
Title: Optimizing Data Page Placement for Similarity Join in Metric Spaces

By: Ving Ian Lei

Abstract

In this paper, we address the similarity join problem in metric space. We describe how
page locality may be improved by reorganizing disk pages using an algorithm borrowed
from numerical methods concerning the reorganization of the rows and columns of
matrices to form banded matrices. The model is further exploited as a method to schedule
the operations of similarity join for finding all pairs of neighbors in a metric space.
Experimental results demonstrate significant performance improvements over the
symmetric clustering join algorithm proposed in [15] and the cost-based clustering
algorithm presented in [7].

1. Introduction

Current databases are growing rapidly. Many works in the literature focus on the
retrieval, range queries, and the nearest neighbor problems. Similarity join is an important
primitive on such databases and deserves much attention also.

One example can be found in computational biology. In molecular biology, DNA and
protein sequence are the basic object of study. We usually index a given sequence of
characters inside a longer sequence. In this case, an exact match is unlikely, and
computational biologists are more interested in the problem that given a short sequence,
identify parts of a longer sequence which are similar to it. Genetic streams that describe
sequences of similar functionality, evolution etc. often differs slightly. This makes the
search not exact. The measure of similarity used depends on the type of differences one is
interested in.

Another example can be found in audio and video compression. The transmission of audio
and video over a narrow-band channel, such as internet-based audio and video
conferencing, is an important problem. One can think of a frame as formed by a set of
sub-frames. To solve the problem of audio and video transmission, we can send the first
frame as is, and for each subsequent frame, we only send those sub-frames that differ a lot
from the previously sent sub-frames. This poses the need to find sub-frames that are
similar to the one that is about to be sent among a collection of recently sent sub-frames.

In this paper, we address the similarity join in the context of general metric space. Joining
two large datasets are expensive. It involves two major costs: I/O cost and CPU cost. The
CPU cost is fixed since there is a fixed cost for the joining of each pair of data objects and
the number of pairs to be joined is fixed. On the other hand, I/O cost is not fixed. The
buffer space in the memory is limited and so some of the pages may have to be read

several times from the disk. Therefore, the schedule of reading the pages from disk
determines the I/O cost.

Traditional techniques for doing joins do not work well in these large databases. The
major bottleneck of doing joins is the disk I/O. When the database is much larger than the
available buffer, most of the pages that will be used later may be removed from the buffer.
In this case, most of the pages need to be fetched a multiple of times. Some approaches to
this problem have been proposed. However, most of these algorithms address the special
case for spatial datasets only. Different indexing schemes have also been proposed to
speed up similarity searches.

Our contribution

In this paper, our contribution is twofold. First, observe that if pages containing data that
are close together in the data space are stored close together on disk, the seek operations
during a join operation will be reduce. We present a method for improving page locality in
metric-space. This is achieved by first constructing a page-connectivity graph (PCG) on
the MVP-tree index of a dataset based on self-join. After that, we reorder the rows and
columns of the adjacency matrix of this graph to bring in as many marked entries near the
diagonal as possible using a heuristic for band-diagonalization from [15]. The disk pages
of the MVP-tree are then reorganized according to the order of the rows (or columns) of
the symmetric adjacency matrix to improve page locality. We also propose an algorithm
for joining two datasets in metric-space. A PCG is first constructed on the two datasets
based on the given join threshold. A marked entry in the matrix indicates that joining the
corresponding page pair may potentially contribute to the join of these datasets. We then
schedule the processing of the marked entries of the matrix in blocks that fit into the
available number of buffer pages. Our goal is to minimize the total I/O cost.

1.1 Page-Connectivity Graph

A page-connectivity graph (PCG) [10] describes the join relationship between two
datasets at the page level. It is a bipartite graph GB = (V1, V2, E) where vertex set V1
represents the pages from the first dataset, and vertex set V2 represents the pages from
the second dataset. There is an edge between page vi in V1 and page vj in V2 if and only if
there is at least one object from vi and one object from vj that satisfy the join predicate.

We can partition the nodes in V = V1 U V2 of the graph GB = (V1, V2, E) into disjoint
subsets while minimizing the number of edges between two different partitions. This is
called a min-cut node partition. The set of edges whose incident nodes are in two different
partitions is the cut-set of the min-cut partition. We will use an efficient min-cut partition
algorithm to cluster the pages in a PCG.

