
Probabilisti Region-based Loalization forWireless Networks �Feng Wang, Lili Qiu, and Simon S. LamUniversity of Texas at AustinUTCS-TR-05-44Otober 13, 2005AbstratDetermining the physial loation of wirelessnodes is important to a wide variety of appli-ations. In this paper, we propose a series ofprobabilisti region-based loalization algorithms,inluding using stati grids, segments of grids,and dynami meshes. These algorithms providea wide range of trade-o� between auray andost, making them suitable for di�erent types ofnetworks, suh as sensor networks and mesh net-works. Furthermore, we propose several teh-niques to extrat and leverage additional infor-mation on loation onstraints, whih is shownto signi�antly improve the loalization aurayand an be applied to other loalization shemes.Finally we develop tehniques to enhane robust-ness of loalization, and show that the enhanedsheme an ahieve high auray even in thepresene of signi�ant measurement errors.1 IntrodutionDetermining the physial loation of wirelessnodes is important to a wide variety of applia-tions, ranging from geographi routing [13, 22℄ toontext-aware appliations [15, 16℄, from habitatmonitoring [5℄ to environment surveillane [3, 28℄.A global positioning system (GPS) [1℄ an beused to obtain loation information. But it doesnot work indoors, and it is also ostly to equipevery wireless node with GPS. The limitation ofGPS has motivated researhers to develop algo-rithms to infer loation using heap hardware byleveraging network onnetivity, signal strength,and angle-of-arrival information [29, 4, 19, 17, 11,27, 26, 12℄. Despite extensive researh in the area�Researh sponsored in part by National Siene Foun-dation grants ANI-0319168 and CNS-0434515.

of loalization, the following three topis in loal-ization researh require further study, whih is thesubjet of this paper.First, developing aurate loalization algo-rithms based upon only onnetivity informationis an ative researh topi. A major fator thatdetermines the e�etiveness of the algorithms ishow the estimated loations are represented. Inmany previous studies, the loation of a node isestimated as a single point. As shown in [8℄, thereare often many oordinate assignments that sat-isfy the loation onstraints derived from an un-derlying network. Therefore assigning the loa-tion of a wireless node to a single point may re-sult in signi�ant error. For example, as desribedin [10℄, when a node is onstrained to be loatedat four orners of a region, a single point esti-mation may plae the node at the enter, whihis misleading. In addition, a single point repre-sentation is vulnerable to measurement errors {a small perturbation in measurement data mayresult in a large di�erene in the estimated loa-tion [18℄. A promising approah, taken by [9, 10℄,is to represent the estimated loation as a regionthat onsists of all points satisfying the loationonstraints. Suh a region-based representationhas the potential to yield higher auray.Motivated by [9, 10℄, we also use a region torepresent a node's estimated loation. To ahieveeven higher auray, we propose a probabilis-ti loalization approah. In this approah, eahnode derives a probability distribution over a setof ells that it an possibly reside in. Every ellis assoiated with a probability about the like-lihood that it ontains the true position of thenode. Furthermore, we propose two tehniquesto redue omputation ost. The �rst tehniqueombines ells into segments, whih signi�antlyredues omputation ost with a moderate in-1



rease in loalization error. The seond tehniqueis alled probabilisti dynami mesh-based loal-ization (PDM). It uses a mesh generator to par-tition a region into a mesh, and represents theestimated loation of a wireless node as a set ofmesh ells. It iteratively re�nes the estimated lo-ation using loation onstraints extrated fromthe underlying network. It ahieves high au-ray by deriving the probability distribution of anode's position over the region. It ahieves rea-sonable ost by adaptively hanging the mesh ellsize using DistMesh [6℄, whih is an eÆient wayto generate an unstrutured triangular and tetra-hedral mesh to over a region.Seond, loalization auray relies heavily onthe amount of available information about loa-tion onstraints. For example, as shown in [7℄,there is a fundamental limit in loalization a-uray using ommodity 802.11 hardware. Tofurther improve auray, additional informationon loation onstraints is neessary. In this pa-per, we propose the following ways to obtain andleverage additional information: (i) using networkonnetivity under di�erent transmission powerlevels, (ii) using knowledge of whether two nodesan sense eah other's arrier, whih an be mea-sured empirially as shown in [2℄, (iii) using layoutmaps, and (iv) using more powerful anhor nodes(e.g., the anhor nodes an not only extrat dis-tane onstraints for its neighbors, but also ob-tain the approximate angles). We also evaluatethe bene�t of eah type of suh additional infor-mation.Third, the robustness issue in loalization hasreeived little attention, even though robustness isessential to the suess of any loalization shemesine we annot expet that measurements are al-ways aurate. Erroneous measurement reportsmay arise from measurement errors, loss of mea-surement data, and hardware/software problems.Our probabilisti region-based loalization pro-vides a natural mehanism to handle measure-ment errors { the probability omputation antake into aount of the extent to whih the loa-tion onstraints are satis�ed. In this way, a meshell that is inonsistent with most loation on-straints is assigned a low probability and prunedout, whereas a mesh ell satisfying most loa-tion onstraints (but not neessarily all the on-straints) will be retained.In summary, while loalization has been an ex-tensively studied subjet, our approah has the

