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Abstract—We present computational approaches for analyz- small biological structural units, cryo-electron microscopy
ing/interpreting three-dimensional (3D) structures of large bio- (cryo-EM) of single particles, has steadily become a powerful
?&?CL_par com?)llexes atmte:jrgedlatedor modc_arattﬁ re;glutllc_ms , tool in revealing structures of large bio-molecular complexes

. Two problems are addressed: one is the alignmen . . i .
(matching) between segmented subunits and the other is the [61, [_7]' The rapid develo.pme!‘lt of this technique has made it
secondary structure identification within subunits. For the first POssible to resolve the biological complexes at sub-nanometer
problem, we propose a fast algorithm to spatially correlate two resolutions (8-10A) [8], [9], [10], [11]. In addition, cryo-
subunits. A number of applications are discussed and illustrated, EM approach can also capture multiple functional states of

including measuring _similariti_es, averaging subunits, refining a complex, allowing us to directly study the dynamics of an
segmentation, and fitting atomic structures. For the second prob- . L . X
interacting protein machinery.

lem, we propose an efficient algorithm to detect the secondary . . . )
structures, including both alpha-helices and beta-sheets, of a  Signal/lmage processing techniques have been extensively
protein density map. The performance of our approaches is used in 3D structure reconstructions at cellular and molecular

demonstrated on both experimentally reconstructed virus maps |evels. In particular, most of modern signal/image processing
and computationally simulated protein density maps. algorithms, including image restoration, noise reduction, con-
Index Terms— Structure Analysis, Alignment, Similarity Mea-  trast enhancement, object detection, alignment, classification,
sure, Segmentation, Secondary Structure Detection, Skeletoniza-3D reconstruction, boundary segmentation, skeletonization,
tion, Cryo-EM Maps, 3D Reconstruction and so on, have found fruitful applications in the single
particle cryo-EM approach, as will be explained with more
. INTRODUCTION details in Section II. Although a number of software for

OMPUTATIONAL biology has emerged as an increaserforming 3D reconstructions from cryo-EM data have been
Cingly active field in recent years due to the great demanfi2de widely available in recent years (e.g., EMAN [12],
of computational approaches in solving various biologicﬁ'z_)”:,)ER [13], IMAGIC [14]), quantitative apd automatic anal-
problems. We are now moving from a genomic to a proteonyélsllnterpretatlon of the reconstructed bio-molecular assem-
era, meaning that we are now facing a more challenging ta2i€s Still remains undeveloped. Current ways for interpreting
than analyzing the genome sequences: i.e., understandingégPnstructed maps depend mainly upon visual inspections
how proteins function in and around cells. The 3D structurddth the help of various graphic tools. Due to the large
of proteins are the essential factors that “code” the functions %tpysmal Size and complex@y of the blo-molgcular assemblies,
proteins. Therefore, determining and analyzing the 3D stre@WeVer, it is not only tedious and subjective but also very
tures of proteins and in particular large biological complexégﬁiCUIt to visually interpret the detailed features/activities of
is extremely important for studying their functions an interacting bio-molecular system. For this reason, automatic

X-ray crystallography [1], [2] and nuclear magnetic resostructu.ral anqusis of Iargg bio—molecular complexes has be-
nance (NMR) [3], [4] are two primary techniques that havE°Me increasingly and critically important. _
been used to reveal the structures of most existing protein folgd" OUr previous work [15], we presented an automatic ap-
seen in the Protein Data Bank (PDB) [5]. While individual Ioroproach of segmenting the reconstructed maps of bio-molecular

teins or small complexes provide important information, the%pmplexes into dozens to thousands of individual subunits. The

do not give a full picture of a functional biological complex.,a“tomatic segmentation without dou_bt makes_it much egsier to
Structural determination of large biological complexes (egnterpret the bio-molecular assemblies, allowing us to isolate
viruses, ion channels, and the ribosome) therefore offer

Hg subunits and interpret each of them individually without
more complete structural and functional description of the pr
tein machinery. Knowledge of these structures would provi@é

interference from the others. For symmetric structures (such

most viruses), the segmentation also helps eliminate the

not only the mechanistic descriptions for how macromolecul§uctural redundancy. In the present paper, we will address
interact in an assembly but also clues in developing therapei© follow-up tasks. The first is to find the spatial alignment
interventions related to diseases. While x-ray crystallograpA{d Structural similarity between two segmented subunits,

and NMR spectroscopy are quite often restricted to relativei#S€d on which a couple of applications will be discussed. The
second task that we shall address is the secondary structure
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tions of secondary structures can help us extract the maximmamdom orientations. On one hand, the average of particles
biological information from the reconstructed cryo-EM mapsn the same orientation (after proper alignment) can improve
The rest of this paper is organized as follows. We start the signal-to-noise ratio (SNR). On the other hand, particles
Section Il with a brief introduction to 3D electron microscopyn different orientations are very likely complementary to
imaging techniques. Then we discuss how the segmented sedieh other such that the missing wedge (pyramid, or cone)
units are aligned in 3D space and a number of applications wifl one particle could be filled by another. This technique,
be shown in Section Ill. Our algorithm of secondary structuknown assingle particle cryo-EM reconstructiorran achieve
detection is discussed and results on both reconstructed antesolution of abousA [8], [22]. To reduce the radiation
simulated maps are demonstrated in Section IV. Finally velamages, each particle is imaged only from one tilt angle

conclude this paper in Section V. and thousands of (or more) particles are used to reconstruct
a single 3D structure. Fig. 1(a) shows an overall pipeline of
Il. 3D CRYO-ELECTRON MICROSCOPYIMAGING single particle reconstruction and analysis. Each of the steps

