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tober 13, 2005Abstra
tDetermining the physi
al lo
ation of wirelessnodes is important to a wide variety of appli-
ations. In this paper, we propose a series ofprobabilisti
 region-based lo
alization algorithms,in
luding using stati
 grids, segments of grids,and dynami
 meshes. These algorithms providea wide range of trade-o� between a

ura
y and
ost, making them suitable for di�erent types ofnetworks, su
h as sensor networks and mesh net-works. Furthermore, we propose several te
h-niques to extra
t and leverage additional infor-mation on lo
ation 
onstraints, whi
h is shownto signi�
antly improve the lo
alization a

ura
yand 
an be applied to other lo
alization s
hemes.Finally we develop te
hniques to enhan
e robust-ness of lo
alization, and show that the enhan
eds
heme 
an a
hieve high a

ura
y even in thepresen
e of signi�
ant measurement errors.1 Introdu
tionDetermining the physi
al lo
ation of wirelessnodes is important to a wide variety of appli
a-tions, ranging from geographi
 routing [13, 22℄ to
ontext-aware appli
ations [15, 16℄, from habitatmonitoring [5℄ to environment surveillan
e [3, 28℄.A global positioning system (GPS) [1℄ 
an beused to obtain lo
ation information. But it doesnot work indoors, and it is also 
ostly to equipevery wireless node with GPS. The limitation ofGPS has motivated resear
hers to develop algo-rithms to infer lo
ation using 
heap hardware byleveraging network 
onne
tivity, signal strength,and angle-of-arrival information [29, 4, 19, 17, 11,27, 26, 12℄. Despite extensive resear
h in the area�Resear
h sponsored in part by National S
ien
e Foun-dation grants ANI-0319168 and CNS-0434515.

of lo
alization, the following three topi
s in lo
al-ization resear
h require further study, whi
h is thesubje
t of this paper.First, developing a

urate lo
alization algo-rithms based upon only 
onne
tivity informationis an a
tive resear
h topi
. A major fa
tor thatdetermines the e�e
tiveness of the algorithms ishow the estimated lo
ations are represented. Inmany previous studies, the lo
ation of a node isestimated as a single point. As shown in [8℄, thereare often many 
oordinate assignments that sat-isfy the lo
ation 
onstraints derived from an un-derlying network. Therefore assigning the lo
a-tion of a wireless node to a single point may re-sult in signi�
ant error. For example, as des
ribedin [10℄, when a node is 
onstrained to be lo
atedat four 
orners of a region, a single point esti-mation may pla
e the node at the 
enter, whi
his misleading. In addition, a single point repre-sentation is vulnerable to measurement errors {a small perturbation in measurement data mayresult in a large di�eren
e in the estimated lo
a-tion [18℄. A promising approa
h, taken by [9, 10℄,is to represent the estimated lo
ation as a regionthat 
onsists of all points satisfying the lo
ation
onstraints. Su
h a region-based representationhas the potential to yield higher a

ura
y.Motivated by [9, 10℄, we also use a region torepresent a node's estimated lo
ation. To a
hieveeven higher a

ura
y, we propose a probabilis-ti
 lo
alization approa
h. In this approa
h, ea
hnode derives a probability distribution over a setof 
ells that it 
an possibly reside in. Every 
ellis asso
iated with a probability about the like-lihood that it 
ontains the true position of thenode. Furthermore, we propose two te
hniquesto redu
e 
omputation 
ost. The �rst te
hnique
ombines 
ells into segments, whi
h signi�
antlyredu
es 
omputation 
ost with a moderate in-1




rease in lo
alization error. The se
ond te
hniqueis 
alled probabilisti
 dynami
 mesh-based lo
al-ization (PDM). It uses a mesh generator to par-tition a region into a mesh, and represents theestimated lo
ation of a wireless node as a set ofmesh 
ells. It iteratively re�nes the estimated lo-
ation using lo
ation 
onstraints extra
ted fromthe underlying network. It a
hieves high a

u-ra
y by deriving the probability distribution of anode's position over the region. It a
hieves rea-sonable 
ost by adaptively 
hanging the mesh 
ellsize using DistMesh [6℄, whi
h is an eÆ
ient wayto generate an unstru
tured triangular and tetra-hedral mesh to 
over a region.Se
ond, lo
alization a

ura
y relies heavily onthe amount of available information about lo
a-tion 
onstraints. For example, as shown in [7℄,there is a fundamental limit in lo
alization a
-
ura
y using 
ommodity 802.11 hardware. Tofurther improve a

ura
y, additional informationon lo
ation 
onstraints is ne
essary. In this pa-per, we propose the following ways to obtain andleverage additional information: (i) using network
onne
tivity under di�erent transmission powerlevels, (ii) using knowledge of whether two nodes
an sense ea
h other's 
arrier, whi
h 
an be mea-sured empiri
ally as shown in [2℄, (iii) using layoutmaps, and (iv) using more powerful an
hor nodes(e.g., the an
hor nodes 
an not only extra
t dis-tan
e 
onstraints for its neighbors, but also ob-tain the approximate angles). We also evaluatethe bene�t of ea
h type of su
h additional infor-mation.Third, the robustness issue in lo
alization hasre
eived little attention, even though robustness isessential to the su

ess of any lo
alization s
hemesin
e we 
annot expe
t that measurements are al-ways a

urate. Erroneous measurement reportsmay arise from measurement errors, loss of mea-surement data, and hardware/software problems.Our probabilisti
 region-based lo
alization pro-vides a natural me
hanism to handle measure-ment errors { the probability 
omputation 
antake into a

ount of the extent to whi
h the lo
a-tion 
onstraints are satis�ed. In this way, a mesh
ell that is in
onsistent with most lo
ation 
on-straints is assigned a low probability and prunedout, whereas a mesh 
ell satisfying most lo
a-tion 
onstraints (but not ne
essarily all the 
on-straints) will be retained.In summary, while lo
alization has been an ex-tensively studied subje
t, our approa
h has the

following three novel 
ontributions. First, we de-velop probabilisti
 region-based lo
alization al-gorithms, in
luding using stati
 grids, dynami
meshes, and segments of grids. These algorithmsprovide a wide range of trade-o� between a

