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Abstract
The problem of how abstract symbols, such as those in systems of natural language,

may be grounded in perceptual information presents a significant challenge to sev-

eral areas of research. This thesis presents an unsupervised learning model that

allows analysis of the symbol-grounding problem. The model learns associations

between visual scenes and linguistic descriptions and provides means for direct ex-

amination of what it has learned. By analyzing the system, it is possible to assess

how well symbols can be grounded in perceptual information with an unsupervised

neural network architecture. The model demonstrates potential for accomplishing

grounding in artificial systems and provides valuable insight into the grounding

task.
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1. Introduction

In order for symbols to possess intrinsic meaning, they must have relationships to

what they represent (Harnad 1990). If a symbol system is not grounded in this

manner, then the meanings of its symbols can only be defined in terms of other

symbols, never establishing a relationship to the outside world. To illustrate this

point, consider trying to learn a language solely by reading a dictionary written in

that language. This would be an impossible task because none of the symbols in

the language would have any bindings to the external world, and so the symbols

would be meaningless. Thus, to some extent symbols must be directly linked to

their referents.

1.1 Motivation

The symbol-grounding problem presents a significant challenge for several fields,

including philosophy, robotics, and cognitive science. It is as of yet unknown to

what extent abstract symbols may be grounded directly in perceptual experience

and a cognitively plausible model of how this is accomplished is still lacking. This

motivates the work presented in this thesis, which describes and examines an unsu-

pervised neural network model that addresses the symbol-grounding problem.

The necessity for grounded symbols has been put forth as a criticism of attempts to

model human intelligence with purely symbolic systems (Harnad 1990). Accord-

ing to the criticism, regardless of how intelligent the behavior of a system seems,

if its symbols depend on external interpretation to attain meaning then it cannot be

said that the system has achieved understanding. For understanding to occur, the
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symbols must have inherent meaning for the system in terms of its experiences of

the external world. In other words, the symbols must relate to the system’s per-

ceptual experience. In order to develop a symbol system, it is necessary then to

understand how symbols may become grounded in their perceptual correlates.

The grounding of symbols requires establishing perceptual categories and associ-

ating these categories with abstract tokens. Consider as an example how one may

learn the meaning of the symbol “square”. First it is neccessary to determine the

commonalities of all the external objects to which the symbol refers that are dis-

tinct from attributes of objects in other categories. It must be determined what is

meant by “squareness”. This process involves emphasizing the differences between

categories and minimizing the differences within categories, a process referred to

as “categorical perception” (Harnad 1987). A square refers to an object with four

sides of equal length and not just to a closed figure. Once the boundaries of a cat-

egory have been established, it can be bound to an abstract token, at which point

symbol-grounding has occurred. In our example, once acquired, the concept of

“squareness” can be associated with the token “square” and the meaning of the

token becomes established. Successfully modeling this process computationally

could allow symbols used by machines to have directly grounded meanings as well

as provide insight into how grounding may be accomplished by the human brain.

1.2 Approach

Neural network architectures provide strong candidates for such computational mod-

els. Several neural network models of symbol-grounding have been presented and

studied, some of which will be discussed in Chapter 2. This thesis continues
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this strain of research, proposing a new model. Unlike previous architectures, the

model attempts to accomplish symbol-grounding through a completely unsuper-

vised learning procedure. The network learns correlations between visual scenes

and linguistic descriptions. After the network is trained, it will be analyzed to see

how well it has grounded the meanings of linguistic tokens in their correspond-

ing visual inputs. The model presented by this thesis was chosen because like

architectures have been shown to perform well on learning tasks similar to sym-

bol grounding (Miikkulainen 1997; Li 1999), as will be discussed in Section 3.2.

The architecture uses self-organizing maps (Section 3.4) and associative connec-

tions between them (Section 3.5) to accomplish the learning task in a completely

unsupervised process.