Electron microscopy (EM) imaging has been largely useslill be explained below in more details.
in structural biology to study the activities of cells and
organelles. Three-dimensional electron microscopy (3D-EM) Pparticle Picking
imaging plays a unique role in EM for its capability of
revealing the three dimensional structures of biological unitﬁc

Thg m.athemancal pr|n_C|pIe of 3D'I.EM recor_lstrucn_on fror% 3D density map at moderate to intermediate resolutions
projection data (experimental EM images) is basically t

. >) 1> DeS 0A ~ 6A) [8]. Usually each electron micrograph contains
same as that commonly used in 3D medical imaging (CO. ozens to hundreds of particles, each of which corresponds to

puted Tomography or CT scan, for example). The MaIQhe projection of the 3D biological object under investigation.

difficulty with EM images is due to the extremely low Slgnal"l'he goal of particle picking is to box out all particles that

to-noise ratio (SNR). This is true partly because the electr? bk reasonably good in both size and shape. Fig. 1(b) shows

doser u;?nd tlnl E'(\)/I éﬂa%}g ir:1as rtg kr)(:‘i kfp(; n atxer)r/ lgiwtiler\:g small portion of the electron micrograph of the rice dwarf
(approximately 0.54 e/A") in order to reduce the radiatio virus [8]. From this picture we can also see how noisy a typical

damages of electrons to the _specimen. The flash coolgr} rticle image looks. The particles can be boxed out manually
technique, known as cryo-EM, is to quickly cool the samples

LA nd there are some software which provide this function (e.qg.,
to liquid f?'”"ge” temperature (about 77'.< or_Iess) STUCh tha_tt AN [12]). This method however is subjective and becomes
surrounding water does not form crystalline ice. This techniqu

. . . v%ry tedious when tens of thousands of particles need to
proved to be very successful in preserving the native structuroes

of specimen while reducing the radiation damages [6], [16] € picked. Fortunately there are a number of computational

. X -approaches for automatic or semi-automatic particle picking.
Due to different sample preparation and data CO”eCt'cNfost of these methods utilize cross-correlation scoring (e
methods, 3D-EM includes three major techniques: elegs g €9,

tron crystallography, electron tomography, and single par _6]) while some of them are based on feature/edge detection
cle method. Electron crystallography [17], similar to x-ra e.g., [27]). Interested readers can refer to a good review paper

. 28] or a special issue aJournal of Structural Biologyj29]
crystallography, can reveal the bio-molecular structures at an. _ . ; .
: . . . Tor various methods on this topic.
atomic resolution. However, the weakness of this technique
is that a two-dimensional crystal has to be grown for cryo- ] o )
EM imaging, which in many cases is hard to do. ElectroR- Particle Classification and Alignment
tomography [18], [19], on the other hand, is a powerful and Among the whole set of picked particles, some of them may
unique tool for studying 3D ultra-structures of cell organellegppear the same (subject to in-plane rotations) while some
or whole cells at a relatively low resolution. Mathematicallypthers look completely different. Particle classification is to
the 3D structure of a cell specimen can be reconstructed fréimd all the particle images that have the same appearance
a series of 2D projections in different tilt angles. There afeut not necessarily in the same orientation, while particles
several methods to collect the projection data: single-axis ti#tignment is to align those particles in the same class to
double-axis tilt, and uniform conical tilt, depending on howhe same orientation. The classified and aligned particles can
the specimen is rotated under the fixed camera. However, tiee averaged such that the class average has a significantly
tilt angles cannot exceed certain degree (usuai0’) due improved signal-to-noise ratio (SNR), compared to the original
to the tilt-stage and specimen thickness limitations [20], [21hdividual particles images. In principle, averaging a number
For this reason, the reconstructed density maps always habgarticle images is the core idea of single particle reconstruc-
significant distortions in certain regions, commonly known agon approach, in order to achieve a sub-nanometer resolution
the missing wedge (pyramid, or cone) problem. Besides tism extremely noisy data. Although particle classification
problem, the resolution of this type of reconstructions is ofteand alignment are conceptually different, they are actually
limited in the range of20A ~ 2004 because of the limited dependent upon each other the alignment is performed
electron dose used on a single specimen due to the radiationclassified particle images but in return, correctly aligned
damages [18], [19]. particles also help classify the particle images more accurately.
The solution to remedy the above problems is by takinthere are reference-based and reference-free methods, both
averages of a number of structurally identical particles of which are based on the conventional cross-correlation and

Thousands of (or more for non-symmetric structures) par-
le images need to be collected in order to reconstruct
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Fig. 1. lllustrations of single particle cryo-EM technique. (a) The overall pipeline, including particle picking, particle classification/alignment, orientation
assignment, 3D reconstruction, and map interpretation. In addition, EM contrast transfer function (CTF) correction [23], anisotropic filtering [24], and adapti
contrast enhancement [25] may also be applied before or after 3D reconstructions, to improve the signal-to-noise ratio. (b) An example of electron microgra
images showing particle picking (top) and 3D reconstruction from 2D projections (bottom).

