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Abstract

Numerical approximation of wave propagation is prevalent in many applications.
When the wave frequency is high, this is a computationally challenging problem and
is a study of interest. In this paper, I present the implementation and numerical
testing of the convergent approach proposed by Bruno et al. and retheorized by Tran
to solve problems of electromagnetic or acoustic scattering by convex obstacles. The
problem is formulated as an integral equation. For the evaluation of the integral
operators, a localized integration scheme is used. This, combined with a change of
variables to resolve the problem of high slopes at the shadow boundaries, provides
an efficient algorithm to solve the scattering problem for Helmholtz equation at high
frequencies, with a computational cost that is independent of the frequency for a
fixed accuracy.
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Chapter 1

Introduction

1.1 Motivation

Numerical approximation of wave scattering is prevalent in many applications, in-

cluding electromagnetic scattering, seismology, medical imaging, quantum physics,

and photonics. For example, earthquakes are caused by the movement of seismic

waves through the earth. Simulation of wave propagation is thus needed in order to

study them.

ψinc 

ψscat 

When the wave frequency is high, this is a multiscale problem: the small scale

is given by the wavelength, and the large scale corresponds to the overall size of

the computational domain [8]. This multiscale problem is important and a study of

great interest. Seismic wave propagation, for instance, is a challenging elastic wave

problem. High frequency approximations must be used when the relative wavelength

is short. Medical ultrasonography, a modern technology used in medical imaging,

uses high frequency sound waves of between 3.5 to 7.0 megahertz that are reflected

by tissue to varying degrees to produce a 2D or 3D image. This is thus an inverse
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scattering problem at high frequencies. The ultrasound imaging technology is often

used to visualize the fetus in pregnant women. In computational electromagnetics

radiation and scattering problems, eletromagnetics waves emited by radar devices

often have a very short wavelength compared to the size of the scatterer, which can

be an entire aircraft.

1.2 Problem

Consider the problem of computing the scattering of an incoming wave ψinc(r) =

eikα·r, |α| = 1, from a convex obstacle D. The scattered field ψscat satisfies the

Helmholtz equation under Dirichlet boundary conditions:

∆ψscat(r) + k2ψscat(r) = 0 in R
2 \ D̄ (1.2.1)

ψscat(r) = −ψinc(r) on ∂D, (1.2.2)

and also satisfies the Sommerfeld radiation condition [6]

lim
r→∞

r

[

∂ψscat

∂r
− ikψscat

]

= 0,

i.e. ψscat vanishes as the distance approaches infinity.

When the wavelength is short, this is a difficult computational problem because

of the highly oscillatory solution. In the direct discretization numerical simulation

of (1.2.1), the accuracy of the solution is determined by the number of grid points

or elements per wavelength. The computational cost to maintain constant accuracy

grows at least linearly with the frequency, and for sufficiently high frequencies, direct

numerical simulation is no longer feasible.

1.3 Literature

There are numerous numerical methods available for high frequency scattering prob-

lems. These methods can be classified into three main categories: direct methods,

asymptotic methods, and hybrid methods.

Direct methods, such as Finite Element Methods (or FEM), are based on dis-

cretization of the computational domain into elements. If the boundary condition

is given, the problem can be transformed into an integral equation on the boundary

and only a mesh over the boundary is required. The accuracy of the solution is

determined by the number of grid points per wavelength. Direct methods require

a fixed number of discretization points per wavelength, and thus take at least O(k)

time to compute, where k = 2π
λ is the wave number.
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On the other hand, most asymptotic techniques rely on Geometrical Optics

(GO), which give the approximation of the phase and amplitude when the frequency

tends to infinity. These unknowns typically vary much more slowly than the full

solution. Hence, in principle, GO methods are easier to compute. Among the current

state-of-the-art GO techniques are ray tracing methods [5, 13], wave-front methods:

segment projection method [9] and level set methods [16], Hamilton-Jacobi methods

for unique viscosity solutions [7] or multivalued solutions [10], and moment-based

methods [2].

Hybrid methods, which combine both direct and asymptotic solvers, are also

widely used [14]. The general idea is that direct methods are applied on parts

which have similar scales to the wavelength and asymptotic techniques are applied

elsewhere. For instance, hybrid methods are necessary if the scatterer is a large

aircraft (large scale) with one or more antennas (small scale).

