
Viola: A Verifier For Interoperating Components

Mark Grechanik

The University of Texas at Austin,
Austin TX 78729, USA,

gmark@cs.utexas.edu

Abstract. Two or more components (e.g., objects, modules, or programs) inter-
operate when they exchange data, such as XML data. Currently, there is no ap-
proach that can detect a situation at compile time when one component modifies
XML data so that it becomes incompatible for use by other components, delay-
ing discovery of errors to runtime. Our solution, a Verifier for Interoperating
cOmponents for finding Logic fAults (Viola) builds abstract programs from the
source code of components that exchange XML data. Viola symbolically exe-
cutes these abstract programs thereby obtaining approximate specifications of
the data that would be output by these components. The computed and expected
specifications are analyzed to find errors in XML data exchanges between com-
ponents. We describe our approach, implementation, and give our error checking
algorithm. We used Viola on open source and commercial systems and discovered
errors that were not detected during their design and testing.

1 Introduction

Components are modular units (e.g., objects, modules, or programs) that interact by ex-
changing data. Components are hosted on a platform, which is a collection of software
packages. These packages export Application Programming Interfaces (APIs) through
which components invoke platform services to access and manipulate data. For exam-
ple, an eXtensible Markup Language (XML) [3] parser is a platform for XML data; it
exports APIs that different components can use to access and manipulate XML docu-
ments.

Two or more components interoperate when they exchange information [9]. It is
conservatively estimated that the cost of programming errors in component interoper-
ability just in the capital facilities industry in the U.S. alone is $15.8 billion per year.
A primary driver for this high cost is fixing flaws in incorrect data exchanges between
interoperating components [10].

Type checking algorithms can be used to verify the correctness of operations on
types of exchanged data within a single program statically. However, there are many
situations where the static type checking of interoperating components is not attempted,
resulting in the run-time discovery of type errors. In a model shown in Figure 1, J and
C are components (say a Java and C++ components respectively) that interact using
XML data D1 and D2. Component J reads in data D1, modifies it, and passes it as data
D2 to the component C. Component C reads in the data D2 expecting it to conform to

II

some specification S (i.e. a schema 1). Since J outputs the data D2 before C accesses
it, concurrency is not relevant. However, because of design or programming errors, the
component J outputs the data D2 as conforming to a different specification S’, which
is not explicitly stated in any design documents. Since S’ is different from S, a runtime
error may be issued when C reads D2.

J D2
modify CD1

read read

Fig. 1. A model of component interoperability.

This problem is typically addressed by using an XML parser to validate that the
data D2 conforms to the specification S when J produces this data. If the data does not
conform to this specification, then J throws a runtime exception. Obviously, it is better
to predict possible errors at compile time rather than to deal with them at runtime.

In reality, the situation is even more complicated. Using specifications for validating
XML data is not often attempted because it degrades components performance, and it
even leads to throwing exceptions when there may not be any runtime errors [33][32].
Suppose that the component J deletes all instances of some data element thus violating
the specification S that requires this element be present in the data D2. If either of these
components validates this incorrect data D2 against the specification S, then it will issue
a runtime error. However, when executed, the component C may never attempt to access
the deleted data element, and therefore, no exception will be thrown if the validation
step is bypassed. It is important to know what paths (data elements) components J and
C access in the specifications, and if these paths do not intersect, then components J
and C may still interact safely even if the data D2 does not conform to its specification.

Although it is known in advance that components exchange data, it is not clear how
to detect operations at compile time that lead to possible runtime errors. Given inter-
operating components J and C producing and exchanging data D2 at runtime and the
specification of this data S, the main safety property is defined as ensuring D2 conforms
to S. A secondary safety property is defined as navigation paths to data elements in S
should not intersect with paths to elements added and deleted by interoperating com-
ponents provided that specifications are not used at runtime to validate XML data. Our
goal is to verify whether interoperating components satisfy these safety properties at
compile time. Currently, no compiler checks interoperating components for violations
of these properties, even when components are located within the same program.

Our solution is a Verifier for Interoperating cOmponents for finding Logic fAults
(Viola) that deals with components exchanging XML data. Viola uses the well-known
abstract-verify-refine verification paradigm [13][17][20][15]. During the abstraction
step Viola creates models of the source code of components and approximate speci-
fication of the data that these components exchange. To do that, Viola takes the com-

1 A schema is a set of artifact definitions in a type system that defines the hierarchy of elements,
operations, and allowable content.

III

ponents source code, specifications for the XML data used by these components, and
Finite State Automata (FSAs) that model abstract operations on data with low-level
platform APIs. Abstract operations include navigating to data elements, reading and
writing them, adding and deleting data elements, and loading and saving XML data.
These FSAs are created by expert programmers who understand how to use platform
APIs to access and manipulate data.

Viola uses control and data flow analyses along with the provided FSAs to extract
abstract operations from the component source code for each path in the component’s
Control Flow Graph (CFG). Next, these operations are symbolically executed to com-
pute approximate specifications of the data that would be output by different execution
paths of the components. During the verification step, the computed and expected spec-
ifications are compared to determine if they match each other. If a mismatch between
them is found, then it means that one component modifies the data incorrectly so that
runtime exceptions may be thrown by other components using this incorrect data. To
confirm that, Viola executes the refinement step during which it analyzes paths to data
elements accessed and modified by these components to determine whether the schema
mismatch results in actual errors. Sequences of operations leading to errors are reported
to programmers.

Viola’s conservative static analysis mechanism reports potential errors or ensures
their absence for a system of interoperating components. We tested Viola on open
source and commercial systems, and we detected a number of known and unknown
errors in these applications with good precision thus proving the effectiveness of our
approach.

2 A Motivating Example

Shown in Figure 2 are fragments of Java (Figure 2a) and C++ code (Figure 2d) for
two respective components that interoperate using XML data (Figure 2b-c). This is a
running example that we use to illustrate our approach throughout this paper. Block
arrows show the flow of XML data between components. Variations of these code frag-
ments are used in many open source and commercial applications. The Java component
uses Xerces DOM parser API to read in and modify XML data shown in Figure 2b.
This XML data describes the attributes of a book that include the author and the title.
The Java component modifies the structure of the XML component by adding the tag
authors as a child element of the root book and moving the author element under
the tag authors. The resulting XML data is shown in Figure 2c.

The C++ component shown in Figure 2d reads in the XML data and depending on
the value of the boolean variable flag, either returns the title or the name of the author
of a book. The writer of this component assumes that a book has a single author, and
the structure of XML data corresponds to the one shown in Figure 2b. When the Java
component modifies this data and the value of the boolean variable flag is false, the
C++ component code throws a run-time exception because the element author is not
present in the XML data under the root element book.

In this example, schemas are not used to validate the XML data at runtime. If they
were used, then exceptions would be thrown during runtime validation of XML data

IV

DOMParser parser = new DOMParser();
parser.parse(“book.xml”);
Document doc = parser.getDocument();
Element book = doc.getDocumentElement();
book.appendChild(authors);
NodeList authorList = book.getChildNodes();
for(i = 0; i < authorList.getLength(); i++) {

Node item = authorList.item(i);
if(item.getName() == getAuthorName()) {

item.getParentNode().removeChild(item);
authors.appendChild(item);

}
}
new XMLSerializer().serialize(doc);

root->selectNodes(“book”,&list);
list->get_item((long)0, &book);
if(flag){

book->selectNodes(“title”,&list);
list->get_item((long)0, &node);

}
else
{

book->get_ChildNodes(&list);
list->get_item((long)i,&node);

}
char *value;
node->getNodeValue(&value);

<book>
<author>Name</author>
<title>Some Title</title>

</book>

<book>
<authors>

<author>Name</author>
<authors>
<title>Some Title</title>

</book>

a) c) d)

b)

Fig. 2. Java (a) and C++ (d) components that interoperate using XML data (b) and (c).

either in the the Java component after it modified the data, or in the C++ component
before it reads the data. If XML data is not validated at runtime, then exceptions will be
thrown when certain APIs are called to access data elements. Either way, runtime errors
occur whether XML data is validated or not.

Even with this simple example it takes a considerable amount of time to find errors.
Several factors are involved: knowing the structure of the input data and how changes
made by components affect it, using platform APIs correctly and translating API calls
at compile time into changes that would be made to data, and knowing the order in
which components execute. The temporal dependency between the order of component
execution and the visibility of errors makes catching errors especially difficult. If the
C++ component executes before the Java component, then it would operate on the cor-
rect XML data shown in Figure 2b. However, if the Java component executes before
the C++ component, then it would modify the data into an instance shown in Figure 2c,
and make it incompatible for the C++ component. These factors add to the complexity
of interoperating components, and make it difficult to catch errors at compile time.

