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1 Problem Description 
 
In environments where a robot has very little side clearance and hence very small margins for 
error, high precision in controlling the movements of the robot in order to avoid obstacles is 
necessary.  The problem here lies in trying to design a control method that ensures speed, grace, 
and comfort which will successfully avoid obstacles in such environments. 
 
The basic control loop of a robot is as follows: read in sensor data about the environment, 
perform some calculation, send velocity commands to the robot motors, and repeat.  The 
calculations in between reading sensor data and sending commands to the motors reflect the 
behavior of the robot that we want.  In each loop, we will calculate the new velocity commands 
with the aim that these new commands will result in the desired behavior.  However, how to 
translate the sensor data that comes in to the velocity commands that go out is sometimes 
unclear. 
 
In forming rules for the velocity command calculations, we must consider several desires for the 
behavior we want.  First and foremost, we want the robot to attain some set goal point in the 
environment.  We also want the robot to travel as quickly as possible, without hitting any 
obstacles along the way, and with fluid motion without jerks.  Many approaches to control, such 
as [1] and [2], attain these goals for a large number of possible environments.  Common 
environments for testing these control methods are labs and corridors, both crowded and not.  
However, there are also a large number of environments that are often untested and for which 
these goals are not yet fully achieved: tightly-constrained environments which require high 
precision control. 
 
Tightly-constrained environments are environments where the side or front clearance of a robot 
from obstacles surrounding it is very small.  Thus, there is little room for error and they require a 
high precision of movement in navigating around obstacles towards a goal.  For the robot used in 
my experiments, I defined tightly-constrained environments as when the clearance is less than 
0.25 m.  Defining the clearance is based on the dimensions of the robot, the turning radius, the 
capabilities of the motors, and the sensor resolution.  Environments requiring high precision 
control are much more common for larger robots since it is much more likely that side or front 
clearance will be very small than for smaller robots.  Even humans have trouble navigating 
things in some tightly-constrained environments.  For example, imagine a person driving a very 
wide remote control car via a joystick on the remote control.  In attempting to move the car 
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through a doorway that is only a couple inches wider than the car, the person may have to back 
up the car several times and try again before successfully steering the car through the doorway. 
 
Such low clearance requires very careful calculations and planning for the velocity commands to 
the robot’s motors in order to achieve our behavior goals.  We must carefully calculate so that 
the robot does not collide with surrounding obstacles.  In the example above, the nearby 
obstacles are both sides of the door.  However, moving too cautiously will result in an 
unnecessarily low speed, which is contrary to one of our behavior goals (high speed).  An 
extremely high speed, though, may cause a loss of control of the robot and cause it crash into an 
obstacle.  We also want to ensure that the robot moves fluidly through the environment.  In the 
example above, we would not want the car to start and stop every few seconds, each time 
deciding what the best next move is. 
 
In this paper, I will describe two previously established control methods that are proven to be 
successful in several environments and discuss their effectiveness in selected tightly-constrained 
environments. 
 

2 Background 
 
Two different approaches to object collision avoidance were used to demonstrate their control 
ability in an environment that requires high precision.  These control methods were chosen 
because of their potential success in this kind of environment.  Both control methods have been 
shown to be successful in highly cluttered environments, so the hope was that this success would 
translate to the environments chosen for our testing purposes.  Both the papers describing the 
selected control methods mention a robot’s ability to go through narrow doorways, which is one 
of our tightly-constrained test environments, when using that particular control method.  The 
dynamic window approach, proposed by Fox, Burgard, and Thrun, focuses on using a scoring 
function on all possible velocities to determine the best velocity command for the next finite time 
interval [2].  The vector field histogram approach was proposed by Borenstein and Koren.  This 
approach focuses on reducing the data given about the environment at a certain time to sectors of 
“safe” robot orientations and selecting the sector most nearly facing the target [1].  Before 
providing an overview of these two approaches, I will describe the current collision avoidance 
method used in the UT Intelligence Robotics Lab on the Vulcan robot. 

 
2.1 Hybrid Spatial Semantic Hierarchy 
 
The Hybrid Spatial Semantic Hierarchy (HSSH) software was developed in the UT Intelligence 
Robotics Lab [4].  HSSH builds local perceptual maps (LPMs) through SLAM methods within 
small spaces defined by the range limits of the robot’s sensors and builds upon them to represent 
the large-scale space.  When run, the software connects to the Player server running on the robot 
and brings up a graphical display of the local perceptual map.  The robot starts at the center of 
the LPM and the map is built around it.  In the figure below of the HSSH software user interface, 
white signifies known free space, grey signifies that the probability of the space being occupied 
is unknown, and the red is the endpoints of the laser rangefinders’ readings.  The user can define 
a goal for the robot by clicking on any open space in the map, such as the room beyond an open 
doorway in front of the robot. 
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Figure 1. HSSH User Interface 

