
A Static Analysis for Automatic Individual Object
Reclamation in Java

Samuel Z. Guyer Kathryn S. McKinley Daniel Frampton
Tufts University The University of Texas at Austin Australian National University

sguyer@cs.tufts.edu mckinley@cs.utexas.edu daniel.frampton@anu.edu.au

ABSTRACT
Automatic garbage collection has proven software engineering ben-
efits: fewer memory-related errors and less programmer effort. How-
ever, to attain performance competitive with explicit memory man-
agement, garbage collection needs much more memory. This key
tradeoff exists because the collector only reclaims memory when it
is invoked: invoking it more frequently reclaims memory quickly,
but incurs a significant cost, while invoking it less frequently fills
memory with dead objects.

This work comes closer to the best of both worlds by adding
novel runtime and compiler support for compiler-inserted frees to
a garbage-collected system. The compiler analysis automatically
identifies when objects become unreachable and inserts calls to
free. The analysis combines a simple interprocedural pointer anal-
ysis with liveness information. The free() implementation depends
on the allocator, and we demonstrate variations for free-list and
bump-pointer allocators. Explicitly freeing objects reduces mem-
ory requirements by reclaiming memory quickly, reduces garbage
collection load, and improves performance, often substantially for
mark-sweep collectors. Compared to the baseline, free-me cuts to-
tal time by 22% on average, collector time by 50% to 70% on aver-
age, and allows programs to run in 17% less memory on average.

Our approach differs from stack and region allocation in two cru-
cial ways. First, it frees objects incrementally exactly when they
become unreachable, instead of based on program scope. Second,
our system does not require allocation-site lifetime homogeneity,
and thus can free objects on some program paths and not on others.
Our system also handles common design patterns, such as freeing
inside loops and objects created by factory methods.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Mem-
ory management (garbage collection)

General Terms
Languages, Performance, Experimentation, Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to PLDI’06, June, 2006, Ottawa, Canada.
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
adaptive, generational, compiler-assisted, locality

1. INTRODUCTION
This work seeks to combine some of the performance benefits of
explicit memory management with the software engineering ben-
efits of automatic memory management (garbage collection). Ex-
plicit memory managers typically implement free-lists optimized
for low-cost allocation and freeing [5, 17, 29]. If programmers free
objects immediately after their last use, they can minimize the pro-
gram’s memory footprint. Garbage collection instead minimizes
programmer effort at the expense of increased memory require-
ments [23, 25, 34]. Garbage collectors require extra memory, be-
yond what the application is using, because they only periodically
reclaim memory, allowing dead objects to acculumate. Collect-
ing more frequently is prohibitively expensive due to the overhead
of identifying dead objects. For example, a copying collector tra-
verses the roots (stacks, statics, registers), copying all the reachable
objects, which can be costly. Invoking the collector less frequently
amortizes this cost, and gives objects more time to die, making
each collection more productive. Garbage collection thus makes a
space-time tradeoff, which increases the memory footprint to re-
duce collection costs [23, 25, 26, 34, 39].

Our goal is to obtain the best of both of these approaches by
combining the software engineering benefits of garbage collection
with the space efficiency of incremental object reclamation. We
present new runtime and compiler support for automating prompt
and cheap object reclamation in a garbage collection system. We
add an explicit free(object) operation to the garbage collector and a
free-me compiler analysis that automatically inserts a call to free at
the point an object dies. Free-me analysis combines simple, flow-
insensitive pointer analysis with flow-sensitive liveness informa-
tion. Free-me analysis can thus identify and free an object that dies
on one path, but not another. An allocation site can produce some
objects that escape the method or loop, and free-me can still free
some of them. Since its scope is mostly local, it typically finds very
short-lived objects. However, it includes an interprocedural com-
ponent that identifies factory methods: those methods whose only
side effect is to return one newly allocated object.

The underlying garbage collection discipline dictates the imple-
mentation of free. We implement several variants a mark-sweep
collector that uses free-lists, and for a copying collector. Our free-
list implementation [6, 7] provides multiple free-lists segregated by
size. Free simply returns the memory cell to the front of the appro-
priate free-list, as would explicit memory management. Since we
leave unchanged the bump-pointer allocator in a copying collector,
we explore a version of free that reclaims the object only when it
is the last allocation. We find this version is too restrictive because

it requires the compiler to perfectly order (last-in-first-out) frees.
We then explore a more powerful version of free that tracks one
unreclaimed region closest to the top. If a subsequent free brings
it to the top, free reclaims it as well. Finally, we show a version of
free that simply reduces the required size of the copy reserve by the
number of bytes freed.

Compared with region [11, 24, 33, 38] and stack [9, 12, 20, 40]
allocation, our approach differs in two key ways. First, region and
stack allocation require lifetimes to coincide with a particular pro-
gram scope, whereas our approach frees objects exactly when they
become unreachable. Second, region and stack allocation require
specialized allocation sites, forcing them to decide the fate of each
object at allocation time. In many systems, this limitation requires
each allocation site to produce objects with the same lifetime char-
acteristics. Even if some objects become unreachable, these sys-
tems must wait until all become unreachable. Although stack and
region allocation reduces collector load and has the potential to
reduce the memory footprint, neither has delivered consistent im-
provements over generational collectors.

We implement these techniques in Jikes RVM and MMTk, a high
performance Java-in-Java virtual machine and memory manage-
ment toolkit [1, 2, 6, 7]. For mark-sweep, our results on SPECjvm98,
SPECjbb2000, and DaCapo [8, 36, 37] Java benchmarks show that
free reclaims on average 28% of all objects: on 4 benchmarks it re-
claims less than 10%, but for 9 other benchmarks it reclaims 19%
or more, including 5 benchmarks where it reclaims at least 50%
of the objects. These frees translate directly into total and garbage
collection performance improvements in small and moderate sized
heaps (up to a factor of 2), and do no harm in large heaps.

Our copying generational collector results are more surprising.
Although free reclaims almost the same objects as mark-sweep free
and these frees translate into many fewer nursery collections, the
survival rate of each collection goes up. Eliminating short-lived
objects from the nursery did not have the expected effect of yielding
fewer survivors by giving objects more time to die. In fact, short-
lived objects do not contribute much to collection cost since the
copying collector never touches them. Furthermore, mutator time
degraded due to the overhead of incrementally unbumping objects.
These results combined with similar ones for stack allocation [9,
12, 20, 40] indicate that collecting short-lived objects seems to be
best left to a copying nursery.