3 The Architecture of Viola

Viola’s architecture and process are shown in Figure 3. The steps of the Viola process
are presented with numbers in circles. The names of components and data are taken
from the model shown in Figure 1. The input to the architecture is the J’s and C’s
components source code (1). The EDG C++ and Java front ends [7] parse
the source code of the components and output Abstract Syntax Trees (ASTs)(2). The
Analysis Routines (ARs) perform control and data flow analyses on the ASTs in order
to determine sequences of API calls that can be replaced with abstract operations. ARs
also input FSAs for abstract operations (3), and check to see if sequences of API calls
retrieved from the source code are accepted by these FSAs. If a sequence of API calls
is not recognized, or some abnormalities in using these APIs are detected, then errors
in using APIs are reported to programmers (4).

V

Analysis
Routines

API
Errors

Symbolic
Executor

EDG
Parsers

Paths
Analyzer

ASTs Errors

C’s Source
Code

J’s Source
Code

FSAs

J’s Abstract
Program

C’s Abstract
Program

D2’s
Spec

D1’s
Spec

Specification
Comparator

S
Spec

SET

1

1

2

3

4

5 6

7 8

9

7

Output

10

12

12

12 13

11

Fig. 3. Viola’s architecture and process.

Running ARs results in abstract programs for C and J components (5). Abstract
programs represent sequences of abstract operations on the XML data D1 and D2. The
Symbolic Executor takes these abstract programs (6) and the specifications of the
XML data D1 and D2 as its input (7) and outputs the specification S (8) resulting
from executing J’s abstract program symbolically on the D1’s specification, and Sym-
bolic Execution Trees (SETs) (9) that represent symbolic executions of these abstract
programs on the data specifications. SETs are graphs characterizing the execution paths
followed during the symbolic executions of a program. Nodes in these graphs corre-
spond to executed statements, and edges correspond to transitions between statements.
Viola process steps 1-9 constitute the abstraction step of our verification approach.

The Specification Comparator (SC) compares the computed specification Swith the
D2’s specification (10). If these specifications are equivalent, then the SC reports that
components passed the verification (11). Viola process steps (10) and (11) constitute
the verification step of our approach.

If the verification step fails, we refine our analysis to obtain diagnostic messages of
higher precision. To do that, the Paths Analyzer (PA) analyzes the SETs, D2’s specifica-
tion and the specification S (12) to determine various errors in the paths computed by
components to accessed and modified data elements (e.g., components access, delete,
or add elements that do not exist in the specifications for the data). PA reports the dis-
covered errors to programmers (13).

A component may or may not validate an XML document at runtime using its spec-
ification. If parsing is performed with verification, then a run-time error is thrown at
parse time; otherwise, a run-time error may be thrown when XML data is processed
within a component. Since our goal is to predict runtime errors or ensure their absence
at compile time, we consider parsing XML data without using data specifications.

4 Errors

To summarize errors that Viola catches in interoperating components, we classify errors
into the following general categories:

– Path-Path (PP) errors occur when a component accesses elements that may be
deleted by some other components.

VI

PP errors occur in components that access data elements that are deleted by some
other components (PP-1) and by components that read or write wrong elements
(PP-2). PP-1 errors are execution-order-dependent and therefore are difficult to find
using testing or manual code inspection. If some component deletes data elements
after some other component accesses these elements, then the execution proceeds
correctly. However, if the order of the execution is reversed, then an exception will
be thrown by a component that accesses a previously deleted element. PP-2 errors
occur when one component navigates to a wrong data element and reads its value
by using sequence numbers of elements for navigating rather than their names.
If some other component inserts a data element into the navigation path of the
first component, then the result of interference of these operations is that the first
component accesses and reads the value of a different data element from what was
intended.

– Path-Schema (PS) errors occur when components attempt to access, delete, or add
elements that do not exist in the schemas for the data (PS-2), or when components
violate bounds set by schemas on data elements as a result of executing operations
on data (PS-1).
PS-1 errors occurs when components violate constraint bounds set by a schema.
Suppose that a schema defines the value of the minOccurs attribute for a data
element to be equal to one, however, a component may delete all instances of this
element. Some other component may execute code that was written based on the
assumption that at least one instance of this data element should be present in the
XML data. This situation may also lead to execution-order-dependent runtime er-
rors.

– API errors that result from incorrect uses of APIs.
Mastering APIs for accessing and manipulating data often requires programmers to
spend long periods of time learning dependencies between APIs and objects that are
created as results of their calls [31][34]. One of common mistakes is that program-
mers use incorrect APIs in the sequences of calls designed to perform operations
on data. Given that the knowledge of how to use APIs correctly is encapsulated in
the FSAs that expert programmers build for abstract operations, Viola can flag se-
quences of API calls that cannot be accepted by FSAs as erroneous at compile time.
It may also be that the flagged sequence of API calls is correct, and no FSA was
provided to Viola to validate this sequence. In this case experts will add an FSA to
the Viola FSA database, and these sequences will be accepted from that moment
on.
Sometimes programmers forget to make components save their changes to data
(e.g., a return statement may be executed before the Save operation in some
execution path). Technically, it is not an incorrect use of API, but rather omission
of a crucial operation that makes changes to data persistent. The data remains con-
sistent after operations are executed; however, changes made by the component that
does not save the data will be lost. Viola reports these situations to programmers at
compile time helping them to find and debug potential logical faults.

Below are examples of error warnings that Viola issues to programmers after it
analyzes interoperating components:

VII

PP-1: At line 23 component C accesses element 〈book, author〉 that may be deleted
by the component J at line 122.

PP-2: At line 23 component C may read a wrong element located under path 〈book〉
because component J modifies elements under this path at line 122.

PS-1: At line 23 component Cmay delete all instances of the element 〈book, author〉,
however, at least one instance of this element is required by the schema S.

PS-2: At line 23 component C accesses element 〈book, royalties〉, however, this
element is not defined by the schema S.

5 The Models

Viola builds a model of a program by abstracting its operations on data, and then sym-
bolically executes these operations on the specification of the data. We describe program
abstractions and specify the formal framework for building these abstractions.

5.1 Program Models

A basic programming model for interoperating components is shown in Figure 1. Our
goal is to verify at compile time the main safety property defined as the data D2 con-
forms to the specification S, and a secondary safety property defined as navigation paths
to data elements in S should not intersect with paths to elements added and deleted by
interoperating components. The problem is to determine at compile time how opera-
tions that access and modify data violate this property. These operations are navigating
to data elements, reading and writing data, adding and deleting data elements, and load-
ing and saving data, designated as Navigate, Read, Write, Add, Delete, Load,
and Save respectively.

These abstract operations are implemented in components using concrete low-level
platform APIs. In general, APIs are complex and the client code that uses the APIs is
hard to write. It is rare that a one-to-one correspondence exists between abstract opera-
tions and APIs. Programmers have to execute a sequence of API calls in order to accom-
plish each of our abstract operations [31][34]. For example, the getDocumentElement
API returns a node in the internal representation of XML by Document Object Model
(DOM) parsers. This internal node is used when calling other APIs as shown in Figure
2a.

In Viola we use two abstraction techniques: the cone of influence reduction and data
abstraction [18]. Program abstractions represent source code of interoperating compo-
nents using abstract operations. We observe that a majority of statements and operations
in programs are irrelevant to accessing and modifying XML data. Viola abstracts away
specifics of APIs and program variables that do not affect XML data, and transforms
programs into sequences of abstract operations. This is known as the cone of influence
reduction technique that decreases the number of states of components by focusing on
a subset of their variables related to the given specification and eliminating other vari-
ables. Data abstractions represent actual data with smaller generalized specifications.
We discuss data abstractions in the next section.

VIII

Load book.xml
Navigate root
Add e1
Loop

tmp = child
Delete child
Navigate e1
Add tmp

end loop
Save book.xml

Load book.xml
Navigate root
if

Navigate “title”
else

Navigate e2, seqnumber
end if

Read var
Save book.xml

a) b)

Fig. 4. Program abstractions for Java a) and C++ b) components shown in Figure 2a and Figure
2d respectively.

Program abstractions are obtained from source code by analyzing it and mapping
sequences of platform APIs to the abstract operations. Examples of program abstrac-
tions for the Java and C++ components from Figure 2a and Figure 2d are shown in
Figure 4a and Figure 4b respectively. In general, object names (e.g., “title”) are
not constants; they are expressions whose values are computed at runtime. In program
abstractions, these names are replaced with symbolic variables (e.g., root, child,
element1, and e2) as it is shown in Figure 4. With program abstractions we lose
precision, however, the number of program states is significantly reduced.

5.2 Schemas

Data abstractions are achieved with specifications for XML data that are expressed as
XML schemas. We consider XML schemas [8] in this paper because XML is the lingua
franca of data exchange, and because XML schemas are also used to model non-XML
data (e.g., relational databases [30] and PDF files [1]).

XML schemas are recorded in the XML format [8] and each schema has the root
specified with the <schema> element. Data elements are specified with the <element>
and with the <attribute> tags. Each data element is defined by its name and its
type. Elements can be either of simple or complex types. Simply stated, complex ele-
ment types support nested elements while simple types are attributes and elements of
basic types (e.g., integer, string, or float).

Elements may have two kinds of constraints. First, values of elements may be con-
strained. The second kind of constraints specifies bounds on the number of times that
a specific element may occur as a child of some element. These bounds are specified
with the minOccurs and maxOccurs attributes of the 〈element〉 tag.