1.4 New Approach

Bruno, Geuzaine, Monro, and Reitich [3] have published a new convergent approach

to solve high-frequency problems in O(1) time for the case of convex scatterers.

Like in direct methods, this approach also relies on discretization over the boundary

of the obstacle. However, with the introduction of localized integration technique,

only critical regions on the boundary are needed to be discretized, which makes the

computation much easier. In [17], I have generalized and made the theory of their

approach more rigorous. The purpose of this paper is to provide an implementation

based on this theory and the numerical testing of the method. Such an explicit

implementation has not been mentioned in [3]. I’ll also compare my numerical

results with the results of Bruno et al.

The convergent approach consists of the main elements below:

• Transform the Helmholtz Partial Differential Equation (PDE) to a Fredholm

integral equation of the second kind, then replace the original unknown by

a product of a slowly-oscillatory unknown function and a highly-oscillatory

exponential with a known phase.

• Apply a localized integration scheme to integrate only around the critical

points of the phase. The theoretical basis for this scheme is similar to the

stationary phase method [1]. For high frequencies, the localization scheme

tremendously reduces the number of integration points, while asymptotically

maintaining the same accuracy. The asymptotic form of the Hankel func-

tion [6] combined with a piecewise analytic integration technique is used for

integrating around the singular point of the kernel (see §3).
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• Use a Fourier spectral method to solve the integral equation. A change of

variables is used in order to compensate for the O(k1/3) slopes at the shadow

boundaries, thus to be able to represent the unknown function by a fixed

number of Fourier coefficients within prescribed error tolerances (see §4).

The content of this paper is organized as following: in chapter 1, I will provide

briefly the mathematical background that has been discussed in [17]. Chapter 2 will

discuss the localization technique for fast numerical integration. In chapter 3, I will

present the implementation of a Fourier spectral method to solve the integral equa-

tion. Chapter 4 and 5 will be numerical testing and conclusions, respectively. For

the sake of simplicity, I present the method in two dimensions. In three dimensions,

the idea of this approach can be applied in a similar manner.
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Chapter 2

Theory

2.1 Boundary Integral Equation

The PDE in (1.2.1) under Dirichlet boundary conditions is transformed into a Fred-

holm integral equation of the second kind [3]:

1

2
µ(r) =

(

∂ψinc(r)

∂ν(r)
+ iγψinc(r)

)

+

∫

∂D

∂G(r, r′)
∂ν(r′)

µ(r′)ds(r′)

+ iγ

∫

∂D
G(r, r′)µ(r′)ds(r′),

(2.1.1)

where

µ(r) =
∂ψ(r)

∂ν(r)
, (2.1.2)

G(r, r′) =
i

4
H1

0 (k|r − r′|), (2.1.3)

and γ is an arbitrary regularizing constant in order to obtain the high numerical

stability of the solution (see §4.1).

The function µ(r) in (2.1.1) is represented as:

µ(r) = kµslow(r)eikα·r. (2.1.4)

As in Bruno et al., if D is a convex scatterer, µslow is a slowly oscillatory function

of r ∈ ∂D. This is not true for a non-convex scatterer because of the possibility of

multiple reflections. With the introduction of µslow, the original integral equation is

equivalent to

1

2
µslow(r) − (K̃ ′µslow)(r) − iγ(S̃µslow)(r) = iν · α+ i

γ

k
, r ∈ ∂D, (2.1.5)
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where S̃ and K̃ ′ denote the integral operators

(S̃µslow)(r) =

∫

∂D
G(r, r′)eikα·(r′−r)µslow(r′)ds(r′), (2.1.6)

(K̃ ′µslow)(r) =

∫

∂D

∂G(r, r′)
∂ν(r′)

eikα·(r′−r)µslow(r′)ds(r′). (2.1.7)

For r′ 6= r, both kernels of the integrals in (2.1.6) and (2.1.7) behave asymptot-

ically as

eik[|r−r′|+α·(r′−r)] =: eikφ, (2.1.8)

i.e. their dividing by eikφ are essentially non-oscillatory and independent of k.

In (2.1.5), the known kernels of the integral operators are the only highly oscil-

latory parts. I will show that within any prescribed error tolerance, µslow can be

obtained after a fixed number of computational steps, independent of the frequency.