following three novel ontributions. First, we de-velop probabilisti region-based loalization al-gorithms, inluding using stati grids, dynamimeshes, and segments of grids. These algorithmsprovide a wide range of trade-o� between au-ray and ost. For example, the segments-basedapproah yields low ost and high auray, and iswell suited for networks formed by less powerfulnodes, suh as sensor networks. In omparison,the PDM ahieves a higher auray at a higherost, making it suitable for networks formed bymore powerful nodes, suh as mesh networks. Se-ond, we propose several tehniques to extrat andleverage additional information on loation on-straints. The additional information an be ap-plied to both our and others' loalization shemes.Our results show that the additional informa-tion an signi�antly improve loalization au-ray. Third, we develop tehniques to enhanerobustness of loalization, and show that the en-haned algorithm an tolerate signi�ant errorsfrom measurement data.The rest of the paper is organized as follow. InSetion 2, we overview the related work. In Se-tion 3 we propose the probabilisti region-basedloalization algorithms. In Setion 4, we presenttehniques to obtain and leverage additional in-formation. In Setion 5, we develop shemes toenhane the robustness in loalization. We de-sribe our evaluation methodology in Setion 6and results in Setion 7. Finally we onlude inSetion 8.2 Related WorkLoalization has been extensively studied due toits great importane. We broadly lassify pre-vious work into the following three areas: (i) lo-alization shemes in single-hop wireless networks(e.g., WLAN), (ii) loalization shemes in multi-hop wireless networks, and (iii) analysis of thefundamental limitations of loalization shemes.Loalization in a single hop wireless net-work: In the area of loalization for single-hopwireless networks, a number of interesting ap-proahes have been proposed. For example, A-tive badge [29℄ loates users by having them wearinfrared badges that transmit unique identi�ers.RADAR [4℄ relies on signal strength measurementgathered at multiple reeiver loations to triangu-late users' loations. Criket [21℄ uses the di�er-2



ene between the arrival time of radio and ultra-sound signals to estimate distane. VORBA [19℄determines loation based on angle of arrival mea-surements from 802.11 base stations. In [17℄,Madigan et al. develop a Bayesian hierarhialmodel that simultaneously loates a set of wire-less lients (as opposed to loalizing one user ata time). Refer to [11℄ for a nie survey on theloation systems for single hop wireless networks.Loalization in a multihop wireless net-work: Loalization in multihop environments iseven more hallenging, sine nodes are often mul-tiple hops away from anhor nodes, thereby in-reasing the unertainty in loation.A number of interesting loalization algorithmshave been proposed for suh networks. For ex-ample, the authors in [24℄ develop a distributedloalization approah that iterates through a two-phase proess: ranging and estimation. Duringthe ranging phase, eah node estimates its dis-tane to its neighbors, whereas during the esti-mation phase, nodes use the ranging informationand their neighbors whose positions have been de-termined to estimate their own loation. In [25℄,the authors enhane the previous approah by for-mulating the problem as a global non-linear op-timization problem. This limits error aumula-tion in [24℄. Shang et al. in [27℄ propose to usemulti-dimensional saling (MDS) to determine lo-ation in a entralized fashion. The loaliza-tion auray is limited partly beause it annothandle violation of triangulation (espeially forirregular-shaped networks). Later they developa distributed version of MDS-based approah in[26℄. It is shown to out-perform the original en-tralized version in irregular-shaped networks byignoring the distane information among nodesthat are far-apart. In [18℄, the authors presentalgorithms that use robust quadrilateral for loal-ization. Their approah �nds sets of four nodesthat are fully onneted, and loalizes the fourthnode based on the positions of the other threenodes. To prevent error aumulation, the four-node set needs to satisfy robust quadrilateral on-ditions. This improves auray at the ost ofleaving some nodes unloalized. In [12℄, the au-thors propose a sequential Monte Carlo loaliza-tion method to enhane the auray of loaliza-tion by exploiting mobility. In partiular, the ap-proah leverages mobility history to predit possi-ble loations based on previous loation samples