Although generational collectors typically perform much better
than whole heap mark-sweep collectors [6], non-moving collectors
remain critical in certain applications. For example, embedded sys-
tems use mark-sweep for space efficiency, and C# uses mark-sweep
to support pinning an object in memory. For these systems, we rec-
ommend adding compiler-inserted frees, which yields substantial
improvements in memory efficiency and performance benefits.

2. RELATED WORK
This section overviews the related work on compile-time object
reuse (also known as object scalar replacement) and lifetime anal-
ysis, and compiler analysis for stack and region allocation.

2.1 Compile-Time Free and Reuse Analysis
Shaham et al. [35] is closest to our work. Their analysis iden-
tifies the last use of an object and frees it to eliminate the need
for garbage collection. They also null any pointers to it (since
the object may still be reachable) to communicate object death
the garbage collector. Their analysis is very precise and expensive
since it seeks to prove liveness for heap variables across the entire
program, and thus they demonstrate it only on toy programs. Our
simpler and cheaper approach limits its scope to a single method.

Other prior work automates object merging (hash consing, object
reuse, and object scalar, replacement) [4, 21, 27, 28, 30]. These
approaches require the same size object to attain reuse and call site
lifetime homogeneity. For example, Lee and Yi’s analysis inserts
frees only for immediate reuse, i.e., before an allocation of a new
object of the same size [30]. The analysis of Gheorghioiu et al. [21]
finds allocation sites for which only one object instance is ever live.
In practice, their analysis finds many fewer dynamic objects than
ours. Our free implementations do not require call-site lifetime
homogeneity, and can free an object at any point it becomes dead.
Our bump-pointer free is not restricted to same size objects and
thus reuses the same memory for different sized objects.

Marinov and O’Callahan profile to find object equivalence [32].
Two objects are equivalent if their contents are the same and their
lifetimes are disjoint. For SPECjvm98 and two Java server pro-
grams, they report a memory savings of 2% to 50% if all equivalent
objects could be merged. Their results provide motivation for our
work, but we use the compiler to realize these savings and are not
restricted to equivalent content or sized objects.

Inoue et al. [26] explores the limits of lifetime predictability for
allocation sites. They find that many objects have zero lifetimes,
and our free-me analysis finds a similar number of objects to free.
Our technique differs from lifetime analysis because it detects ex-
actly which update kills an object, rather than its lifetime.

2.2 Stack Allocation
Prior work explores using pointer escape analysis to detect alloca-
tion sites that produce objects whose lifetimes correspond to the
current method [9, 12, 20, 40]. This work then allocates these
objects on the stack. It seeks to improve garbage collection by
reclaiming memory sooner than the collector would. Implementa-
tions of stack allocation dynamically add objects by changing the
allocator [12, 13, 40], or size the stack frame statically [20]. The
later static approach cannot stack allocate allocations in loops. The
former can grow the stack without bound. Both implementations
assume that the lifetime of a stack frame is relatively small, and
thus the system will normally reclaim this memory faster than the
collector. Our free scheme guarantees prompt reclamation since it
need not wait for the method return and can free objects in loops
and from allocation sites where some objects escape.

Whaley and Rinard [40] provide the most precise escape analy-
sis [9, 12, 20]. They do not provide an implementation of stack al-
location, but measure the amount of memory they classify as stack
allocatable. Their precision pays off; they report a higher percent
of stack allocatable objects than Choi et al. or Blanchet on similar
programs [9, 12]. For example on javac from SPECjvm98 [36],
they classify 25% of all allocation as stack allocatable. Choi et al.
describe a flow-sensitive and insensitive analysis and allocate from
2% to 65% on the stack. However, they state: “The performance
gains come mainly from synchronization elimination rather than
from stack allocation.” Choi et al. point out that since they use
dynamic stack allocation, they are subject to unconstrained stack
growth, but did not find it in practice. Blanchet’s system dynam-
ically stack allocates between 13 and 95% of memory, 13% for
javac and 21% for jess from SPECjvm98. Blanchet’s reports a
mark-sweep free-list collector on one heap size. He finds excellent
collection time reductions and mutator locality benefits from con-
tiguous stack allocation. We find more substantial improvements in
small to moderate heap sizes.

Gay and Steensgaard [20] and Blanchet [9] provide faster less
precise analysis than other escape analyses [12, 40]. They capture
between 1% and 62% of all memory. Their static stack allocation
mechanism increases the stack frame size by up to 24KB, but usu-

ally by 1KB or less. They report speed ups in a copying nursery
generational collector on one heap size of up to 11% on jack from
SPECjvm98, but on average, performance benefits are limited [18,
20]. As we mentioned in the introduction, copying nurseries re-
claim short-lived dead objects very efficiently. Their stack allo-
cation mechanism has less overhead than our free with a copying
nursery, but does not deliver consistent improvements.

Our compiler analysis is simpler and less precise than prior work
for stack allocation. It should thus be more amenable to use in a
just-in-time compiler, although we have not yet performance tuned
it. Prior work on stack allocation has only used one collector and
one heap size. We evaluate compile-time inserted free in several
garbage collectors with a variety of heap sizes which exposes the
space time tradeoffs inherent in garbage collection.

2.3 Region Allocation
Region allocation is a general memory management approach that
either manages all of memory based on allocation-site lifetime scop-
ing [11, 19, 33, 38] or adds regions as a special purpose component
in explicit or automatic memory management [5, 22, 24]. Regions
can provide programmability benefits for real-time systems and of-
fer safety features such as thread isolation in server applications,
but these features come without the software engineering advan-
tages of garbage collection. Potential advantages include improved
memory efficiency, but prior work has not consistently demon-
strated this improvement. For example, Hicks et al. [24] show
space efficiency improvements in Cyclone over garbage collection
alone, but Cherem and Rugina [10] actually increase the memory
footprint in Java programs by 10% on average on the SPECjvm98
benchmarks, and up to 101%. These mixed results have their roots
in requiring a program point when all objects from a specific allo-
cation site are dead, rather than our more incremental approach that
decouples object allocation from its free.