 
When a goal is chosen, the software determines whether it is possible to attain the goal given the 
current occupancy grid and forms a plan to reach the goal.  The current code for planning the 
robot’s path to the goal within the LPM is very simple since HSSH is still in development.  The 
path behavior consisted only of moving forward in a straight line, stopping, turning, stopping, 
moving forward and so on until it reached the goal.  A sample plan can be seen in the figure 
above as a gray line.  When the robot reaches a kink in the line, it stops and turns to align with 
the next segment in the line.  Because of constant stopping and starting, this rudimentary 
collision avoidance method requires much more time than necessary and results in a less graceful 
movement than we would hope for.  So, it is obvious that a quicker, more graceful approach is 
necessary. 
 
2.2 Dynamic Window Approach 
 
According to Fox, Burgard, and Thrun, the most common approach to collision avoidance is to 
determine the motion direction needed to move towards a target and then generate steering 
commands to get the robot moving in that direction.  However, the commands generated could 
become extremely large depending on the desired direction, causing the robot to try to accelerate 
at a rate it is not capable of in order to achieve the commanded speeds.  A robot’s motors have 
limited torque, and thus have limitations on acceleration.  The dynamic window approach takes 
into account the acceleration limitations of the robot, and thus, does not send velocity commands 
to the robot that are physically impossible. 
 
For this approach, it is assumed that velocity can only be changed after constant time intervals 
(every .25 seconds, for example).  So, during every time interval, the translational velocity (v) 
and rotational velocity (w) of the robot are held constant.  Each time interval can be described as 
having a velocity pair (v,w).  Because the velocity pair is constant during the interval, the 
trajectory of the robot during each time interval is a circular arc.  Therefore, the trajectory of the 
robot is a sequence of circular arcs, depending on what velocities it traveled at during each 
interval. 
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This velocity model helps to define the “dynamic window”.  The dynamic window is first 
defined as the set of velocity pairs that can be reached within the next time interval at 
acceleration somewhere between maximum acceleration and maximum deceleration.  In order to 
reduce this set, only “admissible velocities” are kept within the set.  A velocity pair is considered 
“admissible” if the robot is able to stop completely using maximum deceleration before it 
reaches the closest obstacle on the resulting trajectory.  In reducing the total search space of all 
velocities to the dynamic window search space, our computation becomes much simpler. 
 
In order to select the best velocity pair from the dynamic window search space that will result in 
a quick movement towards the target without colliding with an obstacle, we score each velocity 
pair using a scoring function and select the pair with the best score as the new velocity command 
to the robot.  This is repeated after each time interval. 
 
The scoring function used in the dynamic window approach is based on three criteria: heading, 
clearance, and velocity.  Heading is the projected alignment of the robot towards the target after 
the next time interval traveling at (v,w).  Heading encourages moving directly towards the target 
and results in a straight-line trajectory to the target if there are no obstacles.  Clearance is the 
distance to the closest obstacle on the projected trajectory traveling at (v,w).  Clearance ensures 
effective obstacle avoidance, since the robot’s desire to move away from an obstacle increases as 
it approaches it.  This criterion results in a smooth arc around obstacles.  Velocity is simply a 
projection on the translational velocity and encourages quick movement of the robot.  All three 
criterion functions return a value within the interval [0,1].  As shown in Equation (1), each 
criterion is weighted and all the weighted resulting values are added together.  Fox, Burgard, and 
Thrun use the following values: 8.0=α , 1.0=β , and 1.0=λ .  The weight values must satistify 
Equation 2 so that G(v,w) always returns a value within the interval [0,1]. 

),(),(),(),( wvvelocitywvdistwvheadingwvG ⋅+⋅+⋅= λβα  (1) 
1=++ λβα  (2) 

 
2.3 Vector Field Histogram Approach 
 
The Vector Field Histogram approach manipulates data in three sequential steps.  First, it takes 
raw sensor reading data to create the histogram grid to describe the robot’s environment in detail.  
Second, it uses the histogram grid to create the polar histogram.  Finally, it uses the polar 
histogram to find new velocity commands for the robot. 
 
The histogram grid is a grid of the environment made up of cells.  Each cell (i,j) of the grid holds 
a value representing the confidence of the algorithm of the existence of an obstacle in that cell in 
the environment.  For each sensor reading, the certainty value of the cell where the range of the 
reading lies is incremented.  The certainty value of a cell is never decremented.  Therefore, a 
high cell value implies a high probability of the existence of an object. 
 