and its movement, and uses the new onnetiv-ity information to eliminate inonsistent loationsamples.Unlike most of the previous approahes, whihrepresent inferred loations using points, Sex-tant [10℄ develops a novel approah that denotesinferred loations as regions represented by Bezierurves. Suh a representation is shown to sig-ni�antly improve auray. Motivated by theirapproah, in this paper we also use region-basedrepresentation. Di�erent from their work, we usea dynami mesh to represent a region, and derivethe probability for a node to reside in eah meshell. Suh a representation enables us to ahievehigh auray and robustness without signi�antomputation ost.
Analysis of limits on loalization auray:In addition to developing novel loalization algo-rithms, researhers have also analyzed the funda-mental limits on loalization algorithms. For ex-ample, the authors in [7℄ ompare a series of loal-ization algorithms, and �nd that using ommod-ity 802.11 tehnology over a range of algorithms,approahes and environments, it is expeted tohave a median loalization error of 10 feet and97th perentile error of 30 feet. They onludethat these limitations are fundamental and un-likely to be signi�antly improved without funda-mentally more detailed environmental models oradditional loalization infrastruture. It pointsout that leveraging additional information is ne-essary in order to improve the auray. The au-thors in [8℄ seek answers to the following prob-lem: what are the onditions for unique networkloalizability. They show that a network has aunique loalization if and only if its orrespondinggrounded graph is generally globally rigid. Ap-plying graph-rigidity literature, they develop ap-proahes to onstruting uniquely loalizable net-works, and study the omputation omplexity ofloalization. The limitation of the suggested ap-proah is that in pratie a graph is given as is,and we do not have the exibility to alter thegraph to make it uniquely loalizable. In otherwords, a graph needs to be loalized even if thereis no unique solution.3



3 Probabilisti Dynami Mesh-Based LoalizationAs mentioned in the previous setion, a signi�antdi�erene between various loalization approahesis how the estimated loation is represented. Toahieve high auray and robustness, we adopt aregion-based representation, where an estimatedloation is represented as a region that onsists ofall points satisfying the loation onstraints ex-trated from the underlying network. We furtherimprove the existing work [9, 10℄ by deriving aprobability distribution over the region to reetthe likelihood of the true position. Suh prob-ability distribution, ombined with an expliitlyrepresented region, provides muh riher loationinformation than a single position, and allows usto ahieve higher auray in fae of insuÆientinformation and measurement errors.Below we �rst present a probabilisti region-based loalization approah. Then we desribetwo tehniques to improve the eÆieny of the ap-proah. The �rst one ombines multiple horizon-tal (or vertial) ells (in an estimated region) intoa single segment, whih redues omputation ostat the expense of slightly higher error. The se-ond tehnique is based on a dynami mesh, wheremesh ells are dynamially adjusted aording tothe size and shape of the region. It an ahieveeÆieny and auray.3.1 Probabilisti Region-Based Loal-izationThe probabilisti region-based loalization pro-eeds as follow. First, every node's loation is ini-tialized to be the entire spae. Then eah node ex-trats loation onstraints by measuring the on-netivity of the underlying network, and propa-gates these onstraints to nodes within a ertainhops away. (We use 3 hops in our evaluation.) Ifangle and reeived signal strength index (RSSI)measurements are available, they an be used toextrat loation onstraints and proessed in asimilar way. Based on the onstraints reportedby other nodes and its own observation, a nodeestimate its new loation by pruning out the sub-regions that are inonsistent with the onstraints.For the sub-regions that are onsistent with theonstraints, a node further omputes a probabil-ity distribution over them. The approah is runin a distributed way.

Extrating Loation Constraints: A node'sloation is estimated by extrating loation on-straints from the underlying network. Examplesof loation onstraints inlude \the distane be-tween node i and node j is at most d" (also alleddistane onstraints), and \the angle between lineij and the diretion of North is within [�1; �2℄"(also alled angle onstraints). Suh loation on-straints an be obtained by measuring networkonnetivity and angle-of-arrival. In this setion,we only onsider distane onstraints. We willonsider angle onstraints in Setion 4.To handle irregular wireless propagation, eahwireless node is assoiated with two separateradii: R and r (R � r), where R denotes the max-imum distane the node an reah, and r denotesthe minimum distane the node an reah [10℄.R 6= r arises when the signal propagation is notthe same in all diretions. When node i an hearnode j, we obtain a onstraint: dij � Rj. Thisis a positive onstraint. When node i annot hearnode j, we obtain a onstraint: dij > rj . This isa negative onstraint.Next we introdue some more notation. LetLCji denote a loation onstraint for node j usingnode i as a referene point. Let POS() denote apositive onstraint, and NEG() denote a negativeonstraint. Let Si and Sj be the estimated regionof node i and j, respetively.If node j an hear node i, we obtain a positiveonstraint: dij � R. Then the estimated regionof node j an be expressed as:Sj = POS(Si; R) = fpj j9 pi 2 Si; d(pi; pj) � Rg;where d(pi; pj) is the distane between two pointspi and pj . This region is a union of diss that areentered at eah point inside Si with radius R.Similarly if node j annot hear node i, we derivea negative onstraint, and the region of node j isestimated to beSj = NEG(Si; r) = fpj j9 pi 2 Si; d(pi; pj) > rg:If there are multiple onstraints derived (e.g.,by using multiple referene points), the �nal out-put is the intersetion of the regions from all theseonstraints. Note that while we use onnetivityinformation to extrat loation onstraints, ourapproah an easily inorporate other informa-tion, suh as angle estimation and layout maps,whih will be desribed in Setion 4.4



