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Abstract

Determining the physical location of wireless
nodes is important to a wide variety of appli-
cations.
probabilistic region-based localization algorithms,
including using static grids, segments of grids,
and dynamic meshes. These algorithms provide
a wide range of trade-off between accuracy and
cost, making them suitable for different types of
networks, such as sensor networks and mesh net-
Furthermore, we propose several tech-
niques to extract and leverage additional infor-
mation on location constraints, which is shown
to significantly improve the localization accuracy
and can be applied to other localization schemes.
Finally we develop techniques to enhance robust-
ness of localization, and show that the enhanced
scheme can achieve high accuracy even in the
presence of significant measurement errors.

In this paper, we propose a series of

works.

1 Introduction

Determining the physical location of wireless
nodes is important to a wide variety of applica-
tions, ranging from geographic routing [13, 22] to
context-aware applications [15, 16], from habitat
monitoring [5] to environment surveillance [3, 28].

A global positioning system (GPS) [1] can be
used to obtain location information. But it does
not work indoors, and it is also costly to equip
every wireless node with GPS. The limitation of
GPS has motivated researchers to develop algo-
rithms to infer location using cheap hardware by
leveraging network connectivity, signal strength,
and angle-of-arrival information [29, 4, 19, 17, 11,
27, 26, 12]. Despite extensive research in the area
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of localization, the following three topics in local-
ization research require further study, which is the
subject of this paper.

First, developing accurate localization algo-
rithms based upon only connectivity information
is an active research topic. A major factor that
determines the effectiveness of the algorithms is
how the estimated locations are represented. In
many previous studies, the location of a node is
estimated as a single point. As shown in [8], there
are often many coordinate assignments that sat-
isfy the location constraints derived from an un-
derlying network. Therefore assigning the loca-
tion of a wireless node to a single point may re-
sult in significant error. For example, as described
in [10], when a node is constrained to be located
at four corners of a region, a single point esti-
mation may place the node at the center, which
is misleading. In addition, a single point repre-
sentation is vulnerable to measurement errors —
a small perturbation in measurement data may
result in a large difference in the estimated loca-
tion [18]. A promising approach, taken by [9, 10],
is to represent the estimated location as a region
that consists of all points satisfying the location
constraints. Such a region-based representation
has the potential to yield higher accuracy.

Motivated by [9, 10], we also use a region to
represent a node’s estimated location. To achieve
even higher accuracy, we propose a probabilis-
tic localization approach. In this approach, each
node derives a probability distribution over a set
of cells that it can possibly reside in. Every cell
is associated with a probability about the like-
lihood that it contains the true position of the
node. Furthermore, we propose two techniques
to reduce computation cost. The first technique
combines cells into segments, which significantly
reduces computation cost with a moderate in-



crease in localization error. The second technique
is called probabilistic dynamic mesh-based local-
ization (PDM). It uses a mesh generator to par-
tition a region into a mesh, and represents the
estimated location of a wireless node as a set of
mesh cells. It iteratively refines the estimated lo-
cation using location constraints extracted from
the underlying network. It achieves high accu-
racy by deriving the probability distribution of a
node’s position over the region. It achieves rea-
sonable cost by adaptively changing the mesh cell
size using DistMesh [6], which is an efficient way
to generate an unstructured triangular and tetra-
hedral mesh to cover a region.

Second, localization accuracy relies heavily on
the amount of available information about loca-
tion constraints. For example, as shown in [7],
there is a fundamental limit in localization ac-
curacy using commodity 802.11 hardware. To
further improve accuracy, additional information
on location constraints is necessary. In this pa-
per, we propose the following ways to obtain and
leverage additional information: (i) using network
connectivity under different transmission power
levels, (ii) using knowledge of whether two nodes
can sense each other’s carrier, which can be mea-
sured empirically as shown in [2], (iii) using layout
maps, and (iv) using more powerful anchor nodes
(e.g., the anchor nodes can not only extract dis-
tance constraints for its neighbors, but also ob-
tain the approximate angles). We also evaluate
the benefit of each type of such additional infor-
mation.

Third, the robustness issue in localization has
received little attention, even though robustness is
essential to the success of any localization scheme
since we cannot expect that measurements are al-
ways accurate. Erroneous measurement reports
may arise from measurement errors, loss of mea-
surement data, and hardware/software problems.
Our probabilistic region-based localization pro-
vides a natural mechanism to handle measure-
ment errors — the probability computation can
take into account of the extent to which the loca-
tion constraints are satisfied. In this way, a mesh
cell that is inconsistent with most location con-
straints is assigned a low probability and pruned
out, whereas a mesh cell satisfying most loca-
tion constraints (but not necessarily all the con-
straints) will be retained.

In summary, while localization has been an ex-
tensively studied subject, our approach has the

following three novel contributions. First, we de-
velop probabilistic region-based localization al-
gorithms, including using static grids, dynamic
meshes, and segments of grids. These algorithms
provide a wide range of trade-off between accu-
racy and cost. For example, the segments-based
approach yields low cost and high accuracy, and is
well suited for networks formed by less powerful
nodes, such as sensor networks. In comparison,
the PDM achieves a higher accuracy at a higher
cost, making it suitable for networks formed by
more powerful nodes, such as mesh networks. Sec-
ond, we propose several techniques to extract and
leverage additional information on location con-
straints. The additional information can be ap-
plied to both our and others’ localization schemes.
Our results show that the additional informa-
tion can significantly improve localization accu-
racy. Third, we develop techniques to enhance
robustness of localization, and show that the en-
hanced algorithm can tolerate significant errors
from measurement data.