Elements can be grouped in a sequence if they are children of the same parent ele-
ment. Attributes of the same element can also be grouped in a sequence. Each element
or attribute in a sequence is assigned a unique positive integer sequence number. This
number can be used to access elements or attributes instead of using their names.

We represent schemas using graphs, and we use this formalism for comparing dif-
ferent schemas in order to detect discrepancies leading to runtime errors. Let T be finite

IX

sets of type names and F of element and attribute names (labels), and distinct symbols
¦ ∈ F and ¥ ∈ T. Schemas graphs are directed graphs G = (V, E, L) such that

– V⊆T∪¥, the nodes are type names or ¥ if the type of data is not known;
– L⊆F∪¦, edges are labeled by element or attribute names or ¦ if the name is not

known;
– E⊆L×V×V, edges are cross-products of labels and nodes. If 〈l,vk,vm〉 ∈ E, we

write vk
l−→ vm. Nodes vm are called children of the node vk. Function children:

v→ v returns a collection of children nodes of the given node.
– Bounds for labels are specified with subscripts and superscripts. Subscripts are used

to specify bounds defined by the minOccurs attribute, and superscripts designate
the bounds specified by the maxOccurs attribute.

Examples of graphs for two different schemas are shown in Figure 5. These schemas
describe instances of XML data shown in our motivating example in Figure 2b and
Figure 2c. Each graph has the special node labeled root ∈ V, where root represents
a collection of the root elements. Function root: G→ v returns a collection of root
elements v ∈ V of the schema graph G. The XML tag <complexType> specifies that
an element is a complex type, and it is not represented in the graph. An empty schema
has a single root node and no edges. Each node in a schema graph has a collection of
children nodes. If an element has no children, then its corresponding node in a schema
graph has an empty collection of children nodes.

A path in a schema graph G = (V, E, L) is defined as a sequence of labels pG

= 〈l1, l2, . . . , ln〉, where vk
lu−→ vm for vk,vm ∈V and 1 ≤ u ≤ n. The symbol ¦ may be

used instead of a label in a path if an element is navigated by its sequence number. For
example, the symbol ¦ in the path 〈book, ¦〉 for the schema graph shown in Figure 5a
stands for any child element of the element book, and this path may be expanded into
two paths: 〈book, author〉 and 〈book, title〉.

Path pi is a subpath of some other path, p j, pi ⊆p j if and only if all labels of
the path pi are also labels of the path p j, and the order in which they appear in p j is
the same as they appear in the path pi. Function length: p→ N returns the length
of the given path p, that is measured as the number of labels in this path. Function
GetLabel: p×N returns the label of the path p that is assigned a given sequence
number. Function type: v →s returns the type s∈T∪¥ of the node v ∈V. Function
max: labelu

l → u returns the upper bound u, or ∞ if the upper bound is not specified,
and function min: labelu

l → l returns the lower bound l, or zero if the lower bound
is not specified.

5.3 The Formal Framework

In order to build program abstractions we need to locate sequences of API calls that
correspond to abstract operations. If all sequences of platform API calls for the ab-
stract operations were known in advance, then these sequences can be searched for and
replaced with abstract operations. Unfortunately, the multiplicity of data hosting plat-
forms and APIs for accessing and manipulating data makes it difficult to write programs

X

<element name=”book”>
<complexType>

<element name=”author”
maxOccurs=1/>

<element name=”title”
type=“string”/>

</complexType>
</element>

<element name=”book”>
<complexType>

<element name=”authors”>
<complexType>

<element name=”author” minOccurs=1/>
<element name=”title” type=“string”/>

</complexType>
</element>

</complexType>
</element>

root †
book author1

†

string

title

author1

†

string

title

authors
root †

book
†

a) b)

Fig. 5. Examples of graphs for two XML schemas.

that verify interoperating components for every all APIs. We use a formal framework
to define these sequences and extract them from source code in a uniform way.

Let Σ be the set of APIs that access and manipulate data, and let Γ be the set of
abstract operations, Γ = {Navigate, Read, Write, Add, Delete, Load, Save}.
Let α ⊆ Σ∗ be sequences of APIs that access and manipulate data. Partial function
ϕ : α→ γ maps a sequence of API calls α to an abstract operation γ ∈ Γ.

We assume that α, the set of sequences of APIs, is a regular language. Since for each
regular language there exists a Finite State Machine (FSM) that accepts this language,
FSMs are provided for each γ, such that ϕ−1(γ) = α. If an FSM for an abstract operation
γ accepts a sequences of APIs α, then these APIs can be replaced with this abstract
operation in the abstract program. By describing sequences of APIs uniformly, Viola
can perform its analysis in a platform-independent way.

A trace τ ⊆ Σ∗ is a sequence of operations that can be executed by a path in the
program. Let τ∗ be all possible traces that result from all possible execution paths of
the program. If τ∗ ∩α = α and ϕ(α) = γ, then a subtrace of τ∗ can be replaced with
the corresponding abstract operation γ. In general, τ∗ is not a regular language because
it contains traces of function calls. When a function is called, a stack is used to store
local variables and the return address. Languages that use stacks are context-free rather
than regular. If τ∗ is modeled as a context-free language, then there exists a pushdown
automaton (PDA) that accepts this language. A PDA configuration is described by its
current state and all the symbols that the PDA contains in the given state. It was shown
that reachable configurations of a PDA form a regular language, and therefore can be
represented by some FSM [16][21].

An examples of FSA for the Navigate abstract operations for Xerces XML DOM
APIs is shown in Figure 6. Circles designate states, and transitions are labeled with

XI

APIs. Double concentric circles stands for final states, and circles with no edges inci-
dent on them are the start states. Experts who understand how to use APIs to implement
abstract operations construct these FSAs. Once built, these FSAs can be used for build-
ing abstract programs from the source code of components.

getDocument()

getDocumentElement()

getChildNodes()

getLength()

item()getAttributes()

getNamedItem()

getLength() getParentNode()

new DOMParser()

Parse()

getLength()

Fig. 6. Example of an FSM for accepting XML DOM APIs for the Navigate abstract operation.

In our framework we perform limited analysis of data flow. Specifically, we are only
interested in producing separate traces of operations invoked on different objects that
represent different data. For example, given two DOMParser objects that designate
different data, we want to obtain separate traces of methods invoked on these objects.
No dataflow analysis is performed on the parameters to these methods. This decision
results in better performance of Viola, but the side-effect is more false-positives pro-
duced by the compiler. However, we show in our experimental evaluation, the number
of false positives is acceptable in practice. In addition, determining that the detected
error is false-positive is a simple operation that does not burden programmers a lot.

6 Building Program Abstractions

Here we explain how abstract programs are obtained using components source code
and FSAs that model abstract operations. We give a grammar for abstract programs and
describe their state variables.

6.1 Extracting Abstract Programs

Program abstractions are obtained from Java and C++ programs using FSAs that map
low-level API calls to abstract operations. EDG parser front ends for C++ and Java
[7] are used to build control-flow graphs (CFGs) from the source code of components.
CFGs are graphs whose nodes represent basic blocks (BBs) with a statement containing
a relevant API call from the set α, and edges between BBs that represent the flow
between program statements. Components are partitioned into BBs in the following

XII

manner. Statements are read and put into the same BB until either a relevant API call or
a branching statement (e.g., if-then, switch-case, do-while) is encountered.
Then, this BB is added to the CFG. If the program consists of multiple source files, then
the CFGs produced for each of these source files are merged into a single CFG.

Program abstractions are computed for each path in the CFG, where a path is a set
of nodes from the CFG connected by edges. For a selected path in the CFG stacks for
API calls are created. For each BB containing an API call in the given path, this API is
extracted and put on the stack. Every time an API is added, the sequence of API calls
on the stack is checked to see if is accepted by any FSA for abstract operations. If such
an FSA is found, then this sequence is modeled by the corresponding abstract operation
for this FSA, and this operation is put into the abstract program.

Each FSA has a uniquely labeled edge incident on the start node. The label of this
edge is an API call that is not encountered anywhere else in the FSAs that implement
abstract operations except for the edges incident on the start node. When such an API
call is encountered in a CFG, a new stack is created. Several stacks can exist at any given
time, and API calls are put on these stacks until they satisfy some FSAs and replaced
with the corresponding abstract operations. If no stack can be replaced with an abstract
operation, then an API type of error is reported to programmers.

In general, it is an undecidable problem to determine all API calls relevant for a
given stack from an arbitrary program. Consider a code fragment where a reference
to an object that denotes a data element is put, among other references, into a hash
table object, which is passed as a parameter to some function. Inside this function,
references to objects are retrieved from the hash table. In a general case it is impossible
to determine what exact objects in the calling function the references denote in the
hash table inside the called function. To resolve this situation, Viola asks for input from
programmers to resolve object references. At this level Viola requires guidance from its
users.