Computing probability: Next we desribehow eah node i derives a probability distribu-tion Pi over its region Si. To do so, we partitionthe whole spae into (small) ells, where eah ellis a square with a �xed size. A ell is the small-est unit for whih we ompute probability. Let sbe a ell. Pi(s) is the probability that node i isin s. Eah loation onstraint gives a probabilitydistribution over an estimated region. The �nalrelative probability of eah ell is the produt ofthe probabilities derived from all onstraints (in-luding both positive and negative onstraints).The absolute probability is further obtained bynormalizing the relative probabilities.Below we show how to derive a probability dis-tribution from one loation onstraint. Sine theprobability omputation using positive and neg-ative onnetivity information is similar, we il-lustrate the idea by onsidering only a positiveonnetivity onstraint.First we desribe how to ompute probabilityPi(s) using an anhor node, a, whose loation isknown, as a referene point. Using network on-netivity, we obtain a distane onstraint from ato i as dia � k �R, where k is the number of hopsbetween a and i. Therefore Si is the dis enteredat a with radius k � R. Sine only onnetivityinformation is available, we assume node i's lo-ation is uniformly distributed inside the irle.Therefore, for a ell g,Pi(g) = (0 if g is outside the irle,1=1 otherwise,where 1 is the number of ells inside the irle.(Note that appliation of negative onnetivity in-formation will hange the above probability dis-tribution. For example, if a node that is 2 hopaway from an anhor, the fat that it is not a'simmediate neighbor allows us to prune out thearea whih is a irle entered at a with radiusR.) To avoid leaving out the true position, a ellis onsidered \inside" the irle as long as it over-laps with the irle. Consequently, Si = S(g)is not exatly the region enlosed by the irle,but the union of all ells onsidered \inside" theirle. Therefore 1=1 is an approximation sinesome ells are partially inside the irle. The a-uray of suh approximation depends on the ellsize. Smaller ells redue the approximation errorat the ost of inreasing omputation and storageosts.Next we desribe how to ompute probability

Pi(s) using a non-anhor node (whose loation isnot known in advane) as a referene point. Con-sider a node i's neighbor j. For a ell uj � Sj, therelative magnitude of its probability is determinedby the probability of subregion in Si that satis�esd(ui; uj) � R. This results in the following:Pj(uj) = � � Pui�d(ui;uj)�R Pi(ui)Pui�Si Pi(ui) (1)= � � Xui�d(ui;uj)�RPi(ui) (2)where � is a normalization fator so thatPuj Pj(uj) = 1.Figure 1 shows how a node's estimated loa-tion onverges. After the �rst iteration, the re-gion is approximately a irle sine this node isa neighbor of an anhor. The probability distri-bution is uniform over all ells. After the se-ond iteration, the estimated region is re�ned, withthe updated probability distribution and smallerarea, by leveraging the onstraints from the an-hors that are 2 hops away. After the third it-eration, the region is redued further (althoughthe amount of redution is less than in the seonditeration beause the onstraints from the 3-hopneighbors have less impat on the region than on-straints from the 2-hop neighbors). As it shows,the ell ontaining the true position (�lled withred olor) and its surrounding ells have signi�-antly higher probabilities than the remaining re-gion.3.2 Enhaning EÆienySo far we onsider using stati grids. In this ase,the omputation ost is determined by the num-ber of ells. If a node's loation has high un-ertainty due to lak of suÆient loation on-straints, its estimated region is large, resultingin a large number of ells and hene high om-putation and storage osts. In this setion, wedesribe two tehniques to improve the eÆienyof the above loalization approah. The �rst ap-proah redues the ost by ombining horizon-tally (vertially) ontiguous ells into a row (ol-umn) segment. The seond approah dynamiallyadapts the ell size so that oarse-grained ells areused when the estimated region is large and �ne-grained ells are used when the estimated regionis small.5
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positionSnapshot after 3 iterations.Figure 1: Snapshots of a node's estimated loa-tion for the �rst three iterations.Combining ells into a segment: One way toredue the omplexity is to ombine horizontally(vertially) ontiguous ells into a row (olumn)segment. Sine omputation using row segmentsis similar as using olumn segments, in the follow-ing desription we fous on using row segments.The width of eah segment is �xed, but the lengthis variable. A row segment is spei�ed by a 3-tuple, (y; x1; x2), where (x1; y) is the left end and(x2; y) is the right end. Eah estimated region isrepresented as a set of row segments. We wantto alulate the probability of eah row segmentontaining the true position. Now the omplexityis determined by the number of row segments.Suppose we obtain node i's estimated regionand the probability distribution over the region.We alulate its neighbor j's estimated regionand probability distribution as follow. The lo-ation onstraint LCji is dji � R. Hene, Sj =POS(Si; R). Let ui denote a row segment of i,