The rest of the paper is organized as follow. In
Section 2, we overview the related work. In Sec-
tion 3 we propose the probabilistic region-based
localization algorithms. In Section 4, we present
techniques to obtain and leverage additional in-
formation. In Section 5, we develop schemes to
enhance the robustness in localization. We de-
scribe our evaluation methodology in Section 6
and results in Section 7. Finally we conclude in
Section 8.

2 Related Work

Localization has been extensively studied due to
its great importance. We broadly classify pre-
vious work into the following three areas: (i) lo-
calization schemes in single-hop wireless networks
(e.g., WLAN), (ii) localization schemes in multi-
hop wireless networks, and (iii) analysis of the
fundamental limitations of localization schemes.

Localization in a single hop wireless net-
work: In the area of localization for single-hop
wireless networks, a number of interesting ap-
proaches have been proposed. For example, Ac-
tive badge [29] locates users by having them wear
infrared badges that transmit unique identifiers.
RADAR [4] relies on signal strength measurement
gathered at multiple receiver locations to triangu-
late users’ locations. Cricket [21] uses the differ-



ence between the arrival time of radio and ultra-
sound signals to estimate distance. VORBA [19]
determines location based on angle of arrival mea-
surements from 802.11 base stations. In [17],
Madigan et al. develop a Bayesian hierarchical
model that simultaneously locates a set of wire-
less clients (as opposed to localizing one user at
a time). Refer to [11] for a nice survey on the
location systems for single hop wireless networks.

Localization in a multihop wireless net-
work: Localization in multihop environments is
even more challenging, since nodes are often mul-
tiple hops away from anchor nodes, thereby in-
creasing the uncertainty in location.

A number of interesting localization algorithms
have been proposed for such networks. For ex-
ample, the authors in [24] develop a distributed
localization approach that iterates through a two-
phase process: ranging and estimation. During
the ranging phase, each node estimates its dis-
tance to its neighbors, whereas during the esti-
mation phase, nodes use the ranging information
and their neighbors whose positions have been de-
termined to estimate their own location. In [25],
the authors enhance the previous approach by for-
mulating the problem as a global non-linear op-
timization problem. This limits error accumula-
tion in [24]. Shang et al. in [27] propose to use
multi-dimensional scaling (MDS) to determine lo-
cation in a centralized fashion. The localiza-
tion accuracy is limited partly because it cannot
handle violation of triangulation (especially for
irregular-shaped networks). Later they develop
a distributed version of MDS-based approach in
[26]. It is shown to out-perform the original cen-
tralized version in irregular-shaped networks by
ignoring the distance information among nodes
that are far-apart. In [18], the authors present
algorithms that use robust quadrilateral for local-
ization. Their approach finds sets of four nodes
that are fully connected, and localizes the fourth
node based on the positions of the other three
nodes. To prevent error accumulation, the four-
node set needs to satisfy robust quadrilateral con-
ditions. This improves accuracy at the cost of
leaving some nodes unlocalized. In [12], the au-
thors propose a sequential Monte Carlo localiza-
tion method to enhance the accuracy of localiza-
tion by exploiting mobility. In particular, the ap-
proach leverages mobility history to predict possi-
ble locations based on previous location samples

and its movement, and uses the new connectiv-
ity information to eliminate inconsistent location
samples.

Unlike most of the previous approaches, which
represent inferred locations using points, Sex-
tant [10] develops a novel approach that denotes
inferred locations as regions represented by Bezier
curves. Such a representation is shown to sig-
nificantly improve accuracy. Motivated by their
approach, in this paper we also use region-based
representation. Different from their work, we use
a dynamic mesh to represent a region, and derive
the probability for a node to reside in each mesh
cell. Such a representation enables us to achieve
high accuracy and robustness without significant
computation cost.

Analysis of limits on localization accuracy:
In addition to developing novel localization algo-
rithms, researchers have also analyzed the funda-
mental limits on localization algorithms. For ex-
ample, the authors in [7] compare a series of local-
ization algorithms, and find that using commod-
ity 802.11 technology over a range of algorithms,
approaches and environments, it is expected to
have a median localization error of 10 feet and
97th percentile error of 30 feet. They conclude
that these limitations are fundamental and un-
likely to be significantly improved without funda-
mentally more detailed environmental models or
additional localization infrastructure. It points
out that leveraging additional information is nec-
essary in order to improve the accuracy. The au-
thors in [8] seek answers to the following prob-
lem: what are the conditions for unique network
localizability. They show that a network has a
unique localization if and only if its corresponding
grounded graph is generally globally rigid. Ap-
plying graph-rigidity literature, they develop ap-
proaches to constructing uniquely localizable net-
works, and study the computation complexity of
localization. The limitation of the suggested ap-
proach is that in practice a graph is given as is,
and we do not have the flexibility to alter the
graph to make it uniquely localizable. In other
words, a graph needs to be localized even if there
is no unique solution.