After updating the histogram grid with each sensor’s range reading, we define a subset of the 
histogram grid that will be used in the future: the “active region”.  The active region is a square 
window of cells centered on the robot.  Within this region, each cell that has a non-zero certainty 
value is then treated as an obstacle vector with direction and magnitude.  The direction of the 
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obstacle vector is the direction from the cell to the robot.  Equation 3 gives the direction of cell 
i,j using the x and y coordinates of the cell and the robot: 
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The magnitude of the obstacle vector is based on the cell’s certainty value and the distance from 
the cell to the robot.  Equation 4 gives the magnitude of cell i,j: 
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where *
, jic is the certainty value of the cell, a and b are positive constants, and jid , is the distance 

between the cell and the robot.  Borenstein and Koren chose a and b such that 0max =− bda and 

maxd is the distance from the robot to the edge of the active window. 
 
Once the active region is ready, the polar histogram is created.  The polar histogram consists of n 
angular sectors around the robot’s current location of width � degrees each.  The resolution � is 
chosen such that n = 360 / � is an integer.  Borenstein and Koren use � = 5˚ and n = 72.  Each 
sector then covers angles n*� to (n+1)*�.   Each sector of the polar histogram holds the polar 
obstacle density value for that sector.  The polar obstacle density (POD) tells us how populated 
with obstacles that sector is.  Specifically, the POD (h) of a sector is the sum of the magnitude of 
the obstacle vectors of the active region cells that fall within that sector, as shown in Equation 5. 
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The polar histogram is used to find the new direction of the robot.  A typical polar histogram has 
peaks, which are contiguous sectors with high POD values, and valleys, which are contiguous 
sectors with low POD values.  The Vector Field Histogram approach sets a threshold such that 
valleys that fall below this threshold are deemed free space that is safe for robot travel.    These 
valleys are called candidate valleys.  The candidate valley that most closely matches the 
direction to the target is selected for the new direction of the robot.  The exact new steering 
direction is the center angle of the selected candidate valley. 
 
After the new steering direction is chosen, the rotational velocity, w, for the robot will be the 
difference between the current angular pose of the robot and the new steering direction.  After 
the new rotational velocity is chosen, the new translational velocity for the robot must be chosen.  
Before the algorithm starts running, a max translational velocity for the robot is set.  The robot 
will maintain this max velocity unless it is forced to slow down in order to turn away from 
nearby obstacles, so the robot will always move as quickly as possible.  The translational 
velocity is reduced from the set maximum speed in two ways: by using the POD of the sector of 
the current direction to slow down near obstacles (see Equation 6) and then by anticipating a 
change in rotational velocity in order to turn away from nearby obstacles (see Equation 7).  The 
robot’s translational velocity will never decrease to zero because of the use of minv in Equation 7. 
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3 Theoretical Comparison 
 
3.1 Strengths and Weaknesses 
 
The Dynamic Window approach has several strengths.  Because the objective function 
incorporates the projected heading and velocity of the robot as well as the distance to the nearest 
obstacle along the projected trajectory, it encourages quick, smooth movement around both static 
and dynamic obstacles.  The approach also takes into account physical limitations of robot.  
Through incorporating the robot’s maximum accelerations, it will never generate a velocity 
command beyond the robot’s motor torque limitations. 
 
The Vector Field Histogram approach also has the strengths of the Dynamic Window approach.  
By eliminating sectors that have a high obstacle density as possible steering directions and by 
setting the velocity at the maximum velocity whenever deemed possible, this approach 
encourages quick, smooth movement around obstacles as the Dynamic Window approach does.  
By setting incorporating the minimum and maximum translational and rotational velocities of the 
robot, the approach takes into account its physical limitations.  The Vector Field Histogram 
approach also has several strengths of its own.  Because of the ability to identify extremely 
narrow valleys in the polar histogram and to select a centered path through it, it has the potential 
to navigate through extremely narrow passages.  The Dynamic Window approach will not 
necessarily test a velocity pair that will result in a centered path through a narrow passage.  The 
approach also guarantees that the robot will move into free space in the environment because it 
only selects a steering direction towards areas with obstacle density below a set threshold.  The 
Dynamic Window approach does not necessarily guarantee steering only towards free space, 
because obstacle clearance is only a weighted factor. 
 
The two approaches have some weaknesses in common.  Both only involve very short term path 
planning and do not attempt to find an optimal path.  Therefore, they do not determine when a 
goal is impossible and stop the robot.  The robot instead ends up going in circles trying to reach 
goal.  Neither approach takes into account the goal orientation of the robot at the target point.  
Both approaches are also subject to getting the robot stuck in a dead-end situation.  However, 
some of these weaknesses can be easily overcome.  Through integrating into global path 
planning software such as HSSH, we can determine first whether a path towards the goal from 
the current pose is possible before turning over control to the collision avoidance approach.  In 
both approaches we can detect whether the robot has traveled into a dead end and simply rotate 
the robot away.  In the Dynamic Window approach, none of the trajectories generated by the 
velocity pairs allow the robot to move.  In the Vector Field Histogram approach, all of the 
sectors in front of the robot have high obstacle densities while the sectors behind the robot have 
relatively low obstacle densities. 
 