3. MOTIVATING EXAMPLE
Figure 1 shows an example that motivates the use of free-me anal-
ysis instead of escape analysis. Figure 1(a) is taken from javac.
In this method, stream.readToken is a factory method that pro-
duces a single allocation and has no other side effects. The vari-
able idName points to this newly allocated object. The loop only
adds the symbol (idName) to the symbol table if it is not already
in it. Since programs tend use symbols repeatedly, more die than
persist. Since those objects that persist escape the method, it is
not safe to stack allocate them. Free-me compiler analysis detects
that stream.readToken is a factory method that produces a
single object, stored in idName. (Free-me analysis requires inlin-
ing to prove symbolTable.lookup does not store idName.)
It then proves idName is only live by virtue of being stored in
the global variable symbolTable on the if branch and is dead
on the else. It then inserts free(idName), as shown in Fig-
ure 1(b). We use this running example through out the paper.

4. FREE-ME COMPILER ANALYSIS
This section describes our free-me compiler analysis, which con-
sists of three parts: (1) a simple pointer analysis that discovers
object connectivity, (2) a liveness analysis that computes liveness
for both variables and pointers in the connectivity graph, and (3)
a free placement analysis that determines when objects are dead
and selects program points to insert calls to free(). The analysis
processes one method at a time and computes simple method sum-
maries, which provide some interprocedural information.

The analysis works on the Jikes RVM optimizing compiler inter-
nal representation. This IR consists of a control-flow graph of basic

1 public void parse(InputStream stream) {
2 while (...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName)
5 if (id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 computeOn(id);

10 }}

(a) Only adds idName to the symbolTable once.

1 public void parse(InputStream stream) {
2 while (...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName)
5 if (id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 else free(idName);

10 computeOn(id);
11 }}

(b) Compiler inserts free on else branch.

Figure 1: Example of conditional free from javac.

blocks, where each basic block contains a list of instructions. The
instructions correspond to Java operations, such as getfield, put-
field, array operations, and assignments. In addition, we perform
our analysis when the IR is in SSA form [14], which provides flow
sensitivity for the local variables.

4.1 Pointer Connectivity
The pointer analysis is flow insensitive and inclusion based, simi-
lar to Andersen’s pointer analysis [3]. It builds a connectivity graph
with nodes for each allocation site, each parameter, and one node
for all globals. It also keeps track of the targets of all local vari-
ables. The following tables presents the analysis data structures.

S Set of statements
V Set of variables
vi Local variable i
pi �V Formal parameter i
N Nodes in connectivity graph
NP � N Nodes for targets of parameters
NI � N Parameter “inner” nodes
NA � N Allocation nodes – one for each new()
NG � N Node for all globals (statics)
PtsTo : �V �N�� 2N Points-to function
PtsTo� : �V �N�� 2N Transitive closure of points-to

Note that each parameter has an associated pair of nodes that rep-
resent the incoming objects. The parameter nodes NP represent the
immediate targets of the parameters, while the inner nodes NI rep-
resent any other objects reachable from the parameter nodes. Note
we assume no aliasing between parameters, which is correct here
because reachability from any parameter will prevent the analysis
from freeing an object. The points-to analysis starts by initializing
the points-to functions of parameters to reflect this structure:

�i�PtsTo�pi� � �NPi� Initialize parameter variables
�i�PtsTo�NPi� � �NIi� Parameter nodes point to inner nodes
�i�PtsTo�NIi� � �NIi� Inner nodes have a self-loop

The algorithm iterates over the instructions in the method adding
edges to the graph until no new edges are added. The following
table describes how we update the points-to function at each kind

of instruction. We treat array operations as field operations: astore
uses the same rule as putfield, aload uses the same rule as getfield.

assignment v1 = v2; PtsTo�v1��� PtsTo�v2�
getstatic v = Cls.f; PtsTo�v��� �NG�
putstatic Cls.f = v; PtsTo�NG��� PtsTo�v�
putfield v1.f = v2; �n � PtsTo�v1�

PtsTo�n��� PtsTo�v2�
getfield v1 = v2.f; PtsTo�v1��� PtsTo� �v2�

The rules for assignment, getstatic, putstatic, and putfield are
straightforward: they transfer points-to edges from the right-hand
side to the left-hand side, as appropriate. The only unusual rule is
getfield: it adds all nodes reachable from the right-hand side to the
left-hand side. The reason this rule is so conservative is so we can
produce very simple interprocedural summaries (see Section 4.2).
It has very little effect on accuracy because it does not drastically
change the overall reachability of objects.

4.2 Procedure Summaries
Like many analysis algorithms, ours benefits significantly from in-
formation about the callees of a method. During analysis we com-
pute simple summaries that capture how each method connects ob-
jects passed to it. The summaries consist of a set of pairs �pi� p j�,
where pi and pj refer to parameters. The pair �pi� p j� indicates that
the method connects these two parameters, by some sequence of
pointers, so that pj is reachable from pi. The following table shows
how we compute each entry and includes special entries for global
pointers and objects that are returned. The notation �pj means ap-
ply getfield to the argument first to obtain the inner node.

Np j � PtsTo� �pi� 	 record entry �pi� p j�
NI j � PtsTo� �pi� 	 record entry �pi��p j�
Np j � PtsTo� �NG� 	 record entry �global� pj�
Np j � PtsTo� �return� 	 record entry �return� pj�
PtsTo�return�� NA 	 record method is a factory

The last type of entry identifies “factory” methods: methods that
return new objects. Our analysis requires that a method return only
new objects in order to qualify as a factory. In the caller, we treat
calls to such a method as an allocation, and apply the same free-
me analysis as if it were an allocations site. For example, Figure 1
contains a factory method Stream.readToken(). The sym-
bol table add() method stores each of the input parameters in the
receiver object. We represent this information with two summary
entries: �p0� p1� and �p0� p2�.

When the analysis encounters a method call, it looks up the pos-
sible targets (there can be more than one for virtual calls) and ap-
plies the method summary to the actual arguments. Entries of the
form �pi� p j� are implemented as putfield operations. Entries of the
form �return� pj� are implemented by passing the points-to set of
p j to the left-hand side of the call site. Finally, methods marked as
factories introduce a new allocation node associated with the call
site.