3 Probabilistic Dynamic Mesh-
Based Localization

As mentioned in the previous section, a significant
difference between various localization approaches
is how the estimated location is represented. To
achieve high accuracy and robustness, we adopt a
region-based representation, where an estimated
location is represented as a region that consists of
all points satisfying the location constraints ex-
tracted from the underlying network. We further
improve the existing work [9, 10] by deriving a
probability distribution over the region to reflect
the likelihood of the true position. Such prob-
ability distribution, combined with an explicitly
represented region, provides much richer location
information than a single position, and allows us
to achieve higher accuracy in face of insufficient
information and measurement errors.

Below we first present a probabilistic region-
based localization approach. Then we describe
two techniques to improve the efficiency of the ap-
proach. The first one combines multiple horizon-
tal (or vertical) cells (in an estimated region) into
a single segment, which reduces computation cost
at the expense of slightly higher error. The sec-
ond technique is based on a dynamic mesh, where
mesh cells are dynamically adjusted according to
the size and shape of the region. It can achieve
efficiency and accuracy.

3.1 Probabilistic Region-Based Local-
ization

The probabilistic region-based localization pro-
ceeds as follow. First, every node’s location is ini-
tialized to be the entire space. Then each node ex-
tracts location constraints by measuring the con-
nectivity of the underlying network, and propa-
gates these constraints to nodes within a certain
hops away. (We use 3 hops in our evaluation.) If
angle and received signal strength index (RSSI)
measurements are available, they can be used to
extract location constraints and processed in a
similar way. Based on the constraints reported
by other nodes and its own observation, a node
estimate its new location by pruning out the sub-
regions that are inconsistent with the constraints.
For the sub-regions that are consistent with the
constraints, a node further computes a probabil-
ity distribution over them. The approach is run
in a distributed way.

Extracting Location Constraints: A node’s
location is estimated by extracting location con-
straints from the underlying network. Examples
of location constraints include “the distance be-
tween node ¢ and node j is at most d” (also called
distance constraints), and “the angle between line
ij and the direction of North is within [6;,65]”
(also called angle constraints). Such location con-
straints can be obtained by measuring network
connectivity and angle-of-arrival. In this section,
we only consider distance constraints. We will
consider angle constraints in Section 4.

To handle irregular wireless propagation, each
wireless node is associated with two separate
radii: Rand r (R > r), where R denotes the max-
imum distance the node can reach, and r denotes
the minimum distance the node can reach [10].
R # r arises when the signal propagation is not
the same in all directions. When node ¢ can hear
node j, we obtain a constraint: d;; < R;. This
is a positive constraint. When node ¢ cannot hear
node j, we obtain a constraint: d;; > r;. This is
a negative constraint.

Next we introduce some more notation. Let
LCj; denote a location constraint for node j using
node 7 as a reference point. Let POS() denote a
positive constraint, and NEG() denote a negative
constraint. Let S; and S; be the estimated region
of node ¢ and j, respectively.

If node j can hear node i, we obtain a positive
constraint: d;; < R. Then the estimated region
of node j can be expressed as:

where d(p;,pj) is the distance between two points
p; and p;. This region is a union of discs that are
centered at each point inside S; with radius R.
Similarly if node j cannot hear node i, we derive
a negative constraint, and the region of node j is
estimated to be

S; = NEG(Si,r) = {p;|13 pi € Si, d(pi,p;) >}

If there are multiple constraints derived (e.g.,
by using multiple reference points), the final out-
put is the intersection of the regions from all these
constraints. Note that while we use connectivity
information to extract location constraints, our
approach can easily incorporate other informa-
tion, such as angle estimation and layout maps,
which will be described in Section 4.



Computing probability: Next we describe
how each node 7 derives a probability distribu-
tion P; over its region S;. To do so, we partition
the whole space into (small) cells, where each cell
is a square with a fixed size. A cell is the small-
est unit for which we compute probability. Let s
be a cell. P;(s) is the probability that node i is
in s. Each location constraint gives a probability
distribution over an estimated region. The final
relative probability of each cell is the product of
the probabilities derived from all constraints (in-
cluding both positive and negative constraints).
The absolute probability is further obtained by
normalizing the relative probabilities.

Below we show how to derive a probability dis-
tribution from one location constraint. Since the
probability computation using positive and neg-
ative connectivity information is similar, we il-
lustrate the idea by considering only a positive
connectivity constraint.

First we describe how to compute probability
P;(s) using an anchor node, a, whose location is
known, as a reference point. Using network con-
nectivity, we obtain a distance constraint from a
to 7 as d;q < k* R, where k is the number of hops
between a and 7. Therefore S; is the disc centered
at a with radius k£ x R. Since only connectivity
information is available, we assume node i’s lo-
cation is uniformly distributed inside the circle.
Therefore, for a cell g,

Pi(g) = {(1]/61

where ¢; is the number of cells inside the circle.
(Note that application of negative connectivity in-
formation will change the above probability dis-
tribution. For example, if a node that is 2 hop
away from an anchor, the fact that it is not a’s
immediate neighbor allows us to prune out the
area which is a circle centered at a with radius
R.) To avoid leaving out the true position, a cell
is considered “inside” the circle as long as it over-
laps with the circle. Consequently, S; = |J(g)
is not exactly the region enclosed by the circle,
but the union of all cells considered “inside” the

if g is outside the circle,

otherwise,

circle. Therefore 1/c¢; is an approximation since
some cells are partially inside the circle. The ac-
curacy of such approximation depends on the cell
size. Smaller cells reduce the approximation error
at the cost of increasing computation and storage
costs.