The lack of corrective error feedback makes the model more neurologically plau-

sible (Section 3.1). Additionally, the vastly simplified problem domain presented

by this thesis allows for direct examination of what the model has learned. This

ability to examine representations directly could prove valuable for future attempts

at understanding symbol grounding and for building grounded systems.

1.3 Overview of the Thesis

This thesis consists of three parts: Introduction and Background (Chapters 1 and

2), Model and Experiment (Chapters 3 and 4), and Evaluation (Chapters 5 and 6).

Chapter 2 discusses the symbol-grounding problem and the philosophical ideas

behind it. Several studies examining the issue of grounding are also discussed.
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Chapter 3 describes the neural network model which is examined in this thesis.

The implementation of the learning task is also explained.

In Chapter 4, an experiment which examines the grounding capabilities of the

model is described and the results are discussed.

Chapter 5 reviews the accomplishments of this thesis and outlines several pos-

sible extensions to be undertaken in the future.

Finally, Chapter 6 offers a summary of the research efforts presented in this thesis

and concludes.
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2. Background

The purpose of this thesis is to present and analyze an unsupervised learning model

of how linguistic symbols may be grounded directly in visual information. This

chapter provides background information on the symbol-grounding problem and

several research efforts that have addressed the challenge that it presents. The

first section of this chapter discusses some of the philosophical ideas behind the

symbol-grounding problem. The second section discusses several other research

investigations that have examined the issue of grounding. The third and final sec-

tion summarizes the significant results from the previous two sections and explains

the significance of the work described in this thesis in light of these findings.

2.1 Philosophical Foundations

The idea behind the symbol-grounding problem is well expressed in the thought ex-

periment of the Chinese Room Argument (Searle 1980). Consider a man with no

knowledge of the Chinese language placed in a room with two openings. Through

one of the openings, questions written in Chinese are passed. The man’s task is

to write appropriate responses to the questions and pass them through the other

opening. The man has with him a book containing an exhaustive list of possible

questions written in Chinese and corresponding appropriate responses, also written

in Chinese. With this resource, the man is able to look up the questions which are

passed in and write down appropriate responses from his book. The point of con-

sideration then is whether the man in the room can be said to understand Chinese.

Clearly this is not the case because none of the Chinese symbols have any mean-

ing for the man. The man has no idea what any of the symbols refer to because
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they are not grounded in his perceptual experiences. This situation is analogous to

the computation done by purely symbolic systems. Such a system has no way of

binding the meanings of its symbols to the outside world. Thus the symbols have

no intrinsic meanings and the system is incapable of gaining understanding. This is

the symbol-grounding problem, as presented by Harnad (1990).

Harnad argues that abstract symbols must be grounded bottom-up in two forms of

representations, both deriving directly from perceptual experience. The first type,

iconic representations, are analogs of the direct sensory experience of an external

object or concept. These correspond to the actual sensory projections made by a

scene on our perceptual systems. The second type of representation, a categori-

cal representation, is formed when the unique features of a concept category are

extracted by feature detectors. These representations are still based directly on sen-

sory experience but represent prototypes of an object or concept category. With

these forms of representations in hand, abstract symbolic representations can be

grounded in representations formed directly from perceptual experience. Addition-

ally, Harnad argues that once a set of “entry-level” symbols are grounded in this

fashion, “higher-level” symbols can be grounded in terms of those entry-level sym-

bols without being directly grounded in experience. For example, once the category

“horse” and the concept “striped” have been directly grounded, the category “ze-

bra” can be grounded by learning that it corresponds to a striped horse. This ability

to transfer learned meanings facilitates purely symbolic learning once a set of sim-

ple symbols have been grounded.

Harnad’s formulation of the symbol-grounding problem has motivated a large num-

ber of studies examining how symbols may become grounded. Several such studies
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will now be examined.