2.2 Integral Approximation

In this section, I provide two key lemmas for solving (2.1.5) described in §3 and §4.
Let fA(t) = S(t, cA,A) × (1 − S(t,−A,−cA)) and fε(t) = fA(At

ε ), where

S(t, t0, t1) =



















1 if t ≤ t0,

exp
(

2e−1/u

u−1

)

if t0 < t < t1, u = |t1−t0|
t1−t0

,

0 if t ≥ t1.

(The function fA, which was also used in Bruno et al., is thus smooth and compactly

supported.)

Lemma 11. Suppose φ(t) is a real analytic function which has only one stationary

point of order p at 0, i.e. φ(j)(0) = 0 (∀j = 1, 2, .., p) but φ(p+1)(0) 6= 0, and

h(t) ∈ C∞ is a bounded function. Then:

∣

∣

∣

∣

∫ A

−A
fA(t)h(t)eikφ(t)dt−

∫ ε

−ε
fε(t)h(t)e

ikφ(t)dt

∣

∣

∣

∣

= O
(

(kεp+1)−nε
)

∀n ≥ 1

(2.2.1)

Corollary 1. If we fix ρ = kεp+1 (ε ∼ k
− 1

p+1 ),

∫ ε

−ε
fε(t)h(t)e

ikφ(t)dt is a good

approximation of

∫ A

−A
fA(t)h(t)eikφ(t)dt with a relative error of O(ρ−n) ∀n ≥ 1.

This is a corollary of lemma 1 and the stationary point lemma [12]. The corol-

lary implies that the integral

∫ A

−A
fA(t)h(t)eikφ(t)dt can be approximated within a

1A generalization of this lemma will be discussed in §3.4
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−A −ε ε A cε 

Figure 2.1: Upper-envelopes fA(t) and fε(t) and real part of the corresponding
integrands.

prescribed error tolerance by integrating

∫ ε

−ε
fε(t)h(t)e

ikφ(t)dt with a fixed number

of discretization points, where ε ∼ k
− 1

p+1 [17].

Lemma 2. Suppose φ(t) is a real analytic function which has no stationary point

on [−A,A], and h(t) ∈ C∞ is a bounded function. Then:

∣

∣

∣

∣

∫ ε

−ε
fε(t)h(t)e

ikφ(t)

∣

∣

∣

∣

= O
(

(kε)−nε
)

∀n ≥ 1 and ∀ε ≤ A. (2.2.2)

Corollary 2. Suppose φ(t) is a real analytic function which has no stationary point

on [−A,A], and h(t) ∈ C∞ is a bounded function. Then:

∣

∣

∣

∣

∫ A

−A
fA(t)h(t)eikφ(t)

∣

∣

∣

∣

= O
(

k−n
)

∀n ≥ 1. (2.2.3)
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Chapter 3

Localization Technique

In this chapter, suppose that we want to compute the integral

∫ 2π

0
K(θ0, θ)dθ =

∫ 2π

0
h(θ0, θ)H

1
0 (k|r − r0|)eikα·(r−r0)dθ,

where r = r(θ) and r0 = r(θ0). Note that the Hankel function H1
0 (x) is singular at

x = 0 and asymptotically proportional to eix√
x

for |x| large, hence K ≈ |K|eikφ with

the phase φ as in (2.1.8).

3.1 Partition of Unity

By partition of unity, 1 can be represented as a sum of upper-envelopes fA(θ) cen-

tered at the critical points of K(θ0, θ) and their smooth cutoff complement, as

illustrated in figure 3.2. Thus:

∫ 2π

0
K(θ0, θ)dθ =

∑

∫ 2π

0
fAj (θ)K(θ0, θ)dθ +

∫ 2π

0
fcomplement(θ)K(θ0, θ)dθ.

As a result of Corollary 2,
∫ 2π
0 fcomplement(θ)K(θ0, θ)dθ is ignorable for k large

enough. Following Corollary 1, the integrals
∫ 2π
0 fAj (θ)K(θ0, θ)dθ can be localized

so that only a fixed number of integration points is needed to obtain any prescribed

error tolerance. The next section will explain what the critical points are.