This summary scheme has two significant implications. First, it
necessitates the getfield rule used during pointer analysis because
a single pointer link in the summary may represent many pointer
links in the actual callee. Our conservative getfield rule ensures
that none of the possible targets are missed. Second, since the
summaries refer only to the parameter positions, they effectively
make the analysis fully context sensitive. The results of the anal-
ysis, however, can only be used to test overall reachability. This
algorithm is unsuitable for other problems, such as aliasing.

P0

NP0

NA1

NI0

P1

NP1

NI1

P2

NP2

NI2

NA2 NA3

NA0

NG

Figure 2: Example connectivity graph: each pi is a parameter
variable, each NP is a parameter node, each NA is an allocation
node.

4.3 Variable Reachability and Liveness
Figure 2 shows an example connectivity graph for an unspecified
program. It includes four allocation nodes, NA0 to NA3. Two nodes,
NA1 and NA2 do not escape the method, and therefore can be freed.
The graph also suggests that NA0 and NA3 cannot be freed, since
they are reachable from a parameter and a global, respectively. As
Figure 1 shows, however, this conclusion depends on when the pro-
gram creates these pointers.

To solve this problem, we sharpen the flow-insensitive connec-
tivity graph with flow-sensitive liveness information. This analysis
starts by computing the liveness of each local variable, and then
propagates this information through the connectivity graph to de-
termine the specific program points at which objects are reachable.
A key insight we apply is that the program must have both allocated
the object and instantiated any pointers to it, for the node to be live.

The liveness of a node is determined by the union of the liveness
of all its incoming pointers. In the case of pointers from variables,
liveness has a well-defined meaning: the live range of the variable.
For our points-to graph, however, we define liveness as all program
points reachable after the program creates the pointer. This defi-
nition is essential to our analysis because it distinguishes between
program paths on which an object is live and program paths on
which it does not.

Our analysis computes liveness as sets of edges in the control-
flow graph. In order to support fine-grained freeing, we use a rep-
resentation in which each instruction is a separate node in the CFG.
The algorithm computes the liveness of each node iteratively as
follows:

live�Ni� �
�

live�v� �v �V , Nj � PtsTo�v�
�

live�Nj � Ni� �Nj, Ni � PtsTo�Nj�
live�Nj � Ni� = �all edges reachable from the statement

that creates the pointer�

In the example in Figure 1, statement 7 creates the pointer from
the symbol table to the string idName. Therefore, the liveness
of this pointer extends from statement 7 to 9, and on. It does not
include the edge from statement 5 to 9, which is the false branch.
Note that the loop could cause all edges to be marked reachable
from statement 7. To handle this situation, we use the following
observation: a pointer can only exist after the object is created.
There is no way for the symbol table to point to idName between
statements 3 and 7.

v = new Foo();

if (. . .)

if (. . .)

free(v);

free(v);

. . .

v = new Foo();
t0 = v;

if (. . .)

if (. . .)

free(t0);
t0 = null;

free(t0);
t0 = null;

. . .

Figure 3: Free-me instrumentation uses temporary variables to
allow free() on multiple paths through the same code.

4.4 Free Placement
Finally, we compute the possible places to insert a call to free for
each object. We start with all control-flow edges on which the
object exists (all edges after the new), and subtract all edges on
which the object is live. This difference identifies the program
points where the object becomes unreachable and therefore can be
freed. It is often a set of possible program points because our live-
ness analysis is so fine-grained. To avoid excessive calls to free()
we first select the earliest available program point, then iteratively
eliminate any other program points dominated by it.

As with manual memory management, we must be careful not to
call free() more than once on a single object. To avoid this error we
instrument each allocation site to save a copy of the newly allocated
object in a temporary. Calls to free() take this temporary as an
argument and immediately set the temporary to null. Subsequent
calls to free() recognize the null value as a special case and simply
return. Figure 3 shows an example of this instrumentation. One
significant benefit of this approach is that it allows our system to
handle multiple paths through the same set of free() calls.

5. RUNTIME SUPPORT FOR FREE
This section describes the free implementations for current allo-
cation disciplines: free-list and bump-pointer allocation. Figure 4
shows implementations of free(obj) which first zero the object, fol-
lowing the Java memory model. They include an inline pragma
notifying the optimizing compiler to inline these short sequences.
For simplicity, we omit the null check.

5.1 Free for a Lazy Free-List
A free-list allocator can be coupled with mark-sweep, mark-sweep-
compact, reference counting, or other collectors. First we explain
how MMTk implements a lazy free-list for its mark-sweep collec-
tor [6, 7], and then describe the implementation of free in this set-
ting.

MMTk organizes memory into k size-segregated free-lists using
blocks of contiguous memory for same-size objects. Each free-list
is unique to a size class. The free-list collector traces and marks
live objects using bit maps associated with each block. Tracing is
thus proportional to the number of live objects. It then places all the
partially free blocks on a list. It lazily weaves a linked-list of free
cells (a free-list) for a block during allocation, making reclamation
incremental and proportional to allocation.

The free-list allocator puts a new object into the first free cell on

1 public final int free(ObjectReference obj)
2 throws InlinePragma {
3 Address block = getBlock(obj);
4 int sizeClass = getSizeClass(block);
5 int size = getCellSize(sizeClass);
6 Address cell = obj.address - HEADER_SIZE;
7

8 Memory.zero(cell, size);
9 cell.store(freeList[sizeClass]);

10 freeList[sizeClass] = cell;
11 }

(a) Free-List Free

1 public final int free(ObjectReference obj)
2 throws InlinePragma {
3 Address start = obj.address - HEADER_SIZE;
4 Extent size = size(obj);
5

6 Memory.zero(start, size);
7 if (!cursor.Space(obj)) return;
8 if (size.GTE(cursor))
9 cursor = start;

10 }

(b) Unbump: Bump-Pointer Free of Top

1 public final int free(ObjectReference obj)
2 throws InlinePragma {
3 Address start = obj.address - HEADER_SIZE;
4 Extent size = size(obj);
5

6 Memory.zero(start, size);
7 if (!cursor.Space(obj)) return;
8 if (size.GTE(cursor)) {
9 cursor = start;

10 if (unbumpReach.GTE(cursor)) {
11 cursor = unbumpHead;
12 unbumpHead = Address.zero;
13 unbumpReach = Address.zero;
14 } }
15 else FreeTopRegion(obj, size);
16 }

(c) Unbump Region: Bump-Pointer Free with Top Region

Figure 4: Selected based on the collector at build-time.

the list of the smallest size class that accommodates the object. If
the size class free-list is exhausted, the allocator creates a new free-
list from one of the partially filled blocks or from an empty block.
Although, MMTk creates free-lists from a single block, it does not
require that free cells on the list come from the same block.