and uj denote a row segment of j. The general for-mula to derive probability is similar to (1). Sinea row segment may be signi�antly larger than aell, treating partial overlap as omplete overlapmay result in high error. Therefore we further al-ulate the fration of a row segment that satis�esloation onstraints.
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Figure 2: Example of Using SegmentsFigure 2 shows an example. uj is a row segmentin Sj. POS(uj ; R) is the region expanded fromuj by R. ui is a row segment in Si. ui is par-tially in POS(uj ; R). When alulating Pj(uj),we need to alulate the portion of ui that is in-side POS(uj ; R).Let vi = ui \ POS(uj ; R). Let A(S) denoteregion S's size. Assuming uniform distributionwithin a segment, we have,Pj(uj) =  � Xui�Si A(vi)A(ui) � Pi(ui); (3)where  is a normalization fator.Dynami Mesh: Combining onseutive ellsin one dimension an signi�antly redue ompu-tation and storage osts. On the other hand, itsauray depends on how aurately a uniformdistribution aptures the atual probability dis-tribution over the set of ombined ells. Whenthe atual distribution signi�antly deviates froma uniform distribution, loalization auray willderease. To ahieve both high auray and lowost, we propose an alternative approah that dy-namially adjusts the ell size as needed.At a high level, we use oarse-grained ellswhen the estimated region is large, and use �ne-grained ells when the estimated region is small.To ahieve this goal, we leverage mesh generationwork developed in the area of omputer graph-is. We use DistMesh [6, 20℄ beause it an ef-�iently generate high-quality meshes. DistMeshuses a signed distane funtion d(x; y) to speifya region. The absolute value of d(x; y) is the min-imum distane from (x; y) to the boundary of the6



region, where a negative distane means it is in-side the region and a positive distane means itis outside the region. It generates meshes usingDelaunay triangulation, and optimizes node loa-tions using a fore-based smoothing proedure asdesribed in [6, 20℄. It also provides a parameterto ontrol the sizes of triangles.We apply DistMesh to loalize wireless nodesas follow. Eah node represents its estimated re-gion using a set of triangular ells. A triangularell is the smallest unit for whih we ompute aprobability. We ontrol the mesh struture so thateah triangle has similar sizes in both dimensions,and the sizes of triangles are adaptive aordingto the size of the region. It is straightforward towrite distane funtions for distane onstraintsand angle onstraints. Eah node alulates its re-gion based on the measured distane onstraints.Given a ombined distane funtion from all lo-ation onstraints, DistMesh an generate a setof triangular meshes to represent the region thatsatis�es the loation onstraints.Figure 3 illustrates two examples of triangularmesh generated by Distmesh. Figure 3(a) showsthe mesh ells for a irle. Figure 3(b) shows themesh ell that represents a node's estimated re-gion, resulting from subtrating three irles fromone irle. The red point is the true position ofthis node.
−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) Mesh ells for airle. 10 15 20 25 30

24

26

28

30

32

34

36

38

40

X Coordinates

Y
 C

oo
rd

in
at

es

true
position

(b) Mesh ells for anode's loation.Figure 3: Triangular mesh generated byDistmesh.After obtaining its estimated region, a node anderive the probability distribution over the trian-gles (inside the region) in a similar way as in statigrids. Suppose we know the region and probabil-ity distribution over the triangles of a given nodei. A neighbor j of node i has loation onstraintdji � R, and alulates its region Sj as follow. Letti denote a triangle in Si, and tj denote a trianglein Sj . We derive the probability assoiated withtj by �rst omputing the fration of ti satisfyingthe loation onstraint, and then weighting thefration by the probability for node i to appear in

ti.Figure 4 shows an example of deriving probabil-ity distribution. tj is a triangle in Sj. POS(tj ; R)is the region expanded from tj by R. ti is a trian-gle in Si. ti is partially in POS(tj; R). When al-ulating Pj(tj), we need to determine what fra-tion of ti is inside POS(tj ; R).
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Figure 4: Example of mesh model.Let t0i = ti \ POS(tj; R). Assuming uniformdistribution within a triangle, we havePj(tj) =  � Xti�Si A(t0i)A(ti) � Pi(ti); (4)where  is a normalization fator.4 Extrat and Leverage Addi-tional InformationThe auray of a loalization system highly de-pends on the amount of information available. Wepropose several ways to obtain additional infor-mation. These approahes an be used separatelyor jointly, and an be applied to di�erent loaliza-tion algorithms. Note that while this is not the�rst paper that uses additional information be-sides network onnetivity to infer loation, sev-eral of the approahes presented here are novel.In addition, we evaluate and ompare the e�etsof the obtained information.Using power ontrol: Power ontrol enableswireless nodes to obtain additional information inthe following ways. Suppose eah power level pkhas orresponding maximum and minimum trans-mission range R(pk) and r(pk). By adjusting thetransmission power, if a node i �nds out that itan ommuniate with another node j at powerlevel pk, but annot ommuniate at power levelpk�1, the distane between i and j should be be-tween R(pk) and r(pk�1). This additional infor-mation makes range estimation more aurate,7