3.2 Critical Points

The critical points of K(θ0, θ) are:

1. The target point θ = θ0, where the kernel K(θ0, θ) is singular. This target

point is covered by a region Ut of radius proportional to the wavelength λ

(p = 0). Integrating around this singular point requires special consideration
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since the kernel converges to ∞. Following Colton & Kress (1998) [6], we have:

H1
0 (k|x|) =

2i

π
ln

1

|x| +
2i

π
ln

1

k
+ C +O

(

|x|2 ln
1

|x|

)

(3.2.1)

for |x| → 0, where C is a constant. The function L(θ0, θ), defined as

L(θ0, θ) =
K(θ0, θ)

2i
π ln 1

|θ−θ0| + 2i
π ln 1

k + C
,

is thus a bounded function. Piecewise linear approximation of L(θ0, θ) is used

to compute the integral

∫ θ0+ε

θ0−ε
K(θ0, θ)dθ

=
2i

π

∫ θ0+ε

θ0−ε
ln

1

|θ − θ0|
L(θ0, θ)dθ + C

∫ θ0+ε

θ0−ε
L(θ0, θ)dθ

≈ 2i

π∆θ

N/2−1
∑

j=−N/2

∫ θj+1

θj

ln
1

|θ − θ0|
{L(θ0, θj)(θ − θj+1) + L(θ0, θj+1)(θ − θj)} dθ

+ C

∫ θ0+ε

θ0−ε
L(θ0, θ)dθ

where ∆θ = 2ε
N and θj = θ0 + j∆θ for j 6= 0. The integrals in the sum can

be evaluated exactly and
∫ θ0+ε
θ0−ε L(θ0, θ)dθ is approximated by the standard

Trapezoidal rule.

2. The stationary points of the phase φ(θ0, θ) = |r − r0| + α · (r − r0), at which

φ has a vanishing gradient. Each stationary point is covered by a region Us

of radius proportional to
√
λ (p = 1) or 3

√
λ (p = 2 at the shadow boundaries,

where ν · α = 0). The evaluation of stationary points for circular scatterers,

as an example, is described in appendix A.

3.3 Exemplification

Let me exemplify the integration schemes above by computing the following integral

on a circle of unit radius, centered at the origin:

I(θ0) =

∫ 2π

0
cos(θ)H1

0 (k|r − r0|)eikα·(r−r0)dθ, (3.3.1)

with r = r(θ) = (cos θ, sin θ), r0 = r(π
8 ), and α = (1, 0). Table 3.1 shows the fixed

accuracy of the localized integrator using a fixed number of discretization points for

all values of k.

9



eikα.r

S
1
 

S
2
 

S
3
 

T

Figure 3.1: Circular scatterer under a plane incoming wave: target point T (θ0 =
π/8) and stationary points S1, S2, S3.
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Figure 3.2: Covering for θ0 = π/8. Top: partition of unity. Middle: with k = 4000,
no merging is needed. Bottom: with k = 1500, the smooth cutoff around the
target point was merged with the one around the stationary point S1. The quantity
displayed in both graphs is the real part of the integrand in (3.3.1).
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k εt = 500
k Relative error

500 1.0 1.06e-5
1000 0.5 8.58e-6
2000 0.25 3.06e-5
4000 0.125 6.47e-5
8000 0.0625 1.31e-5
16000 0.03125 2.14e-5
32000 0.015625 4.92e-6

Table 3.1: Error on I(θ0 = π
8 ) using 2000 discretization points (note: εs =

√
εt).

Note that, in Corollary 2, a certain width of the integrated region is required.

Thus, a merger is needed in the implementation if the distance between any two

integrated regions is below a threshold, which is proportional to 1
k as a result of

Lemma 2. The covering around critical points and the merger are demonstrated in

figure 3.2.

3.4 Generalized Localization

A critical point relatively close to the shadow points, with respect to the frequency

(In practice, we do not solve the problem for k = ∞.), might cause difficulties, since

the function φ(θ0, θ) behaves as a cubic polynomial in the neighborhood of that

point. This critical point therefore needs a wider covering.