Free simply links objects to the front of the appropriate size class
free-list as shown in Figure 4(a) line 5. A subsequent allocation
of the same size object will thus reuse it. This implementation is
suitable for any segregated-fits garbage collector or explicitly man-
aged free-list with or without size-class blocks. In addition, it is
suitable for a more aggressive compiler analysis that can free long
and short-lived objects [35]. It is also appropriate for systems that
prevents the collector from moving some objects, e.g., with C# and
pinning.

5.2 Free for a Bump-Pointer Allocator
A bump-pointer allocator demands a copying or compacting col-
lector. We assume a copying collector and an allocator that uses
a contiguous block of memory, allocating objects in program order
by bumping a pointer until it exhausts the block. We add to this dis-
cipline two versions of free that target the most recently allocated
(top) object(s) by unbumping the pointer, unbump and unbump re-
gion. Any subsequent allocation can reuse this memory, not just
one of the same size.

Unbump. Figure 4(b) shows pseudocode for the simplest imple-
mentation of free(obj) in a bump-pointer allocator. We omit align-
ment and let cursor be the allocation point. Free returns after zero-
ing the memory if an intervening collection moved it (zeroing the

unbumpHead

unbumpHead

cursor

null

(a) Before free(obj) of top object

cursor

(b) After free(obj) of top object

obj

Figure 5: Unbump Freeing of Top Object

unbumpHead

unbumpHead

cursor

(b) After free(obj) of interior object

cursor

(a) Before free(obj) of interior object

obj

Figure 6: Unbump Region Freeing an Interior Object

object has the additional benefit of eliminating unnecessary reten-
tion the object may cause). If obj is the top object, free retreats
cursor by (size(obj)). Otherwise, it does nothing.

Unbump Region. The above implementation forces the compiler
to issue the frees in last-in-first-out order. To simplify the com-
piler analysis, we also investigate a free that also keeps track of a
free, but unreclaimed contiguous region closest to the cursor. This
free can always reclaim the top three objects in any order, and can
reclaim more in some cases. We optimize free of the top most ob-
ject(s), the most common case, as shown in Figure 4(c). If obj is
the top object free retreats cursor to the start of obj. If the new top
object is also free, free retreats the cursor further and returns. Fig-
ure 5 shows an example of this case, where free but unreclaimed
memory is shaded.

Otherwise, obj is an interior object and free calls FreeTopRe-
gion(). This method tracks the top most free region, unbumpHead.
It takes action in the following mutually exclusive cases. (1) If
unbumpHead is empty, it sets unbumpHead to obj. (2) If obj is
adjacent to unbumpHead, it coalesces the two by extending un-
bumpReach. Figure 6 shows an example of this case. (3) If obj is
closer to cursor than unbumpHead, it sets unbumpHead to obj.

Figures 5 and 6 also show a limitation of this implementation:
some older free memory goes unreclaimed even though it may
eventually reach the top. We investigated weaving a free-list through
all free regions, but it did not reclaim significantly more mem-
ory and it is expensive. A free on short-lived objects matches the
best behavior of the bump-pointer. This structure is a high perfor-
mance design point, because it forms the underpinnings for genera-
tional collectors in use in the current best performing systems with
garbage collection (e.g., IBM JDK version 1.4.1, Sun’s HotSpot
1.4.2, and Microsoft’s .NET framework). Note that reclaiming
short-lived objects is also the forte of a copying nursery since it
only touches and copies live objects, and then reclaims all memory
en masse. Since the cost of short-lived objects is low in this case,
improving it has proven challenging for stack allocation and, as we
show here, for free.

Unreserve. As the results will show, free in a bump-pointer
does not deliver a performance improvement. Therefore, we in-

vestigated an even simpler version of free that simply reduces the
size of the copy reserve for the copying collector. Since potentially
all objects could survive a collection, every copying collector must
keep in reserve memory equal to the size collection region. In-
stead of retreating the bump-pointer, unreserve simply reduces the
reserve space which will postpone garbage collection. A limitation
of our unbump implementation is that it dynamically looks up the
object size, with unreserve, we simply and conservatively subtract
the smallest object size.

6. METHODOLOGY
We add free-me compiler analysis and free runtime support to ver-
sion 2.3.6 of Jikes RVM and MMTk. Jikes RVM is a high-performance
VM written in Java with an aggressive adaptive just-in-time opti-
mizing compiler [1, 2, 27]. We use configurations that pre-compile
libraries and the optimizing compiler itself (the Full build-time
configuration), and turn off assertion checking. To measure ap-
plications in a deterministic setting, we use a replay precompile
methodology. This methodology uses an advice file to select and
optimize the hot methods before execution of the benchmark. This
methodology eliminates non-determinism due to the adaptive opti-
mizing compiler and focuses on the application itself. (Eeckhout et
al. show that including the optimizing compiler in timing runs on
short running programs obscures the application behavior [16].)

Our methodology also includes a compile-ahead component: we
precompute method summaries for all methods in the benchmark
before performing the free-me compilation on the hot methods. The
summaries are stored in a file and retrieved as needed during com-
pilation. This approach raises two issues with respect to Java and
the Java execution model. First, dynamic class loading may in-
validate precomputed summaries, possibly rendering some free-me
decisions incorrect. One simple solution to this problem is to turn
off free whenever classes are dynamically loaded. A more sophisti-
cated solution could adopt the scheme often used for inlining: keep
track of dependences, then recompile invalidated code. Note that
embedded applications, which will be most likely to benefit from
free-me, are unlikely to use features such as dynamic class loading.

The second issue is determining when, in the program lifecy-
cle, to compute method summaries. While the analysis cost is not
extreme, for many benchmarks it is still too high to perform in a
just-in-time setting. For long running server applications, the one-
time cost might be justified. For embedded applications, compiling
the entire application ahead-of-time is more likely to be accept-
able, since their limited resources preclude sophisticated optimiz-
ing compilers.