6.2 A Grammar of Abstract Programs

A grammar for abstract programs is shown in Figure 7. An abstract program is a se-
quence of operations and command included within Load and Save operations. The
metavariable aoper ranges over abstract operations; id ranges over symbolic iden-
tifiers (variables); const ranges over string and integer constants; command ranges
over the state and jump commands as well as assignment expressions, and body
ranges over program definitions. An abstract program in Viola, Program, is a triple
(load, body, save) of Load and Save abstract operations and the program
body. Assignment expression is also included, allowing us to create global identifiers
and assign values to them.

6.3 States and Symbolic Variables

Each program abstraction contains five symbolic state variables: root, current,
children, rw, and operation. The variable root contains the names of the root
elements of the data, and the variable operation contains a current abstract opera-
tion performed on data. The variable operation is similar to the instruction pointer

XIII

Program ::= load body save
load ::= Load var
save ::= Save var
body ::= Loop body endLoop | If body endIf | If body else body endIf |

aoper | command
aoper ::= Navigate var | Read var | Write var | Add var | Delete var
command ::= state var | jump var | id = var
var ::= id | const
id ::= an identifier
const ::= n | s
n ::= numerical value
s ::= string value

Fig. 7. A grammar for abstract programs

in computers. A set of tuples 〈current, children〉 describes elements referenced
by a component in a given state and their children elements. In every tuple the vari-
able current contains a path to the element that can be referenced in a given state,
and the variable child contains paths to the elements that are children of the element
referenced by the variable current. For example, the set of values for the variables are
root = {book}, current = {{book}}, and child = {{book, author}, {book,
title}} for data shown in Figure 2b in a state when the root element is navigated to.
Finally, the rw variable keeps the list of elements and attributes whose values are read
or written in a given state.

Symbolic variables are introduced in abstract programs on as-needed basis. Suppose
that the names of data elements are not specified as constants in the program shown in
Figure 2a, but rather computed at runtime. In this case, these elements are assigned
unique symbolic variables. Examples of using symbolic variables instead of the names
of data objects are shown in the abstract programs in Figure 4 as elements e1 and e2.

6.4 Description of Abstract Operations

The summary of abstract operations is given in Table 1. Each abstract operation has
mandatory and optional arguments. The latter are shown in square brackets. Each data
unit has a unique identifier that can be a file name or a sequence of printable characters
that uniquely identifies a stream of XML data bytes passed between components.

The operations Load and Save take the identifiers of data as their arguments.
These operations mark the beginning and the end of abstract programs. The manda-
tory parameter of the operation Navigate is the name of a data element or attribute,
or its order sequence number in the collection of children elements. The seqnumber
optional parameter specifies that the sequence number of the element is used to access
it rather than its name. The optional parameter attribute specifies whether an at-
tribute or an element is navigated to, and the optional parameter parent gives the
direction of the navigation to parent rather than to children elements. When executed
this operation updates the state variables current and child.

XIV

OPERATION DESCRIPTION
Load identifier Start interacting with the XML data referenced by its identifier
Save identifier Update the XML data referenced by its identifier
Navigate element Navigate to the element whose name is specified by the symbolic variable
[,seqnumber] the optional flag seqnumber specifies that the element is located

by its sequence number rather than its name,
[,attribute] the optional flag attribute specifies that the element is an attribute,
[,parent] and the optional flag parent specifies that it is navigated to a parent element
Add element Inserts elements specified by the symbolic variable element under

the currently navigated elements
Delete element Deletes elements specified by the symbolic variable element

that are children elements of the currently navigated element
Table 1. Abstract operations and their descriptions.

The operation Add takes names of data elements and adds them under the currently
navigated elements updating the child state variable. Finally, the Delete operation
takes names of data elements as its parameter and deletes them from the collection
of children of the elements referenced by the variable current. When executed this
operation updates the current and child symbolic state variables.

The state of an abstract program is the union of values of the state variables. Ab-
stract operations modify the state of a program by changing values of the state variables.
Bookmarking commands “state <name>” and “jump <stateName>” mark cer-
tain states in abstract programs in order to enable execution to return to them from any
point when executing these programs. The command “state <name>” represents
an intermediate object created by platform API calls in the component. For example,
operation doc.getDocumentElement() creates the transient object book of type
Element in the Java component shown in Figure 2a. This object represents the root
of the data, and it is used in other APIs that navigate down to data elements. We assign
some unique name to the state in which this intermediate object is created.

The command “jump <stateName>” directs execution of the abstract program
to abandon its current state, and this command sets the context associated with some
named state and continues to execute the program in the switched state.

Branching statements include boolean predicates specifying the condition under
which certain execution paths will be taken. In general, we lack the knowledge to deter-
mine the exact predicate. For example, the condition i<authorList.getLength()
of the for loop for the Java component shown in Figure 2a means that the iterator vari-
able i is incremented until its value reaches the number of items in the authorList
object. However, this condition could be i<getInput(), where the function getInput()
receives the number from the user at runtime. In Viola a general approach is taken to
abstract away predicate conditions of branching statements. For branching control state-
ments only loop and if-then statements are used in abstract programs.

XV

7 Symbolic Execution

Symbolic execution is a path-oriented evaluation method that describes data dependen-
cies for a path [28][29][19]. Program variables are represented using symbolic expres-
sions that serve as abstractions for concrete instances of data that these variables may
hold. The state of a symbolically executed program includes values of symbolic vari-
ables. When a program is executed symbolically its state is changed by evaluating its
statements in a sequential order.

7.1 Background

Historically, symbolic evaluation is used for analyzing and testing programs that per-
form numerical computations. We illustrate it on a simple example. Consider two con-
secutive statements x=2*y and y=y+x in a program. Initially, variables x and y are
assigned symbolic values X and Y respectively. After symbolically executing the first
statement, x has the value 2*Y, and after executing the second statement the value
of y is Y+2*Y and the value of x remains unchanged. When symbolically executing
numerical programs, variables obtain symbolic values of polynomial expressions.

Recall that symbolic execution trees (SETs) are graphs characterizing the execution
paths followed during the symbolic executions of a program. Nodes in these graphs
correspond to executed statements, and edges correspond to transitions between state-
ments. Each node in a symbolic execution tree has a unique identifier. Path condition
(PC) is a boolean expression over the symbolic variables designating properties that
symbolic variables must satisfy in order for an execution to follow some path. Each
node describes the current state of execution that includes values, the statement counter,
and the PC. PCs for initial nonbranching statements are set to true. Nodes for branch-
ing statements (e.g., if or while statements) have two edges that connect to nodes
with different PCs.

7.2 Executing Abstract Operations Symbolically

We execute abstract programs symbolically on schemas. Nodes in the SET contain the
values of symbolic variables and (modified) schemas. Each abstract operation creates
a new node in the SET and updates the content of the symbolic state variables, and
in addition, operations Add and Delete modify schemas. We define the operational
semantics of abstract operations in terms of changes made to the state variables and
schemas after these operations are executed.

The operation Loadmarks the beginning of abstract programs and instructs Viola to
create a new SET, initialize the state variables, and read in the schema for the data. Viola
processes abstract operations until the Save operation is encountered, which marks the
end of the abstract program. The Navigate operation, just like the Load and Save
operations does not change the schema, but it modifies the content of the state variables
to reflect what elements and attributes are navigated to and what their child elements
are. Other operations that do not modify schemas are the operations Read and Write.
When executed they create new nodes in the SET, and update the operation state

XVI

variable with the name of the abstract operation. These operations also update the value
of the rw state variable with paths to data elements that are read or written to.

Operations Add and Delete add elements to and delete elements from schemas
and update values of state variables to reflect the changes. Recall that elements in
schemas have bounds that are specified with attributes minOccurs and maxOccurs.
If the Add operation is executed unconditionally, then it gives us assurances that there
should be at least one instance of the added element in the data. Correspondingly, the
value of the minOccurs attribute is set to one if it was previously set to zero, or left
unchanged if it was greater or equal to one. After the Delete operation is executed
unconditionally, then there may not be a single instance of the deleted element. Corre-
spondingly, the value of the minOccurs attribute is set to zero to reflect the possibility
that there may not be any data instances of a given element.

Conditional execution of the Add and Delete operations occurs when these
operations are located within the body of conditional statements (e.g., if-then) or
loops. In case of loops, we often lack the knowledge of the upper bound on the number
of iterations through the loop, and we assume that it is infinite. A conservative guess
of the lower bound on the number of iterations through the loop is zero, meaning that
it is never executed. If the Add operation is executed within the body of a conditional
statement or a loop, then the entry for the added element is inserted into the schema
with the attribute minOccurs set to zero, and the attribute maxOccurs is not present
reflecting the absence of the upper bound on the number of instances of this element.
If the name of the added data element is not known at compile time, then an edge with
the ¦ label is added to the schema graph incident on the current element.

Executing the Delete operation within the body of a conditional statement means
that a single instance of the given element may be deleted from data. In general, the
name of a deleted element may not be known, and Viola makes a conservative guess
about what elements may be affected by these operations. If the Delete operation is
conditionally executed within the body of a loop on the set of n elements in the schema
and it is not known what elements are deleted, then it is assumed that any subset of the
set of these elements can be deleted from the data at runtime. Formally, this is expressed
with the powerset operator P which transforms the set of n elements to 2n subsets of
these elements.