Lemma 1* [17]. Suppose φ(t) and h(t) are as in Lemma 1, then:

∣

∣

∣

∣

∫ A

−A
fA(t)h(t)eikφ(t)dt−

∫ ε

−ε
fε(t)h(t)e

ikφ(t)dt

∣

∣

∣

∣

= O
(

∣

∣kεφ′(ε)
∣

∣

−n
ε
)

∀n ≥ 1.

(3.4.1)

With this generalized lemma, we instead cover each critical point by a region of

radius ε such that |kεφ′(ε)| = ρ, where ρ is the error parameter. The root finding

can be done in constant time by means of Newton’s method. Lemma 1* captures

the behavior of the phase at an arbitrary point and the accuracy of the localized

integration around that point.
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Chapter 4

Numerical Method

With the integration techniques analyzed above, we now can go through the method

of solving the integral equation (2.1.5).

4.1 Fourier Spectral Method

On the boundary, the function µslow is slowly oscillatory, smooth, and periodic. It

can thus be well approximated by a finite Fourier sum:

µslow (r(θ)) ≈
M
∑

n=−M

ane
inθ.

Then:

1

2
µslow(r) −

∫ 2π

0
K(θ, θ′)µslow(r′)dθ′ = g(θ)

⇒1

2

M
∑

n=−M

ane
inθ −

M
∑

n=−M

an

∫ 2π

0
einθ′K(θ, θ′)dθ′ ≈ g(θ)

⇔
M
∑

n=−M

{

1

2
einθ −

∫ 2π

0
einθ′K(θ, θ′)dθ′

}

an ≈ g(θ),

where K(θ, θ′) =
{

G(r, r′) + iγ ∂G(r,r′)
∂ν(r′)

}

eikα·(r′−r) and g(θ) = iν · α + iγk . Using

2M + 1 discretization points θm = 2πm/(2M + 1), v = [a−M , a1−M , ..., aM ]T is

obtained by solving the system of linear equations Av = B, where:

A[m,n] =
1

2
einθm −

∫ 2π

0
einθ′K(θm, θ

′)dθ′, (4.1.1)

B[m] = g(θm). (4.1.2)

The regularizing constant γ introduced in (2.1.1) is chosen appropriately to

12
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Figure 4.1: Errors of µslow with α = (1, 0). Left: with fixed k = 5 and various
numbers of Fourier modes. Right: withM = 15 and various k’s. A direct integration
method was used: Simpson’s rule with 20k discretization points over the region
[0, 2π].

make the matrix A well-conditioned. Following Bruno & Kunyansky (2001a) [4],

I use γ = 2R/λ = 2Rk (2R is the diameter of the scatterer), which yields a low

condition number of A. If A[m,n] is computed by using the localized integrator,

the computational time for solving (2.1.5) would be O
(

M2
)

.

Figure 4.1 shows that the error decreases exponentially with respect to the num-

ber of Fourier coefficients. It also shows that with a fixed number of Fourier coeffi-

cients, the error increases unboundedly as k gets larger, due to the O(k1/3) gradient

of µslow at the shadow boundaries. Like in Bruno et al., I used L2 erros to evaluate

the accuracy of the numerical solution. Errors, computed by comparison with an

exact solution for the integral equation, are defined as

{

∫

∂D

∣

∣µslow(r) − µexact
slow (r)

∣

∣

2
ds(r)

}1/2

{

∫

∂D

∣

∣µexact
slow (r)

∣

∣

2
ds(r)

}1/2
. (4.1.3)

The next part will show how to achieve the fixed accuracy of µslow using a fixed

number of Fourier coefficients.

4.2 Shadow Boundaries Problem

The number of Fourier modes needed to represent µslow with the same accuracy

increases when k gets larger (see figure 4.1). This is explained by the steep slope,

which is linear to k1/3 [15, 3], at the shadow boundaries. In order to represent µslow

within a prescribed error tolerance by a fixed number of coefficients, a change of

13
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Figure 4.2: Top left: shadow boundaries for the circular scatterer. Top right: the
change of variables function has slope of k−1/3 at π

2 . Bottom left: the gradient of
µslow at π

2 gets steeper when k increases. Bottom right: the gradient of ξ is bounded
with respect to k.

variables in µslow is applied [3]:

ξ(θ) = µslow(ηk(θ)). (4.2.1)

I choose ηk(θ) = θ + 1−k−1/3

4 sin(2θ) + k−1/3−1
8 sin(4θ) as the change of variables

function. Figure 4.2 shows the behavior of ηk and the effect of this change of

variables in µslow(θ).