3.2 Complexity Differences 
 
The computational complexity of a collision avoidance method is important.  If the robot’s view 
of and pose in the environment changes too drastically while the new robot velocity is being 
computed, the new velocity may not be effective for the robot’s new pose in guiding the robot 
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towards the goal while avoiding obstacles.  Hence it is essential for the computational time 
required by the approach to generate a new velocity for the robot to be small enough in order to 
keep up with the robot’s travel through the environment.  In comparing two approaches which 
may be equally effective in collision avoidance assuming zero computation time, we must 
choose the approach which in reality requires less computation time than the other.  To compare 
the computational complexity of the two approaches considered in this paper, we first compare 
the computational complexity of their access to the occupancy grid of the environment. 
 
The Dynamic Window approach accesses the occupancy grid to determine where the closest 
obstacle lies along its projected trajectory for a particular velocity pair.  Assuming that cells in 
the grid are checked for occupancy at least 1 m along the trajectory and we check cells up to 
(robotwidth/2) m on either side of the trajectory line to accommodate for the width of the robot, 
the area of the grid that is accessed is at least about robotwidth m2.  The robot used by Fox, 
Burgard, and Thrun is an RWI B21, which has a diameter of 0.53 m in diameter.  Therefore, the 
portion of the grid accessed each time is at least 0.53 m2.  This approach must then access the 
grid for each velocity pair.  Each velocity pair checks a different portion of the grid since each 
pair results in a different trajectory.  For example, if 100 velocity pairs are considered, the grid is 
accessed 100 times.  The range of velocities we consider and the time interval used determines 
the number of velocity pairs we generate.  The range is the maximum acceleration multiplied by 
the time interval above and below the current velocities.  In other words, the range is 2 x max 
acceleration x time interval centered about the current velocities.  Fox, Burgard, and Thrun use 
maximum accelerations of 20 cm/sec2 and 30 deg/sec2 (or �/6 � 0.52 rad/sec2) and a time interval 
of 0.25 sec.  Hence, the range of velocities considered is 0.1 m/sec and approximately 0.26 
rad/sec centered about the current velocities.  Assuming we use intervals of 0.01 m/sec and 0.02 
rad/sec in generating velocity pairs, we are considering (0.1 m/sec) / (0.01 m/sec) = 10 
translational velocity value possibilities and (0.26 rad/sec) / (0.02 rad/sec) = 13 rotational 
velocity value possibilities.  Thus, we generate 130 velocity pairs at any current velocity. 
 
The Vector Field Histogram approach accesses the portion of the grid that lies within the active 
window, turns each non-zero cell in that portion into an obstacle vector, and uses those obstacle 
vectors to compute the polar histogram.  Borenstein and Koren use an active window of 3.3 m x 
3.3 m, so 10.89 m2 of the grid is accessed.  The worst case is that every cell within the active 
window is non-zero, which means that the portion of the grid within the active window is 
accessed twice. 
 
In comparing the two approaches, we see that the Dynamic Window approach checks 68.9 m2 in 
total for obstacle occupancy, while the Vector Field Histogram approach checks only 21.78 m2.  
Even though the Dynamic Window approach checks a much smaller area of the grid than the 
Vector Field Histogram approach, it checks a different small area each time for each different 
trajectory.  Assuming that the two approaches use the same cell size for the occupancy grid, the 
Dynamic Window approach is more than three times as computationally expensive thus far as 
the Vector Field Histogram approach. 
 
Beyond checking a reduced portion of the grid, the Dynamic Window approach must determine 
the possible velocity pairs, compute the objective function for each velocity pair, and pick the 
velocity pair with the best objective function score as the new translational and rotational 
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velocity.  The Vector Field Histogram must determine which sectors in the polar histogram are 
valleys, pick the best valley, and compute the new translational and rotational velocity.  While 
classifying polar histogram sectors as valleys or peaks and determining which valley is the best 
is more expensive than simply computing the objective function, the objective function must be 
computed for each of the 130 velocity pairs.  Since finding the valleys in the polar histogram and 
picking the best is not 130 times more expensive than computing the objective function, the 
Dynamic Window approach is again more computationally expensive. 
 