2.2 Symbol Grounding Research

Harnad proposes his own solution to the symbol-grounding problem: a combined

connectionist/symbolic model (Harnad 1990, 1993). He suggests that a connec-

tionist network is a strong candidate for the grounding of symbols and that once

grounded, a symbolic system can be used to learn the meanings of complex sym-

bols from symbolic descriptions. This type of model has been examined by several

studies that have successfully demonstrated the strength of connectionist learning

in the grounding task (Cangelosi, et al. 2000; Riga, et al. 2004). These mod-

els demonstrated that symbols could be grounded with connectionist networks, al-

lowing for transfer of meaning from grounded symbols to higher level symbols.

In these studies, supervised learning procedures were used to train the networks.

While these models transfer from connectionist to symbolic learning after simple

symbols have been grounded, others have proposed that connectionist models may

be capable of learning grounding for complex concepts and even syntactic structure

(Gasser 1993). It remains unclear to what extent connectionist models are capable

of achieving grounding.

In the study of grounding, a task for learning the meanings of symbols from corre-

sponding visual information has been put forth as an important challenge for cogni-

tive science (Feldman, et al. 1990). The task is for a system to learn the meanings

of symbols from pairings of visual scenes and linguistic descriptions. With minimal

complexity of scenes and descriptions, this task addresses many important facets of

the grounding problem. The task allows for a vast simplification of the symbol-
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grounding task accomplished by human infants. However, if completed success-

fully, the results could provide valuable insight into how more complex grounding

is accomplished.

Numerous studies have adopted this methodology for examining grounding (see

Feldman, Lakoff, et al. for a review of several studies). One such study presented a

model, called the DETE architecture, that learned relationships between sequences

of scenes and descriptions (Nenov and Dyer 1993, 1994). The visual scenes con-

sisted of simple shapes of varying sizes and positions. Sequences of scenes demon-

strated actions such as “bounce” and “push” and the linguistic sequences were de-

scriptions of the scenes. The model demonstrated strong grounding capabilities; it

was able to learn descriptions for considerably complex visual scenes. However,

the complexity of the model makes it difficult to examine exactly what meanings

have been learned for different symbols. The visual scenes were also preprocessed

by feature extractors, so the model did not learn directly from the scene bitmaps.

The learning task used by Nenov and Dyer provided the primary motivation for the

study presented in this thesis.

2.3 Conclusion

This chapter reviewed the philosophical underpinnings of the symbol-grounding

problem as well as a discussion of some research efforts that have addressed it.

The task of learning correspondences between visual scenes and linguistic descrip-

tions and its significance for symbol-grounding were also discussed. The extent to

which symbols can be directly grounded in perceptual information and a neurally-

inspired model of how this may be accomplished is still an open question. The work
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presented in this thesis proposes such a model and demonstrates how its symbol-

grounding capabilities can be analyzed. Unlike previous models, it learns in a com-

pletely unsupervised fashion. Additionally, the model allows for direct examination

of what has been learned, which is greatly beneficial in a study of symbol ground-

ing.
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3. Model

In this thesis, the symbol-grounding problem is approached by analyzing the ground-

ing capabilities of an unsupervised neural network learning architecture. The task

is to learn correlations between simple visual scenes and corresponding linguistic

descriptions. This chapter describes in detail the design and implementation of the

network architecture and learning task. The first section describes the network ar-

chitecture, the second and third sections describe the visual scenes and linguistic

descriptions used in the learning task, the fourth section describes self-organizing

maps (SOMs), the fifth section describes the associative connections between the

SOMs, and the last section summarizes the network model and learning task.

3.1 Network Architecture

The neural network model consists of two self-organizing maps (SOMs, Section

3.4), one each for the linguistic and visual inputs. The SOMs are connected to each

other with many-to-many associative connections between the nodes of the maps

(Figure 3.1). The model is trained to learn correspondences between scenes and

descriptions by presenting complementary pairs of scenes and descriptions to both

SOMs simultaneously. The inputs are used to modify the data stored in the SOMs

and the associative connections between the maps are updated. After training, it is

possible to present a description to the linguistic SOM, propagate through the as-

sociative connections, and generate the visual scene which the network associates

with that description. Similarly, it is possible to present a visual scene and view the

corresponding linguistic description or descriptions.
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Figure 3.1:Network architecture. The network consists of two SOMs, a linguistic map
and a visual map. The units of the maps are connected with many-to-many associative
connections. Each unit of the maps contain a prototype formed from the inputs to the
network. The associative connections between the units represent the learned relationships
between linguistic and visual information.