u-ra
y and 
ost. For example, the segments-basedapproa
h yields low 
ost and high a

ura
y, and iswell suited for networks formed by less powerfulnodes, su
h as sensor networks. In 
omparison,the PDM a
hieves a higher a

ura
y at a higher
ost, making it suitable for networks formed bymore powerful nodes, su
h as mesh networks. Se
-ond, we propose several te
hniques to extra
t andleverage additional information on lo
ation 
on-straints. The additional information 
an be ap-plied to both our and others' lo
alization s
hemes.Our results show that the additional informa-tion 
an signi�
antly improve lo
alization a

u-ra
y. Third, we develop te
hniques to enhan
erobustness of lo
alization, and show that the en-han
ed algorithm 
an tolerate signi�
ant errorsfrom measurement data.The rest of the paper is organized as follow. InSe
tion 2, we overview the related work. In Se
-tion 3 we propose the probabilisti
 region-basedlo
alization algorithms. In Se
tion 4, we presentte
hniques to obtain and leverage additional in-formation. In Se
tion 5, we develop s
hemes toenhan
e the robustness in lo
alization. We de-s
ribe our evaluation methodology in Se
tion 6and results in Se
tion 7. Finally we 
on
lude inSe
tion 8.2 Related WorkLo
alization has been extensively studied due toits great importan
e. We broadly 
lassify pre-vious work into the following three areas: (i) lo-
alization s
hemes in single-hop wireless networks(e.g., WLAN), (ii) lo
alization s
hemes in multi-hop wireless networks, and (iii) analysis of thefundamental limitations of lo
alization s
hemes.Lo
alization in a single hop wireless net-work: In the area of lo
alization for single-hopwireless networks, a number of interesting ap-proa
hes have been proposed. For example, A
-tive badge [29℄ lo
ates users by having them wearinfrared badges that transmit unique identi�ers.RADAR [4℄ relies on signal strength measurementgathered at multiple re
eiver lo
ations to triangu-late users' lo
ations. Cri
ket [21℄ uses the di�er-2



en
e between the arrival time of radio and ultra-sound signals to estimate distan
e. VORBA [19℄determines lo
ation based on angle of arrival mea-surements from 802.11 base stations. In [17℄,Madigan et al. develop a Bayesian hierar
hi
almodel that simultaneously lo
ates a set of wire-less 
lients (as opposed to lo
alizing one user ata time). Refer to [11℄ for a ni
e survey on thelo
ation systems for single hop wireless networks.Lo
alization in a multihop wireless net-work: Lo
alization in multihop environments iseven more 
hallenging, sin
e nodes are often mul-tiple hops away from an
hor nodes, thereby in-
reasing the un
ertainty in lo
ation.A number of interesting lo
alization algorithmshave been proposed for su
h networks. For ex-ample, the authors in [24℄ develop a distributedlo
alization approa
h that iterates through a two-phase pro
ess: ranging and estimation. Duringthe ranging phase, ea
h node estimates its dis-tan
e to its neighbors, whereas during the esti-mation phase, nodes use the ranging informationand their neighbors whose positions have been de-termined to estimate their own lo
ation. In [25℄,the authors enhan
e the previous approa
h by for-mulating the problem as a global non-linear op-timization problem. This limits error a

umula-tion in [24℄. Shang et al. in [27℄ propose to usemulti-dimensional s
aling (MDS) to determine lo-
ation in a 
entralized fashion. The lo
aliza-tion a

ura
y is limited partly be
ause it 
annothandle violation of triangulation (espe
ially forirregular-shaped networks). Later they developa distributed version of MDS-based approa
h in[26℄. It is shown to out-perform the original 
en-tralized version in irregular-shaped networks byignoring the distan
e information among nodesthat are far-apart. In [18℄, the authors presentalgorithms that use robust quadrilateral for lo
al-ization. Their approa
h �nds sets of four nodesthat are fully 
onne
ted, and lo
alizes the fourthnode based on the positions of the other threenodes. To prevent error a

umulation, the four-node set needs to satisfy robust quadrilateral 
on-ditions. This improves a

ura
y at the 
ost ofleaving some nodes unlo
alized. In [12℄, the au-thors propose a sequential Monte Carlo lo
aliza-tion method to enhan
e the a

ura
y of lo
aliza-tion by exploiting mobility. In parti
ular, the ap-proa
h leverages mobility history to predi
t possi-ble lo
ations based on previous lo
ation samples

and its movement, and uses the new 
onne
tiv-ity information to eliminate in
onsistent lo
ationsamples.Unlike most of the previous approa
hes, whi
hrepresent inferred lo
ations using points, Sex-tant [10℄ develops a novel approa
h that denotesinferred lo
ations as regions represented by Bezier
urves. Su
h a representation is shown to sig-ni�
antly improve a

ura
y. Motivated by theirapproa
h, in this paper we also use region-basedrepresentation. Di�erent from their work, we usea dynami
 mesh to represent a region, and derivethe probability for a node to reside in ea
h mesh
ell. Su
h a representation enables us to a
hievehigh a

ura
y and robustness without signi�
ant
omputation 
ost.
Analysis of limits on lo
alization a

ura
y:In addition to developing novel lo
alization algo-rithms, resear
hers have also analyzed the funda-mental limits on lo
alization algorithms. For ex-ample, the authors in [7℄ 
ompare a series of lo
al-ization algorithms, and �nd that using 
ommod-ity 802.11 te
hnology over a range of algorithms,approa
hes and environments, it is expe
ted tohave a median lo
alization error of 10 feet and97th per
entile error of 30 feet. They 
on
ludethat these limitations are fundamental and un-likely to be signi�
antly improved without funda-mentally more detailed environmental models oradditional lo
alization infrastru
ture. It pointsout that leveraging additional information is ne
-essary in order to improve the a

ura
y. The au-thors in [8℄ seek answers to the following prob-lem: what are the 
onditions for unique networklo
alizability. They show that a network has aunique lo
alization if and only if its 
orrespondinggrounded graph is generally globally rigid. Ap-plying graph-rigidity literature, they develop ap-proa
hes to 
onstru
ting uniquely lo
alizable net-works, and study the 
omputation 
omplexity oflo
alization. The limitation of the suggested ap-proa
h is that in pra
ti
e a graph is given as is,and we do not have the 
exibility to alter thegraph to make it uniquely lo
alizable. In otherwords, a graph needs to be lo
alized even if thereis no unique solution.3