Next we describe how to compute probability

P;(s) using a non-anchor node (whose location is
not known in advance) as a reference point. Con-
sider a node i’s neighbor j. For a cell u; C Sj, the
relative magnitude of its probability is determined
by the probability of subregion in S; that satisfies
d(us, u;) < R. This results in the following:

Pi(u;) = ﬁ.Z“iCd(ui,u]')gRPi(ui)
Y >uics; Filui)

- 8- > Piw) (2)

u; Cd(u;,u;)<R

where ( is a normalization factor so that
2w, Pilug) = 1.

Figure 1 shows how a node’s estimated loca-
tion converges. After the first iteration, the re-
gion is approximately a circle since this node is
a neighbor of an anchor. The probability distri-
bution is uniform over all cells. After the sec-
ond iteration, the estimated region is refined, with
the updated probability distribution and smaller
area, by leveraging the constraints from the an-
chors that are 2 hops away. After the third it-
eration, the region is reduced further (although
the amount of reduction is less than in the second
iteration because the constraints from the 3-hop
neighbors have less impact on the region than con-
straints from the 2-hop neighbors). As it shows,
the cell containing the true position (filled with
red color) and its surrounding cells have signifi-
cantly higher probabilities than the remaining re-
gion.

3.2 Enhancing Efficiency

So far we consider using static grids. In this case,
the computation cost is determined by the num-
ber of cells. If a node’s location has high un-
certainty due to lack of sufficient location con-
straints, its estimated region is large, resulting
in a large number of cells and hence high com-
putation and storage costs. In this section, we
describe two techniques to improve the efficiency
of the above localization approach. The first ap-
proach reduces the cost by combining horizon-
tally (vertically) contiguous cells into a row (col-
umn) segment. The second approach dynamically
adapts the cell size so that coarse-grained cells are
used when the estimated region is large and fine-
grained cells are used when the estimated region
is small.
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Snapshot after 2 iterations.

Snapshot after 3 iterations.

Figure 1: Snapshots of a node’s estimated loca-
tion for the first three iterations.

Combining cells into a segment: One way to
reduce the complexity is to combine horizontally
(vertically) contiguous cells into a row (column)
segment. Since computation using row segments
is similar as using column segments, in the follow-
ing description we focus on using row segments.
The width of each segment is fixed, but the length
is variable. A row segment is specified by a 3-
tuple, (y, 1, x2), where (z1,y) is the left end and
(z2,y) is the right end. Each estimated region is
represented as a set of row segments. We want
to calculate the probability of each row segment
containing the true position. Now the complexity
is determined by the number of row segments.
Suppose we obtain node i’s estimated region
and the probability distribution over the region.
We calculate its neighbor j’s estimated region
and probability distribution as follow. The lo-
cation constraint LCj; is dj; < R. Hence, S; =
POS(Si,R). Let u; denote a row segment of i,

and u; denote a row segment of j. The general for-
mula to derive probability is similar to (1). Since
a row segment may be significantly larger than a
cell, treating partial overlap as complete overlap
may result in high error. Therefore we further cal-
culate the fraction of a row segment that satisfies
location constraints.

Figure 2: Example of Using Segments

Figure 2 shows an example. u; is a row segment
in §;. POS(uj, R) is the region expanded from
uj by R. wu; is a row segment in S;. wu; is par-
tially in POS(u;, R). When calculating Pj(u;),
we need to calculate the portion of u; that is in-
side POS(u;, R).

Let v; = u; N POS(uj,R). Let A(S) denote
region S’s size. Assuming uniform distribution
within a segment, we have,

Pi(uj) = v- Y jEZ’)) “Pi(ui),  (3)
u; CS; t

where v is a normalization factor.

Dynamic Mesh: Combining consecutive cells
in one dimension can significantly reduce compu-
tation and storage costs. On the other hand, its
accuracy depends on how accurately a uniform
distribution captures the actual probability dis-
tribution over the set of combined cells. When
the actual distribution significantly deviates from
a uniform distribution, localization accuracy will
decrease. To achieve both high accuracy and low
cost, we propose an alternative approach that dy-
namically adjusts the cell size as needed.

At a high level, we use coarse-grained cells
when the estimated region is large, and use fine-
grained cells when the estimated region is small.
To achieve this goal, we leverage mesh generation
work developed in the area of computer graph-
ics. We use DistMesh [6, 20] because it can ef-
ficiently generate high-quality meshes. DistMesh
uses a signed distance function d(x,y) to specify
a region. The absolute value of d(z,y) is the min-
imum distance from (z,y) to the boundary of the



region, where a negative distance means it is in-
side the region and a positive distance means it
is outside the region. It generates meshes using
Delaunay triangulation, and optimizes node loca-
tions using a force-based smoothing procedure as
described in [6, 20]. It also provides a parameter
to control the sizes of triangles.