The rest of the paper is organized as follows. In section 2, we present a brief overview of

our techniques. In section 3, we explain our approach to improve page locality. We
describe the construction of a PCG, and the band-diagonalization heuristic algorithm that
we used. In section 4, we present our join algorithm. Section 5 gives the experimental
results. We conclude our paper in section 6.

2. An Overview of Our Technique

In this paper, we will assume a finite buffer of B pages and an affine disk model. For each
dataset, we assume that a multi-vantage point tree (MVP-tree) [2] index structure has
been built on it.

We choose to use an affine disk model [14] because it is a more realistic model than
simply counting the number of disk I/O’s. It is based on the observation that it may be
cheaper to read a few empty pages than to skip them. The cost (i.e. the elapsed time) of
reading a page mainly consists of two parts: seek time and transfer time. The seek time is
the time to move the arm of the disk to the right position in the file. The transfer time is
the time to transfer a page from disk into main memory. Let s be the seek time and t be
the transfer time. The cost of a read request transferring n pages is s + t * n. The average
seek time is usually much higher than transfer time. Therefore, if two or more required
pages are located close to each other, the total retrieval time may be reduced if all of them
are read in one request, even if some not required pages are read too, instead of reading
each page one by one. Of course, this requires additional buffer space. A sequence of not
required pages is called a gap. In this paper, we assume that the gap size g = s / t.

To improve page locality of a dataset, we start by constructing a PCG based on self-join.
We represent the PCG with an adjacent matrix. Each entry mij of this matrix associates
the ith page of the dataset to the jth page. If the bounding predicate of page i intersects
with that of page j, the corresponding entry mij in the matrix is marked. A marked entry in
the adjacency matrix indicates that the corresponding pages in the row and the column are
closely related. We then try to permute the rows and columns of the matrix so as to bring
in as many marked entries near the diagonal as possible. This is achieved by a heuristic for
band-diagonalization presented in [15]. This approach exploits global information across
the entire PCG. The band-diagonalization heuristic consists of two steps. First, we use a
min-cut partition algorithm, Metis [8], to divide the nodes of the PCG into disjoint
subsets while minimizing the number of edges between different partitions. After that, we
use a greedy algorithm to order the partitions. From this reordered adjacency matrix, we
can determine a good ordering of disk pages since all the similar pages are brought close to
each other along the diagonal of the matrix.

When joining two different datasets, we can use the same idea of a PCG described above.
First, we construct a PCG on the two datasets based on the given join predicate (i.e. a join
threshold). This gives us an estimate of what page pairs will join. Based on the adjacency
matrix of this PCG, we then devise a way to schedule the page reads from the datasets so

as to minimize the I/O costs. This algorithm is given in section 4.

3. Improvement on Page Locality

Page locality plays an important role in determining the total I/O cost for similarity search
and similarity join in metric-space databases. However, determining which data pages are
holding closely related data and thus should be placed near each other on disk is not easy.
We propose a method to improve page locality of a dataset through a global approach
based on band-diagonalization of the adjacency matrix of the PCG derived from the
dataset. This adjacency matrix is constructed based on self-join, and thus each marked
entry in it denotes the similarity between the corresponding page-pair under the join range
used. We further band-diagonalize the matrix so as to maximize the number of marked
entries near the diagonal. This has the effect of clustering closely related pages together.
We use a heuristic for band-diagonalization presented in [15]. Based on the row order (or
column order, these are the same since the matrix is symmetric) of the band-diagonalized
adjacency matrix, we reorder the data pages on disk accordingly so as to achieve page
locality. Next, we will describe the construction of PCG and the band-diagonalization
heuristic.

3. 1 Construction of the Page-Connectivity Graph

In order to find out which pages may contain objects that are likely to join together given
a join range, we construct a PCG. Figure 1 presents the algorithm that constructs the
adjacency matrix of the PCG. It gives a general algorithm that works for two datasets (As
we will see later in Section 4, this algorithm will be used again when we present our
similarity join algorithm). In the case of self-join, the same dataset is used for both
arguments. We assume that an MVP-tree index structure has been built on each of the
datasets. We also assume that the size of each leaf node is the same as one disk page. This
means that each node access from disk takes one disk I/O. This algorithm takes in the join
threshold and the root nodes of the two MVP-trees of the joining datasets as inputs. The
two trees are being traversed recursively, and the adjacency matrix is marked accordingly
when two leaf node overlaps.