3 Probabilisti
 Dynami
 Mesh-Based Lo
alizationAs mentioned in the previous se
tion, a signi�
antdi�eren
e between various lo
alization approa
hesis how the estimated lo
ation is represented. Toa
hieve high a

ura
y and robustness, we adopt aregion-based representation, where an estimatedlo
ation is represented as a region that 
onsists ofall points satisfying the lo
ation 
onstraints ex-tra
ted from the underlying network. We furtherimprove the existing work [9, 10℄ by deriving aprobability distribution over the region to re
e
tthe likelihood of the true position. Su
h prob-ability distribution, 
ombined with an expli
itlyrepresented region, provides mu
h ri
her lo
ationinformation than a single position, and allows usto a
hieve higher a

ura
y in fa
e of insuÆ
ientinformation and measurement errors.Below we �rst present a probabilisti
 region-based lo
alization approa
h. Then we des
ribetwo te
hniques to improve the eÆ
ien
y of the ap-proa
h. The �rst one 
ombines multiple horizon-tal (or verti
al) 
ells (in an estimated region) intoa single segment, whi
h redu
es 
omputation 
ostat the expense of slightly higher error. The se
-ond te
hnique is based on a dynami
 mesh, wheremesh 
ells are dynami
ally adjusted a

ording tothe size and shape of the region. It 
an a
hieveeÆ
ien
y and a

ura
y.3.1 Probabilisti
 Region-Based Lo
al-izationThe probabilisti
 region-based lo
alization pro-
eeds as follow. First, every node's lo
ation is ini-tialized to be the entire spa
e. Then ea
h node ex-tra
ts lo
ation 
onstraints by measuring the 
on-ne
tivity of the underlying network, and propa-gates these 
onstraints to nodes within a 
ertainhops away. (We use 3 hops in our evaluation.) Ifangle and re
eived signal strength index (RSSI)measurements are available, they 
an be used toextra
t lo
ation 
onstraints and pro
essed in asimilar way. Based on the 
onstraints reportedby other nodes and its own observation, a nodeestimate its new lo
ation by pruning out the sub-regions that are in
onsistent with the 
onstraints.For the sub-regions that are 
onsistent with the
onstraints, a node further 
omputes a probabil-ity distribution over them. The approa
h is runin a distributed way.

Extra
ting Lo
ation Constraints: A node'slo
ation is estimated by extra
ting lo
ation 
on-straints from the underlying network. Examplesof lo
ation 
onstraints in
lude \the distan
e be-tween node i and node j is at most d" (also 
alleddistan
e 
onstraints), and \the angle between lineij and the dire
tion of North is within [�1; �2℄"(also 
alled angle 
onstraints). Su
h lo
ation 
on-straints 
an be obtained by measuring network
onne
tivity and angle-of-arrival. In this se
tion,we only 
onsider distan
e 
onstraints. We will
onsider angle 
onstraints in Se
tion 4.To handle irregular wireless propagation, ea
hwireless node is asso
iated with two separateradii: R and r (R � r), where R denotes the max-imum distan
e the node 
an rea
h, and r denotesthe minimum distan
e the node 
an rea
h [10℄.R 6= r arises when the signal propagation is notthe same in all dire
tions. When node i 
an hearnode j, we obtain a 
onstraint: dij � Rj. Thisis a positive 
onstraint. When node i 
annot hearnode j, we obtain a 
onstraint: dij > rj . This isa negative 
onstraint.Next we introdu
e some more notation. LetLCji denote a lo
ation 
onstraint for node j usingnode i as a referen
e point. Let POS() denote apositive 
onstraint, and NEG() denote a negative
onstraint. Let Si and Sj be the estimated regionof node i and j, respe
tively.If node j 
an hear node i, we obtain a positive
onstraint: dij � R. Then the estimated regionof node j 
an be expressed as:Sj = POS(Si; R) = fpj j9 pi 2 Si; d(pi; pj) � Rg;where d(pi; pj) is the distan
e between two pointspi and pj . This region is a union of dis
s that are
entered at ea
h point inside Si with radius R.Similarly if node j 
annot hear node i, we derivea negative 
onstraint, and the region of node j isestimated to beSj = NEG(Si; r) = fpj j9 pi 2 Si; d(pi; pj) > rg:If there are multiple 
onstraints derived (e.g.,by using multiple referen
e points), the �nal out-put is the interse
tion of the regions from all these
onstraints. Note that while we use 
onne
tivityinformation to extra
t lo
ation 
onstraints, ourapproa
h 
an easily in
orporate other informa-tion, su
h as angle estimation and layout maps,whi
h will be des
ribed in Se
tion 4.4



Computing probability: Next we des
ribehow ea
h node i derives a probability distribu-tion Pi over its region Si. To do so, we partitionthe whole spa
e into (small) 
ells, where ea
h 
ellis a square with a �xed size. A 
ell is the small-est unit for whi
h we 
ompute probability. Let sbe a 
ell. Pi(s) is the probability that node i isin s. Ea
h lo
ation 
onstraint gives a probabilitydistribution over an estimated region. The �nalrelative probability of ea
h 
ell is the produ
t ofthe probabilities derived from all 
onstraints (in-
luding both positive and negative 
onstraints).The absolute probability is further obtained bynormalizing the relative probabilities.Below we show how to derive a probability dis-tribution from one lo
ation 
onstraint. Sin
e theprobability 
omputation using positive and neg-ative 
onne
tivity information is similar, we il-lustrate the idea by 
onsidering only a positive
onne
tivity 
onstraint.First we des
ribe how to 
ompute probabilityPi(s) using an an
hor node, a, whose lo
ation isknown, as a referen
e point. Using network 
on-ne
tivity, we obtain a distan
e 
onstraint from ato i as dia � k �R, where k is the number of hopsbetween a and i. Therefore Si is the dis
 