Executing the Add operation creates a new node in the SET. If the element being
added already exists in the schema, then the schema is not changed. Otherwise, the
schema is modified by adding an entry that describes the added data element as a child
to the currently navigated element. The child symbolic variable is updated with the
path to the newly added element.

Bookmarking commands “state <name>” and “jump <stateName>” mark
certain states in executions of abstract programs and return to them so that the execution
resumes in a certain state. When the command “state <name>” is encountered after
some abstract operation, the symbolic executor marks the node corresponding to this
operation with the name <name> specified as a parameter to this command. When
the command “jump <stateName>” is executed, the symbolic executor moves to
the node marked with the <stateName> name, which was set by executing some
previous command state, and the execution is continued from there.

XVII

Three global symbolic path variables are associated with each SET. The access path
variable Θ keeps paths to navigated elements and attributes, the delete path variable ∆
keeps paths to deleted elements and attributes, and the add path variable Ω keeps paths
to added elements and attributes. Each path is associated with a node in a symbolic ex-
ecution tree. Function GetSetNodePath: path→SETNodeID maps a path to the
unique identifier of a node, SETNodeID, in a SET. For each component Ci and data D j
there is a triple 〈Ci,D j,〈Θ,∆,Ω〉〉 that maps this component and data to access, delete,
and add paths of the data elements accessed and modified by this component. Function
GetPaths: C×D → 〈Θ,∆,Ω〉 maps a component C accessing and manipulating
data D to the path triple 〈Θ,∆,Ω〉.

7.3 Example of Symbolic Execution

Simplified SETs for the abstract programs for the Java and C++ component (shown in
Figure 4) are shown in Figure 8. Nodes in the trees correspond to selected operations
in the abstract programs. The content of a node includes the schema of the data and
symbolic state variables. Due to the lack of space, only schemas are shown in the nodes
of the trees. Solid block arrows point to nodes denoted by the state variable current.
Values for path variables for the execution tree nodes are shown in Tables 2, 4, and 3.

First, we describe the symbolic execution of the abstract program shown in Fig-
ure 4a for the Java component shown in Figure 2a on the schema shown in Figure 5a.
The symbolic execution tree is shown in Figure 8(a), and the values of the symbolic
state variables are shown in Table 2. The Node 0 shows the initial schema S of the
data. After executing the abstract operation Navigate root, the node Node 1 is
created, and the schema remains unchanged. Access path book is added to the access
path variable Θ as shown in the table Table 3 in the column for the Java component
paths.

The next operation Add e1 adds the symbolic element e1 as a child to the cur-
rently navigated element book. Correspondingly, the path {book, ¦} is added to the
add path variable Ω. Since the value for the variable e1 is not known at compile time,
an edge labeled ¦ is added to the schema graph. Node Node 2 is created, and its vari-
able current remains unchanged, but the content of the variable child is updated with
the path to the newly added element e1. We do not show the operation tmp = child
that copies values of the child variable to the tmp symbolic variable.

Next, the operation Delete child is executed within a loop, and it deletes the
children of the element book. Since the condition of the loop is not known in the

Node Operation 〈current, child〉
Node 1 Navigate root 〈{{book}, {{book, author},{book, title}}}〉
Node 2 Add e1 〈{{book}, {{book, author},{book, title},{book, ¦}}}〉
Node 3 Loop Delete child 〈{{book}, {{book, author},{book, title},{book, ¦}}P }〉
Node 4 Loop Navigate e1 〈{{book, ¦}, {}}〉
Node 5 Loop Add tmp 〈{{book, ¦}, {{book, ¦, author},{book, ¦, title},{book, ¦, ¦}}P }〉

Table 2. Values of the state variables for the symbolic execution tree shown in Figure 8(a).

XVIII

Node 0

root †
book author1

†

string

title

Node 1

root †
book author1

†

string

title

Operation: Navigate root

Node 2

root †
book author1

†

string

title

Operation: Add e1

†

©

Node 3

root †
book author1

†

string

title

Operation: Loop Delete child

†

©

P

Node 4

root †
book author1

†

string

title

Operation: Loop Navigate e1

† P

Node 5

root †
book author1

†

string

title

Operation: Loop Add tmp

†
P

†

†

author1

†

title
©

©

©

(a) A simplified symbolic execution tree for the abstract programs shown in Figure 4a and the
schema shown in Figure 5a.

Node 1

root †
book author1

†

string

title

Operation: Navigate root

Node 2

root †
book author1

†

string

title

Operation: Navigate “title”

Node 3

root †
book author1

†

string

title

Operation:
Navigate e2, seqnumber

Node 4

root †
book author1

†

string

title

Operation: Read var

(b) A simplified SET for the abstract program
shown in Figure 4b on the schema shown in Fig-
ure 5a.

Node 1

root †
book author1

†

string

title

Operation: Navigate root

†
P

†

†

author1

†

title

Node 2

root †
book author1

†

string

title

Operation: Navigate “title”

†
P

†

†

author1

†

title

Node 3

root †
book author1

†

string

title

Operation:
Navigate e2, seqnumber

†
P

†

†

author1

†

title

Node 4

root †
book author1

†

string

title

Operation: Read var

†
P

†

†

author1

†

title

©

©

©

©

©

©

©

©

(c) A simplified SET for the abstract program
shown in Figure 4b on the schema obtained as a
result of the symbolic execution shown in Fig-
ure 8(a).

Fig. 8. Simplified SETs for the abstract programs shown in Figure 4.

XIX

abstract program, it is difficult to predict what children will be deleted, if any at all.
Therefore it is assumed that any child of the element book can be deleted. The node
Node 3 is created with the schema remaining unchanged, and the P operator is applied
to the variable child, showed in the Table 2 as a subscript to the values of the variable
child. Correspondingly, the paths {book, author}, {book, title}, and {book,
¦} are added to the delete path variable ∆ as shown in Table 3.

Path Java C++ component paths
vars component paths Schema S Schema S’
Access {book}, {book, ¦} {book}, {book, author}, {book}, {book, author}
paths Θ {book, title} {book, title}, {book, ¦}
Delete {book, author}, {book, title},
paths ∆ {book, ¦}
Add {book, ¦}, {book, ¦, author},
paths Ω {book, ¦ title}, {book, ¦, ¦}

Table 3. Values of access, delete, and add path variables after symbolically executing abstract
programs for Java and C++ components shown in Figure 4.

Within the same loop the operation Navigate e1 is executed, which is reflected
in the Node 4. Access path {book, ¦} is added to the access path variable Θ. Since
the previously stored access path {book} is a subpath of the path {book, ¦}, i.e.,
{book} ⊆ {book, ¦}, the path {book, ¦} may be removed from the access path list
for optimization. Finally, the operation Add tmp appends children of the element book
to the currently navigated element e1, updating the add path variable Θ with the paths
{book, ¦}, {book, ¦, author}, {book, ¦, title}, and {book, ¦, ¦}. We designate
the resulting schema shown in the Node 5 as S’.

Node Operation 〈current, child〉
Node 1 Navigate root 〈{{book}, {{book, author},{book, title}}}〉
Node 2 Navigate “title” 〈{{book, title},{}}〉
Node 3 Navigate e2, 〈{{{book, author},{}}, {{book, title},{}}, {book, ¦},

seqnumber {book, ¦, ¦}, {{book, ¦, author},{book, ¦, title}}}〉
Table 4. Values of the state variables for the symbolic execution tree shown in Figure 8(c).

Now we describe the symbolic execution of the abstract program shown in Figure
4b. Programs are executed both on the original schema S and on the schema S’. Sym-
bolic execution trees for the schemas S and S’ are shown in Figures 8(b) and 8(c)
respectively, the values of the symbolic state variables are shown in Table 4, and the
values for the path variables are shown in Table 3.

XX

The Node 1 shows the result of executing the operation Navigate root on the
schema S’. The path {book} is added to the access path variable Θ for the C++ com-
ponent. Executing the conditional statement if creates nodes Node 2 and Node 3
for operations Navigate “title” and Navigate e2 respectively. Access paths
{book, author}, {book, title}, and {book, ¦} are added to the access path
variable Θ as shown in the Table 3 in the column for the C++ component paths for
the schema S’. Correspondingly, only access paths {book, author} and {book,
title} are added when the program is executed on the schema S.

8 Comparing Schemas

Consider the model of interoperating components shown in Figure 1. After executing an
abstract program of the component J symbolically on the schema describing the XML
data D1, a schema S’ is obtained that approximates the data D2 that would be output
by this component. Recall the main safety property that is defined as the XML data D2
should conform to the schema S. This property is validated during the verification step
of Viola. The goal of this step is to compare the schema S’ with the schema S. If these
schemas are equal, then the data instance that conforms to one schema also equally
conforms to the other schema, and the components that use this data are compatible.
Otherwise, components are not compatible with respect to the data and may throw run-
time errors. We describe a bisimulation algorithm that is used to compare schemas, and
we give an example of its use.