Fourier analysis [21]. More recently, the probability-baseD. Reconstruction and Refinement

methods, such as the maximum likelihood approach [30], [31]. The mathematical theorem is well established for 3D re-
became increasingly popular for their better performance instruction from 2D projections, given that the orientation
classifying and aligning particle images. of each projection is known. Fig. 1(b) illustrates the 3D
reconstruction from a series of projections in different angles.
The most popular methods include the direct Fourier space
reconstruction [12] and the real-space filtered back projection
method [7]. As we mentioned earlier, the reconstructed 3D

Particle classification and alignment can provide us withi©del can be used as an initial model to refine the particle
a series of class averages corresponding to projecti0nsch’;‘ssﬁlcatmnlal|gnment as well as the orientation assignment.
different orientations. Unfortunately in most cases the particld§€ refined class averages and their orientations are then
(henceforth the class averages) appear in randomly-choS§fd t0 generate a better 3D model. This iterative process is
orientations such that we do not have the clue of whidfPeated until no significant improvement is observed.

orientation each class average corresponds to. Mathematically _

the relative orientations between two projections of the sarke Map Interpretation

3D object can be determined by tltemmon line theorem The reconstructed maps do not convey meaningful informa-
[7]. However, this method is very time-consuming and th&on until they are correctly interpreted. The map interpretation
accuracy may not be good enough due to the noise. Anotlieusually performed in two directions as shown in Fig. 1(a).
approach for estimating orientations is based on an initial 3®r maps at intermediate resolutitﬁz&(— 10&), the secondary
model [12]. The initial model can be built from a representastructures are visible and detectable. A pseudo-atomic model
tive subset of projections whose orientations are determineddan be built based on the detected secondary structures and
the common line method or randomly-assigned Euler angléiseir topological connections [8]. When the resolutions of
From the initial model, one can compute a series of projectiotie reconstructed maps degrade beydlﬁﬁ\, however, we

by re-projecting the 3D model in different angles. The clagsmnnot see the secondary structures with high confidence but
averages can be compared against each of the projectionsandstill can build the pseudo-atomic models by fitting a
assigned with the orientation of the best-matched projectidrigh-resolution PDB structure into the cryo-EM map based
The advantage of the model-based approach is that the orily on the density distributions [32]. In both cases, the
entation assignment is quite straightforward and additionakbggmentation of meaningful subunits is very helpful for fast
the patrticle classification and alignment can be simultaneouslyd accurate interpretations [15]. In the following sections,
conducted during the orientation assignments. we will present a few computational approaches on automatic

C. Orientation Assignment
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structural interpretations but major efforts will be made twoxels of f andg. Secondly, the scoring function i,g(T) is
solve two problems: 3D structural alignment between subunitermalized such that the similarity scores are always scaled to
and secondary structure identification within subunits. the range of [0, 1], wher® means no similarity and means
the highest similarity.
1. 3D STRUCTUREALIGNMENT

The goal of 3D structure alignments is to find the transfor-
mation matrix from one subunit to another, such that the two
subunits are best matched according to a pre-defined similarity
scoring function. In the following we will first discuss how to
define the similarity score between two density maps. Then we
propose a fast algorithm for aligning two subunits, followed
by a couple of applications in structural analysis of cryo-EM
maps.

Fig. 2. lllustration of similarity calculation based on critical points.

A. Similarity Scoring Function

The traditional similarity scoring function between twoB 3D Ali t Algorith
scalar maps, denoted by and g, is defined by cross- — 'gnment Algonthm

correlation as follows: Let us consider two subunis andB, as shown in blue and
magenta respectively in Fig. 3, and we want to align subAinit
S}.Q(T) = ka(i’j’k) xg(T(i,],k), (1) to subunitB. In our previous paper [15] we discussed how to
' il automatically detect the local symmetry axes, based on which

whereT is the transformation matrix fronf to g. The 3D We could segment each of the subunits. Given the segmented
structural alignment is to find the bt given two mapg and  SURUNItsA andB and the symmetry axes, we can transfokm

g, such that the above-defined similarity function reaches tfB in four steps:

highest. It is easy to see that maximizi8y,(T) is equivalent 1) TranslateA by to.

to minimizing the square difference betweérandg: 2) RotateA by ro.
3) TranslateA by t.