and an be easily inorporated into any loal-ization algorithm. As we would expet, a largernumber of power levels provides more informa-tion and improves loalization auray. Powerontrol is an interesting and pratial way for ob-taining additional information sine power ontrolis readily available in ommerial wireless ards.In addition, it only requires nodes to obtain net-work onnetivity information, and does not re-quire signal strength measurements or additionalhardware (e.g., ultrasound).Using arrier-sense range: Many existingloalization algorithms rely on network onnetiv-ity information for loation estimation. This givesus information as to whether a node is withinor outside the ommuniation range of anothernode. However we do not have further informa-tion about the nodes that are outside the ommu-niation range (other than that they are outsidethe ommuniation range).We make an interesting observation: in addi-tion to ommuniation range, arrier-sense rangean also be used as a referene for distane es-timation. For example, if two nodes annotsense eah other's arrier, they are outside eahother's arrier-sense range. This type of infor-mation is not available if we only use networkonnetivity, sine the arrier-sense range is typ-ially larger than the ommuniation range. LetR and Rarrier denote ommuniation range andarrier-sense range, respetively. If two nodes areoutside ommuniation range but an sense eahother's arrier, their distane should be withinthe range [R, Rarrier℄; if two nodes annot senseeah other's arrier, their distane is larger thanRarrier.To determine whether two nodes an sense eahother's arrier, we an measure whether thesenodes an simultaneously broadast [2℄. Morespei�ally, we measure the broadast rate fromthe two senders when they are ative simultane-ously, and denote it as Ttogether. We also measurethe broadast rate when the two senders are ativeseparately, and denote it as Tseparate. If TtogetherTseparateis lose to 1, it means that the two nodes do notsense eah other's arrier; otherwise they do.As with power ontrol, we extrat more pre-ise distane information using the arrier-senserange, and it an be applied to di�erent loaliza-tion shemes.Using physial layout: In some appliations,we may have a rough idea of physial layout of

wireless nodes. For example, in residential meshnetworks [23℄, we know that wireless nodes aredeployed at di�erent houses, and we also have aneighborhood layout map. The map provides ad-ditional information for us to narrow down the lo-ation. Sine a node an only be loated at one ofthe houses, its �nal estimated loation should bethe intersetion of its estimated region (withoutonsidering the physial layout) and the regionsoupied by the houses.Using more powerful anhor nodes: As theprevious work shows, angle information is valu-able for loation estimation. However, obtainingangle information often requires more expensivehardware (e.g., diretional antennas or additionaltransmitters like ultrasound). In order to ahieveboth high auray and low ost, a promising ap-proah is to use a ombination of more power-ful nodes and less powerful nodes. For example,only the anhor nodes are equipped with powerfuldevies for more detailed measurement, whereasthe remaining nodes use heap devies as usual.An interesting question is how muh bene�t suhpowerful anhor nodes o�er. In this paper, westudy the following type of powerful anhor nodes:anhor nodes that are equipped with diretionalantennas for measuring angle information towardsits immediate neighbors. We evaluate loalizationauray as we vary the fration of anhor nodes.5 Enhaning RobustnessA node estimates its loation by �nding regionsthat satisfy a set of loation onstraints. Lo-ation onstraints are usually obtained by mea-suring distanes or angles between nodes. How-ever, suh measurements an be erroneous, andin some ases even lead to inonsistent loationonstraints. A set of loation onstraints are in-onsistent if there is no point that an satisfy allthese onstraints.We propose a tehnique on top of our proba-bilisti region-based approah to ahieve robust-ness against inonsistent loation onstraints. Weleverage the fat that majority of loation mea-surements are onsistent; and only a few on-straints may ontain signi�ant errors and resultin inonsisteny. Therefore a mesh ell belongsto a node's estimated region as long as it satis�esmost of the onstraints. We use 80% as a thresh-old.Our robust loalization proeeds in the follow-8