In this algorithm, there are four cases to consider. When we are processing two internal
nodes, we first calculate the distances between each pair of vantage points of the two
nodes. After that, we decide for each pair of children of the two internal nodes whether
they overlap or not based on the Pruning Conditions (I will describe the Pruning
Conditions later in this section). If they overlap, the algorithm will be called again on
those two overlapping nodes for further processing; otherwise, those two nodes are
pruned, meaning that they will not be considered further. We get to the second and the
third cases when we are processing an internal node from one tree and a leaf node from the
other. In this case, we do not have to do much. We simply recurs the algorithm on the
children of the internal node with the leaf node. When we are processing two leaf node,

which is the last case, we know that they do overlap and so we can mark the appropriate
entry in the adjacency matrix of the PCG accordingly.

As mentioned above, we prune internal nodes in the first case based on the Pruning
Conditions. These are the conditions under which two nodes can be considered safely as
non-overlapping. Figure 2 and Figure 3 illustrated these conditions. When the distance d
between two vantage points is greater than the sum of the distances from each vantage
point to its outer bound, R1max and R2max, the two nodes do not overlap. This is Pruning
Condition 1. Two nodes also do not overlap if the sum of d and the distance from one
vantage point to its outer bound, R1max or R2max, is less than the distance of the other
vantage point to its inner bound, R2min or R1min. This is Pruning Condition 2.
Incorporating the join threshold into these conditions, we have the following conditions
for pruning nodes:

1) d > R1max + R2max + ε

2) d + R1max + (ε /2) < R2min - (ε /2) OR d + R2max + (ε /2) < R1min - (ε /2)

If either one of these conditions is satisfied, the two nodes will not be processed further.

/*
 Let R be the root of the MVP-tree of the first dataset.
 Let S be the root of the MVP-tree of the second dataset.
 Let ε be the join threshold.
 Let M = (mi,j) be the adjacency matrix of the PCG (originally, all entries are 0’s).
*/
Algorithm PCG (R, S, ε)

Case 1. R is an internal node and S is an internal node
1. Calculate the distances between each pair of vantage points of the two nodes
2. Check if any children of R overlap with any children of S
 For each child i of R
 For each child j of S
 For each VP of R
 For each VP of S
 If the Pruning Conditions are satisfied
 PRUNE i, j
 else
 PCG (i, j, ε)

Case 2. R is an internal node and S is a leaf node.
 For each child i of R

 PCG (i, S, ε)

Case 3. R is a leaf node and S is an internal node.
 For each child i of S
 PCG (R, i, ε)

Case 4. R is a leaf node and S is a leaf node.
 Mark M(R, S) = 1

Figure 1. Algorithm for constructing the adjacency matrix of the PCG.

Figure 2. Pruning Condition 1.

.
VP1

d

R1max

.
VP2

R2max

Pruning Condition 1:

 d > R1max + R2max

Figure 3. Pruning Condition 2.

3.2 Band-diagonalization

After we have constructed the adjacency matrix of the PCG, we rearrange the rows and
columns of the matrix to bring in as many marked entries as possible near the diagonal.
This is achieved by the band-diagonalization algorithm presented in [15].

Band-diagonalization can be based on various algorithms such as specialized envelope-
reduction algorithms [1], [3], or min-cut graph partition algorithms [8], [9].
In this paper, we use the min-cut graph partition algorithms, just as in [15]. This heuristic
approach for band-diagonalization is given in Figure 4.

/*
 Let M = (mi,j) be the adjacency matrix of a page-connectivity graph.
*/
Algorithm BD (M)

1. Partition M by a graph partitioning software, e.g. Metis.
 Partitions_Set = Graph_Partition(M)

2. Order the partitions in Partitions_Set by the number of cut-edges between the nodes in
different partitions in descending order.

.
VP2

. VP1 d

R1max

R2min
Pruning condition 2:

 d + R1max < R2min

Figure 4. Heuristic for band-diagonalization of the page-connectivity graph.

Given the adjacency matrix of a PCG, we use the min-cut graph-partitioning software
Metis [8] to partition this bipartite graph. A min-cut partition algorithm divides the
nodes of the PCG into disjoint subsets while minimizing the number of edges between
different partitions.