We apply DistMesh to localize wireless nodes
as follow. Each node represents its estimated re-
gion using a set of triangular cells. A triangular
cell is the smallest unit for which we compute a
probability. We control the mesh structure so that
each triangle has similar sizes in both dimensions,
and the sizes of triangles are adaptive according
to the size of the region. It is straightforward to
write distance functions for distance constraints
and angle constraints. Each node calculates its re-
gion based on the measured distance constraints.
Given a combined distance function from all lo-
cation constraints, DistMesh can generate a set
of triangular meshes to represent the region that
satisfies the location constraints.

Figure 3 illustrates two examples of triangular
mesh generated by Distmesh. Figure 3(a) shows
the mesh cells for a circle. Figure 3(b) shows the
mesh cell that represents a node’s estimated re-
gion, resulting from subtracting three circles from
one circle. The red point is the true position of
this node.
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(a) Mesh cells for a (b) Mesh cells for a

circle. node’s location.
Figure 3: Triangular mesh generated by
Distmesh.

After obtaining its estimated region, a node can
derive the probability distribution over the trian-
gles (inside the region) in a similar way as in static
grids. Suppose we know the region and probabil-
ity distribution over the triangles of a given node
i. A neighbor j of node ¢ has location constraint
d;j; < R, and calculates its region S; as follow. Let
t; denote a triangle in S;, and ¢; denote a triangle
in S;. We derive the probability associated with
t; by first computing the fraction of t; satisfying
the location constraint, and then weighting the
fraction by the probability for node i to appear in

t.
Figure 4 shows an example of deriving probabil-
ity distribution. ¢; is a triangle in S;. POS(t;, R)
is the region expanded from ¢; by R. t; is a trian-
gle in S;. t; is partially in POS(t;, R). When cal-
culating Pj(t;), we need to determine what frac-
tion of ¢; is inside POS(t;, R).

POS(,R)

Figure 4: Example of mesh model.

Let t; = t; N POS(t;,R). Assuming uniform
distribution within a triangle, we have

Pi(t;) = v- ) igf;
t;cs;

where v is a normalization factor.

4 Extract and Leverage Addi-
tional Information

The accuracy of a localization system highly de-
pends on the amount of information available. We
propose several ways to obtain additional infor-
mation. These approaches can be used separately
or jointly, and can be applied to different localiza-
tion algorithms. Note that while this is not the
first paper that uses additional information be-
sides network connectivity to infer location, sev-
eral of the approaches presented here are novel.
In addition, we evaluate and compare the effects
of the obtained information.

Using power control: Power control enables
wireless nodes to obtain additional information in
the following ways. Suppose each power level py,
has corresponding maximum and minimum trans-
mission range R(py) and r(pg). By adjusting the
transmission power, if a node i finds out that it
can communicate with another node j at power
level pj, but cannot communicate at power level
pr_1, the distance between ¢ and j should be be-
tween R(pg) and r(pg_1). This additional infor-
mation makes range estimation more accurate,



and can be easily incorporated into any local-
ization algorithm. As we would expect, a larger
number of power levels provides more informa-
tion and improves localization accuracy. Power
control is an interesting and practical way for ob-
taining additional information since power control
is readily available in commercial wireless cards.
In addition, it only requires nodes to obtain net-
work connectivity information, and does not re-
quire signal strength measurements or additional
hardware (e.g., ultrasound).

Using carrier-sense range: Many existing
localization algorithms rely on network connectiv-
ity information for location estimation. This gives
us information as to whether a node is within
or outside the communication range of another
node. However we do not have further informa-
tion about the nodes that are outside the commu-
nication range (other than that they are outside
the communication range).

We make an interesting observation: in addi-
tion to communication range, carrier-sense range
can also be used as a reference for distance es-
timation. For example, if two nodes cannot
sense each other’s carrier, they are outside each
other’s carrier-sense range. This type of infor-
mation is not available if we only use network
connectivity, since the carrier-sense range is typ-
ically larger than the communication range. Let
R and R grrier denote communication range and
carrier-sense range, respectively. If two nodes are
outside communication range but can sense each
other’s carrier, their distance should be within
the range [R, Rcqrrier); if two nodes cannot sense
each other’s carrier, their distance is larger than
Rcarrier~

To determine whether two nodes can sense each
other’s carrier, we can measure whether these
nodes can simultaneously broadcast [2]. More
specifically, we measure the broadcast rate from
the two senders when they are active simultane-
ously, and denote it as Tyogether- We also measure
the broadcast rate when the two senders are active
separately, and denote it as Tysepgrate- 1f %
is close to 1, it means that the two nodes do not
sense each other’s carrier; otherwise they do.

As with power control, we extract more pre-
cise distance information using the carrier-sense
range, and it can be applied to different localiza-
tion schemes.

Using physical layout: In some applications,
we may have a rough idea of physical layout of

wireless nodes. For example, in residential mesh
networks [23], we know that wireless nodes are
deployed at different houses, and we also have a
neighborhood layout map. The map provides ad-
ditional information for us to narrow down the lo-
cation. Since a node can only be located at one of
the houses, its final estimated location should be
the intersection of its estimated region (without
considering the physical layout) and the regions
occupied by the houses.