enteredat a with radius k � R. Sin
e only 
onne
tivityinformation is available, we assume node i's lo-
ation is uniformly distributed inside the 
ir
le.Therefore, for a 
ell g,Pi(g) = (0 if g is outside the 
ir
le,1=
1 otherwise,where 
1 is the number of 
ells inside the 
ir
le.(Note that appli
ation of negative 
onne
tivity in-formation will 
hange the above probability dis-tribution. For example, if a node that is 2 hopaway from an an
hor, the fa
t that it is not a'simmediate neighbor allows us to prune out thearea whi
h is a 
ir
le 
entered at a with radiusR.) To avoid leaving out the true position, a 
ellis 
onsidered \inside" the 
ir
le as long as it over-laps with the 
ir
le. Consequently, Si = S(g)is not exa
tly the region en
losed by the 
ir
le,but the union of all 
ells 
onsidered \inside" the
ir
le. Therefore 1=
1 is an approximation sin
esome 
ells are partially inside the 
ir
le. The a
-
ura
y of su
h approximation depends on the 
ellsize. Smaller 
ells redu
e the approximation errorat the 
ost of in
reasing 
omputation and storage
osts.Next we des
ribe how to 
ompute probability

Pi(s) using a non-an
hor node (whose lo
ation isnot known in advan
e) as a referen
e point. Con-sider a node i's neighbor j. For a 
ell uj � Sj, therelative magnitude of its probability is determinedby the probability of subregion in Si that satis�esd(ui; uj) � R. This results in the following:Pj(uj) = � � Pui�d(ui;uj)�R Pi(ui)Pui�Si Pi(ui) (1)= � � Xui�d(ui;uj)�RPi(ui) (2)where � is a normalization fa
tor so thatPuj Pj(uj) = 1.Figure 1 shows how a node's estimated lo
a-tion 
onverges. After the �rst iteration, the re-gion is approximately a 
ir
le sin
e this node isa neighbor of an an
hor. The probability distri-bution is uniform over all 
ells. After the se
-ond iteration, the estimated region is re�ned, withthe updated probability distribution and smallerarea, by leveraging the 
onstraints from the an-
hors that are 2 hops away. After the third it-eration, the region is redu
ed further (althoughthe amount of redu
tion is less than in the se
onditeration be
ause the 
onstraints from the 3-hopneighbors have less impa
t on the region than 
on-straints from the 2-hop neighbors). As it shows,the 
ell 
ontaining the true position (�lled withred 
olor) and its surrounding 
ells have signi�-
antly higher probabilities than the remaining re-gion.3.2 Enhan
ing EÆ
ien
ySo far we 
onsider using stati
 grids. In this 
ase,the 
omputation 
ost is determined by the num-ber of 
ells. If a node's lo
ation has high un-
ertainty due to la
k of suÆ
ient lo
ation 
on-straints, its estimated region is large, resultingin a large number of 
ells and hen
e high 
om-putation and storage 
osts. In this se
tion, wedes
ribe two te
hniques to improve the eÆ
ien
yof the above lo
alization approa
h. The �rst ap-proa
h redu
es the 
ost by 
ombining horizon-tally (verti
ally) 
ontiguous 
ells into a row (
ol-umn) segment. The se
ond approa
h dynami
allyadapts the 
ell size so that 
oarse-grained 
ells areused when the estimated region is large and �ne-grained 
ells are used when the estimated regionis small.5
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positionSnapshot after 3 iterations.Figure 1: Snapshots of a node's estimated lo
a-tion for the �rst three iterations.Combining 
ells into a segment: One way toredu
e the 
omplexity is to 
ombine horizontally(verti
ally) 
ontiguous 
ells into a row (
olumn)segment. Sin
e 
omputation using row segmentsis similar as using 
olumn segments, in the follow-ing des
ription we fo
us on using row segments.The width of ea
h segment is �xed, but the lengthis variable. A row segment is spe
i�ed by a 3-tuple, (y; x1; x2), where (x1; y) is the left end and(x2; y) is the right end. Ea
h estimated region isrepresented as a set of row segments. We wantto 
al
ulate the probability of ea
h row segment
ontaining the true position. Now the 
omplexityis determined by the number of row segments.Suppose we obtain node i's estimated regionand the probability distribution over the region.We 
al
ulate its neighbor j's estimated regionand probability distribution as follow. The lo-
ation 
onstraint LCji is dji � R. Hen
e, Sj =POS(Si; R). Let ui denote a row segment of i,

and uj denote a row segment of j. The general for-mula to derive probability is similar to (1). Sin
ea row segment may be signi�
antly larger than a
ell, treating partial overlap as 
omplete overlapmay result in high error. Therefore we further 
al-
ulate the fra
tion of a row segment that satis�eslo
ation 
onstraints.
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Figure 2: Example of Using SegmentsFigure 2 shows an example. uj is a row segmentin Sj. POS(uj ; R) is the region expanded fromuj by R. ui is a row segment in Si. ui is par-tially in POS(uj ; R). When 
al
ulating Pj(uj),we need to 
al
ulate the portion of ui that is in-side POS(uj ; R).Let vi = ui \ POS(uj ; R). Let A(S) denoteregion S's size. Assuming uniform distributionwithin a segment, we have,Pj(uj) = 
 � Xui�Si A(vi)A(ui) � Pi(ui); (3)where 
 is a normalization fa
tor.Dynami
 Mesh: Combining 
onse
utive 
ellsin one dimension 
an signi�
antly redu
e 
ompu-tation and storage 
osts. On the other hand, itsa

ura
y depends on how a

urately a uniformdistribution 
aptures the a
tual probability dis-tribution over the set of 
ombined 
ells. Whenthe a
tual distribution signi�
antly deviates froma uniform distribution, lo
alization a

ura
y willde
rease. To a
hieve both high a

ura
y and low
ost, we propose an alternative approa
h that dy-nami
ally adjusts the 
ell size as needed.At a high level, we use 
oarse-grained 
ellswhen the estimated region is large, and use �ne-grained 
ells when the estimated region is small.To a
hieve this goal, we leverage mesh generationwork developed in the area of 
omputer graph-i
s. We use DistMesh [6, 20℄ be
ause it 
an ef-�
iently generate high-quality meshes. DistMeshuses a signed distan
e fun
tion d(x; y) to spe
ifya region. The absolute value of d(x; y) is the min-imum distan
e from (x; y) to the boundary of the6