Each SOM functions as a memory module for its respective input type, either vi-

sual or linguistic. Each node on a SOM has an associated representation vector

of the same dimensionality as that map’s input vectors. When trained, these rep-

resentation vectors are modified to more closely resemble similar inputs from the

training examples. In this way, nodes of the maps become prototypes of the input

vectors. An additional characteristic of the SOM is that similar inputs are mapped

onto topologically proximal nodes of the map. The result is that nodes on the maps

that are close together contain prototypes for similar inputs. The SOM generates

prototypes from the input vectors without any corrective error feedback, or in other

words, it is an unsupervised learning procedure. This is a desirable characteristic
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when attempting to model human developmental learning because there is little ev-

idence that children receive clear corrective error signals from their environments.

SOMs have also demonstrated wide applicability in modeling other areas of cogni-

tion, including vision and audition (Kohonen 1997).

The associative connections between nodes of the SOMs represent the learned con-

nections between the scenes and descriptions. The connections from a visual node

represent the strengths of associations between that node and possible linguistic

descriptions, and the converse is true for connections from a linguistic node. In

other words, the strongest connections from a visual node represent the model’s

best descriptions for that scene and the connections from a linguistic node repre-

sent images for that description. An important aspect of these connections for the

purposes of symbol-grounding are their many-to-many connectivities. These many-

to-many mappings allow for several scenes to be strongly associated with a given

description, and vice versa. Such connectivity is important for grounding because it

is necessary to maintain many possible associations for a given scene or description.

For example, for the description “small square”, the model should have strong as-

sociations for scenes containing squares in many positions, not just one. Similarly,

it is possible for a given scene to be described in numerous ways, and the model

should retain these various descriptions. It may be possible to describe a certain

scene as “a square”, “a small object”, “a small object in the middle”, etc., and the

model should retain these descriptions. The associative connections in the model

are effective for this purpose.

Network architectures similar to the one presented in this thesis have been shown

to be successful at tasks that are analagous to symbol grounding. In one study, such
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a model was shown to successfully learn associations between linguistic modalities

(phonological and orthographic) and the semantic meanings of words (Miikkulai-

nen 1997). The model was used successfully as a lexicon module in a larger story-

processing system and also exhibited behavior similar to dyslexia when lesioned.

Another study used a like architecture in modeling the acquisition of verb seman-

tics (Li 1999). In this study, the model was shown to successfully exhibit various

attributes that make it desireable for studies of language acquisition, including the

abilities to generalize and form representations. Both of these studies supported the

hypothesis that the model presented in this thesis would be a strong candidate for

the symbol-grounding task.

3.2 Visual Inputs

The visual inputs for the model were20 × 20 grayscale bitmaps, represented by

400-dimensional vectors with each component between 0 and 1. The visual inputs

consisted of one-object and two-object scenes. There were 8 types of objects used

in the scenes: open squares, filled squares, open diamonds, filled diamonds, left

triangles, right triangles, X’s and Z’s (Figure 3.2. The objects varied in their sizes

and positions. Scenes with two objects presented various relationships between ob-

jects: “inside of”, “around”, “to the left of”, “to the right of”, “above” and “below”.

These dimensions for variation provided a significantly large set of possible scenes,

making the learning task considerably difficult.
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Figure 3.2:Sample Visual Inputs. The visual inputs were 400-dimensional vectors rep-
resenting20 × 20 grayscale bitmaps. The vector components were either 0 (black) or 1
(white). The scenes had either one or two objects.