Since the slopes of ξ(θ) at the shadow boundaries are bounded, the function

µslow can be represented as

µslow(θ) = ξ(η−1
k (θ)) =

M
∑

n=−M

bne
inη−1

k (θ) (4.2.2)

with a fixed accuracy and by a fixed M . Using a similar formulation as described in

the previous section, we can find v = [b−M , b1−M , ..., bM ]T , consequently compute

ξ and µslow, by solving the system of linear equations Av = B. Here, I show two

14



k@
@@M 10 20 30 40 50

10 15 16.1 16.5 16.7 17.7

20 107 108.1 570 288 444.5

30 4e3 696 484 1.4e3 878

40 1.6e5 2.2e4 491 1e3 2e4

Table 4.1: The matrix A obtained in (4.2.3) has high condition numbers with dif-
ferent numbers of Fourier modes and different frequencies. The integral operators
are computed using Simpson’s rule with 20k discretization points.

k@
@@M 10 20 30 40 50

10 5.9 7.5 6.2 6.0 5.0

20 7.2 8.4 8.0 9.3 8.6

30 7.5 9.2 10.5 10.3 9.7

40 7.7 9.7 10.6 11.5 12.0

Table 4.2: The condition number of A is stably small when sampling η−1
k (θ) uni-

formly.

different collocation schemes to obtain A and B with the change of variables:

1. By sampling θm = θ in µslow(θ) uniformly, we get:

A[m,n] =
1

2
einη−1

k (θm) −
∫ 2π

0
einη−1

k (θ′)K(θm, θ
′)dθ′ (4.2.3)

and B is as in (4.1.2). The scaling factor γ = 2Rk, however, no longer gives

rise to the low condition number of A as shown in table 4.1, and thus does not

guarantee the stability of the solution since the error might be magnified by a

large number. A more appropriate choosing of γ is required for this scheme.

2. By sampling θm = η−1
k (θ) uniformly, we get:

A[m,n] =
1

2
einθm −

∫ 2π

0
einη−1

k (θ′)K(ηk(θm), θ′)dθ′, (4.2.4)

B[m] =g(ηk(θm)). (4.2.5)

Table 4.2 shows that using this scheme, the constant γ = 2Rk guarantees a

low condition number of A.

With this change of variables at the shadow boundaries, we can thus solve the

integral equation (2.1.5) in constant time.

15



Chapter 5

Numerical Results

In figure 5.1, the errors of the solution are bounded when applying the change of

variables with a fixed number of Fourier modes. The reference solutions are com-

puted by using the spectral method described in §4.1 with 8
√
k Fourier modes. The

integral operators of both the approximated and reference solutions are evaluated

by using brute force Simpson’s rule with 20k discretization points.

The results in table 5.1 demonstrate the bounded errors (less than 7 × 10−3) of

the solutions with various frequencies using the convergent method combined with

changing of variables. For the parameters in the second column, 800 discretization

points are needed for each localized integration. It takes roughly 13 minutes to

compute the solution for every frequency when running this convergent method in

Matlab on a Pentium IV 2.4GHz PC. Since the size of the matrix A is fixed and

its elements are computed independently, this method can efficiently utilize parallel

computing.

In the rightmost column, the parameters are changed (|kεφ′(ε)| = 1000, 4000

discretization points for each localized interval, and 150 Fourier modes to represent

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

3

4

5

6

7

8
x 10

−3

E
rr

or

Frequency

Figure 5.1: Errors of the solution with the change of variables (40 Fourier modes
used).
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Frequency
Errors of µslow

|kεφ′(ε)| = 400, 60 unknowns |kεφ′(ε)| = 1000, 150 unknowns

1000 6.8e-3 7.1e-5
2000 4.4e-3 5.6e-6
4000 4.8e-3 4.5e-6
8000 6.4e-3 6.7e-6
16000 5.9e-3 5.7e-6
32000 3.2e-3 8.5e-6

Table 5.1: Accuracy of the convergent method combined with the change of vari-
ables. Errors are evaluated as in (4.1.3).