region, where a negative distan
e means it is in-side the region and a positive distan
e means itis outside the region. It generates meshes usingDelaunay triangulation, and optimizes node lo
a-tions using a for
e-based smoothing pro
edure asdes
ribed in [6, 20℄. It also provides a parameterto 
ontrol the sizes of triangles.We apply DistMesh to lo
alize wireless nodesas follow. Ea
h node represents its estimated re-gion using a set of triangular 
ells. A triangular
ell is the smallest unit for whi
h we 
ompute aprobability. We 
ontrol the mesh stru
ture so thatea
h triangle has similar sizes in both dimensions,and the sizes of triangles are adaptive a

ordingto the size of the region. It is straightforward towrite distan
e fun
tions for distan
e 
onstraintsand angle 
onstraints. Ea
h node 
al
ulates its re-gion based on the measured distan
e 
onstraints.Given a 
ombined distan
e fun
tion from all lo-
ation 
onstraints, DistMesh 
an generate a setof triangular meshes to represent the region thatsatis�es the lo
ation 
onstraints.Figure 3 illustrates two examples of triangularmesh generated by Distmesh. Figure 3(a) showsthe mesh 
ells for a 
ir
le. Figure 3(b) shows themesh 
ell that represents a node's estimated re-gion, resulting from subtra
ting three 
ir
les fromone 
ir
le. The red point is the true position ofthis node.
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(b) Mesh 
ells for anode's lo
ation.Figure 3: Triangular mesh generated byDistmesh.After obtaining its estimated region, a node 
anderive the probability distribution over the trian-gles (inside the region) in a similar way as in stati
grids. Suppose we know the region and probabil-ity distribution over the triangles of a given nodei. A neighbor j of node i has lo
ation 
onstraintdji � R, and 
al
ulates its region Sj as follow. Letti denote a triangle in Si, and tj denote a trianglein Sj . We derive the probability asso
iated withtj by �rst 
omputing the fra
tion of ti satisfyingthe lo
ation 
onstraint, and then weighting thefra
tion by the probability for node i to appear in

ti.Figure 4 shows an example of deriving probabil-ity distribution. tj is a triangle in Sj. POS(tj ; R)is the region expanded from tj by R. ti is a trian-gle in Si. ti is partially in POS(tj; R). When 
al-
ulating Pj(tj), we need to determine what fra
-tion of ti is inside POS(tj ; R).
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Figure 4: Example of mesh model.Let t0i = ti \ POS(tj; R). Assuming uniformdistribution within a triangle, we havePj(tj) = 
 � Xti�Si A(t0i)A(ti) � Pi(ti); (4)where 
 is a normalization fa
tor.4 Extra
t and Leverage Addi-tional InformationThe a

ura
y of a lo
alization system highly de-pends on the amount of information available. Wepropose several ways to obtain additional infor-mation. These approa
hes 
an be used separatelyor jointly, and 
an be applied to di�erent lo
aliza-tion algorithms. Note that while this is not the�rst paper that uses additional information be-sides network 
onne
tivity to infer lo
ation, sev-eral of the approa
hes presented here are novel.In addition, we evaluate and 
ompare the e�e
tsof the obtained information.Using power 
ontrol: Power 
ontrol enableswireless nodes to obtain additional information inthe following ways. Suppose ea
h power level pkhas 
orresponding maximum and minimum trans-mission range R(pk) and r(pk). By adjusting thetransmission power, if a node i �nds out that it
an 
ommuni
ate with another node j at powerlevel pk, but 
annot 
ommuni
ate at power levelpk�1, the distan
e between i and j should be be-tween R(pk) and r(pk�1). This additional infor-mation makes range estimation more a

urate,7



and 
an be easily in
orporated into any lo
al-ization algorithm. As we would expe
t, a largernumber of power levels provides more informa-tion and improves lo
alization a

ura
y. Power
ontrol is an interesting and pra
ti
al way for ob-taining additional information sin
e power 
ontrolis readily available in 
ommer
ial wireless 
ards.In addition, it only requires nodes to obtain net-work 
onne
tivity information, and does not re-quire signal strength measurements or additionalhardware (e.g., ultrasound).Using 
arrier-sense range: Many existinglo
alization algorithms rely on network 
onne
tiv-ity information for lo
ation estimation. This givesus information as to whether a node is withinor outside the 
ommuni
ation range of anothernode. However we do not have further informa-tion about the nodes that are outside the 
ommu-ni
ation range (other than that they are outsidethe 
ommuni
ation range).We make an interesting observation: in addi-tion to 
ommuni
ation range, 
arrier-sense range
an also be used as a referen
e for distan
e es-timation. For example, if two nodes 
annotsense ea
h other's 
arrier, they are outside ea
hother's 
arrier-sense range. This type of infor-mation is not available if we only use network
onne
tivity, sin
e the 
arrier-sense range is typ-i
ally larger than the 
ommuni
ation range. LetR and R
arrier denote 
ommuni
ation range and
arrier-sense range, respe
tively. If two nodes areoutside 
ommuni
ation range but 
an sense ea
hother's 
arrier, their distan
e should be withinthe range [R, R
arrier℄; if two nodes 
annot senseea
h other's 
arrier, their distan
e is larger thanR
arrier.To determine whether two nodes 
an sense ea
hother's 
arrier, we 
an measure whether thesenodes 
an simultaneously broad
ast [2℄. Morespe
i�
ally, we measure the broad
ast rate fromthe two senders when they are a
tive simultane-ously, and denote it as Ttogether. We also measurethe broad
ast rate when the two senders are a
tiveseparately, and denote it as Tseparate. If TtogetherTseparateis 
lose to 1, it means that the two nodes do notsense ea
h other's 
arrier; otherwise they do.As with power 
ontrol, we extra
t more pre-
ise distan
e information using the 
arrier-senserange, and it 
an be applied to di�erent lo
aliza-tion s
hemes.Using physi
al layout: In some appli
ations,we may have a rough idea of physi
al layout of