Sto(T) = Zk(f(hJ7k)—g(T(i7i,k)))2- (2)  4) RotateAbyr.
i, Since the symmetry axes of bothandB are given, the first

The advantage of the cross-correlation method is that ttweo of above transforms, the translatignand the rotationy,
fast Fourier transform (FFT) can be employed to speed up take uniquely determined by the symmetry axes. However, the
searching in the translational space (three degrees of freeddifi@nslationt and the rotatiorr have to be decided based on
As we will see shortly later, the FFT method may not be thH&e similarity scores between the density mapsAoand B
best way in our case. Therefore, we shall define the similarigg discussed in Section IlI-A. Therefore, the transformation
scoring function in real space. However, in order to sped@m one subunit to another has two degrees of freedom: one
up the searching process, we define the similarity score @anslation and one rotation, as illustrated in Fig. 3.
a set of critical points, instead of the whole set of voxels.
The critical points are those that best capture the features
of the molecular density map. In most cases, the critical
points can be defined by the local maxima, local minima, and
saddle points of the scalar map. If the data is noisy, one may
consider preprocessing the map using gradient vector diffusion
as discussed in [15]. Our similarity scoring function is hence
defined in the following way:

~g(
E m=1 ‘ (Cm)fg( (Cm))H’ E Nq 1 I ( (dn))*Q(dn)‘ 3 Flg 3. he align ent between two subunits include tr anSIatB)ﬂBdt, and
M f T f(T— ( ) ro jonsr nar nar ar n n n rmi
ET] 1 aX{ (Cm), g( (Cm))}+§Nn 1 ax{ ( (dn)) g(dn)}7 ations o a dr. But Onlyt andr are unknown and need to be dete ined

based on the similarity scoring function.

wherecm,m=1,2,---,M, are critical points off anddn,n= Putting the four transformation matrices together, we have

1,2,---,N, are critical points ofy. Fig.2 illustrates the idea of following matrix that transforms suburitto subunitB:
this similarity scoring function. There are two major differ-

ences betweeS; (T) andS? ,(T). First, the new similarity
9 f.g ! —

scoring function is based only on the critical points. Therefore, T(6,1) = Ma(r) x Ms(t) x Ma(ro) x M(to) “)

the searching for the best using S‘?’,g(T) is much faster than  The matricesMy, M2, M3, M4 are conventional transforma-

the searching usin@%’g(T), as the latter one is based on all theion matrices for translations or rotations. One can easily
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(a) Segmented trimers (b) Old segmentation (c) New segmentation (d) Averaged trimer

Fig. 4. lllustrations of segmentation and averaging on rice dwarf virus (RDV). (a) The five independent trimers arranged on the virus capsid (viewed frc
outside). (b) The segmentation results without subunit alignment (viewed from inside). (c) The segmentation results with subunit alignment showing bet
consistence between subunits. (d) The averaged trimer (in green) looks less noisy and more symmetric than the original trimer (in golden).

derive the exact expressions for these matrices based on @heApplications
given mformat_lon. eg., symmetr){ axes Wlth. starting/ending We will consider two examples in this section. The first
points). Substituting Equation 4 into Equation 3, we have

the following maximization equation for the 3D aIignmenPne is the rice dwarf virus (RDV), which has a perfect
between subunitsh and B, with density functionsf and g icosahedral symmetry at a resolution @BA [8]. There are

five independent subunits with 3-fold local symmetry, also

respectively: known as trimers, as shown in Fig.4(a). The second example
is the bacteriophage?29 at a resolution oft54 [33]. This
max{s? gtr) =1— map has a 5-fold global symmetry imposed along the vertical
{try = axis. As shown in Fig. 5(a), there are ten independent subunits
St |f(6m)—=9(Ter (cm)) [+ 5 hg | f (Tir(ch))—g(ch)| }, (5) including one tail on the bottom (subur#d), three 5-fold
St max{ f(cm), 9(Ter (em))}+5h_g max f (T (dn)), (dn)} subunits £0, #1, #2), and six 6-fold subunits#d ~ #9).

1) Segmentation Improvemen@ur previous segmentation
where T, is the transformation matrix fromA to B as g|gorithm [15] is based on the multi-seeded fast marching
defined in Equation 4. The range ofis user-defined. In method [34]. In this method each subunit is assigned with
our experiments we assumed that [—~10,10] in pixel unit. an initial contour which keeps growing according to a pre-
The range ofr is from 0° to 360 for general objects. But defined speed function and eventually stops on the boundaries
most of maps we are currently dealing with are the virysetween subunits. When the symmetry is considered, some of
structures which have some types of symmetries. Therefofige subunits are dependent (identical) and hence the contours
the segmented subunits usually ha\ge n-fold symmetry and &responding to those subunits must grow simultaneously by
range ofr should be from0° to (389)". the same amount in the same way. With this constraint, our