After we have partitioned the PCG, we determine an order for the partitions so as to
maximize the number of marked entries along the diagonal. This is achieved by putting
partitions that share a higher number of cut-edges next to each other through a greedy
algorithm. First, we construct a partition-interaction matrix M [15]. The rows and
columns of M represent the partitions. Each entry in M such as M[Pi, Pj] lists the number
of cut-edges between the partition Pi and Pj. After that, we sort the entries in M in
descending order, breaking ties arbitrarily. Then we pick an entry with the largest value.
This gives us a partition order with two partitions. We then extend this partition order on
both sides greedily, choosing the highest value of M[P2, Pi] and M[P3, Pj] in M. This
process gives us an order of the partitions. We can then reorder the rows and columns of
the adjacency matrix of the PCG according to this partition order. The rows and columns
within each partition are arranged arbitrarily.

4. Proposed Similarity Join Algorithm

There are two major costs involved in similarity join queries. These are the I/O cost for
reading pages from disk and CPU cost for joining the objects after the pages are read into
main memory. The cost of reading a set of disk pages highly depends on the location of
these pages. This is because the random seek cost is much higher than a sequential page
transfer cost. Therefore, reading a set of pages is cheaper if they are located close to each
other. We have presented a method to improve page locality in the previous section, and
now we present a similarity join algorithm that aims at minimizing the random seek cost
further through the scheduling of page accesses. This algorithm is given in Figure 5.

/*
 Let R be the root of the MVP-tree of the first dataset.
 Let S be the root of the MVP-tree of the second dataset.
 Let ε be the join threshold.
 Let B be the total buffer pages available.
 Let BR be the reserved buffer pages.
 Let BD be the buffer pages dedicated to each dataset.
 Let M = (mi,j) be the adjacency matrix of the PCG (originally, all entries are 0’s).
*/
Algorithm Similarity_Join (R, S, ε, BR)

1. M = PCG (R, S, ε)
2. BD = floor(B – BR) / 2
3. While not finish processing all marked entries of M
 Read BD marked pages from dataset 1
 Read BD marked pages from dataset 2
 Process the pages and remove the corresponding marked entries from M
 While there are marked entries overlapping any of those BD pages from dataset 1
 Read in BR of those pages
 Process the pages and remove the corresponding marked entries from M
 While there are marked entries overlapping any of those BD pages from dataset 2
 Read in BR of those pages
 Process the pages and remove the corresponding marked entries from M

Figure 5. Algorithm for our proposed similarity join.

This algorithm is inspired by merge join and the Symmetric Clustering algorithm
proposed in [15]. We reserve BD buffer pages for each dataset for the processing of pages
along the diagonal. The rest of the BR pages are used for processing pages that are
connected with the pages in the buffer.

5. Empirical Results

For the experimental evaluation of our similarity join algorithm, we tested its performance
on the following datasets:

∞ Synthetic uniform vector dataset: This dataset consists of one million vectors
randomly selected from a 5-D [0,1] super-cube. Euclidean distance is used for
comparing the similarity between data objects.

∞ Image dataset: It consists of 10221 images. Each image is represented by three
vectors corresponding to its properties in structure, color, and texture. A metric
distance function is defined for each feature vector [4, 5]. In our experiments, we
use a linear combination of the three metric distance functions as the distance
function. The distance values are continuous in [0, 1].

∞ Mass spectra signatures: This is the SWISS-PROT database downloaded from[11]
on 27 April 2004. We use a collaborator’s protein digestion program to compute
theoretical spectra for each protein. Each spectra is represented as a very high
dimensional binary vector. A fuzzy measure of the shared peaks count (SPC) can
be interpreted as a modified form of cosine distance [5, 6]. Two peaks are marked
as being equal if the absolute difference of their m/z values lies within certain
tolerance. Based on the cosine distance, the distance between two data points is
the angle between their vector representations. Thus, the distance values are
continuous in [0, π/2].

∞ Protein sequence fragments: This protein sequence dataset was downloaded from
GenBank in July 2003 [12]. The dataset contains FASTA formatted amino acid

translations extracted from GenBank/EMBL/DDBJ records that are annotated
with one or more CDS features. We split the sequences into overlapping fixed
length fragments or q-grams. The fragment length is 5. There is one q-gram for
each sequence element. The distance between two fragments is their global
alignment [13] score. The substitution matrix used is mPAM [17], which makes
the distance function metric.

We compare our algorithm with the Cost-based Clustering (CC) algorithm proposed in [7]
and the Symmetric Clustering (SC) algorithm presented in [15]. However, both papers
assume a linear I/O model. We have implemented a modified version of these algorithms
to fit in our affine I/O model. We assume a seek cost s = 0.1 sec. and a transfer cost t =
0.02 sec. in our experiments.