3.3 Comparison Conclusions 
 
Given the extreme difference in computation time between the two approaches, the Vector Field 
Histogram approach is far more effective than the Dynamic Window approach.  Moving beyond 
just computational complexity, we have seen that not only does the Vector Field Histogram 
approach match some of the strengths of the Dynamic Window approach, it has strengths 
especially needed in tightly constrained environments unmatched by the Dynamic Window 
approach.  While the Dynamic Window approach is shown by Fox, Burgard, and Thrun to allow 
the robot to obtain a higher speed than by using the Vector Field Histogram in cases where the 
robot’s trajectory spans an entire corridor, the Vector Field Histogram is the better approach for 
tightly constrained environments where the trajectory is relatively short since rapid calculations 
and updates of the robot’s velocity is extremely important.  Hence, I tested only the Vector Field 
Histogram approach in the conducted experiments. 
 

4 Experiment Details 
 
4.1 Vulcan 
 
The Intelligent Robotics Lab’s intelligent wheelchair, Vulcan, was used for experimentation with 
the implemented control methods.  Vulcan is 67 cm in width and 92 cm in length.  The robot is 
equipped with two laser range finders that each return ranges for 180° in 1° increments.  The 
sensors are each angled 45° away from the front of the robot, such that range information is 
available for 270° around Vulcan.  These sensors can detect objects up to 50 m away, but they 
can detect objects with a reflectance of 20 – 30 % only up to 15 m away.  The sensors have a 
resolution of 70 mm up to 4 meters.  The maximum measuring error is 94 mm at less than 2 m 
and is 131 mm at greater than 2 m away. 
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Figure 2. “Vulcan” Robot 

 
Vulcan has an on-board computer running Debian Linux.  Most computation is done off-board 
on another computer connected to Vulcan through wireless ethernet.  Vulcan’s on-board 
computer sends sensory information to and receives resulting motor commands from the off-
board computer through the Player server software while a client runs on the off-board computer 
[3].  The on-board computer acts as the low-level controller for Vulcan and sends the received 
commands to its motors. 
 
4.2 Hybrid Spatial Semantic Hierarchy Software 
 
Both control methods were integrated into the HSSH software.  I replaced the path planning 
method for paths within the LPM with an implementation of the Vector Field Histogram 
Approach with the hope that the robot would follow a much smoother and more graceful path to 
its goal.  I took advantage of the occupancy grid and localization functionality already 
implemented in the LPM methods to provide information about the location of obstacles with 
respect to the robot’s location to the control methods.  The LPM built when HSSH is run is 10 m 
x 10 m with an occupancy grid cell size of 3 x 3 cm, giving a grid of 333 x 333 cells.  Once the 
control approach returns a translational and rotational velocity command, the HSSH software 
takes care of sending the command to the robot. 
 
Because the trajectory of the robot in a tightly constrained environment is short, the action of 
moving through a doorway, into an elevator, or down a wheelchair ramp takes place within the 
local perceptual map.  The Vector Field Histogram is not yet integrated into the global path 
planning capabilities of the HSSH software.  As a result, the robot cannot currently reach a goal 
point such as the other side of a door that is beyond the LPM. 
 
4.3 Vector Field Histogram Approach 
 
In my implementation of the Vector Field Histogram approach, I used an active window of 4 m x 
4 m centered on the robot.  Since HSSH uses a cell size of 3 x 3 cm for the occupancy grid of the 
environment, the active window contains 133 x 133 cells.  Borenstein and Koren’s 
implementation used a window size of 33 x 33 cells with cells of 10 x 10 cm, which gives an 
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active window covering 3.3 m x 3.3 m.  A much smaller cell size than 10 x 10 cm is needed for 
tightly constrained environments, since high precision is needed when calculating where 
obstacles are. 
 
Borenstein and Koren also smooth each polar obstacle density in the polar histogram by 
incorporating the polar obstacle densities around it.  However, I found that the approach can 
work successfully and consistently without smoothing.  This decreases the computation required 
by a very small amount, but reduces significantly when implementing the approach for a 
particular robot the amount of testing needed to find a threshold for determining whether a sector 
in the polar histogram is free space.  Without smoothing, the threshold is simply zero (no 
obstacles are seen in that sector). 
 

5 Experiment Environments 
 
Three different locations were chosen in the Taylor building at the University of Texas at Austin 
to be considered as environments that require high precision movement.  These environments 
served as testing for each control approach above.  A specific task for the robot to complete was 
associated with each environment in order to demonstrate the approach’s success rate of high-
precision control.  In each environment, the robot also has a high probability of encountering 
dynamic obstacles in the form of people, which it must avoid hitting. 
 
