm differs from the original
algorithm in how the base case is handled. Once both m and n drop below some preset threshold
value (base) we solve the problem using Classic-LCS. Provided base = O

(√
m + n

)

, the space usage
remains linear, but the algorithm runs faster.

2.3.3 Cache-Efficient LCS Algorithm. In [7] we present an I/O-optimal cache-oblivious imple-
mentation of the dynamic programming algorithm defined by recurrence 2.1. The algorithm runs in
O (mn) time, uses O (m + n) space and incurs O

(

mn
BM

)

I/Os. We describe the algorithm below, where
we assume for convenience that n = m = 2p where p is a nonnegative integer.

For any submatrix c[i1 . . . i2, j1 . . . j2] of c where i2 ≥ i1 > 0 and j2 ≥ j1 > 0, we refer to
c[i1 − 1, j1 . . . j2] and c[i1 . . . i2, j1 − 1] as the input boundary of the submatrix, and c[i2, j1 . . . j2] and
c[i1 . . . i2, j2] as the output boundary. The function LCS-Output-Boundary (given in [7]) when called
with parameters i, j, r, and a one dimensional array D containing the input boundary of the submatrix
c[i . . . i + r − 1, j . . . j + r − 1] returns the output boundary of that submatrix in D. For simplicity of
exposition, we assume that D can have negative indices, and entry c[i′, j′] of c is stored in D[i′ − j′].
The function works by recursively subdividing the input matrix into quadrants, and for an input matrix

of dimension n × n runs in time O
(

n2
)

, uses O (n) space and incurs O
(

n2

BM

)

cache misses.

Recall that if all entries of c[1 . . . n, 1 . . . n] are available, one can trace back the sequence of decisions
that led to the value computed for c[n, n], and thus retrieve the elements on an LCS of X and Y . We
can view this sequence of decisions as a path through c that starts at c[n, n] and ends at the input
boundary of c[1 . . . n, 1 . . . n]. We call this path an LCS Path.



Recursive-LCS(X, Y, i, j, is, js, D)

Input. The input boundary of c[i . . . i + r− 1, j . . . j + r− 1], where r = max(is − i +1, js− j + 1), is stored in D, with boundary
entry c[i′, j′] in D[i′ − j′]. The entry c(is, js) lies on the output boundary of c[i . . . i + r − 1, j . . . j + r − 1].

Output. Let i′ and j′ be the values supplied in is and js in the input. Returns an LCS Z of X[i . . . i′] and Y [j . . . j′], updates
is and js to return the point at which the LCS Path starting at c[i′, j′] intersects the input boundary of c[i . . . i′, j . . . j′].

1. b← i− j, ri ← is − i + 1, rj ← js − j + 1, r ← max(ri, rj), Z ← ∅

2. if r ≤ base then compute in Z the LCS of the subproblem and return the appropriate values for is and js else

3. r′ ← r
2

4. top-left[1 . . . r + 1]← D[b− r′ . . . b + r′] {save input boundary of top-left quadrant}

LCS-Output-Boundary(X, Y, i, j, r′, D) {generate output boundary of top-left quadrant}

5. if is ≥ i + r′ and js ≥ j + r′ then {if the LCS intersects the bottom-right quadrant}

6. bottom-left[1 . . . r + 1]← D[b− r . . . b] {save input boundary of bottom-left quadrant}

LCS-Output-Boundary(X, Y, i, j + r′, r′, D) {generate output boundary of bottom-left quadrant}

7. top-right[1 . . . r + 1]← D[b . . . b + r] {save input boundary of top-right quadrant}

LCS-Output-Boundary(X, Y, i + r′, j, r′, D) {generate output boundary of top-right quadrant}

8. Z ← Recursive-LCS(i + r′, j + r′, is, js, D) # Z {find LCS fragment in bottom-right quadrant}

9. if is ≥ i + r′ then D[b . . . b + r]← top-right[1 . . . r + 1] {restore input boundary of top-right quadrant}

10. elif js ≥ j + r′ then D[b− r . . . b]← bottom-left[1 . . . r + 1] {restore input boundary of bottom-left quadrant}

11. if is ≥ i + r′ then Z ← Recursive-LCS(X, Y, i + r′, j, is, js, D) # Z {find LCS fragment in top-right quadrant}

12. elif js ≥ j + r′ then Z ← Recursive-LCS(X, Y, i, j + r′, is, js, D) # Z {LCS fragment in bottom-left quadrant}

13. if is ≥ i and js ≥ j then {if the LCS intersects the top-left quadrant}

14. D[b− r′ . . . b + r′]← top-left[1 . . . r + 1] {restore input boundary of top-left quadrant}

15. Z ← Recursive-LCS(X, Y, i, j, is, js, D) # Z {find LCS fragment in top-left quadrant}

16. return Z

Our algorithm traces an LCS path without storing all entries of c; instead it only stores the
boundaries of certain subproblems. It uses a recursive function Recursive-LCS (given below and in
[7]) to construct the LCS. When called with parameters i, j, is, js and D, Recursive-LCS assumes
that the input boundary of the submatrix c[i . . . i + r − 1, j . . . j + r − 1] is stored in the one
dimensional array D of length 2r + 1, i.e., entry c[i′, j′] on the boundary is stored in D[i′ − j′], where
r = max(is − i + 1, js − j + 1) = 2p for some non-negative integer p. It also assumes that an LCS path
intersects the output boundary of c[i . . . i + r − 1, j . . . j + r − 1] at c[is, js]. This function traces the
fragment of that path through this submatrix, and returns the LCS of X and Y along this subpath.
It also finds the entry c[i′, j′] at which this path intersects the input boundary of the given submatrix,
and updates is and js to i′ and j′, respectively. If r is sufficiently small it solves the problem iteratively
using Classic-LCS, otherwise it solves the problem recursively by dividing the input submatrix into
four quadrants. It first calls LCS-Output-Boundary at most three times (at most once for each
quadrant except the bottom-right one) in order to generate the input boundaries of the top-right and
the bottom-left quadrants, and if required (if is ≥ i + r

2 and js ≥ j + r
2), for the bottom-right quadrant.

Observe that the LCS path can pass through at most three quadrants of the current submatrix. This
function locates those quadrants one after another based on the current values of is and js (i.e., based
on which quadrant c[is, js] belongs to), and calls itself recursively in order to trace the fragment of the
LCS path that passes through that quadrant. (note that the recursive calls modify is and js). The
output of Recursive-LCS is the concatenation of these LCS fragments in the correct order.

The initial call is to Recursive-LCS(X,Y, 1, 1, n, n,D), with D[−n . . . n] initialized to all zeros.

Complexities. It has been shown in [7] that the algorithm incurs O
(

1 + n
B

+ n2

BM

)

cache misses while