ing three steps. First, as before, every node prop-agates loation onstraints to all nodes within 3hops away (i.e. TTL=3). Seond, eah node i al-ulates its own region based on the loation on-straints from other nodes. Loation onstraintsfrom a node j determine a region Sij for i. Un-like in Setion 3, i does not alulate its regionas Si = \jSij . Instead, Si is alulated as theset of mesh ells ui suh that ui satis�es 80% ofthe onstraints. Finally, eah node alulates theprobability distribution over all mesh ells withinits estimated region. This step is similar to whatwe desribe in Setion 3. As part of our futurework, we plan to hoose the thresold adaptively.6 Simulation SetupWe evaluate loalization shemes using a method-ology similar to [27℄ and [26℄. We uniformly plaea set of nodes over a spae. We ompare di�er-ent loalization shemes by varying the number ofnodes (N), the maximum transmission range (R),and the fration of anhor nodes A.We quantify the loalization error using thesame method as in [10℄. For both Sextant andour approah, we use Monte Carlo sampling tosample 1000 points in a node's estimated region,and pik the one that minimizes the average errorto other sampled points inside the region. The lo-alization error is then alulated as the distanefrom this point to the node's true position.However, there is a di�erene in hoosing sam-ple points between Sextant and our approah.Sextant uniformly samples points inside a region,whereas in our approah the number of samplepoints in a ell is proportional to its probabil-ity. As we will show, the probabilisti-based ap-proah an signi�antly improve the loalizationauray.Next we study how additional information af-fets loalization auray. To examine the ef-fet of angle information, we onsider three levelsof angle measurement errors: large errors within[�20; 20℄ degrees, medium errors within [�10; 10℄degrees and small errors within [�5; 5℄ degrees.These values are onsistent with ommerial di-retional antennas. To study the e�et of powerontrol, we vary the number of power levels PLthat a node an use for its transmission. Ta-ble 1 lists the transmission power at di�erent lev-els, where P is the maximum transmission power.Note that PL = 5 orresponds to or approximates

several ommerial wireless ards (e.g., NetgearWAG511 and Ciso Aironet 350 series). Finally,we examine the e�et of arrier-sense range byvarying Rarrier = 1:5R; 2R; 2:5R; 3R. Table 2summarizes the notation we use.PL Fration of maximum transmission power P1 100%2 25%,100%3 6.25%,25%,100%5 6.25%,12.5%,25%,50%,100%10 6.25%,10%,12.5%,20%,25%,35%,50%,65%,80%,100%Table 1: Transmission power for di�erent powerlevels N the number of nodesR transmission rangeA the fration of anhor nodesPL the number of power levelsRarrier arrier-sense rangeTable 2: Notation used in performane evalua-tion.7 Performane ResultsIn this setion, we �rst ompare di�erent loal-ization shemes. Then we examine the impat ofadditional information.7.1 Comparison between di�erent lo-alization shemesE�ets of the number of nodes Figure 5shows the umulative distribution of position er-rors for N = 50, R = 12:5, A = 10% and PL = 1.
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SextantFigure 5: Probability distribution improves loal-ization auray (50 nodes)We make the following observations. First,PDM signi�antly out-performs Sextant. For ex-9



ample, the perentage of nodes ahieving � 30%�R = 3:75 errors in dynami mesh is 60% omparedto 36% in Sextant. This is beause in Sextant dif-ferent points inside a region are treated equally,whereas PDM leverages the derived probabilitydistribution over the region. Seond, as we wouldexpet, the stati grid approah with 0.5x0.5 gridsyields lower error than with 2x2 grids. The dy-nami mesh an ahieve performane lose to thestati grid approah with small ell size at thelower end of the errors. In omparison, ombin-ing ells into segments with width 0.5, denotedas \Segment (width=0.5)" in the �gure, ahieveslow omputation ost at the expense of slightlylarger error. But it still out-performs Sextant bya signi�ant amount.Sextant Grid-2 Grid-0.5 PDM Segment1.98 1.225 56.67 6.82 3.66Table 3: Average running time in seonds us-ing a 1200 MHz UltraSPARC-III+ proessor with16GB memory.Table 3 summarizes average running time of dif-ferent algorithms. As we an see, the runningtime of stati grids dereases with inreasing gridsize. Both 2x2 grids and segments of width 0.5give omparable running time to Sextant and bet-ter auray. PDM yields higher running time toahieve higher auray. Note that Sextant is im-plemented in JAVA and all of our approahes areimplemented in MATLAB. We expet the run-ning time of our approahes an be signi�antlyimproved by onverting the MATLAB ode intoC, whih we plan to do in future.For the rest of evaluation, we hoose PDM as arepresentative of our probabilisti approahes.
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with 100 nodes. As we an see, PDM ahieveshigher auray than Sextant. For example, theperentage of nodes ahieving � 30% � R = 3:75errors is 40% in Sextant, and is 67% in PDM. Onaverage, Sextant takes 2.14 seonds per node toompute, and PDM takes 10.23 seonds per nodeto ompute.E�ets of transmission range Transmissionrange R determines network density. More neigh-bors mean more loation onstraints, whih usu-ally result in higher loalization auray. Wevary R to obtain di�erent network densities shownin Table 4. As desribed in [14℄, 6 is a \magi"average node degree for a wireless network to beonneted. So we hoose the shortest range to be10, whih gives an average node degree of 6.N R = 10 R = 12:5 R = 1550 6.0612 8.9592 11.28100 6.0562 8.58 11.28Table 4: Average node degrees under di�erenttransmission ranges.
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Sextant: R=10Figure 7: E�ets of Transmission Range (100nodes)Figure 7 shows the results for di�erent trans-mission ranges, while �xingA = 10% and PL = 1.The auray results of 50-node (not shown) issimilar. Again, PDM onsistently outperformsSextant. As we would expet, the auray ishigher when the transmission range is larger,whih results in higher network density. Sinethe transmission range is determined by trans-mission power, there is a tradeo� between energy-eÆieny and loalization auray.E�ets of the fration of anhor nodesNext, we study how the fration of anhor nodes,10