Using more powerful anchor nodes: As the
previous work shows, angle information is valu-
able for location estimation. However, obtaining
angle information often requires more expensive
hardware (e.g., directional antennas or additional
transmitters like ultrasound). In order to achieve
both high accuracy and low cost, a promising ap-
proach is to use a combination of more power-
ful nodes and less powerful nodes. For example,
only the anchor nodes are equipped with powerful
devices for more detailed measurement, whereas
the remaining nodes use cheap devices as usual.
An interesting question is how much benefit such
powerful anchor nodes offer.
study the following type of powerful anchor nodes:
anchor nodes that are equipped with directional
antennas for measuring angle information towards
its immediate neighbors. We evaluate localization
accuracy as we vary the fraction of anchor nodes.

In this paper, we

5 Enhancing Robustness

A node estimates its location by finding regions
that satisfy a set of location constraints. Lo-
cation constraints are usually obtained by mea-
suring distances or angles between nodes. How-
ever, such measurements can be erroneous, and
in some cases even lead to inconsistent location
constraints. A set of location constraints are in-
consistent if there is no point that can satisfy all
these constraints.

We propose a technique on top of our proba-
bilistic region-based approach to achieve robust-
ness against inconsistent location constraints. We
leverage the fact that majority of location mea-
surements are consistent; and only a few con-
straints may contain significant errors and result
in inconsistency. Therefore a mesh cell belongs
to a node’s estimated region as long as it satisfies
most of the constraints. We use 80% as a thresh-
old.

Our robust localization proceeds in the follow-



ing three steps. First, as before, every node prop-
agates location constraints to all nodes within 3
hops away (i.e. TTL=3). Second, each node i cal-
culates its own region based on the location con-
straints from other nodes. Location constraints
from a node j determine a region S;; for <. Un-
like in Section 3, ¢ does not calculate its region
as S; = N;S;;. Instead, S; is calculated as the
set of mesh cells u; such that u; satisfies 80% of
the constraints. Finally, each node calculates the
probability distribution over all mesh cells within
its estimated region. This step is similar to what
we describe in Section 3. As part of our future
work, we plan to choose the thresold adaptively.

6 Simulation Setup

We evaluate localization schemes using a method-
ology similar to [27] and [26]. We uniformly place
a set of nodes over a space. We compare differ-
ent localization schemes by varying the number of
nodes (N), the maximum transmission range (R),
and the fraction of anchor nodes A.

We quantify the localization error using the
same method as in [10]. For both Sextant and
our approach, we use Monte Carlo sampling to
sample 1000 points in a node’s estimated region,
and pick the one that minimizes the average error
to other sampled points inside the region. The lo-
calization error is then calculated as the distance
from this point to the node’s true position.

However, there is a difference in choosing sam-
ple points between Sextant and our approach.
Sextant uniformly samples points inside a region,
whereas in our approach the number of sample
points in a cell is proportional to its probabil-
ity. As we will show, the probabilistic-based ap-
proach can significantly improve the localization
accuracy.

Next we study how additional information af-
fects localization accuracy. To examine the ef-
fect of angle information, we consider three levels
of angle measurement errors: large errors within
[—20,20] degrees, medium errors within [—10, 10]
degrees and small errors within [—5,5] degrees.
These values are consistent with commercial di-
rectional antennas. To study the effect of power
control, we vary the number of power levels PL
that a node can use for its transmission. Ta-
ble 1 lists the transmission power at different lev-
els, where P is the maximum transmission power.
Note that PL = 5 corresponds to or approximates

several commercial wireless cards (e.g., Netgear
WAGH511 and Cisco Aironet 350 series). Finally,
we examine the effect of carrier-sense range by
varying Regrrier = 1.DR,2R,2.5R,3R. Table 2
summarizes the notation we use.

PL | Fraction of maximum transmission power P
1 100%

25%,100%

3 6.25%,25%,100%

5 6.25%,12.5%,25%,50%,100%

10 | 6.25%,10%,12.5%,20%,25%,35%,50%,65%,
80%,100%

Table 1: Transmission power for different power
levels

the number of nodes
transmission range

the fraction of anchor nodes
L the number of power levels

|| = =

Riorrier | carrier-sense range

Table 2: Notation used in performance evalua-
tion.

7 Performance Results

In this section, we first compare different local-
ization schemes. Then we examine the impact of
additional information.

7.1 Comparison between different lo-
calization schemes

Effects of the number of nodes Figure 5
shows the cumulative distribution of position er-
rors for N =50, R =125, A = 10% and PL = 1.
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Figure 5: Probability distribution improves local-
ization accuracy (50 nodes)

We make the following observations. First,
PDM significantly out-performs Sextant. For ex-



ample, the percentage of nodes achieving < 30% x
R = 3.75 errors in dynamic mesh is 60% compared
to 36% in Sextant. This is because in Sextant dif-
ferent points inside a region are treated equally,
whereas PDM leverages the derived probability
distribution over the region. Second, as we would
expect, the static grid approach with 0.5x0.5 grids
yields lower error than with 2x2 grids. The dy-
namic mesh can achieve performance close to the
static grid approach with small cell size at the
lower end of the errors. In comparison, combin-
ing cells into segments with width 0.5, denoted
as “Segment (width=0.5)" in the figure, achieves
low computation cost at the expense of slightly
larger error. But it still out-performs Sextant by
a significant amount.