8.1 Bisimulation

Formalization of schemas as graphs is described in Section 3.3. An efficient method
to determine if two graphs are equal is bisimulation [11]. A bisimulation is a binary
relation between the nodes of two graphs g1,g2 ∈G, written as x∼ y, x,y ∈V, satisfying
the following properties:

Property 1 if x is the root of g1 and y is the root of g2, then x∼ y;
Property 2 if x ∼ y and one of x or y is the root node in its graph, then the other node

is the root node as well;

Property 3 if x ∼ y and type(x)=type(y) and x
rq

p−→ x′ in g1, then there exists

an edge y
sm
k−→ y′ in g2, with the same labels r=s, and max(r)=max(s) and

min(r)=min(s), and type(x′)=type(y′), such that x′ ∼ y′;

Property 4 conversely, if x ∼ y and type(x)=type(y) and y
lm
k−→ y′ in g2, then

there exists an edge x
lq
p−→ x′ in g1, with the same label l, and p=k and m=q, and

type(x′)=type(y′), such that x′ ∼ y′.

Two finite graphs g1,g2 ∈G are equal is there exists a bisimulation from g1 to g2.
A graph is always bisimilar to its infinite unfolding. Computing bisimulation of two
graphs starts with selecting the root nodes and applying the above properties. When a
relation (x,y) between nodes x and y in a graph is found that fails to satisfy the above
properties, then the graphs are determined not equal and the bisimulation stops. This
relation is called offending.

XXI

8.2 Example of Bisimulation

We demonstrate how to apply the bisimulation algorithm to show whether two schemas
shown in Figure 9a and Figure 9b are equivalent. These schemas describe instances of
XML data shown in our motivating example in Figure 2b and Figure 2c. Specifically,
a Java component shown in Figure 2a reads in the XML data shown in Figure 2b that
conforms to the schema shown in Figure 9a and outputs the modified data shown in
Figure 2c that conforms to the schema shown in Figure 9b. A C++ component shown
in Figure 2d reads in the data which it expects to conform to the schema shown in
Figure 9a. If the schema Gb of the data modified by the Java component (which is
shown in Figure 9b) is equivalent to the schema Ga expected by the C++ component
(which is shown in Figure 9a), then we can declare both components compatible with
respect to the data.

First, we select the root nodes in both schemas which satisfy Property 1 and Property
2. Next, we select relation root book−−−→¥ from the schema Ga and check to see that the
Property 3 holds for the relation root root book−−−→¥ from the schema Gb. Since it does,
we determine that the Property 4 holds for both relations, and we proceed to the relation
¥ author1−−−−−→¥ for the schema Ga and the relation ¥ authors−−−−−→¥ for the schema Gb. We
determine that Property 3 and Property 4 are violated and ¥ authors−−−−−→¥ is the offending
relation. Thus, these graphs are not equal, and the verification step fails.

9 The Algorithm

Abstraction and verification phases of Viola determine whether the main safety prop-
erty holds for interoperating components. Recall that the secondary safety property is
defined as navigation paths to data elements should not intersect with paths to elements
added and deleted by interoperating components. Ensuring that the secondary safety
property holds guarantees the absence of PP and PS types of errors. The essence of the
refinement step of the Viola algorithm is to guarantee that the secondary safety property
holds.

PS and PP errors are hardest to catch, and information about them is the most valu-
able for diagnostics. Catching PP and PS errors requires a different approach then bisim-
ulation. Consider the basic model shown in Figure 1 when component J adds or deletes
some elements from, and component C accesses some other elements in the data D2.
When symbolically executed on the schema of the data D2, operations of the compo-
nent J modify it so that the bisimulation algorithm will find offending relations and

root †
book author1

†

string

title

author1

†

string

title

authors
root †

book
†

a) b)

Fig. 9. Graphs for two XML schemas describing the data shown in Figure 2b and Figure 2c.

XXII

determine that the schemas S and S’ do not match. However, in general, component
J may modify elements that lie on a different path than the elements accessed by the
component C. While the mismatch between schemas may lead to errors, no errors will
result from the execution of components in this specific case. Therefore our algorithm
should be precise in distinguishing between situations that have potential for errors and
situations that are highly likely to lead to errors.

Abstract operations Navigate, Read, and Write access data elements in paths
without changing them while operations Add and Delete modify paths. By creat-
ing lists of accessed and modified paths for interoperating components, it is possible
to determine whether they intersect and subsequently, if modifications made by some
components may lead to errors in other components. We use this idea in the error catch-
ing algorithm ViolaAlgorithm that is shown in Figure 10.

We describe ViolaAlgorithm in whole, not just its refinement stage. The algo-
rithm is initiated after applying component analyses techniques for identifying abstract
operations in the components source code. A table (C, SL, EL, FSA) links components
to abstract operations identified by the FSAs, where C is the component identifier, SL
and EL are the Starting Line and the Ending Line of the component’s source code that
contain a sequence of API calls that is accepted by the FSA. Another table (C, SL, EL,
AP) links a component C to some abstract programs AP. A pair (AP, SET) maps ab-
stract programs AP to SET of these programs. A triple (SET, SETNode, FSA) links
the node SETNode in a SET to the abstract operations identified by the FSA. The in-
put to this algorithm is the set of components C. For each pair of distinct components
ci and cj from the set C, it is determined whether these components interact via the
set of data {D}. This set is obtained by using the function GetData: C→{D} that
maps the component C to the set of data {D} that it uses. This function is applied to the
components ci and cj to obtain the sets of data {D}i and {D}j respectively, and the
intersections of these sets of data is computed to determine the common data used by
both components ci and cj. Then for each element of the computed set of common
data, the procedure CatchErrors is called.

Procedure CatchErrors takes identifiers of two components q and t interact-
ing using the data d. After the component q receives the data d that conforms to the
schema Sq, it is executed on this data, and passes the modified data to the component
t that expects the data to conform to the schema St. To obtain schemas Sq and St the
function GetSchema: C×D→ Sc is called to map the component C to the schema
SC that describes the data D. Procedure ComputeSchema symbolically executes the
abstract program of the component q on the schema Sq, producing the schema S

′
q.

Then the procedure Bisimulate is run on the schemas St and S
′
q in order to de-

termine whether they are equivalent. If these schemas are equivalent, then we termi-
nate the error checking algorithm without reporting any errors. Otherwise, the error
reporting the schema mismatch is printed and the procedures Catch-PP-Errors
and Catch-PS-Errors are invoked to report PP and PS types of errors in the com-
ponents q and t. The procedure Catch-PP-Errors is shown to catch PP-1 errors
only, since the logic for catching PP-2 errors is similar.

The idea of the Catch-PS-Errors procedure is to check to see that each path in
the set of paths accessed by interoperating components, P, exists in the schema graph,

XXIII
ViolaAlgorithm(C)
BEGIN
for each ci œ C do

for each cj œ C ⁄ ci ∫ cj do
GetData(ci) # {D}i

GetData(cj) # {D}j

D = {D}i …{D}j

if D ∫ « then
for each d œ D do

CatchErrors(ci, cj, d)
end for

end if
end for

end for
END

Catch-PP-Errors(Q, D)
BEGIN
for each pQ œ Q do

for each pD œ D do
if pD Œ pQ then

print error PP-1: accessing
deleted data elements

end if
end for

end for
END

Catch-PS-Errors(P, S)
BEGIN
for each p œ P do

length(p) # n
root(S) # current
for k = 1 to n do

GetLabel(p, k) # lk
if lk = ù then

children(current) # current
else if lk œ current then

children(lk) # current
else

print error: nonexistent
data elements

end if
end for

end for
END

CatchErrors(q œ C, t œ C, d œ D)
BEGIN
GetSchema(q, d) # Sq

GetSchema(t, d) # St

ComputeSchema(q, Sq) # S’
q

if Bisimulate(St,S’
q) = false then

print error: schema mismatch
GetPaths(q, d) # <Qq, Dq, Wq>
GetPaths(t, d) # <Qt, Dt, Wt>
Catch-PP-Errors(Qt, Dq)
Catch-PS-Errors(Qt, S’

q)
Catch-PS-Errors(Qq, Sq)
Catch-PS-Errors(Qt, St)
Catch-PS-Errors(Wq, St)

end if
END

Fig. 10. Viola algorithm for catching PP and PS errors in interoperating components.

S. It means that for each label in the given path the transition with this label should
exist in the schema graph. If no such transition is found, then an error is reported to
programmers.

The procedure Catch-PP-Errors takes sets of access and delete paths, Θ and
∆, as its input and computes whether a delete path is a subpath of some access path. If
a delete path is a subpath of some access path, then a possible PP-1 error is reported to
programmers.

Going back to the procedure CatchErrors, we observe that it invokes the pro-
cedure Catch-PP-Errors with parameters Θt and ∆q in order to compute if paths
in ∆q are subpaths of Θt. Then it calls the procedure Catch-PS-Errors four times.
First, it determines if the access paths of the component t, Θt, exist in the computed
schema S

′
q. Next, it verifies if the access paths of the component q, Θq, exist in the

XXIV

original schema Sq. Then, the same check is applied the access paths of the component
t, Θt, and the original schema St. Finally, the add paths of the component q, Ωq, are
checked to see if they exist in the schema St.