4.1 Doorway 
 
Figure 1 shows the doorway to the UT Intelligent Robotics lab at UT Austin.  The doorway is 84 
cm wide when the door is fully open.  When centered in the doorway, Vulcan has a clearance of 
8.5 cm on either side.  The space on either side of the doorway is clear of static obstacles. 
 

 
Figure 3. Lab doorway 
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In this environment, the robot must move from the inside of the lab to the hallway through the 
doorway.  The robot must clear its back wheels through the doorway in order to have 
successfully completed the task.  The high-precision challenge for the robot is avoid the doorway 
frame on either side of it. 
 
4.2 Elevator 
 
Figure 3 shows the Taylor building elevator on the second floor.  The doorway of the elevator is 
1.04 m wide and the elevator is 2.3 m deep.  Going straight through the elevator doors, Vulcan 
has a clearance of 18.5 cm on either side.  The elevator and the hallway around it are free from 
static obstacles.  When the elevator doors open, they will remain fully open for 5 seconds if they 
do not detect any movement between the doors. 
 

 
Figure 4. Taylor building elevator 

 
In this environment, the robot must wait in the hallway for the elevator doors to open, move into 
the elevator, and turn around to face the doors of the elevator.  The robot must move completely 
into the elevator such that the elevator doors are able to close when the robot has turned around 
in order to have successfully completed the task.  The high-precision challenge for the robot is to 
avoid colliding with either side of the elevator doors and the back wall of the inside of the 
elevator. 
 
4.3 Wheelchair Ramp 
 
Figure 2 shows the wheelchair ramp from the Taylor building to the ACES building lobby at UT 
Austin.  The ramp is 1 m wide, 3.6 m long, and has a 4.78 degree incline.  While following the 
center of the ramp, Vulcan has a clearance of 16.5 cm on either side.  The beginning and end of 
the ramp are free from static obstacles. 
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Figure 5. Taylor/ACES wheelchair ramp 

 
In this environment, the robot must move from a location at the bottom of the ramp, onto the 
ramp, up the ramp, and off of the top of the ramp into the ACES building lobby.  The robot must 
clear its back wheels from the last pole of the handrail at the top of the ramp in order to have 
successfully completed the task.  The high-precision challenge for the robot is to avoid colliding 
with the wall on the left side and the handrail poles on the right side. 
 
6 Experiment Results 
 
The following sections describe the robot’s behavior in the three environments described above.  
The velocity statistics are taken from the actual odometry changes of the robot, not what the 
Vector Field Histogram approach returns and what is sent to the robot as a command. 
 
6.1 Doorway 
 
The Vector Field Histogram approach consistently moves the robot through the doorway without 
colliding with the door frame with an average velocity of 34 cm/sec.  During the action, the robot 
reaches a maximum velocity of 88 cm/sec.  The total time required by the Vector Field 
Histogram approach to compute a new velocity command for the robot is approximately, 
including updating the LPM, is approximately 0.34 seconds.  However, this time is inflated a bit 
by the test UI that is currently updated each time a new velocity command is computed.  The 
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total time to travel from one side of the doorway to the other is typically between 8 and 9 
seconds.  The path is about 2.7 m long. 
 
The following figure shows the trajectory for Vulcan while moving into the lab.  The blue dots 
are waypoints along Vulcan’s path, and the two rectangles show Vulcan’s initial and final poses.  
The other black figures come from the LPM’s occupancy grid and give a good idea about what 
the environment looks like.  The square centered on the final pose of the robot is the active 
window at that point.  Through the trajectory, we can see the robot’s success in moving along a 
smooth, centered path through the doorway. 

 
Figure 6. Trajectory through doorway 

 
The following figures show both the commanded and observed translational velocity over time. 
 

Figure 7. Commanded translational velocity for 
doorway experiments 

Figure 8. Observed translational velocity for 
doorway experiments 

 
The graphs show that while the velocity increased smoothly at the beginning, it changed 
dramatically throughout the rest of the trajectory.  The most graceful approach to the doorway 
would involve a gradual ramp-up of the velocity in the beginning, a fairly constant velocity while 
traveling through the doorway, and a gradual slowing down at the end.  While the Vector Field 
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Histogram approach sends velocity commands that are fairly constant and close to the maximum 
velocity while traveling through the doorway, the robot responds to changes in velocity severely.  
One possible source for this behavior would be error in the recorded position and odometry, 
since the observed velocity is derived from the changes in position.  A small error in the position 
would be magnified once velocity is derived from it.  However, we can look at an example 
where translational velocity is set at 0.25 m/s and rotational velocity is set to zero, such that the 
robot travels in a slow, straight line.  The following results show that the position does not stray 
from the expected straight line and the deviation in the observed velocity is still large.  The 
changes in velocity are actually fairly visible when watching Vulcan traveling in a straight line at 
such a slow speed.  So, error in position probably does not account for a large portion of the 
acceleration we see during Vulcan’s movement. 
 