Frequency Error CPU Time

1 1.0e-12 < 1s
10 3.0e-11 5s
100 1.5e-5 11s
1000 3.1e-5 2m30s
10000 8.4e-5 3m12s
100000 8.8e-5 3m43s

Table 5.2: Numerical results in Bruno et al.

the solution) to obtain a higher accuracy. The computational time of the solution

for each frequency is about 3 hours. To achieve the same accuracy for k = 1000000,

it would take at least 7 years to compute using the brute force method.

In their paper, Bruno et al. also provided their numerical results. These results,

as shown in table 5.2 are somewhat inconsistent. For the frequencies less than 1000

and the presecribed tolerance of 10−4, the localized integration scheme isn’t more

efficient than the direct method since the localized regions are too wide. This might

explains the low running time for the first three frequencies in their testing. Thus,

their high frequency solver was actually tested only three high frequencies. Even for

these frequencies, there is still a slight increasing in the errors. This might be simply

due the small sampling or it might also be due to the lack of a more generalized

localization, i.e. Lemma 1∗. Nevertheless, my numerical results have verified that by

applying their convergent approach, a fixed-time algorithm for the high frequency

scattering problems can be achieved.
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Chapter 6

Conclusions

As a result of the boundary integral equation (2.1.1), the scattered field ψscat(r)

(r ∈ R
2 \D) can be obtained by evaluating the integral

∫

∂D
G(r, r′)eikα·r′µslow(r′)ds(r′).

This integral, whose kernel behaves asymptotically as eik[|r−r′|+α·r′], can be com-

puted in constant time using the localized integration technique.

I have presented the implementation and numerical testing of a fixed-time nu-

merical method for solving high frequency wave propagation problems for convex

scatterers. This result can be generalized for non-convex scatterers using ray-tracing

techniques, in which the representation in (2.1.4) is extended to:

µ(r) =
∑

j≥0

µj
slowe

ikϕj(r), (6.0.1)

where µj
slow(r) (j ≥ 1) vanish on the convex part of the scatterer and ϕj(r) (j ≥ 1)

are the phases of the new incoming waves due to reflections. With this extended

formulation, the convergent method can be completed in a similar fashion [11].

Since the size of the matrix A in (4.2.4) is fixed and its elements can be computed

independently, this method can effectively utilizes the power of parallel computing.
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Appendix A: Evaluation of stationary points for circular scatterers

The stationary points correspond to the solutions of φ′(r0, r) = 0.

φ′(r0, r) = (|r − r0| + α · (r − r0))
′ = 0

⇔
(

R

√

{cos(θ) − cos(θ0)}2 + {sin(θ) − sin(θ0)}2 +R cos(θ − α) −R cos(θ0 − α)

)′
= 0

⇔
(

√

2 − 2 {cos(θ) cos(θ0) + sin(θ) sin(θ0)} + cos(θ − α) − cos(θ0 − α)
)′

= 0

⇔
(

√

2 − 2 cos(θ − θ0)
)′

+ (cos(θ − α))′ = 0

⇔
(
√

4 sin2

(

θ − θ0
2

)

)′

− sin(θ − α) = 0

⇔2

∣

∣

∣

∣

sin

(

θ − θ0
2

)∣

∣

∣

∣

′
− sin(θ − α) = 0

⇔ cos

(

θ − θ0
2

)

− sin(θ − α) = 0 (with 0 ≤ θ − θ0 < 2π)

⇔θ − θ0
2

=
π

2
− θ + α+ 2nπ or

θ − θ0
2

= −π
2

+ θ − α− 2nπ

A closed form can be given:

θ0 ≤ θ = (4n+ 1)π+ 2α− θ0 < θ0 + 2π or θ0 ≤ θ =
(4n+ 1)π + 2α+ θ0

3
< θ0 + 2π.

Extension: for a non circular scatterer, the stationary points can be obtained by

numerically solving the following nonlinear equation [3]

r(θ)dr
dθ (θ) − r(θ0)

dr
dθ (θ) cos(θ − θ0) + r(θ0)r(θ) sin(θ − θ0)

√

r(θ0)2 + r(θ)2 − 2r(θ0)r(θ) cos(θ − θ0)
+
dr

dθ
cos(θ)−r(θ) sin(θ) = 0

on the interval [θ0, θ0 + 2π).
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