A, a�ets loalization auray. In our evalua-tion, R = 12:5, and PL = 1. Figure 8 shows theloalization auray of 100-node networks as wevary the anhor fration from 5% to 20%. (Theresults of 50-node networks are similar and omit-ted in the interest of brevity.) As before, PDMyields lower error than Sextant. In addition, we�nd that the anhor fration signi�antly a�etsloalization auray. The more anhor nodes,the higher loalization auray. This is onsis-tent with our expetion, beause 1-hop neighborsof anhor nodes an be loalized more auratelythan nodes multiple hops away from anhor nodesdue to smaller unertainty. As shown in Figure 8,the inrease in loalization auray is signi�antas the anhor fration inreases from 5% to 10%.A further inrease in the anhor fration leads tomore moderate inrease in the auray. There-fore we use 10% as the anhor fration for theremaining evaluation.
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Sextant: A=5%Figure 8: E�ets of anhor nodes fration (100nodes)Summary In this setion, we ompare di�erentloalization algorithms. Our results show thatprobabilisti region-based loalization shemesusing stati grids, dynami meshes, and segmentsof grids, ahieve higher loalization auray thanSextant. In addition, PDM provides a reasonablebalane between auray and omputation ost.7.2 Using additional informationIn this setion, we study the e�ets of additionalinformation.E�ets of angle information First, we exam-ine how anhor nodes that an measure angle in-formation help with loalization. We use three

levels of angle measurement errors: [�20; 20℄ de-grees, [�10; 10℄ degrees and [�5; 5℄ degrees. Anestimated angle is then the true angle plus noiseuniformly distributed within the error intervals.Figures 9 summarizes the results.
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No Angle InfoFigure 9: E�ets of angle information (100nodes).We make the following observations. First, theloalization error with angle information is signi�-antly lower than without angle information. Se-ond, even when the angle measurement ontainserrors of [�20; 20℄ degrees, loalization aurayis still signi�antly better than without angle in-formation. Compared with [�5; 5℄ degrees of an-gle measurement error, its auray is lower at thelow end of position errors, and omparable for theremaining position errors.E�ets of power ontrol When only onne-tivity information is available, the distane mea-surement is binary{either d � R or d > R. Byadjusting the transmission power level, a nodean extrat more aurate distane onstraintsin the above form. As shown in Figure 10, theauray improves with an inreasing number ofpower levels. For example, 20% nodes ahieveposition error within 1.25 when 1 power level isused. In omparison, 32%, 35%, 50%, and 65%nodes ahieve similar errors when the number ofpower levels is 2, 3, 5, and 10, respetively. Thisdemonstrates that power ontrol is e�etive in im-proving loalization auray.E�ets of arrier sense onstraint As powerontrol, arrier-sense range an also help to ex-trat more aurate distane onstraints. Asshown in Figure 11, ompared with the base asewithout arrier sense information, onstraints de-rived using arrier-sense ranges improve loaliza-tion auray by a onsiderable amount. As the11
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No CS InfoFigure 11: E�ets of arrier sense onstraints (100nodes).E�ets of map onstraint Finally we studythe performane gain from a layout map. In ourevaluation, we obtain a real neighborhood map,whih ontains the oordinates of houses. We se-let 56 houses from the map over a 1400m x 700mspae. Sine there is no house size information, wegenerate the regions oupied by the houses asfollow. Eah house is a square and has the samesize. A house is entered at its oordinate, andits size, hsize, is determined based on the mini-mum distane between any pair of houses, dmin.In the loalization proess, eah node derives itsregion and probability distribution based on theonstraints imposed by the map (i.e., a node an

only be inside a house), as well as the loationonstraints from other nodes. We use transmis-sion range of 150 meters, whih gives an averagenode degree of 6.39.
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eah wireless nodes. As shown in Figure 13,the loalization algorithm maintains high au-ray when the ommuniation ranges ontain upto 20% � R errors. The auray is lower whenRerror inreases up to 40%�R, but still all nodesan be loalized, with around 60% nodes ahiev-ing within R=2 = 6:25 position error.
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