There are a number of optimization techniques to fingtevious segmentation [15] incorporated the global symmetry
the {t,r} that maximize the similarity score betweénand (for example, icosahedral for RDV and 5-fold fg29) and
B as defined in Equation 5. We adopted a simple twehe local n-fold symmetry of each subunit into the segmen-
level hierarchical method. On the coarse level, the translatigition. However, we did not consider the structural similarity
variablet is sampled by every one pixel unit from10to 10 between the independent subunits. In other words, the contours
and the rotation variable is sampled by everg® from 0° to  corresponding to independent subunits grew independently.
(3—20)0 wheren is the fold number of the symmetry. For eaciThis can sometimes yield noticeable errors especially when
combination of theseandr, we calculate the similarity scorethe boundaries between subunits are undistinguishable. An
and the one that maximizes the scoring function is the solutiekample is shown in Fig.4(b). This is the segmentation of the
of Equation 5 on the coarse level, denoted{by?,rV}. On outer layer of the rice dwarf virus (RDV) and five types of
the fine level, the sampling is taken within a small rangeimers are colored differently (see Fig.4(a) for their relatively
aroundt™™ andr. For the translation, the sampling is takerocations). We can see that some subunits (for example, the
on the interva[t<1) —O.9,t<1)+0.9] by every0.1 pixel unit. The yellow ones) occupy more space than the others. To remedy
sampling for rotation is on the interv@d(l)—4°,r(1)+4°] by this problem, we can utilize the 3D subunit alignment we
every1°. Again, the similarity score for each of these samplagiscussed in Section 1lI-B, such that the contours within all
is calculated and the best one, denoted{by,r?}, gives the subunits grow simultaneously by the same amounts in the
the final solution of Equation 5. By substituting(®,r(?}  properly-aligned directions. The results with this additional
into Equation 4, we have the transform matfixt(®,r?), constraint are shown in Fig. 4(c). We can see that the subunits
which gives the 3D alignment from suburitto B. A couple inthe new results look much more uniform and consistent than
of applications will be discussed below. those seen in Fig.4(b). However, it should be pointed out that
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(e) Fitted hexon/penton (f) Closer view of (e) (g) Pseudo-atomic structure

Fig. 5. lllustrations of segmentation, averaging, and structural fittingp®2® (a) The reconstructed cryo-EM density map @9. The symmetry axes

are detected using our automatic method [15] and a total of ten independent subunits are labeled. (b) The subunits are segmented based on our pre
segmentation method, combined with the 3D alignment approach discussed in Section IlI-B. (c) The segmented pentons and hexons can be averaged ar
whole structure can be reconstructed from the averaged subunits based on the 3D alignment matrices. (d) Two PDB structures were manually fitted into
monomer of the chosen penton and one monomer of the chosen hexon. Shown here is the view from the top ¢g28a¢g)ofVe can make copies of the
manually-fitted PDB structures to the other monomers of the chosen penton and hexon. (f) A zoomed-in view of (e). (g) We can also make copies of
fitted PDB structure in (d) to the whole capsid and get a pseudo-atomic structgp@2908hown here is only the top region @R9.

the subunits must be segmented before we can align théndexing numbers are given in Fig. 5(a). Since the tail subunit
Therefore, our previous segmentation algorithm [15] is sti#3) is obviously different from the other three 5-fold subunits,
useful in providing us with the initial segmentation by whichihe similarity scores between the tail and the others are very
the subunits can be aligned. The segmentatiop2¥is given low. However, the tail still shows a high 5-fold symmetry
in Fig. 5(b). since it locates exactly on the global 5-fold symmetry axis.
2) Similarity Measurement:Another application of our In Table Il we show the similarity scores between the six 6-
3D alignment algorithm is the similarity measures betweebld subunits. The subunit5 seems less similar to the others
subunits. This is biologically very important because it tellsecause it is close to and very likely “disturbed” by the tail
us the structural similarity quantitatively between any tweubunit.
independent subunits. It is computationally straightforward
to get the similarity score between two subunits. In fact, it
is given by the maximum of the similarity scoring function
S?’g(t,r) when Equation 5 is optimized. In Table | we give S S S S S
the similarity scores between the five independent trimers as 0.955 | 0.911 | 0.848 | 0.900 | 0.894
shown and indexed in Fig. 4(a). The scores in bold on the 0.926 8'23‘21' 8'222 g'gig
diagonal indicate how symmetric each individual trimer is and : 0,934 0.885
they are calculated by Equation 3 whérés the rotation along 0.856
the related symmetry axis by an amount%f (in general,
an’ wheren is the fold number). Table Il shows the similarity 3) Average Map of Subunitdf the segmented subunits of a
scores between the four 5-fold subunits @29, where the large bio-molecular complex (such as viruses) have high sim-

TABLE |
SIMILARITY SCORES BETWEEN THE FIVE TRIMERS OFRDV

0990
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TABLE I

SIMILARITY SCORES BETWEEN THE FOUR PENTONS 029 previous work on secondary structure identification. An ap-

proach for detecting alpha helices has been described in [35],

) ) S ) where the alpha helix is modeled with a cylinder (length and
S | 0.991 [ 0.948 | 0.949 | 0.344 thickness) with Gaussian distribution density function and the
S 0.960 | 0.958 | 0.306 cylinder is cross-correlated with the segmented protein map.
S 0.961 | 0.314 4 o ) ) i
S 0.991 Since the best solution is achieved by exhaustively searching
in translation space (three degrees of freedom) and orientation
TABLE 1lI space (two degrees of freedom), this method is computation-
SIMILARITY SCORES BETWEEN THE SIX HEXONS ORp29 ally expensive. Another approach, designed for beta sheet
detection, was recently proposed in [36]. This method uses a
S S S Sr S S disk (planar) model for beta sheets. It inherits the disadvantage
S | 0.973] 0.793 | 0.947 | 0.940 | 0.869 | 0.880 . X .
S 0741 T 0793 0785 T 0772 0.787 of slow computational speed due to the exhaustive search in
S 0.971 | 0.963 | 0.884 | 0.884 both translation and orientation spaces.
S 0.965 | 0.888 | 0.884 In the following, we present a skeleton-based approach for
S 0.829 | 0.938 ; ; o
S 5815 protein secondary structure identifications. Compared to the