MMTk is a composable Java memory management toolkit that
implements a variety of high performance collectors that reuse shared
components [7]. MMTk manages large objects (8K or bigger) sep-
arately in a non-copy space, and puts the compiler and a few other
system pieces in the boot image, an immortal space. We experiment
with MMTk’s mark-sweep full heap collector, and a generational
collector with an unbounded copying nursery and a mark-sweep
older space. Previous work [6] shows these collectors perform well.

We report results on SPECjvm98 [36], pseudojbb, a fixed work-
load version of SPECjbb2000 [37] and the DaCapo [8] benchmarks.
We measure results on a 3.2 GHz Intel Pentium 4 with hyper-
threading enabled, an 8KB 4-way set associative L1 data cache,
a 12Kµops L1 instruction trace cache, a 512KB unified 8-way set
associative L2 on-chip cache, and 1GB of main memory, running
Linux 2.6.0.

7. EXPERIMENTAL RESULTS

alloc Free Uncond. Stack-like
MB MB % MB % MB %

SPEC
compress 105 0 0 0 0 0 0

jess 263 16 6% 16 6% 16 6%
raytrace 91 73 81% 72 80% 72 80%

db 75 45 61% 45 61% 45 61%
javac 184 35 19% 26 14% 26 14%
mtrt 98 73 74% 73 74% 73 74%
jack 276 164 60% 136 49% 113 41%

pseudojbb 209 38 19% 27 13% 12 6%
DaCapo

antlr 254 96 38% 77 31% 64 25%
bloat 717 357 50% 258 36% 40 6%

fop 70 5 7% 4 5% 2 3%
hsqldb 516 57 11% 39 9% 40 7%
jython 387 83 22% 82 21% 21 6%

pmd 242 7 3% 7 3% 7 3%
ps 522 20 4% 17 3% 13 3%

xalan 5862 0.4 0% 0.4 0% 0.4 0%

Average 28 25 21

Potential
javac-inl 188 51 27 25 14 25 14

xalan-mod 5862 5682 97 5682 97 5682 97
db-mod 74 65 88 65 88 65 87

Table 1: Compile-time Free Decisions: alloc: Total alloca-
tion, Free: Free Amount, Uncond.: Unconditional free amount
if frees must correspond to allocations, and Stack-like: Free
amount without factory methods or conditional frees

This section first presents statistics about the effectiveness of free-
me compiler analysis, and then presents the total time, garbage col-
lection time, and mutator time improvements obtained with compile-
time inserted frees.

7.1 Effectiveness of Free-Me Analysis
Table 1 presents allocation and free statistics for our free-me com-
piler analysis. We gather statistics in special instrumented (non-
timed) runs with the mark-sweep collector. On average, the free-
me analysis frees 28% of all objects and up to 81% in our bench-
marks (the Free columns). For javac it frees 19% of all objects,
50% for bloat, 38% for antlr, and 22% for jython. The last two
columns (stack-like) show a version of our analysis modified to de-
tect only those cases that could be stack allocated, i.e., if we restrict
our analysis to inserting frees for allocations in the same method,
and restrict the free instrumentation to the end of the method. This
eliminates the benefit of our factory method detection, and condi-
tional freeing. We show that change reduces the average effective-
ness from 28% to 21%, with jack, pseudojbb, antlr, bloat, and
jython showing the most differences.

Comparing the Free columns with the Uncond columns shows
the influence of free acting on some paths and not others. On av-
erage, it finds 3% more than if it required frees to correspond with
their allocation site. Conditional freeing makes quite a difference
to three of the more complex benchmarks: javac, jack, and bloat.

The last three rows in the table show further potential of our ap-
proach on three benchmarks. Unfortunately, the Jikes RVM inliner
does not inline symbolTable.lookup in the javac benchmark, which
is why we only free 19%. If we force the compiler to inline this

method, free-me finds 27% (javac-inl).
For the two modified benchmarks, db-mod and xalan-mod, we

manually added three frees in key routines that grow array-based
containers. For example, the ArrayList container increases the size
of its array to accomodate new elements. In this situation the add()
method allocates a new, larger array and copies the elements from
the old array. The old array is immediately garbage. We believe a
more powerful compiler analysis could detect and exploit such op-
portunities. Note that even with more powerful analysis, stack and
region allocation are unlikely to ever handle these cases. Container
expansion is an unpredictable event that doesn’t coincide with any
particular program scope, precluding stack allocation. Furthermore,
at all times at least one of the arrays is live, making region allo-
cation extremely inefficient or impossible. These results are not
included in any further discussion.

In general, the compiler analysis finds many opportunities to free
objects and finds 7% more than is possible with a stack allocation
analysis, since our analysis adds conditional frees or factory meth-
ods. In addition, free-me is prompt, since it does not have to wait
for methods to complete.

It is also worth noting that while many calls to free() contribute
to these results, it is often the case that just a few specific calls in
each benchmark account for the majority of freed objects. This
suggests that expending more analysis effort in these parts of the
program could yield even better results.

7.2 Free-me in a Mark-Sweep Collector
This sections presents the effect of free on GC time, mutator time,
and overall execution time in a pure mark-sweep collector, where
explicit free helps reduce GC costs significantly. Space limitations
prohibit including results for all 16 programs, and thus we present
the geometric mean and results for select substantial benchmarks
with representative (but not the best!) improvements. We show the
geometric mean over all benchmarks with free-me in Figure 7, and
javac and bloat in Figures 8 and 9, respectively. These figures plot
time on the y-axis relative to the best time, and on the x-axis, heap
sizes that vary from the smallest in which the collectors execute to
three times that minumum.

Figure 7 shows that on average, free improves total performance
by an average of 50% in small heaps, 10% in moderate heaps, and
5% in large heaps. In addition, by examining the smallest heap size
for each collector, we see free-me reduces by 25% the smallest size
in which the benchmarks can execute on average. Thus free-me
improves performance and reduces the memory requirements in a
mark-sweep collector.