3.3 Linguistic Descriptions

The linguistic descriptions for the visual scenes were generated from a 31 word

vocabulary. The vocabulary contains words for describing attributes of individual

objects (size, shape, and position) as well as relationships between objects. The

generative rules for scene descriptions can be found in Table 3.1. A given scene

may be described by a number of possible descriptions, and similarly there may

be a number of different scenes given the same description. This is a key aspect

of the symbol-grounding problem. There are many-to-many mappings between

scenes and descriptions, as is the case in the real world. In order to successfully

complete the task, it is necessary to learn the meanings of individual symbols. This
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Generative Rules for Scene Descriptions
Description = NP | REL
REL = NP relterm NP
NP = [size] object [position]
object = specobj| “object”
relterm = “above” | “below” | “to the left of” | “inside of” | etc.
specobj= “open square”| “filled diamond” | “left triangle” | etc.
size= “small” | “medium” | “large”
position = “in the top left” | “in the middle” | “on the right” | etc.

Table 3.1:Generating a Linguistic Description. These rules describe the potential de-
scriptions that may be generated for a given scene. These various descriptions for a given
scene create many-to-many mappings between scenes and descriptions. Therefore, the
learning task requires extracting the meanings of individual symbols rather than simply
learning (scene, description) pairings.

learning task amounts to categorical perception (Section 2) and, if successfully ac-

complished, would allow the network to generalize the meanings of the symbols

to novel situations. The linguistic descriptions were represented by 31-dimensional

vectors, with each unit of the vector corresponding to a distinct word in the vocab-

ulary. The vector components were between 0 and 1. The sequential information

of the descriptions was represented by decaying the activations of the vector com-

ponents linearly with respect to their positions in the sequences. This process for

generating the linguistic descriptions is described in Table 3.2. This technique for

representing sequential information through activation decay was inspired by the

SARDNET model (James and Miikkulainen 1995).

3.4 The Self-Organizing Map

The Self-Organizing Map (SOM) is a system for unsupervised learning that maps

high-dimensional input vectors onto a two-dimensional feature map (Kohonen

15



Procedure for Generating a Linguistic Representation
INITIALIZE all components of description vector to 0
WHILE linguistic description is not complete

multiply all vector components by 0.9
set vector component for next word to 1

ENDWHILE

Table 3.2:Generating a Linguistic Representation.This pseudocode describes the pro-
cess for creating a linguistic description vector that embodies the temporal information of
the linguistic sequence. The activation for a word in the sequence is decayed linearly with
respect to its position in the sequence.

1989, 1997). The input vectors contain descriptions of observations about the envi-

ronment. The map consists of an array of interconnected nodes, where each node

i has an associated representation vectormi = [µi1, µi2, ..., µin]T ∈ Rn. During

training, an input vectorx = [ξ1, ξ2, ..., ξn]T ∈ Rn is compared with the representa-

tion vectors for all map nodes in parallel and the node whose representation vector

is most similar to the input vector is chosen to represent the input on the map. This

node is referred to as the Best Matching Unit (BMU). A standard Euclidean dis-

tance measure was used to determine the similarity between the vectors. Thus, the

BMU is determined by finding c such that:

c = arg min
i
|x −mi|. (3.1)

Once the BMU has been determined, the map is modified by updating the BMU

and the nodes in its neighborhood to reflect the new input. The reference vectors

for the nodes are adjusted so that they more closely resemble the input vector. The

adjustment is determined by topological distance from the BMU. The nodes are

modified such that:

mi(t + 1) = mi(t) + α(t) · hci(t)[x(t) −mi(t)] (3.2)
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where t is an integer discrete-time coordinate,α is the learning rate, andhci is a

neighborhood function. The functionhci determines the amount of modification

for map nodes with respect to their distance from the BMU. The neighborhood

function used for this thesis was a square area around the BMU. In other words,

nodes within a square neighborhood around the BMU were adjusted towards the

input vector with a uniform learning rate and nodes outside the neighborhood were

left unchanged.