Grid-2
1.225

Grid-0.5
56.67

PDM
6.82

Sextant
1.98

Segment
3.66

Table 3: Average running time in seconds us-
ing a 1200 MHz UltraSPARC-III+ processor with
16GB memory.

Table 3 summarizes average running time of dif-
ferent algorithms. As we can see, the running
time of static grids decreases with increasing grid
size. Both 2x2 grids and segments of width 0.5
give comparable running time to Sextant and bet-
ter accuracy. PDM yields higher running time to
achieve higher accuracy. Note that Sextant is im-
plemented in JAVA and all of our approaches are
implemented in MATLAB. We expect the run-
ning time of our approaches can be significantly
improved by converting the MATLAB code into
C, which we plan to do in future.

For the rest of evaluation, we choose PDM as a
representative of our probabilistic approaches.
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Figure 6: Probability distribution improves local-
ization accuracy (100 nodes)

Figure 6 shows the performance for networks

10

with 100 nodes. As we can see, PDM achieves
higher accuracy than Sextant. For example, the
percentage of nodes achieving < 30% * R = 3.75
errors is 40% in Sextant, and is 67% in PDM. On
average, Sextant takes 2.14 seconds per node to
compute, and PDM takes 10.23 seconds per node
to compute.

Effects of transmission range Transmission
range R determines network density. More neigh-
bors mean more location constraints, which usu-
ally result in higher localization accuracy. We
vary R to obtain different network densities shown
in Table 4. As described in [14], 6 is a “magic”
average node degree for a wireless network to be
connected. So we choose the shortest range to be
10, which gives an average node degree of 6.

N R=10| R=125| R=15
50 | 6.0612 | 8.9592 11.28
100 | 6.0562 | 8.58 11.28

Table 4: Average node degrees under different
transmission ranges.
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Effects of Transmission Range (100

Figure 7 shows the results for different trans-
mission ranges, while fixing A = 10% and PL = 1.
The accuracy results of 50-node (not shown) is
similar.
Sextant.

Again, PDM consistently outperforms
As we would expect, the accuracy is
higher when the transmission range is larger,
which results in higher network density. Since
the transmission range is determined by trans-
mission power, there is a tradeoff between energy-
efficiency and localization accuracy.

Effects of the fraction of anchor nodes
Next, we study how the fraction of anchor nodes,



A, affects localization accuracy. In our evalua-
tion, R = 12.5, and PL = 1. Figure 8 shows the
localization accuracy of 100-node networks as we
vary the anchor fraction from 5% to 20%. (The
results of 50-node networks are similar and omit-
ted in the interest of brevity.) As before, PDM
yields lower error than Sextant. In addition, we
find that the anchor fraction significantly affects
localization accuracy. The more anchor nodes,
the higher localization accuracy. This is consis-
tent with our expection, because 1-hop neighbors
of anchor nodes can be localized more accurately
than nodes multiple hops away from anchor nodes
due to smaller uncertainty. As shown in Figure 8§,
the increase in localization accuracy is significant
as the anchor fraction increases from 5% to 10%.
A further increase in the anchor fraction leads to
more moderate increase in the accuracy. There-
fore we use 10% as the anchor fraction for the
remaining evaluation.
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Figure 8: Effects of anchor nodes fraction (100

nodes)

Summary In this section, we compare different
localization algorithms. Owur results show that
probabilistic region-based localization schemes
using static grids, dynamic meshes, and segments
of grids, achieve higher localization accuracy than
Sextant. In addition, PDM provides a reasonable
balance between accuracy and computation cost.

7.2 Using additional information

In this section, we study the effects of additional
information.

Effects of angle information First, we exam-
ine how anchor nodes that can measure angle in-
formation help with localization. We use three
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levels of angle measurement errors: [—20,20] de-
grees, [—10,10] degrees and [—5,5] degrees. An
estimated angle is then the true angle plus noise
uniformly distributed within the error intervals.
Figures 9 summarizes the results.
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Figure 9: Effects of angle information (100

nodes).

We make the following observations. First, the
localization error with angle information is signifi-
cantly lower than without angle information. Sec-
ond, even when the angle measurement contains
errors of [—20,20] degrees, localization accuracy
is still significantly better than without angle in-
formation. Compared with [—5,5] degrees of an-
gle measurement error, its accuracy is lower at the
low end of position errors, and comparable for the
remaining position errors.

Effects of power control When only connec-
tivity information is available, the distance mea-
surement is binary—either d < R or d > R. By
adjusting the transmission power level, a node
can extract more accurate distance constraints
in the above form. As shown in Figure 10, the
accuracy improves with an increasing number of
For example, 20% nodes achieve
position error within 1.25 when 1 power level is
used. In comparison, 32%, 35%, 50%, and 65%
nodes achieve similar errors when the number of
power levels is 2, 3, 5, and 10, respectively. This
demonstrates that power control is effective in im-
proving localization accuracy.

power levels.