Specifically, free-me improves raytrace, db, mtrt, jack, javac,
pseudojbb, antlr, bloat, hsqldb, and jython, as expected from ex-
amining the data from Table 1. Free-me attains these improvements
for the most part, by reducing garbage collection time, as illustrated
in part (b) of each figure. For javac, almost all its improvement is
due to reduced collection time. However a few benchmarks also
improve their mutator time, part (c) in each figure. We measured
the effect of free-me on how often lazy sweeping needs to build free
lists during allocation, and found it often substantially reduced this
work. For bloat, free eliminates about half of the lazy sweeping,
but this improvement does not vary with heap size. Thus, it does
not explain the mutator improvements in Figure 9(c). We believe
that in small heap sizes each collection disturbs age-order locality,
and because free reduces the number of collections, it attains better
mutator locality in smaller heaps. (We will verify this hypothesis
with l1 and L2 performance counters in the final paper.)

These results demonstrate that free-me improves performance
and reduces the memory requirements over a wide variety of bench-

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1 1.5 2 2.5 3 3.5

 8

 10

 12

 14

 16

 18

 20

1 2 2 2 3 4

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(a) Total Time

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 1.5 2 2.5 3 3.5

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
1 2 2 2 3 4

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(b) GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 1.5 2 2.5 3 3.5

 18

 19

 20

 21

 22

1 2 2 2 3 4

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(c) Mutator Time

Figure 7: Geometric means over all benchmarks with and without free-me in a mark-sweep collector

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5
 6

 8

 10

 12

 14

 16

 18

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(a) javac Total Time

 2

 4

 6

 8

 10

 12

 14

 16

 1 1.5 2 2.5 3 3.5

 5

 10

 15

 20
20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(b) javac GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

 5.5

 6

 6.5

 7

 7.5
20 30 40 50 60 70 80

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(c) javac Mutator Time

Figure 8: javac with and without free-me in a mark-sweep collector

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5

 10

 12

 14

 16

 18

 20

 22

 24

 26

40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(a) bloat Total Time

 2

 4

 6

 8

 10

 12

 14

 16

 1 1.5 2 2.5 3 3.5

 2

 4

 6

 8

 10

 12

 14

40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(b) bloat GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

 8.5

 9

 9.5

 10

 10.5

 11

 11.5
40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

mark-sweep
free-me mark-sweep

(c) bloat Mutator Time

Figure 9: bloat with and without free-me in a mark-sweep collector

marks in a mark-sweep collector. For some benchmarks the im-
provements are dramatic, while in others they are more modest.
However, in no case does free-me degrade performance by any no-
ticeable amount: when free() is not called, there is no cost.

7.3 Free-Me in a Generational Collector
In a generational collector, with a copying nursery and a mark-
sweep older space, we find that the nursery reclaims dead objects
cheaply and quickly enough that explicit deallocation provides a
benefit only for those programs where a large fraction of objects
can be explicitly freed. Unfortunately, we believe that this effect
brings into question any technique that targets short-lived objects,
such as stack allocation.

Figures 10 and 11 shows representative performance graphs for
free() implemented as an unbump operation (see Section 5). We
show results for one of the two variations of unbump: the one that
can free multiple objects by keeping track of frees that occur near
the last object. Results for the other variant are similar. For jack we
find a reasonable reduction in collection time, offset by an increase
in mutator time, which is due to the extra work required to imple-

ment the unbump. Even if we discount the mutator overhead, as
would be the situation with stack allocation, the gains are modest.

In the case of db, Figure 11, free has the intended effect of signif-
icantly reducing the number of nursery collections: it reduces the
number from 16 collections to 4 collections in the smallest heap
size. Other benchmarks show similar gains. Unfortunately, this has
practically no effect on collection time because it does not signifi-
cantly reduce the number of objects that survive the nursery. Since
a copying collector does work proportional to nursery survivors,
free-me hardly affects collection time at all.

Figure 12 shows the geometric mean of overall time, collection
time, and mutator time for free() implemented as a reduction in the
size of the copy reserve (see Section 5). This implementation un-
derestimates the sizes of objects: rather than compute object sizes,
which can be expensive, it reduces the copy reserve by the mini-
mum objects size; in our case, 24 bytes. This approach effectively
eliminates the mutator overhead of free(), but cuts the gains as well.

8. CONCLUSIONS

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

10 15 20 25 30 35

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unbump2 gen-ms

(a) Total Time

 1

 2

 3

 4

 5

 6

 1 1.5 2 2.5 3 3.5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

10 15 20 25 30 35

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unbump2 gen-ms

(b) GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1 1.5 2 2.5 3 3.5

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

10 15 20 25 30 35

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unbump2 gen-ms

(c) Mutator Time

Figure 10: Performance of jack using unbump in a generational collector.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5
 13

 14

 15

 16

 17

 18

15 20 25 30 35 40 45 50 55

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unbump2 gen-ms

(a) Total Time

 1

 2

 3

 4

 5

 6

 1 1.5 2 2.5 3 3.5

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

15 20 25 30 35 40 45 50 55

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unbump2 gen-ms

(b) GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1 1.5 2 2.5 3 3.5
 13

 13.5

 14

 14.5

 15

 15.5

15 20 25 30 35 40 45 50 55

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unbump2 gen-ms

(c) Mutator Time

Figure 11: Performance of db using unbump in a generational collector.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 1.5 2 2.5 3 3.5

 6

 6.5

 7

 7.5

 8

1 2 2 2 3 4

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unreserve gen-ms

(a) Total Time

 1

 2

 3

 4

 5

 6

 1 1.5 2 2.5 3 3.5
 5

 10

 15

 20

 25

 30

 35

1 2 2 2 3 4

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unreserve gen-ms

(b) GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1 1.5 2 2.5 3 3.5

 12

 12.5

 13

 13.5

 14

1 2 2 2 3 4

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

gen-ms
unreserve gen-ms

(c) Mutator Time

Figure 12: Geometric means over all benchmarks with and without free-me using unreserve in a generational collector

In this paper we present a new static analysis for identifying short-
lived objects in Java programs and inserting explicit memory deal-
location at the points where the objects die. Our analysis prop-
erly identifies a large fraction of short-lived objects for the bench-
mark programs, which results in rapid reclamation of memory. For
mark-sweep collectors operating in a memory-constrained envi-
ronment, explicitly free objects yields substantial performance im-
provements from 50% to 200%. However, our experiments show
that generational collectors are extremely effective at reclaiming
short-lived objects. Therefore, it is unlikely that our technique, or
any similar technique that targets short-lived objects can beat the
performance of a generational garbage collector.