3.5 Associative Connections between Maps

Each node on a map, either linguistic or visual, has unidirectional connections to

every node on the other map. The strengths of these connections represent the

strength of associations between a given description and possible scenes, or con-

versely between a given scene and possible descriptions. When training samples are

presented to the maps, each map node produces an activity strength. This strength

is proportional to the similarity between the input vector and the node’s represen-

tation vector, as determined by Eudlidean distance. The associative connections

between map nodes are then adjusted with respect to their activity strengths, using

Hebbian learning (Hebb 1949). The connection between two nodes is strengthened

proportional to their activity levels:

∆wij,uv = α(t)nS,ijnD,uv, (3.3)

wherewij,uv is the unidirectional weight between the source map node at location

(i, j) and the destination node at location(u, v), andnS,ij andnD,uv represent the

activations of these units, respectively. This serves to strengthen the connections

between nodes that are simultaneously active. The associative weight vectors are
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then normalized, which serves to decrease the strengths of connections to inactive

units. In this way, the model is able to learn cooccurrence relationships between

nodes on the different maps.

3.6 Conclusion

The network architecture described in this chapter uses an unsupervised learning

procedure to learn relationships between visual scenes and linguistic descriptions.

The architecture uses self-organizing maps as memory and prototype-formation

modules and associative connections between the maps are trained with Hebbian

learning. The associative connections represent the learned relationships between

scenes and descriptions. The technique for encoding visual scenes and linguistic

descriptions as feature vectors was also described.
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4. Experiment and Results

In this chapter, an analysis of the network’s symbol-grounding capabilities is pre-

sented. The first section describes the protocol that was used to train the network.

The second section describes how the model was tested and its performance was

measured. The final section presents and discusses the results from experimenta-

tion with the model.

4.1 Training Procedure

The network was trained for 2000 epochs with 2500 (scene, description) training

pairs. The training pairs consisted of50% one-object scenes and50% two-object

scenes. The descriptions were generated so that size, shape, and position infor-

mation was included in80% of the samples. This was done in hopes that it would

expedite the network’s learning. The idea was that the network can learn more from

a description such as “small open square on the left” than it can from the descrip-

tion “object”, which lacks any meaningful information. The training pairs were

presented in random order. The same learning rateα(t) was used for both maps

and the associative connections. The learning rate was decreased linearly from 0.1

to 0.05 over the first 500 epochs and then decreased linearly to 0 during the re-

maining epochs. At the same time, the neighborhood size for both maps decreased

linearly from 4 to 1 and then from 1 to 0.
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4.2 Testing Procedure

One strong attribute of the model presented in this thesis is that it facilitates sev-

eral forms of testing to assess what the network has learned. It is possible to test

the network by examining its ability to produce an appropriate scene when given a

description or vice versa. The former corresponds more with language generation

capabilities and the later is a more effective examination of symbol-grounding, and

so for the purposes of this thesis the later measure was used. The network was pre-

sented with descriptions and its ability to produce appropriate scenes was analyzed.

However, both forms of examination are useful in assessing the network’s perfor-

mance, as grounding is necessary for both directions, and so analysis of the former

type is planned for the future.

During testing, a description was presented to the linguistic map and the BMU was

determined. The associative connections for the BMU were then displayed. Here

again there were different options for analyzing the network’s performance. Either

the network’s strongest association for the BMU could be chosen as the response

or an average of all responses weighted by their associative connections could be

formed as a composite response. Both ways of interpreting the results offered valu-

able insight into the learning accomplished by the network. For the purposes of this

thesis, responses are determined by the strongest associative connection from the

BMU.

Although the model presents multiple ways of analysis, interpreting its results and

performance poses a difficult challenge. When judging how appropriate a visual

scene is for a given description there is no quantitative measure of performance that
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is readily apparent. Judging performance when generating descriptions of scenes,

while potentially easier to analyze, still presents a nontrivial task. For each scene,

the network will, hopefully, generate numerous descriptions. This generation of

multiple descriptions is desired because for any given scene there are numerous

potential descriptions that are accurate. In analyzing the network’s responses, it is

unclear which valid descriptions the responses should be compared with and how

this similarity should be measured. Therefore, both ways of analyzing the network’s

performance present significant challenges to deriving quantitative measures, and

formulating such measures is a future goal for this project. At present, the analysis

used is to grade the network’s visual responses subjectively. Each response was

assigned a score from 0 to 1 in increments of 0.1 based on how appropriate it was

for the description. These scores were determined using visual inspection of the

scenes. Sample responses and their corresponding grades are presented in Figure

4.1.