Effects of carrier sense constraint As power
control, carrier-sense range can also help to ex-
tract more accurate distance constraints. As
shown in Figure 11, compared with the base case
without carrier sense information, constraints de-
rived using carrier-sense ranges improve localiza-
tion accuracy by a considerable amount. As the
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Figure 10: Effects of power control (100 nodes).

carrier-sense range increases, the negative con-
straints (i.e., d > Recgrrier) become tighter, and
the positive constraints (i.e., d < Regrpier) be-
come weaker. Interestingly, Reoqrrier = 2% R yields
the highest accuracy among all the carrier-sense
ranges considered. This suggests that the positive
and negative constraints extracted using 2 * R are
especially effective under the scenarios we con-
sider.
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Figure 11: Effects of carrier sense constraints (100

nodes).

Effects of map constraint Finally we study
the performance gain from a layout map. In our
evaluation, we obtain a real neighborhood map,
which contains the coordinates of houses. We se-
lect 56 houses from the map over a 1400m x 700m
space. Since there is no house size information, we
generate the regions occupied by the houses as
follow. Each house is a square and has the same
size. A house is centered at its coordinate, and
its size, hsize, is determined based on the mini-
mum distance between any pair of houses, d,i,-
In the localization process, each node derives its
region and probability distribution based on the
constraints imposed by the map (i.e., a node can
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only be inside a house), as well as the location
constraints from other nodes. We use transmis-
sion range of 150 meters, which gives an average
node degree of 6.39.
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Figure 12: Effects of a physical layout.

As shown in Figure 12, a layout map signif-
icantly improves localization accuracy. In ad-
dition, the smaller house size, the higher local-
ization accuracy. This is what we would ex-
pect. Because a node can only reside in a house,
the location constraints imposed by the map is
tighter for smaller houses. Nevertheless, even
when hsize = dip, localization accuracy is still
significantly higher than without the layout map.

Summary In this section, we study the effect
of additional information, including angle mea-
surements at anchor nodes, power control, carrier-
sense range constraints, and a layout map. Our
results demonstrate that the additional informa-
tion is effective in significantly improving local-
ization accuracy.

7.3 Robustness

In this section, we evaluate the robustness of our
extended localization algorithms. First we con-
sider the case where the transmission range in-
More specifically, each
node’s true communication range (R) is R
Resi+ Rerror, where Repror 1s @ positive or negative
range estimation error, and Ry is the communi-
cation range that we have estimated. Re,,or arises
from the difference in transceivers’ properties and

formation is inaccurate.

environmental effects. While one may try to re-
duce Repror by individually calibrating each node
(e.g., obtaining conservative minimum and maxi-
mum communication ranges), such errors cannot
be completely eliminated due to changing envi-

ronmental effects. Also it is costly to calibrate



each wireless nodes. As shown in Figure 13,
the localization algorithm maintains high accu-
racy when the communication ranges contain up
to 20% x R errors. The accuracy is lower when
Reyror increases up to 40% x R, but still all nodes
can be localized, with around 60% nodes achiev-
ing within R/2 = 6.25 position error.
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Figure 13: Effects of inaccurate communication
range (N =50, R =12.5, A = 10%, PL = 1).

Next we consider errors arising from malicious
nodes. In our evaluation, we randomly select a
few nodes as malicious nodes. Such a node pre-
tends to be at a randomly generated location. It
calculates a region of a circle centered at the false
location with radius R, and then transmits this
region as a false constraint to its neighbors. Fig-
ure 14 shows the effects of malicious nodes. There
are two sets of curves, corresponding to the re-
sults of position errors within R/2 and within R.
“Robust Grid-2” curves represent the results from
using fixed 2x2 rectangular cells with the addi-
tional robustness feature. “Grid-2” curves repre-
sent the results from 2x2 rectangular cells without
dealing with robustness. As we can see, intro-
ducing such malicious nodes reduces localization
accuracy. The accuracy reduction is caused by
those false constraints that potentially result in
inconsistency. Even when the fraction of mali-
cious nodes is only 10%, the percentage of nodes
with position errors < R/2 = 6.25 drops as much
as 30 percentiles under both Sextant and Grid-
2. In comparison, with the additional feature to
deal with robustness, the accuracy reduction un-
der the “Robust Grid-2” is small especially when
the fraction of bad nodes is within 10% (only 10%
reduction). Moreover, even when 30% nodes are
malicious, majority of nodes can still be local-
ized within R error under “Robust Grid-2”. This
demonstrates the effectiveness of our approach to
improve robustness.
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50,

8 Conclusion

In this paper, we present several probabilistic
region-based localization schemes, including us-
ing static grids, dynamic meshes, and segments of
grids. These schemes achieve high accuracy by de-
riving probability distribution for nodes’ location
and exploiting new ways to obtain and leverage
We further extend our
approach to handle measurement errors and ma-
licious nodes. Our evaluation shows that our en-
hanced algorithm is robust against measurement

additional information.

errors and measurement reports from malicious
nodes. For example, it maintains high accuracy
even when there are 20% * R range errors or 10%
malicious nodes.
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