wireless nodes. For example, in residential meshnetworks [23℄, we know that wireless nodes aredeployed at di�erent houses, and we also have aneighborhood layout map. The map provides ad-ditional information for us to narrow down the lo-
ation. Sin
e a node 
an only be lo
ated at one ofthe houses, its �nal estimated lo
ation should bethe interse
tion of its estimated region (without
onsidering the physi
al layout) and the regionso

upied by the houses.Using more powerful an
hor nodes: As theprevious work shows, angle information is valu-able for lo
ation estimation. However, obtainingangle information often requires more expensivehardware (e.g., dire
tional antennas or additionaltransmitters like ultrasound). In order to a
hieveboth high a

ura
y and low 
ost, a promising ap-proa
h is to use a 
ombination of more power-ful nodes and less powerful nodes. For example,only the an
hor nodes are equipped with powerfuldevi
es for more detailed measurement, whereasthe remaining nodes use 
heap devi
es as usual.An interesting question is how mu
h bene�t su
hpowerful an
hor nodes o�er. In this paper, westudy the following type of powerful an
hor nodes:an
hor nodes that are equipped with dire
tionalantennas for measuring angle information towardsits immediate neighbors. We evaluate lo
alizationa

ura
y as we vary the fra
tion of an
hor nodes.5 Enhan
ing RobustnessA node estimates its lo
ation by �nding regionsthat satisfy a set of lo
ation 
onstraints. Lo-
ation 
onstraints are usually obtained by mea-suring distan
es or angles between nodes. How-ever, su
h measurements 
an be erroneous, andin some 
ases even lead to in
onsistent lo
ation
onstraints. A set of lo
ation 
onstraints are in-
onsistent if there is no point that 
an satisfy allthese 
onstraints.We propose a te
hnique on top of our proba-bilisti
 region-based approa
h to a
hieve robust-ness against in
onsistent lo
ation 
onstraints. Weleverage the fa
t that majority of lo
ation mea-surements are 
onsistent; and only a few 
on-straints may 
ontain signi�
ant errors and resultin in
onsisten
y. Therefore a mesh 
ell belongsto a node's estimated region as long as it satis�esmost of the 
onstraints. We use 80% as a thresh-old.Our robust lo
alization pro
eeds in the follow-8



ing three steps. First, as before, every node prop-agates lo
ation 
onstraints to all nodes within 3hops away (i.e. TTL=3). Se
ond, ea
h node i 
al-
ulates its own region based on the lo
ation 
on-straints from other nodes. Lo
ation 
onstraintsfrom a node j determine a region Sij for i. Un-like in Se
tion 3, i does not 
al
ulate its regionas Si = \jSij . Instead, Si is 
al
ulated as theset of mesh 
ells ui su
h that ui satis�es 80% ofthe 
onstraints. Finally, ea
h node 
al
ulates theprobability distribution over all mesh 
ells withinits estimated region. This step is similar to whatwe des
ribe in Se
tion 3. As part of our futurework, we plan to 
hoose the thresold adaptively.6 Simulation SetupWe evaluate lo
alization s
hemes using a method-ology similar to [27℄ and [26℄. We uniformly pla
ea set of nodes over a spa
e. We 
ompare di�er-ent lo
alization s
hemes by varying the number ofnodes (N), the maximum transmission range (R),and the fra
tion of an
hor nodes A.We quantify the lo
alization error using thesame method as in [10℄. For both Sextant andour approa
h, we use Monte Carlo sampling tosample 1000 points in a node's estimated region,and pi
k the one that minimizes the average errorto other sampled points inside the region. The lo-
alization error is then 
al
ulated as the distan
efrom this point to the node's true position.However, there is a di�eren
e in 
hoosing sam-ple points between Sextant and our approa
h.Sextant uniformly samples points inside a region,whereas in our approa
h the number of samplepoints in a 
ell is proportional to its probabil-ity. As we will show, the probabilisti
-based ap-proa
h 
an signi�
antly improve the lo
alizationa

ura
y.Next we study how additional information af-fe
ts lo
alization a

ura
y. To examine the ef-fe
t of angle information, we 
onsider three levelsof angle measurement errors: large errors within[�20; 20℄ degrees, medium errors within [�10; 10℄degrees and small errors within [�5; 5℄ degrees.These values are 
onsistent with 
ommer
ial di-re
tional antennas. To study the e�e
t of power
ontrol, we vary the number of power levels PLthat a node 
an use for its transmission. Ta-ble 1 lists the transmission power at di�erent lev-els, where P is the maximum transmission power.Note that PL = 5 
orresponds to or approximates

several 
ommer
ial wireless 
ards (e.g., NetgearWAG511 and Cis
o Aironet 350 series). Finally,we examine the e�e
t of 
arrier-sense range byvarying R
arrier = 1:5R; 2R; 2:5R; 3R. Table 2summarizes the notation we use.PL Fra
tion of maximum transmission power P1 100%2 25%,100%3 6.25%,25%,100%5 6.25%,12.5%,25%,50%,100%10 6.25%,10%,12.5%,20%,25%,35%,50%,65%,80%,100%Table 1: Transmission power for di�erent powerlevels N the number of nodesR transmission rangeA the fra
tion of an
hor nodesPL the number of power levelsR
arrier 
arrier-sense rangeTable 2: Notation used in performan
e evalua-tion.7 Performan
e ResultsIn this se
tion, we �rst 
ompare di�erent lo
al-ization s
hemes. Then we examine the impa
t ofadditional information.7.1 Comparison between di�erent lo-
alization s
hemesE�e
ts of the number of nodes Figure 5shows the 
umulative distribution of position er-rors for N = 50, R = 12:5, A = 10% and PL = 1.
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SextantFigure 5: Probability distribution improves lo
al-ization a

ura
y (50 nodes)We make the following observations. First,PDM signi�
antly out-performs Sextant. For ex-9