Given a dataset, we generate an adjacency matrix of the PCG based on self-join. The join
radius used for each dataset is shown in Table 1. In general, different join radius will affect
the clustering of the PCG. A larger join radius will result in more marked entries in the
adjacency matrix, and so more neighbors of a page may not be in the memory buffer. In
our experiments, we just choose a convenient join threshold to work with. In the future,
one may explore the effect of this component on the I/O cost.

Dataset No. of partitions Join threshold
Uniform vectors 500 0.0001
Images 100 1.0E-5
Mass-spectra signatures 200 0.05
Protein sequence fragments 500 1000000

Table 1. The number of partitions and the join threshold used for each dataset.

After a PCG is generated, we use Metis [8], a graph partitioning software, to partition it.
The number of partitions used for each dataset is shown in Table 1. We just choose a
convenient value for each dataset in our experiments. The number of partitions will affect
the clustering of marked entries along the diagonal of the adjacency matrices. Once we
have partitioned the PCG, we reorder the partitions so as to maximize the number of cut-
edges between partitions. Once we have determined this order, we permute the rows and
columns of the adjacency matrices accordingly. These resulting adjacency matrices are
used as input to the join algorithms.

We will explore the effect of the number of reserved buffer pages of our join algorithm,
and the effect of varying the number of buffer pages for the various join algorithms.

5.1 Effect of the Number of Reserved Buffer Pages

The number of reserved buffer pages (R) affects the number of consecutive pages that can
be read into the available memory buffer in one read request. A larger number of reserved

buffer pages may be advantageous if there are many marked entries in the adjacency
matrix that are far away from the diagonal. However, a larger number of reserved buffer
pages also means a smaller number of available buffer pages for processing entries near the
diagonal of adjacency matrices. Figure 5 shows the effect of different values of the number
of reserved buffer pages on the I/O cost.

We see that there is an optimal value for R in each case. At first, increasing R just a little
bit decreases the I/O cost steeply. After R has reached its minimum, increasing R leads to
the increase of I/O cost first slowly and then rapidly. The optimum value for R depends
on a number of factors, such as the clustering of marked entries along the diagonal, the
clustering and the density of marked entries away from the diagonal, the seek cost and
transfer cost etc.

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

3500

0 10 20 30 40 50

No. of Reserved Buffer Pages

I/
O

 C
o

s
t

(a) Uniform vectors: Buffer pages 100

270

280

290

300

310

320

330

340

350

360

370

2 3 4 5 6 7 8 9 10

No. of Reserved Buffer Pages

I/
O

 C
o

s
t

(b) Images: Buffer pages 20

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 10 20 30 40 50

No. of Reserved Buffer Pages

I/
O

 C
o

s
t

(c) Mass-spectra signatures: Buffer pages 100

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50

No. of Reserved Buffer Pages

I/
O

 C
o

s
t

(d) Protein sequence fragments: Buffer pages 200

Figure 6. Effect of the number of reserved buffer pages on I/O cost.

 5.2 Effect of the Number of Buffer Pages

A larger number of buffer pages often decreases the number of page accesses. Figure 7
shows the effect of the number of buffer pages on the I/O cost. In this set of experiments,
we use an optimal R for our algorithm. The values we used are shown in Table 2.

No. of Buffer Pages Image
10 4
20 6
30 8
40 10

50 14

No. of Buffer Pages Uniform vectors Mass-spectra
signatures

Protein sequence
fragments

100 30 20 20
200 30 30 30
300 40 30 30
400 40 40 40
500 50 40 50

Table 2. The value of R we used for each dataset and each number of buffer pages.

Figure 7 shows the effect of the number of buffer pages on I/O cost. Our algorithm
outperforms our competitors. This difference is especially obvious when the number of
buffer pages is small. SC generally gives the highest I/O cost. As the number of buffer
pages increases, CC’s performance gets closer to ours. However, CC has a very high
processing cost which is not reflected in the I/O cost.

0

1000

2000

3000

4000

5000

6000

7000

100 150 200 250 300 350 400 450 500

No. of Buffer Pages

I/
O

 C
o

s
t SC

CC

Our Algm

(a) Uniform vectors

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

No. of Buffer Pages

I/
O

 C
o

s
t SC

CC

Our Algm

 (b) Images

0

5000

10000

15000

20000

25000

30000

35000

100 150 200 250 300 350 400 450 500

No. of Buffer Pages

I/
O

 C
o

s
t SC

CC

Our Algm

(c) Mass-spectra signatures

0

1000

2000

3000

4000

5000

6000

7000

8000

100 150 200 250 300 350 400 450 500

No. of Buffer Pages

I/
O

 C
o

s
t SC

CC

Our Algm

(d) Protein sequence fragments

Figure 7. Effect of the number of buffer pages on I/O cost.