When an error is found, it is important to map it to the source code in order to im-
prove the quality of diagnostics. This mapping is accomplished in a series of steps. First,
recall that each path is associated with a node in a SET, and the function GetSetNodePath
maps a path to the unique identifier of a node in a SET. Each tree is mapped to an ab-
stract program, and a node of the tree is mapped to a specific abstract operation in this
program. From the triple (SET, SETNode, FSA), the abstract operations identified by
the FSA is obtained. From the pair (AP, SET) it is determine the abstract programs AP
whose SET is analyzed. From the table (C, SL, EL, AP) the component C and the its
scope are determined that match the abstract programs AP. Finally, from the table (C,
SL, EL, FSA) that links components to abstract operations identified by the FSAs, exact
scope of the component source code is determined that leads to the found error.

10 Prototype Implementation

A prototype implementation of the Viola architecture shown in Figure 3 is based on
the EDG Java front end C++ and Java parsers [7] and an MS XML parser. FSAs, ab-
stract programs, schemas, SETs, and even output errors are provided in the XML for-
mat, and we use the ROOF framework [24] to process XML documents. Our prototype
implementation included the analysis routines, symbolic executor, schema comparator
(bisimulator), and path analyzer with our error checking algorithms. We wrote these
components of Viola in Java and interfaced them with EDG front end parsers written in
C++ using the Java Native Interface. Our implementation contains less than 9,000 lines
of Java and C++ code.

11 Experimental Evaluation

In this section we describe the methodology and provide the results of experimental
evaluation of the Viola on subject programs.

11.1 Subject Programs

We applied Viola to two commercial programs for legal and paper supply chain do-
mains (the latter uses a large XML schema with over 1,600 types), and to open source
programs obtained from the Internet. One commercial application was written for a le-
gal office, and it used the Metalex schema. MetaLex is an open XML standard for
the markup of legal sources [26]. The other commercial application was written by a
now defunct startup company for papiNet, a transaction standard for the paper and
forest supply chain [27]. The combined source code of both commercial applications
was about 30,000 lines of C++ and Java code.

Open source programs are taken from different XML projects posted on the In-
ternet. The Book and Employees projects contain programs that generate, access,

XXV

and manipulate XML data that describe books and employees respectively [2]. Since
schemas are not available for these applications, we created them based on the avail-
able XML data. ProbeMsg is an application that creates XML data and sends it as a
stream to a different application [6]. HomeOwners applications illustrates the use of
the Xerces DOM parser to access and manipulate XML data that contains information
on homeowners includes their names, addresses, and closing dates of house purchases
[5]. Finally, the Happycoding website contains different applications that exchange
XML data [4]. Open source programs are small, ranging from less than a hundred to
less than a thousand lines of code.

11.2 Methodology

To evaluate Viola, we carry out two experiments to explore how effectively it catches
errors in the existing interoperating components, and how the precision of the data flow
analysis affects the number of false positives. We inject different bugs in the subject
programs and test how Viola catches them. We carried out our experiments using MS
Windows XP that ran on Intel Pentium 4 3.2GHz dual CPUs and 2Gb of RAM.

In the first experiment, we run Viola on subject programs with injected bugs. The
goal of this experiment is to determine how effective Viola is in catching bugs. We
report the sizes of the original programs in lines of code (LOC), number of nodes in the
corresponding CFGs, and the number of platform APIs used by programs to access and
manipulate XML data. We measure times taken by Viola to produce abstract programs
and to run the algorithm to report bugs. The time it takes to catch API errors is included
in the time of producing abstract programs because these errors are a part of building
program abstraction routines.

We inspect the source code of the subject programs before running Viola, and we
modify source code to inject bugs. Thus, we expect Viola to catch a certain number
of bugs. Viola may catch more bugs for two reasons. It is possible that we miss some
existing bugs during the code inspection, and Viola can report false positives. We report
the number of expected bugs, detected bugs, and false positives.

We are also interested in the breakdown of bugs based on their types as described in
Section 4. We report the number of expected and found bugs for each type of errors. This
information helps us to identify the effectiveness and precision of Viola for different
types of problems.

The goal of the second experiment is to evaluate the effect of having precise names
of data objects versus symbolic variables in abstract programs on the Viola’s rate of
false positives. Since program abstractions are approximations of actual programs, ac-
tual values are often replaced with symbolic variables. For example, if a real program
has a variable whose value is a name of a data object, and the value of this variable is
computed at runtime, then Viola uses a symbolic variable with an undefined value. In
order to compute precise values for abstract programs we need to use more sophisti-
cated analysis that takes more time and resources. In order to know that this additional
effort is justified, we manually replace symbolic variables in abstract programs with
precise names of data objects and we measure the number of false positives. The mea-
sured number of false positives is a function of the percentage of the using precise data

XXVI

object names versus symbolic variables in abstract programs. If the number of false pos-
itives does not decrease, then improving data flow analysis will not lead to increased
effectiveness of Viola. On the contrary, if Viola reports fewer false positives with the in-
creased precision of data flow analysis, then our approach is practical, can be improved
and used in the industrial settings.

11.3 Results

Experimental results with testing Viola on subject programs are shown in Table 5. This
table is divided into four main columns. The first column gives the name of the subject
project. Next column, Size, contains five subcolumns reporting sizes of subject pro-
grams, number of types in XML schemas, number of nodes in CFGs, LOCs of abstract
programs, and the numbers of API calls in the subject programs respectively. The third
column reports the analysis time in seconds and contains two subcolumns for the time
it takes to generate abstract programs and the time to catch errors. Finally, the Bugs
column reports the number of bugs. Its first subcolumn shows the number of expected
bugs for each subject project, the subcolumn Detected gives the number of bugs
caught by Viola, and the subcolumn False Positives shows the number of false
positives. For example, the ProbeMsg subject program was expected to have 15 bugs,
but after running Viola 32 bugs were detected, 14 of which were confirmed through
manual code inspection as false positives. It means that three more bugs were missed
during the initial code inspection.

A breakdown of expected and detected errors by their types for each subject pro-
gram is shown in Table 6. The difference between the number of detected and expected
errors is the number of false positives. A graphic distribution of the number of detected
and expected errors by their types is shown in Figure 11. Almost a half of all false
positives are generated by the PP type of errors. Recall that PP errors occur in compo-
nents that access data elements that are deleted by some other components (PP-1) and
by components that read or write wrong elements (PP-2). The reason for a high rate of
false positives is that Viola approximates paths through the data during symbolic exe-

Size Analysis Time, sec Bugs
Subject Prog- Schema, CFG APs, APIs, Gene- Error Expec- Detec- False
Program rams, No. of No. of LOC No. of rating Detec- ted ted Posi-

LOC Types Nodes calls APs tion tives
Book 109 16 682 16 27 22.7 3.2 10 16 6
Employees 638 11 2486 30 43 90.5 5.1 15 28 13
ProbeMsg 921 8 7301 57 82 183.6 4.7 15 32 14
Homeowners 147 12 662 32 61 28.3 1.8 15 27 12
Happycoding 372 34 924 47 58 50.4 9.2 15 36 21
papiNet 11048 1653 46934 916 1281 1958.3 28.3 30 103 58
MetaLex 18479 66 63937 835 1526 2739.0 42.9 15 59 46

Table 5. Experimental results of testing Viola on commercial and open source projects.

XXVII

cution. This approximation results in many spurious paths that are not navigated to or
modified when components interoperate at runtime.

API Errors PP-1 PP-2 PS-1 PS-1
Project Expected Found Expected Found Expected Found Expected Found Expected Found
Book 2 2 2 5 2 2 2 3 2 4
Employees 3 5 3 6 3 7 3 4 3 6
ProbeMsg 3 4 3 12 3 6 3 3 3 7
Homeowners 3 3 3 8 3 9 3 3 3 4
Happycoding 3 6 3 11 3 10 3 5 3 4
papiNet 6 17 6 25 6 31 6 13 6 17
MetaLex 1 5 4 21 1 13 2 5 7 15

Table 6. A breakdown of real and detected errors by error types.

The results of evaluating the effect of having precise names of data objects versus
symbolic variables in abstract programs on the Viola’s rate of false positives are shown
in Figure 12. The horizontal axis shows the percentage of symbolic variables that we re-
placed in abstract programs with actual data object names, and the vertical axis shows
the number of false positives. We observe that when close to 30% of symbolic vari-
ables are replaced with actual object names, the number of false positives decreases
approximately three times. Such a significant drop in false positives justifies the use of
elaborate data flow analyses that help to improve the precision of the generated abstract
programs.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

Object names, %

Fa
ls

e
P

os
iti

ve
s

D
et

ec
te

d

(a) Dependency of false positives issued by Viola
from the percentage of data object names versus
symbolic variables used in abstract programs.

0

20

40

60

80

100

120

API PP-1 PP-2 PS-1 PS-2

Types of Errors

N
u

m
b

er
 o

f
b

u
g

s

Expected bugs
Originally detected bugs
Detected bugs with 20% variables replaced with names
Detected bugs with 50% variables replaced with names

(b) The distribution of the number of detected
and expected errors by their types. The differ-
ence between the number of detected and ex-
pected errors is the number of false positives.