In testing, the network was presented with three groups of stimuli: simple sym-

bols, complex descriptions, and novel descriptions. The first group, simple sym-

bols, consisted of individual words from the network’s vocabulary. In other words,

the network was tested with inputs such as “small”, “square”, and “to the right of”.

This form of testing examined the network’s grounding of individual concepts. The

second testing set, complex descriptions, was composed of examples from the net-

work’s training corpus. This form of testing examined how well the network had

learned the information it was given. For the final testing set, the network was pre-

sented with descriptions which it had not seen in training. This testing set examined

the network’s ability to generalize to novel stimuli.
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4.3 Results and Analysis

For each of the three testing sets, 30 samples were presented. The means and stan-

dard deviations for the scores were calculated and were as follows:

Simple Symbols:µ = 0.48,σ = 0.31

Complex Descriptions:µ = 0.62,σ = 0.23

Novel Descriptions:µ = 0.25,σ = 0.14.

These results indicate that the network performed best on examples which were

in its training set, as is to be expected. The network also learned the meanings of

simple symbols fairly well and its performance on novel descriptions indicate that

the network was somewhat capable of generalizing the meanings it had learned.

The evaluation of the network’s performance was subjective, but as a preliminary

examination it indicates that the network may be capable of successfully modeling

symbol-grounding. Additionally, the model can also give insights into the mecha-

nisms of grounding.

Visual inspection of the network after training also provides valuable insight into

what it has learned. For example, for simple symbols the network has multiple

groups of strong associative connections. For the description “small”, several strong

groups of activations are present, each containing images of different small objects

in various positions. Similar mappings from a symbol to several groups of scenes

exist for other atomic symbols and is a desirable result because it indicates that the

network retains the meanings of simple symbols in different scene contexts. Ob-

servations like this are hard to encapsulate in a quantifiable metric of the network’s

performance. However, they can offer valuable insight into how well the network
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is performing symbol-grounding.
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“in the “filled diamond” “x”
bottom middle”

0 0.5 1.0

“small z “medium right “small object
in the top right” triangle inside of large

above open square” open square”
0 0.5 1.0

“small open square “large filled square “small open square
in the top right” in the top right” to the right of

large object”
0 0.5 0.7

Figure 4.1:Sample Scorings.The scenes generated by the network were assigned scores
between 0 and 1 in increments of 0.1 based on their relevance to the description. Sample
scenes, descriptions, and scores are shown for each of the three test sets: simple, complex,
and novel descriptions. The top three images are from the simple test set, the middle three
are from the complex test set, and the bottom three are from the novel test set.
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5. Future Work

In this thesis, a neural network model for learning correspondences between visual

scenes and linguistic descriptions was presented and its symbol-grounding capabil-

ities were examined. This chapter discusses several directions for future work that

would further analyze the model and facilitate extension of the architecture to allow

for examination of more complex problem domains.

5.1 Analysis of Network Performance

As was described in section 4.2, there are numerous ways in which the network’s

analysis could be extended. The most direct extension would be to analyze the

network’s performance when presented with scenes and generating descriptions.

Combining this with the current form of analysis would allow the network’s perfor-

mance at symbol-grounding to be assessed bidirectionally. It may also be possible

to formulate meaningful quantitative measures of the network’s performance, either

in one direction or both. Ideally, this measure could be automated and the network’s

performance could be examined over a large testing corpus. This would be supe-

rior to the current technique of visual inspection which limits the number of testing

samples that can be analyzed.