previous methods, our approach is extremely fast (hundreds
of times faster) and yields high accuracy as well. Our skele-

ilarities, they can be averaged such that the structural analy}&g'zat'on method is based on the local structure tensor and is

of the whole complex can be simplified to the analysis of %egmentatlon-free.
single averaged subunit. Apparently averaging several subunits
is straightforward if the alignments between any two of them. Local Structure Tensor

are known. In general, the averaged map has a higher signal-tor 54| sructure tensor has been used in image processing
noise ratio than each individual subunits, which makes it easjgr solving a number of problems such as anisotropic filtering

to analyze the structures (e.g., structural fitting or second @«7] [24] and motion detection [38]. Given a 3D mé(x,y, 2)
structure identification, as will be discussed shortly later, éradient tensor is defined as: e

Fig. 4(d) shows one segmented trimer of RDV (in golden)

and the averaged map of the five independent trimers (in 2 fufy ffz

green). We can see that the averaged trimer has higher 3-

fold symmetry and better signal-to-noise ratio. Fig. 5(c) shows G=| K&fy fF ff, (6)
the map constructed from the tail (blue), the averaged penton

(orange) and the averaged hexon (green). fuf, fyf, 7

4) Semi-Automatic Structural FittingAs we mentioned _ . , . 2| g2
: : : This matrix has only one non-zero eigenvald@+ f2 + f2.
earlier, the structural analysis of large bio-molecular COE{ y

plexes includes two types: structural fitting for moderat: Ze crg(rjrizflpc;ndfm% e'grir;i%?é Ot];\itshlr?]aetlr?fg\llg:]uee d'cs)egxr?gttly
resolution maps10A — 20A) and secondary structure analysi%. Y Wy, fy, Ta). ’

for intermediate (sub-nanometer) resolution ma— 108) give more information than the gradient vector. To make
i : " .. the gradient tensor useful, a spatial average (over the image
We shall Is on h h ioe or ' .
e shall give details on how to detect the secondary StrUCtu(ﬁ?mam) should be conducted for each of the entries of the

in Section IV. In this paragraph, we want to briefly show how ™ . -~ .
paragrap y adient tensor, yielding what is called thecal structure

to apply the 3D subunit alignment to building a pseudo-atom . . L
model for a cryo-EM map at moderate resolutions. The id gnsor The averaging is usually based on a Gaussian filter:

is as follows. First, we choose a related PDB structure and 2% 0y fufyx0a  fxfzx0q

fit it into the monomer% of the n-fold subunit). There are a

lot of approaches which can do this computationally (see [32] Ta=| fxfy*0a ff *0q  fyfz*0q @)
for a review on various methods). In our test, we simply fit

the PDB structure manually into the monomers of the chosen fxfzx0a  fyfz%0a  f2x0q

penton and hexon, as shown in Fig. 5(d) in magenta and

cyan respectively. Once we have that, the second step isHereg, is a Gaussian function with standard deviationThe
transform the fitted PDB structure to all other subunits usirgigenvalues and eigenvectors of the structure tehgordicate

the transformation matrices obtained from the 3D alignmenhe overall distribution of the gradient vectors within the
This can be done automatically. Fig. 5(e) shows the model flacal window, similar to the well-known principal component
one penton and one hexon only and a closer view of the moaelalysis (PCA). Three typical structures can be characterized
is shown in Fig. 5(f). Fig. 5(g) shows the pseudo-atomic modehsed on the eigenvalues [37]. Let the eigenvalugls b, A3

in the top region ofp29. and A1 > A2 > A3. Then we have the following cases (see
Fig.6):
IV. SECONDARY STRUCTURE IDENTIFICATION o SpheresA; ~ Ay~ Az > 0.

Proteins typically contains two types of secondary struc- * Lines:).\l ~ A2 >> A3~ 0.
tures: alpha-helices and beta-sheets. There have been somePlan€sis >> Az~ A3~ 0.
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2z vs min(, 2) > maxi, £),
« planesi; > sheetin andt; < sheetax and
V1 min(, £) > max, &),
V2 V2 where helixnin and helixnax are the minimal and maximal
Vi V1 %’s thicknesses of helices, arstheeti, and sheetax are the min-
V2 imal and maximal thicknesses of sheets. All these parameters
(a) Spheres (b) Lines (c) Planes are provided by users.