ample, the per
entage of nodes a
hieving � 30%�R = 3:75 errors in dynami
 mesh is 60% 
omparedto 36% in Sextant. This is be
ause in Sextant dif-ferent points inside a region are treated equally,whereas PDM leverages the derived probabilitydistribution over the region. Se
ond, as we wouldexpe
t, the stati
 grid approa
h with 0.5x0.5 gridsyields lower error than with 2x2 grids. The dy-nami
 mesh 
an a
hieve performan
e 
lose to thestati
 grid approa
h with small 
ell size at thelower end of the errors. In 
omparison, 
ombin-ing 
ells into segments with width 0.5, denotedas \Segment (width=0.5)" in the �gure, a
hieveslow 
omputation 
ost at the expense of slightlylarger error. But it still out-performs Sextant bya signi�
ant amount.Sextant Grid-2 Grid-0.5 PDM Segment1.98 1.225 56.67 6.82 3.66Table 3: Average running time in se
onds us-ing a 1200 MHz UltraSPARC-III+ pro
essor with16GB memory.Table 3 summarizes average running time of dif-ferent algorithms. As we 
an see, the runningtime of stati
 grids de
reases with in
reasing gridsize. Both 2x2 grids and segments of width 0.5give 
omparable running time to Sextant and bet-ter a

ura
y. PDM yields higher running time toa
hieve higher a

ura
y. Note that Sextant is im-plemented in JAVA and all of our approa
hes areimplemented in MATLAB. We expe
t the run-ning time of our approa
hes 
an be signi�
antlyimproved by 
onverting the MATLAB 
ode intoC, whi
h we plan to do in future.For the rest of evaluation, we 
hoose PDM as arepresentative of our probabilisti
 approa
hes.
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SextantFigure 6: Probability distribution improves lo
al-ization a

ura
y (100 nodes)Figure 6 shows the performan
e for networks

with 100 nodes. As we 
an see, PDM a
hieveshigher a

ura
y than Sextant. For example, theper
entage of nodes a
hieving � 30% � R = 3:75errors is 40% in Sextant, and is 67% in PDM. Onaverage, Sextant takes 2.14 se
onds per node to
ompute, and PDM takes 10.23 se
onds per nodeto 
ompute.E�e
ts of transmission range Transmissionrange R determines network density. More neigh-bors mean more lo
ation 
onstraints, whi
h usu-ally result in higher lo
alization a

ura
y. Wevary R to obtain di�erent network densities shownin Table 4. As des
ribed in [14℄, 6 is a \magi
"average node degree for a wireless network to be
onne
ted. So we 
hoose the shortest range to be10, whi
h gives an average node degree of 6.N R = 10 R = 12:5 R = 1550 6.0612 8.9592 11.28100 6.0562 8.58 11.28Table 4: Average node degrees under di�erenttransmission ranges.
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Sextant: R=10Figure 7: E�e
ts of Transmission Range (100nodes)Figure 7 shows the results for di�erent trans-mission ranges, while �xingA = 10% and PL = 1.The a

ura
y results of 50-node (not shown) issimilar. Again, PDM 
onsistently outperformsSextant. As we would expe
t, the a

ura
y ishigher when the transmission range is larger,whi
h results in higher network density. Sin
ethe transmission range is determined by trans-mission power, there is a tradeo� between energy-eÆ
ien
y and lo
alization a

ura
y.E�e
ts of the fra
tion of an
hor nodesNext, we study how the fra
tion of an
hor nodes,10



A, a�e
ts lo
alization a

ura
y. In our evalua-tion, R = 12:5, and PL = 1. Figure 8 shows thelo
alization a

ura
y of 100-node networks as wevary the an
hor fra
tion from 5% to 20%. (Theresults of 50-node networks are similar and omit-ted in the interest of brevity.) As before, PDMyields lower error than Sextant. In addition, we�nd that the an
hor fra
tion signi�
antly a�e
tslo
alization a

ura
y. The more an
hor nodes,the higher lo
alization a

ura
y. This is 
onsis-tent with our expe
tion, be
ause 1-hop neighborsof an
hor nodes 
an be lo
alized more a

uratelythan nodes multiple hops away from an
hor nodesdue to smaller un
ertainty. As shown in Figure 8,the in
rease in lo
alization a

ura
y is signi�
antas the an
hor fra
tion in
reases from 5% to 10%.A further in
rease in the an
hor fra
tion leads tomore moderate in
rease in the a

ura
y. There-fore we use 10% as the an
hor fra
tion for theremaining evaluation.
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ts of an
hor nodes fra
tion (100nodes)Summary In this se
tion, we 
ompare di�erentlo
alization algorithms. Our results show thatprobabilisti
 region-based lo
alization s
hemesusing stati
 grids, dynami
 meshes, and segmentsof grids, a
hieve higher lo
alization a

ura
y thanSextant. In addition, PDM provides a reasonablebalan
e between a

ura
y and 
omputation 
ost.7.2 Using additional informationIn this se
tion, we study the e�e
ts of additionalinformation.E�e
ts of angle information First, we exam-ine how an
hor nodes that 
an measure angle in-formation help with lo
alization. We use three

levels of angle measurement errors: [�20; 20℄ de-grees, [�10; 10℄ degrees and [�5; 5℄ degrees. Anestimated angle is then the true angle plus noiseuniformly distributed within the error intervals.Figures 9 summarizes the results.
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No Angle InfoFigure 9: E�e
ts of angle information (100nodes).We make the following observations. First, thelo
alization error with angle information is signi�-
antly lower than without angle information. Se
-ond, even when the angle measurement 
ontainserrors of [�20; 20℄ degrees, lo
alization a

ura
yis still signi�
antly better than without angle in-formation. Compared with [�5; 5℄ degrees of an-gle measurement error, its a

ura
y is lower at thelow end of position errors, and 
omparable for theremaining position errors.E�e
ts of power 
ontrol When only 
onne
-tivity information is available, the distan
e mea-surement is binary{either d � R or d > R. Byadjusting the transmission power level, a node
an extra
t more a

urate distan
e 
onstraintsin the above form. As shown in Figure 10, thea

ura
y improves with an in
reasing number ofpower levels. For example, 20% nodes a
hieveposition error within 1.25 when 1 power level isused. In 
omparison, 32%, 35%, 50%, and 65%nodes a
hieve similar errors when the number ofpower levels is 2, 3, 5, and 10, respe
tively. Thisdemonstrates that power 
ontrol is e�e
tive in im-proving lo
alization a