 

Figure 9. Results from moving in a straight line 
 
The following figures show both the commanded and observed rotational velocity over time. 
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Figure 10. Commanded rotational velocity for 
doorway experiments 

Figure 11. Observed rotational velocity for 
doorway experiments 

 
In these figures we can see that the robot made smooth, graceful turns when moving through the 
doorway since there are no large jumps in the rotational velocity graphs until the end when the 
robot has cleared the door.  The large jump at the end of the commanded rotational velocity 
graph occurs when the robot is very close to its goalpoint and is trying to move onto it exactly.  
This corresponds to the jump at the end of the commanded translational velocity graph.  This 
seems to suggest that the Vector Field Histogram approach is not necessarily the best approach 
for moving to a specific point in an environment gracefully, but is somewhat graceful in moving 
through a tightly constrained environment like a doorway. 
 
6.2 Elevator 
 
Using a clean implementation of the Vector Field Histogram, the robot moves into an elevator 
with an average velocity of 39 cm/sec.  However, it does not always clear the back wheels and 
move the robot completely into the elevator.  Hence, it does not turn completely around and 
allow the doors to close, as success in this environment was defined in Section 4.2.  Once the 
robot enters the elevator, the back wall enters the active window so the robot will not continue to 
move towards the back wall.  The robot instead starts turning around towards the only sectors in 
the polar histogram with no obstacles within the active window: the entry.   Figure 12 shows this 
behavior. 

 
Figure 12. Trajectory into elevator before improvements 

 
In order to successfully move into the elevator, I modified the VFH approach: if the goalpoint is 
closer to the robot than any of the obstacles in the active window, the polar histogram is ignored 
and the desired direction becomes the direction of the goalpoint (not the direction of the best 
candidate valley in the polar histogram).  If there is an object that the robot must navigate 
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around, the behavior is the same as the clean implementation, since there is obstacle closer to the 
robot than the goalpoint. 

 
The following figure shows the trajectory for Vulcan while moving into the elevator using this 
improvement.  We can see the robot’s success in moving along a smooth, centered path through 
the elevator doors.  Since the robot moves completely into the elevator, the elevator doors can 
close.  During the task, the robot reaches a maximum velocity of 55 cm/sec and an average 
velocity of about 35 cm/sec.  The total time required to compute a new velocity command for the 
robot is approximately, including updating the LPM and the testing UI, is approximately 0.22 
seconds.  The total time to travel into the elevator is typically between 10 and 11 seconds. 
 

 
Figure 13. Trajectory into elevator after improvements 

 
The following figures show the translational and rotational velocity and acceleration over time 
for moving into the elevator. 
 

  
Figure 14. Commanded translational velocity Figure 15. Observed translational velocity for 



Clare Richardson Page 17 December 19, 2005 

for elevator experiments elevator experiments 

  
Figure 16. Commanded rotational velocity for 

elevator experiments 
Figure 17. Observed rotational velocity for 

elevator experiments 
 
The graphs reveal similar results to that of the doorway experiments.  The change in translational 
velocity throughout the trajectory is dramatic, implying that velocity changes in the Vector Field 
Histogram approach may need to be smoothed.  However, the robot made graceful turns, since 
while the robot was entering the elevator in the middle of the graph, the rotational velocity does 
not change dramatically. 
 
Successfully moving into the elevator does not complete the task as defined in Section 4.2.  The 
robot must still turn towards the elevator doors.  Since the Vector Field Histogram approach does 
not take into account goal orientation, I implemented a “turning” mode in order to turn towards 
the doors.  In the turning mode, the maximum translational velocity is zero, such that the robot 
can only turn.  In the HSSH UI, the user selects the desired orientation by selecting a point in the 
graph that is in the desired direction.  For example, if we want the robot to face the doorway, we 
would select a point in between the edges of the doorway.  VFH then uses this goalpoint to 
calculate the appropriate rotational velocity command.  The robot stops when it is aligned with 
the selected goalpoint.  In my implementation, VFH alternates between the normal mode and the 
turning mode when a goalpoint is selected.  So, to enter and exit an elevator via Vulcan, the user 
clicks on a point inside the elevator to enter it, clicks again in the direction of the doorway to turn 
around Vulcan, and clicks a third time on a point outside the elevator to exit it.  The following 
picture shows what the UI looks like when Vulcan turns around in turning mode. 
 