2) Tracing SkeletonsThe line-tracer is one-dimensional
and hence is much easier than the plane-tracer. To trace a line
structure, we start from the seed in two opposite directions,
B. Skeletonization and follow the principle axis, defined by the eigenvector cor-

N responding to the minimum eigenvalue of the local structure
There have been a number of skeletonization approachés .
tensor (see Fig.7(a)). To trace a planar structure, we use the

including boundary-based methods [39], [40] and boundar OIell-known marching cube method [43]. We start from the

free methods [41], [42]. While a pre-segmentation is requwesg?d point and compute the plane that is perpendicular to

in boundary-based methods, boundary-free methods do . : . ;
. : . e, eigenvector corresponding to the maximal eigenvale (

have this requirement but the skeletons are in general extracted.. 2 ) .
N Fig.6(c)). The plane partitions all eight vertices of the

e
by a skeleton-tracing step. In the following, we present a o~ S ] -
method to trace the skeletons based on local structure tensg%l. containing the seed point into two classes: positive and

1) Selecting and Classifying Seedas we discussed in negative. In addition, the plane mtersg(_:ts wlth some of_ the
. ST twelve edges of the cell. Both the classification of the vertices
Section IV-A, the local structure tensor can distinguish be- : S . :
an? the intersection information with the edges can be used

tween spherical, linear, and planar structures. The spherica he marching cube algorithm, yielding a polygon (a list of

. . : o n
case is usually of no interest in skeletonization. Therefore, Vtvr'i::angles) representing the skeletons within the current cell (see
ig.7(b)). Then we move to the neighboring cells with which

will focus on the other two cases in the following. As wi
will see in Section 1V-C, these two types of local structure@% detected skeleton (polygon) intersects. For the example in

exactly correspond to the alpha-helices and beta-sheets ig.7(b), we need to check four neighboring cells (back, front,

protein density map. . p N
Seeds are the starting points for tracing the skeletons. Thzra'geht’ anq pottom). For each of_those new cells, the “checking
gint (similar to the seeds) is calculated as the center of

are multiple ways to define/detect the seed points, but ope >~ . "~ . .
A g . heé existing intersecting points between the already-detected
thing is common: all the seed points must be on the skeletons, "
) . : .~ skeletons and the new cell. The new polygon within the new

As we will see shortly later, protein density maps look liké : . .
. . ” .. cell is extracted using the idea as explained above, based
mountains— high densities (features) correspond to the ridges, ) A
T L 2-0on the “checking” point and the new structure tensor around

Therefore, the skeleton extraction is quite similar to the rid F

. . . o 9L, This pr is r ntil certain ing criterion
tracing. For this reason, we choose the maximal critical poin s process is repeated until certain stopping criterio

Fig. 6. Three typical cases for a local structure tensor.

S :
. : IS reached. The plane-tracer riangular mesh of
of the density maps as the seed points of our skeleton-tracess.eaC ed € plane t acer outputs a triangular mesh o

: . : . . SKéletons. The stopping criteria for both line-tracer and plane-
The detection of these points was discussed in our previqus o : .
work [15] racer are similar: the tracing process terminates whenever no

) . . . new cells satisfy the criteria as discussed in Section IV-B.1.
Since we are dealing with two types of skeletons: linear fy

and planar, for which the skeleton-tracings are different, we

need to classify each seed point into either linear or planar

types before tracing the skeletons. In [37], the authors used

three eigenvalues of the structure tensor to distinguish the lines PNy

from the planes. However, this criterion does not work well for T

protein secondary structures because some parts of proteins

(e.g., coils, turns) look like helices except they are thinner. (a) Line-tracer (b) Plane-tracer

Therefore, a better way I,S tQ use thICknesse,s of the Second}—%@.’?. Skeleton-tracers. (a) Tracing 1D skeletons. (b) Tracing 2D skeletons

structures along three principle axes. The thickness along gf¥ marching cube method [43]).

direction is defined by the width of the region above a pre-

chosen threshold in that direction. Since we know the typical 3) Merging Skeleton:For each of the seed points, one

thickness of a helix, the threshold values can actually k@n extract a curve or a surface, corresponding to a helix or

determined automatically from the seed points that correspogigket, respectively. However, quite often we see more than one

to the helices based on the initial classification USing the Slm@éed points Corresponding to the same Secondary structure.

criterion in [37]. Once we know the thickness informatiotone example is illustrated in Fig.8(a) and a closer view is

for each seed point, we can classify the seeds into linear agighwn in Fig.8(b). In order to have only one curve/surface for

planar according to the following criterion: Lét, tz, t3 be each helix/sheet, we need to merge the superfluous skeletons

the thicknesses corresponding to the eigenvectors as showgdfresponding to the same helix/sheet. Besides eliminating the

FlgG The fOIIOWing criterion is used to Cla.SSify the seeds: redundancy, the merging process can also give balanced skele-
o lines: % > helixnin and % < heliXnax and tons because the new skeletons are the average of previously

N4
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redundant ones. Fig.8(c) shows the skeleton after merging. Istsucture of the bluetongue virus VP7 (PDBID = 1bvp). This
worth pointing out that the topological ambiguity problem seemap contains a total a7 alpha-helices in the lower domain
in the original marching cube method [43] can be resolved land a few beta-sheets in the upper domain. The detected alpha-
an improved algorithm as discussed in [44]. helices and beta-sheets are shown in Fig.11(b) with density
map and in Fig.11(c) with PDB structure. A7 alpha-helices
“Yor U \ v \ and major portions of beta-sheets are correctly identified and
e 19 : agree very well with the PDB structure. Although two small
‘S ‘ \ alpha-helices (indicated by red arrows) are misidentified due
\Z to a couple of turns getting very close to each other, our

: _ results show better performance than the method proposed
\ X ( : in [35]. Fig.11(d) shows another view of (c). A closer view
N v 11 of the skeletons together with the PDB structure is shown in
| \ X Fig.11(e).