5.2 Comparison With Child Language Acquisition

If the network’s performance when generating descriptions of scenes could be mean-

ingfully quantified, an interesting future study would be to examine the network’s

performance at language learning relative to results from developmental studies of
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child language acquisition. For example, the network could be analyzed at different

discete time points during its training to determine how well it had learned differ-

ent concepts at specific times. These results could then be analyzed to see if the

network exhibits observed phenomenon from child language studies, such as the

over- and undergeneralization of the meanings of words. Such a study could serve

to validate or reject the network as a cognitively valid model.

5.3 Comparison with Other Learning Models

The network’s efficacy at acquiring an understanding of language could be com-

pared to the performances of other models applied to similar learning tasks. For

example, it would be interesting to compare the current model with models that use

different learning procedures, such as backpropagation, to examine their relative

performances. A model based on Recursive Auto-Associative Memory (RAAM;

Pollack 1988) was created and tested as part of a preliminary examination of the

grounding task. Several shortcomings of the RAAM model were identified, such

as an inability to retain many-to-many mappings and reliance on corrective error-

feedback. These shortcomings motivated the design of the model presented in

Chapter 3. However, a quantitative analysis of the relative performances of the

RAAM-based network and the model presented in Chapter 3 is left for future work.

It would be interesting to see which network exhibited the best performance overall

and whether the different architectures were better suited for learning certain types

of concepts.
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5.4 Representing Sequential Information

If a strong representation for sequential information was used it would be possi-

ble to vastly increase the complexity of the scenes and descriptions and push the

limits of the model. If the current representation of sequential information in the

descriptions was modified, the network could be examined with complex grammat-

ical constructs. If sequential information could also be well represented for visual

scenes it would be possible for the model to learn from sequences of images rather

than stills, which would increase the complexity of the grounding task. The model

could attempt to learn verbs and changes in object states over time. One possibility

for efficiently representing sequential information in both the visual and linguistic

input domains would be to create SARDNET encodings of the input sequences and

then present those encodings to the SOMs(James and Miikkulainen 1995). These

encodings of complex scenes and descriptions could be used to examine the limits

of what can be effectively grounded.
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6. Conclusion

This thesis presented a model with which to explore the issue of how abstract sym-

bols may become grounded directly in perceptual information. More specifically, an

unsupervised learning architecture that learned relationships between visual scenes

and linguistic descriptions was presented and then used to explore symbol ground-

ing.

Chapter 2 reviewed the philosophical ideas behind the symbol-grounding problem.

Several studies which sought to address this problem were discussed, including the

research which inspired the work in this thesis.

Chapter 3 presented and described the network model which was the focus of this

thesis. The network consisted of two self-organizing maps with associated connec-

tions between them. The implementation of the learning task was also described.

The task consisted of learning correspondences between simple visual scenes and

corresponding linguistic descriptions.

Chapter 4 discussed the experimental procedure that was used to examine the net-

work and analyze the network’s performance. The network was trained with (scene,

description) pairs and then examined to see how well it had learned the meanings

of simple symbols, complex descriptions, and novel descriptions. The network was

analyzed by visually inspecting the generated scenes and assessing how relevant

they were for the test descriptions. The results from this analysis indicate that the

network learned its training set well and had accomplished some level of grounding.

The difficulties with examining the network’s performance were also described.
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Chapter 5 proposed several possible extensions to the current analysis of the model.

The derivation of strong quantitative measures of the network’s performance would

facilitate more detailed analysis of how well it accomplished its learning task. Ad-

ditionally, comparison of the model to results from other studies could examine its

strength as a model of language learning and child language acquisition. Represen-

tations for visual and linguistic sequences could allow the model to be examined

with increasingly complex learning tasks.

Together, these chapters presented a model which provides a strong platform for

examinations of the symbol-grounding problem. The model learns associations be-

tween linguistic descriptions and visual scenes and allows examining what it has

learned. Preliminary results suggest that the model effectively learns associations

and may be capable of performing generalizations with the grounded meanings of

symbols.
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