6. Conclusion

In this paper, we addressed the similarity join problem in metric-space. We have
proposed an algorithm to improve page locality through the construction of a PCG, which
is based on self-join, and band-diagonalization. We have also introduced an algorithm for
the scheduling of the similarity join operations for finding all pairs of neighbors in a
metric-space so as to minimize the I/O cost. We assumed an affine I/O model throughout
the paper. Experimental results show that there is a significant reduction in the I/O cost
for our algorithm when compared to the SC algorithm and the CC algorithm.

In our experiments, we have used a convenient value for the number of partitions when
we partition the PCG. This parameter affects the clustering of the reordered adjacency
matrix and thus the resulting page locality. One may wish to explore its effect. We also
fixed a join threshold for each of our dataset. The join threshold affects the degree of
connectivity of the PCG, that is, the number of marked entries in the PCG. This is also a
component that one may want to explore. In our proposed similarity join algorithm, we
just run experiments to determine a good value of R to use for each buffer size. R depends
on the clustering of the marked entries in M that are far away from the diagonal. It also
depends on the seek cost and transfer cost. This is also a parameter worth addressing.

References

[1] S.T. Barnard, A. Pothen, and H.D. Simon, “A Spectral Algorithm for Envelope
Reduction of Sparse Matrices,” Numerical Linear Algebra with Applications, vol.2, no.4,
pp. 317-334. 1995.

[2] T. Bozkaya, and M. Ozsoyoglu, “Distance-Based Indexing for High-Dimensional
Metric Spaces”, Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data, May 1997, pp. 357-368.

[3] A. George and A. Pothen, “An Analysis of Spectral Envelope-Reduction via
Quadratic Assignment Problems,” SIAM J. Matrix Analysis and Its Applications, vol. 18,
no. 3, pp. 706-732, 1997.

[4] D.S. Hochbaum, and D.B. Shmoys, “A best possible heuristic for the k-center
problem”, Mathematics of Operational Research, 1985, Vol. 10(2), pp. 180-184.

[5] Q. Iqbal, and J.K. Aggarwal, “Perceptual Grouping for Image Retrieval and
Classification”, 3rd IEEE Computer Society Workshop on Perceptual Organization in
Computer vision, Vancouver Canada, July 8, 2001, pp. 19.1-19.4.

[6] Q. Iqbal, and J.K. Aggarwal, “Image Retrieval via Isotropic and Anisotropic
Mappings”, Pattern Recognition Journal, December 2002, Vol. 35, no. 12, pp. 2673-2686.

[7] T. Kahveci, C. Lang, A.K. Singh, “Joining Massive High-Dimensional Databases”,
ICDE 2003, Banglore, India.

[8] G. Karypis and V. Kumar. Metis Home Page. http://www-
users.cs.umn.edu/karypis/metis/metis/main.html.

[9] G. Karypis and V. Kumar, “Parallel Multilevel Graph Partitioning”, Proceedings of
Supercomputing, November 1996.

[Merrett et al. 1981] T. H. Merrett, Y. Kambayashi, H. Yasuura, “Scheduling of Page-
Fetches in Join Operations”, VLDB 1981, pp. 488-498

[11] NCBI Mass Spectra data website:
ftp://ftp.ncbi.nih.gov/blast/db/FASTA/swissprot.gz

[12] NCBI protein data website: ftp://ftp.ncbi.nih.gov/genbank/genpept.fsa.z

[13] S. B. Needleman and C.D. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins”, Journal of Molecular Biology,
1970, Vol. 48, pp. 443-453.

[14] B. Seeger, P. Larson, R. McFadyen, “Reading a Set of Disk pages”, VLDB 1993, pp.
592-603.

[15] S. Shekhar, C.T. Lu, S. Chawla, S. Ravada, “Efficient Join Index Based Join
Processing: A Clustering Approach”, IEEE Transactions on Knowledge and Data
Engineering. Vol. 14, No. 6 (Nov/Dec 2002), pp. 1400-1421.

[16] T. Wang and D. Shasha, “Query Processing for Distance Metrics”, Proceedings of
the 16th VLDB Conference, 1990.

[17] W. Xu, and D.P. Miranker, “A metric model for amino acid substitution”, in press
Bioinformatics, 2003.