 
Figure 18. Vulcan turning around 
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In the elevator experiments, the user must currently take the time to select the point within the 
LPM in the UI after the elevator doors have opened and the LPM has been updated, so the 
elevator doors must be manually held open for longer than five seconds.  Even if the LPM has a 
prior map what is on the other side of the elevator doors, HSSH will not accept a point as the 
goalpoint on the other side of the doors while they are closed so the user must still select the 
point after the doors have been opened.  Since HSSH is still in development, there is no other 
way to start a control method than to select a point on the UI that HSSH believes can be reached. 
 
6.3 Wheelchair Ramp 
 
Using a clean implementation of VFH, the robot does not avoid obstacles in moving towards the 
target because it is unable to see the poles on the right side of the ramp.  Only a few, sparse 
lasers hit each pole.  Since the cell size in the occupancy grid is so small, each of the lasers 
hitting a pole can fall in different cells.  However, more lasers can pass through the rest of each 
of the cells making it probable that that cell is free space.  Lasers may pass through a cell where 
another laser hit the pole if the laser hit the pole’s edge and the rest of the cell really is free 
space.  They may also be due to small errors in localization.  As a result, the poles are washed 
out from the occupancy grid and the space appears to be free of obstacles.  The space is then 
included in the candidate valleys in the polar histogram when selecting the next desired 
direction.  In trying to attain a goalpoint at the top of the ramp, the robot often moves too far to 
the right towards the poles and runs into them.  In order to overcome this problem, I modified the 
calculation of the polar obstacle densities.  After converting each non-zero occupancy grid cell in 
the active window into an obstacle vector, I convert the current endpoint of each laser into an 
obstacle vector.  This way, there is at least one obstacle vector for each pole in sight, since at 
least one laser hits the pole.  This modification counts twice non-zero occupancy cells where a 
laser endpoint falls.  This has the effect of reinforcing again the certainty that an obstacle is 
there.  After the modification, the VFH approach effectively keeps the robot from veering 
towards the poles and keeps it going towards the target.  The following figures are examples of 
Vulcan traveling up the ramp. 
 

  
Figure 19. Starting up the ramp Figure 20. Longer path up the ramp 

 
However, in experiments with the ramp case, I experienced a problem with the robot’s 
localization.  When the robot moves onto or off of the ramp, its orientation in three dimensions 
changes.  If the robot approaches the ramp completely head on and the wheels are in parallel 
with the wall, only its pitch will change.  However, if the robot does not approach the ramp with 
its wheels parallel to the wall, its roll with also change.  When the roll changes, the angle of the 
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wall relative to the robot changes.  So, a laser will now hit the wall farther away or closer, 
depending on how the roll has changed.  Since we do not take into account the roll or pitch of the 
robot when mapping laser ranges onto our environment map, the wall will now appear farther 
away or closer in the map because the laser range has become larger or smaller. 
 

 
Figure 21. HSSH UI after Vulcan’s roll changes 

 
Figure 21 shows the re-localization that occurs after the wall’s angle appears to change when the 
robot’s roll changes.  Red dots are laser endpoints and green dots are laser endpoints that fall in 
free space in the occupancy grid, which signifies they are falling on dynamic obstacles.  The blue 
line connects the initial pose of the robot to the goalpoint.  In this case, the robot is moving off of 
the top of the ramp at an angle to the wall.  The walls’ location in the occupancy grid then 
changes because of the differing laser ranges that are now being returned.  However, the position 
of the robot and the position of the goalpoint are not re-localized, so the goalpoint is now on top 
of a pole on the right side, which is obviously impossible to attain. 
 
It is nearly impossible to guarantee that the robot will be entering or exiting the ramp parallel to 
the wall.  Therefore, in order to solve this problem, we need to know how the robot is oriented in 
3D, most specifically what its roll orientation is.  Given Vulcan’s current sensors, this is not 
possible.  We must also determine how to map the laser ranges onto our 2D environment map 
given the robot’s 3D orientation. 
 

7 Future Work 
 
The Vector Field Histogram approach promises to be an extremely useful method for control in 
tightly constrained environments.  However, several steps must be taken before it is truly useful.  
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First, it must be integrated into HSSH’s global path planning capabilities so that it is not reliant 
upon the user to pick an appropriate goalpoint for the task and so that it is not restrained to 
goalpoints with the LPM.  Another practical improvement would be to automatically select an 
appropriate goal point based on a given task.  For example, if we know that the robot needs to go 
through a doorway, we can identify where the nearby doorway is and select a goalpoint just 
beyond it.  For the elevator case, we can select the goalpoint as the center of the elevator. 
 
To improve upon the grace of the movement caused by the Vector Field Histogram approach, the 
approach should be modified in order to gradually increase the speed at the beginning of a task 
and gradually decrease the speed when within the close vicinity of the goalpoint.  The 
translational velocity commands should also be smoothed, so that the robot does not react so 
dramatically to changes in velocity. 
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