9. REFERENCES[1] B. Alpern et al. Implementing Jalapeño in Java. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 314–324, Denver, CO,
Nov. 1999.

[2] B. Alpern et al. The Jalapeño virtual machine. IBM Systems
Journal, 39(1):211–238, February 2000.

[3] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994.

[4] J. M. Barth. Shifting garbage collection overhead to compile
time. Communications of the ACM, 20(7):513–518, July
1977.

[5] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
custom memory allocation. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 1–12, Seattle, WA, Nov. 2002.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
ACM SIGMETRICS Conference on Measurement &
Modeling Computer Systems, pages 25–36, NY, NY, June
2004.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
water? High performance garbage collection in Java with
JMTk. In Proceedings of the International Conference on
Software Engineering, pages 137–146, Scotland, May 2004.

[8] S. M. Blackburn, K. S. McKinley, J. E. B. Moss, S. Augart,
E. D. Berger, P. Cheng, A. Diwan, S. Guyer, M. Hirzel,
C. Hoffman, A. Hosking, X. Huang, A. Khan, P. McGachey,
D. Stefanović, and B. Wiedermann. The dacapo benchmarks.
Technical report, 2004.
http://ali-www.cs.umass.edu/DaCapo/Benchmarks.

[9] B. Blanchet. Escape analysis for Java: Theory and practice.
ACM Transactions on Programming Languages and Systems,
25(6):713–775, Nov. 2003.

[10] S. Cherem and R. Rugina. Region analysis and
transformation for Java programs. In ACM International
Symposium on Memory Management, pages 85–96,
Vancouver, BC, 2004.

[11] W. Chin, F. Craciun, S. Qin, and M. Rinard. Region
inference for object-oriented language. In ACM Conference
on Programming Languages Design and Implementation,
pages 243–354, Washington, DC, June 2004.

[12] J. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
Midkiff. Stack allocation and synchronization optimizations
for Java using escape analysis. ACM Transactions on
Programming Languages and Systems, 25(6):876–910, Nov.
2003.

[13] C. Click. Stack allocation, Jan. 2005. Personal
Communication.

[14] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451–490,
Oct. 1991.

[15] L. P. Deutsch and D. G. Bobrow. An efficient incremental
automatic garbage collector. Communications of the ACM,
19(9):522–526, September 1976.

[16] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java
programs interact with virtual machines at the
microarchitectural level. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 244–358, Anaheim, CA, Oct. 2003.

[17] Y. Feng and E. D. Berger. A locality-improving dynamic
memory allocator. In ACM Conference on Memory System
Performance, pages 1–12, Chicago, IL, June 2005.

[18] R. P. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and
D. Tarditi. Marmot: An optimizing compiler for java.
Software—Practice and Experience, 30(3):199–232, 2000.

[19] D. Gay and A. Aiken. Language support for regions. In ACM
Conference on Programming Languages Design and
Implementation, pages 70–80, Snowbird, UT, 2001.

[20] D. Gay and B. Steensgaard. Fast escape analysis and stack
allocation for object-based programs. In International
Conference on Compiler Construction, pages 82–93, Berlin,
Germany, 2000.

[21] O. Gheorghioiu, A. Salcianu, and M. Rinard. Interprocedural
compatibility analysis for static object preallocation. In ACM
Symposium on the Principles of Programming Languages,
pages 273–284, New Orleans, LA, Jan. 2003.

[22] N. Hallenberg, M. Elsman, and M. Tofte. Combining region
inference and garbage collection. In ACM Conference on
Programming Languages Design and Implementation, pages
141–152, Berlin, Germany, June 2002.

[23] M. Hertz and E. Berger. Quantifying the performance of
garbage collection vs. explicit memory mananagement. In
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, San Diego, CA, Oct. 2005.

[24] M. Hicks, G. Morrisett, D. Grossman, and T. Jim.
Experience with safe manual memory-management in
Cyclone. In ACM International Symposium on Memory
Management, pages 73–84, Vancouver, BC, 2004.

[25] M. Hirzel, A. Diwan, and J. Henkel. On the usefulness of
type and liveness accuracy for garbage collection and leak
detection. ACM Transactions on Programming Languages
and Systems, 24(6):593–624, Nov. 2002.

[26] H. Inoue, D. Stefanović, and S. Forrest. Object lifetime
prediction in java. Technical Report TR-CS-2003-28,
University of New Mexico, Department of Computer
Science, May 2003.
http://www.cs.unm.edu/ darko/papers/objlife.pdf.

[27] Jikes RVM. IBM, 2005. http://jikesrvm.sourceforge.net.
[28] S. B. Jones and D. Le Métayer. Compile-time garbage

collection by sharing analysis. In ACM International
Conference on Functional Programming Languages and
Computer Architecture, pages 54–74, Nov. 1989.

[29] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

[30] O. Lee and K. Yi. Experiments on the effectiveness of an
automatic insertion of memory reuses into XSML-like
programs. In ACM International Symposium on Memory
Management, pages 97–108, Vancouver, BC, 2004.

[31] H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objects. Communications
of the ACM, 26(6):419–429, 1983.

[32] D. Marinov and R. O’Callahan. Object equality profiling. In
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 313–325, Anahiem, CA,
Oct. 2003.

[33] F. Qian and L. Hendren. An adaptive, region-based allocator
for Java. In ACM International Symposium on Memory
Management, Berlin, Germany, June 2002.

[34] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for
space-efficient Java. In ACM Conference on Programming
Languages Design and Implementation, pages 104–133,
Snowbird, UT, 2001.

[35] R. Shaham, E. Yahav, E. K. Kolodner, and M. Sagiv.
Establishing local temporal heap safety properties with
application to compile-time memory management. Science
of Computer Programming Journal, 2005. To appear.

[36] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, release 1.03 edition, March 1999.

[37] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark) Documentation,
release 1.01 edition, 2001.

[38] M. Tofte and J. Talpin. Region-based memory management.
Information and Computation, 1997.

[39] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In ACM
Software Engineering Symposium on Practical Software
Development Environments, pages 157–167, April 1984.

[40] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for java programs. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 187–206, Nov. 1999.