ura
y.E�e
ts of 
arrier sense 
onstraint As power
ontrol, 
arrier-sense range 
an also help to ex-tra
t more a

urate distan
e 
onstraints. Asshown in Figure 11, 
ompared with the base 
asewithout 
arrier sense information, 
onstraints de-rived using 
arrier-sense ranges improve lo
aliza-tion a

ura
y by a 
onsiderable amount. As the11
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PL = 1Figure 10: E�e
ts of power 
ontrol (100 nodes).
arrier-sense range in
reases, the negative 
on-straints (i.e., d > R
arrier) be
ome tighter, andthe positive 
onstraints (i.e., d < R
arrier) be-
ome weaker. Interestingly, R
arrier = 2�R yieldsthe highest a

ura
y among all the 
arrier-senseranges 
onsidered. This suggests that the positiveand negative 
onstraints extra
ted using 2�R areespe
ially e�e
tive under the s
enarios we 
on-sider.
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No CS InfoFigure 11: E�e
ts of 
arrier sense 
onstraints (100nodes).E�e
ts of map 
onstraint Finally we studythe performan
e gain from a layout map. In ourevaluation, we obtain a real neighborhood map,whi
h 
ontains the 
oordinates of houses. We se-le
t 56 houses from the map over a 1400m x 700mspa
e. Sin
e there is no house size information, wegenerate the regions o

upied by the houses asfollow. Ea
h house is a square and has the samesize. A house is 
entered at its 
oordinate, andits size, hsize, is determined based on the mini-mum distan
e between any pair of houses, dmin.In the lo
alization pro
ess, ea
h node derives itsregion and probability distribution based on the
onstraints imposed by the map (i.e., a node 
an

only be inside a house), as well as the lo
ation
onstraints from other nodes. We use transmis-sion range of 150 meters, whi
h gives an averagenode degree of 6.39.
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No Map InfoFigure 12: E�e
ts of a physi
al layout.As shown in Figure 12, a layout map signif-i
antly improves lo
alization a

ura
y. In ad-dition, the smaller house size, the higher lo
al-ization a

ura
y. This is what we would ex-pe
t. Be
ause a node 
an only reside in a house,the lo
ation 
onstraints imposed by the map istighter for smaller houses. Nevertheless, evenwhen hsize = dmin, lo
alization a

ura
y is stillsigni�
antly higher than without the layout map.Summary In this se
tion, we study the e�e
tof additional information, in
luding angle mea-surements at an
hor nodes, power 
ontrol, 
arrier-sense range 
onstraints, and a layout map. Ourresults demonstrate that the additional informa-tion is e�e
tive in signi�
antly improving lo
al-ization a

ura
y.7.3 RobustnessIn this se
tion, we evaluate the robustness of ourextended lo
alization algorithms. First we 
on-sider the 
ase where the transmission range in-formation is ina

urate. More spe
i�
ally, ea
hnode's true 
ommuni
ation range (R) is R =Rest+Rerror, whereRerror is a positive or negativerange estimation error, and Rest is the 
ommuni-
ation range that we have estimated. Rerror arisesfrom the di�eren
e in trans
eivers' properties andenvironmental e�e
ts. While one may try to re-du
e Rerror by individually 
alibrating ea
h node(e.g., obtaining 
onservative minimum and maxi-mum 
ommuni
ation ranges), su
h errors 
annotbe 
ompletely eliminated due to 
hanging envi-ronmental e�e
ts. Also it is 
ostly to 
alibrate12



ea
h wireless nodes. As shown in Figure 13,the lo
alization algorithm maintains high a

u-ra
y when the 
ommuni
ation ranges 
ontain upto 20% � R errors. The a

ura
y is lower whenRerror in
reases up to 40%�R, but still all nodes
an be lo
alized, with around 60% nodes a
hiev-ing within R=2 = 6:25 position error.
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ts of ina

urate 
ommuni
ationrange (N = 50, R = 12:5, A = 10%, PL = 1).Next we 
onsider errors arising from mali
iousnodes. In our evaluation, we randomly sele
t afew nodes as mali
ious nodes. Su
h a node pre-tends to be at a randomly generated lo
ation. It
al
ulates a region of a 
ir
le 
entered at the falselo
ation with radius R, and then transmits thisregion as a false 
onstraint to its neighbors. Fig-ure 14 shows the e�e
ts of mali
ious nodes. Thereare two sets of 
urves, 
orresponding to the re-sults of position errors within R=2 and within R.\Robust Grid-2" 
urves represent the results fromusing �xed 2x2 re
tangular 
ells with the addi-tional robustness feature. \Grid-2" 
urves repre-sent the results from 2x2 re
tangular 
ells withoutdealing with robustness. As we 
an see, intro-du
ing su
h mali
ious nodes redu
es lo
alizationa

ura
y. The a

ura
y redu
tion is 
aused bythose false 
onstraints that potentially result inin
onsisten
y. Even when the fra
tion of mali-
ious nodes is only 10%, the per
entage of nodeswith position errors � R=2 = 6:25 drops as mu
has 30 per
entiles under both Sextant and Grid-2. In 
omparison, with the additional feature todeal with robustness, the a

ura
y redu
tion un-der the \Robust Grid-2" is small espe
ially whenthe fra
tion of bad nodes is within 10% (only 10%redu
tion). Moreover, even when 30% nodes aremali
ious, majority of nodes 
an still be lo
al-ized within R error under \Robust Grid-2". Thisdemonstrates the e�e
tiveness of our approa
h toimprove robustness.
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Figure 14: E�e
ts of mali
ious nodes (N = 50,R = 12:5, A = 10%, PL = 1).8 Con
lusionIn this paper, we present several probabilisti
region-based lo
alization s
hemes, in
luding us-ing stati
 grids, dynami
 meshes, and segments ofgrids. These s
hemes a
hieve high a

ura
y by de-riving probability distribution for nodes' lo
ationand exploiting new ways to obtain and leverageadditional information. We further extend ourapproa
h to handle measurement errors and ma-li
ious nodes. Our evaluation shows that our en-han
ed algorithm is robust against measurementerrors and measurement reports from mali
iousnodes. For example, it maintains high a

ura
yeven when there are 20% �R range errors or 10%mali
ious nodes.Referen
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