Fig. 11. Experimental results of testing Viola.

XXVIII

12 Related Work

Our work uses a variety of ideas introduced in different model checkers. Most of these
model checkers use the same abstract-verify-refine verification paradigm that Viola is
based on. Unlike other model checkers that determine whether programs match speci-
fications or satisfy certain logic predicates (invariants), Viola concentrates on verifying
that two components interoperating using XML data do not violate the predefined safety
properties. In doing so, Viola employs many common techniques used in other model
checkers, but in a novel way.

MAGIC is a model checker that creates models of C components using the method
of predicate abstraction, and compositionally verifies computed models using SAT solvers
[15]. Like our research, MAGIC uses state machines called linear transition systems to
express the desired behavior of systems, and it operates on the source code of C com-
ponents. By contrast, the Viola’s goal is to verify that two components do not violate
each other’s properties by computing incorrect data.

MOPS is a model checker for verifying that programs do not violate predefined se-
curity properties [16]. Like our research, MOPS uses FSAs to describe security proper-
ties of programs source code, and it computes models of verified programs by analyzing
APIs that affect security properties. Unlike our approach MOPS is used strictly to dis-
cover violations of security properties rather than to verify component interoperability.

SLAM is a model checker for C programs that is based on the method of counterexample-
driven refinement [14]. SLAM extracts boolean programs from C programs and per-
forms the reachability analysis on the extracted boolean programs by combining inter-
procedural dataflow analysis and the binary decision diagrams techniques. If a path that
leads to an error is not reachable, then SLAM tools analyze the feasibility of paths by
discovering additional predicates to refine boolean programs. Like our research, SLAM
builds abstract programs and performs path analysis in order to catch errors. Unlike Vi-
ola, SLAM does not address verification of interoperating components with respect to
the safety properties defined in terms of exchanged data, and SLAM analyzes execution
paths in programs, not in the data that they manipulate.

Blast is a model checker for C programs based on a lazy abstraction algorithm.
BLAST uses specifications for temporal properties written in C syntax [25]. For model
checking Blast uses the predicate abstraction method [23] to find bugs or prove the
specification.

Moped is a combined linear temporal logic and reachability checker for pushdown
systems [35]. Since pushdown systems can express programs with recursive procedures,
its power is equal to or greater than that of Viola’s. Moped can also process boolean
programs and interact with the SLAM checker.

SLAM, MOPED, and BLAST use the predicate abstraction method [23]. Like our
research, these model checkers can verify safety properties of programs using their
source code. However, these model checkers are not designed to verify properties of in-
teroperating components that use platform APIs to interact by accessing and modifying
data. By contrast, our solution abstracts away properties of interoperating components
that are not related to their interacting using data, and it analyzes paths in data computed
by symbolically executing abstract programs

XXIX

A static program analysis method checks structural properties of code by computing
an initial abstraction of the code that over-approximates the effect of function calls [36].
Like Viola, this method then refines the computed abstractions by inferring a context-
dependent specification for each function call, so that only as much information about
a function is used as is necessary to analyze its caller. Rather than concentrating on
specifications for function calls, Viola analyzes APIs that access and manipulate XML
data.

An automated verification system for XML data manipulation operations translates
XML data and XPath expressions to Promela, the input language of the SPIN model
checker [22]. The techniques of this system constitute the basis of a web service analy-
sis tool that verifies linear temporal logic properties of composite web services. Unlike
Viola, this system cannot be applied to arbitrary C++ and Java programs, however, Vi-
ola can use its ideas to further improve the verification process of interoperating com-
ponents.

13 Discussion and Future Work

Concrete instances of the model shown in Figure 1 are common even in small software
systems. Two components that inadvertently modify the same environment variable
work fine when running on separate computers, however, they malfunction when put
on the same machine. The reason is that the first component sets the value of the envi-
ronment variable, and this value is not recognized by the other component thus leading
to an error that is extremely difficult to catch. Similar situations occur when components
use databases, XML and HTML data, or system registries.

The main application of our work is to detect errors when components interact via
XML data using XML parsers as underlying platforms. However, components may
violate each other’s properties by using any kind of data hosted by different platforms.
This is known as emergent phenomena in complex systems, specifically software, that
occur due to interactions between the components of a system over time. Emergent
phenomena are often unexpected, nontrivial results of simple interactions of simple
components. Currently, no compiler checks interoperating components for violations
that occur as results of these interactions, even when components are located within the
same program. We believe that this paper is the first research step in this direction.

Our work has limitations. It is not clear what effort is required in general to create
FSAs for different platform APIs. While it is possible to use systems to extract these
FSAs from the source code of components [12], it remains to be seen whether automat-
ically extracted FSAs have enough precision to be used in Viola. When verifying C++
components that use pointers, especially function pointers, the number of false posi-
tives for API errors is increased significantly. In addition, if no explicit names of data
objects are used in components, then the number of false positives would be excessive.
However, in our experience once the source of a possible error is located, determining
whether it leads to actual errors is easier.

XXX

14 Conclusion

We present a novel solution called Viola for verifying safety properties of components
interacting via XML data. Viola can detect a situation at compile time when one compo-
nent modifies XML data so that it becomes incompatible for use by other components.
We implemented a prototype of Viola in C++ and Java using EDG Java and C++ and
XML parsers. Viola’s conservative static analysis mechanism reports potential errors
or ensures their absence for a system of interoperating components. We tested Viola
on open source and commercial systems, and we detected a number of known and un-
known errors in these applications with good precision thus proving the effectiveness
of our approach.

Acknowledgments

The author warmly thanks Don Batory for reading this paper and providing valuable
comments and suggestions that improved its quality.

References

1. Adobe PDF/XML architecture - working samples. http://partners.adobe.com/public
/developer/en/xml/AdobeXMLFormsSamples.pdf.

2. The book and employees projects. http://totheriver.com/learn/xml/xmltutorial.html.
3. eXtensible Markup Language (XML). http://www.w3.org/XML/.
4. The happycoding website. http://www.java.happycodings.com/XML/index.html.
5. Homeowners applications. http://www.sambito.net/AddExampleWeb/navJava.htm.
6. The probemsg project. http://www.akadia.com/services/java-xml-parser.html.
7. Edison Design Group. http://www.edg.com.
8. XML Schema. http://www.w3.org/XML/Schema.
9. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glos-

saries. Institute of Electrical and Electronics Engineers, January 1991.
10. Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry, GCR

04-867. NIST, August 2004.
11. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured

Data and XML. Morgan Kaufmann, October 1999.
12. G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In POPL, pages 4–16, 2002.
13. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.

In SPIN, pages 103–122, 2001.
14. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via static analy-

sis. In POPL, pages 1–3, 2002.
15. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software

components in C. IEEE Trans. Software Eng., 30(6):388–402, 2004.
16. H. Chen and D. Wagner. MOPS: an infrastructure for examining security properties of

software. In ACM Conference on Computer and Communications Security, pages 235–244,
2002.

17. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In CAV, pages 154–169, 2000.

XXXI

18. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, January
2000.

19. L. A. Clarke and D. J. Richardson, editors. Symbolic evaluation methods for program analy-
sis. Prentice-Hall, 1981.

20. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, Robby, H. Zheng, and
W. Visser. Tool-supported program abstraction for finite-state verification. In ICSE, pages
177–187, 2001.

21. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-
ing pushdown systems. In CAV, pages 232–247, 2000.

22. X. Fu, T. Bultan, and J. Su. Model checking XML manipulating software. In ISSTA, pages
252–262, 2004.

23. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In CAV, pages 72–83,
1997.

24. M. Grechanik, D. S. Batory, and D. E. Perry. Design of large-scale polylingual systems. In
ICSE, pages 357–366, 2004.

25. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with BLAST.
In SPIN, pages 235–239, 2003.

26. http://www.metalex.nl/pages/welcome.html. Metalex, 2002.
27. http://www.papinet.org. papiNet, 2002.
28. J. C. King. A program verifier. In IFIP Congress (1), pages 234–249, 1971.
29. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
30. D. Lee, M. Mani, F. Chiu, and W. W. Chu. NeT & CoT: Inferring XML schemas from

relational world. In ICDE, page 267, 2002.
31. D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining: helping to navigate the

api jungle. In PLDI, pages 48–61, 2005.
32. J. Meier, S. Vasireddy, A. Babbar, and A. Mackman. Improving .NET application perfor-

mance and scalability. Microsoft Corporation, 2004.
33. R. Schmelzer. Breaking XML to optimize performance. ZapThink LLC - special to Search-

WebServices.com, Oct. 2002.
34. D. Spinellis. A critique of the Windows application programming interface. Computer

Standards & Interfaces, 20(1):1–8, Nov. 1998.
35. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A java bytecode checker based

on Moped. In TACAS, pages 541–545, 2005.
36. M. Taghdiri. Inferring specifications to detect errors in code. In ASE, pages 144–153, 2004.