- We also demonstrate our approach on a 3D cryo-EM map
r{econstructed from experimental samples of the rice dwarf
virus (RDV) [8]. Fig.12(a) shows the reconstructed 3D map
(b) A zoomed-in view of the rectangular region as shown in (a). The thicqeft)' the _segmented double capsid Iayers (top-right), and
“dots” are seed points. (c) The skeletons after merging segmentation of the outer layer (bottom-right). The segmented
P3 protein (from inner layer) and P8 protein (from outer layer)
are shown in Fig.12(b). The detected alpha-helices and beta-
sheets for both proteins are shown in Fig.12(c).

o ) ] In addition to the high accuracy, the speed of our approach
Once the skeletons are extracte_d, it is qL_nte stra_lghtforwa‘rsplamother advantage compared to the previous methods [35],
to locate the secondary structures in a protein d_en5|ty map. Ité%]- The helix-hunter used in [35] may take up to one hour

generally enough to represent beta-sheets using the extragtedy,o map such as P8 or P3 proteins of RDV, to detect only

triangular mesh. However, if the resolution of the given magge alpha-helices. Our method takes only 3 seconds for P8

is higher than B, it is possible to see the individual beta‘protein and 10 seconds for P3 proteins on a typical Linux

strands. In this case, we can apply the line-tracer t0 extrg@lstation with single processor, to detect both alpha-helices
the strands and get a better model of the beta-sheets. AS A peta-sheets. We do not have the timings for sheet-miner
alpha-helices, we can easily build a cylinder model for eacly ronosed in [36]. However, we believe that the sheet-miner
helix based on the extracted skeletons. of [36] should be as slow as, if not slower than, the helix-

~ We have tested our skeleton-based secondary SUUCHH[ger of [35] because both methods used exhaustive searching
identification approach on a large number of simulated afhemes in the translational and orientational spaces.
experimentally-reconstructed protein density maps. Due to the

space limit, however, we will only show a few examples here.
Fig. 9 illustrates the performance of our approach on the
Gaussian blurred maps of two X-ray atomic structures. The V. CONCLUSIONS
first example is cytochrome ¢’ (PDBID = 1bbh). The blurred
map at8A and detected skeletons are shown in Fig.8. From theln this paper we presented several computational approaches
skeletons, four alpha helices are detected as shown in Fig.9ta).automatically analyze structures of cryo-EM maps. In
To demonstrate the accuracy of our approach, the skelet@asticular, we proposed fast methods to align (match) two
and detected helices are compared with the PDB structwegmented subunits in 3D space, and to identify secondary
in Fig.9(b) and (c). Another example is the blurred map dtructures of a protein density map. The 3D alignment algo-
rat CD4 (PDBID = 1cid) as seen in Fig.9(d). The detectedthm provides us with a set of transformation matrices which
skeletons (sheets) are shown in Fig.9(e) and compared wittoved to be very useful in a number of applications, including
PDB structures in Fig.9(f). similarity measurements, segmentation improvements, subunit
We also tested our approach on two simulated maps caveraging, and structural fitting between PDB structures and
taining both alpha-helices and beta-sheets. Fig.10(a) showsthg-EM maps. Our skeleton-based method for secondary
blurred map of the triose phosphate isomerase from chickstnucture identifications is extremely fast (usually hundreds
muscle (PDBID = 1tim) at8A. The detected alpha-helicesof times faster) compared to the existing methods [35], [36].
and beta-sheets are shown in Fig.10(b) with density mé&yhile the existing methods can only detect either helices
and in Fig.10(c) with PDB structure. We can see that most sheets, our approach can detect both types of secondary
helices/sheets agree very well with the PDB structure excegptuctures with high accuracies. When combined with our
that one small alpha-helix that is immediately adjacent to pevious segmentation method [15], the approaches presented
long helix is missed (indicated by a red arrow). This result al$were can be employed to automatically interpret a wide range
agrees with that seen in [35]. Fig.10(d) and (e) give anothef bio-molecular structures especially those reconstructed by
view of (b) and (c), respectively. In Fig.11(a) we show #he single particle cryo-EM technique as introduced in Section
more complicated simulated map&ﬁ, blurred from the PDB II.

(a) Traced skeleton (b) Closer view (c) Merged skeleto

Fig. 8. Skeleton extraction. (a) The initial skeletons traced by the line-trac

C. Applications: Protein Secondary Structure Detection
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(a) Detected helices (b) Skeletons (c) Helices with PDB (d) Blurred map (e) Skeletons  (f) Sheets

Fig. 9. Examples on two blurred maps of x-ray crystal structures. (a) The alpha-helices detected from the blurred map of cytochrome ¢’ (PDBID = 1bb
The blurred map a8A and extracted skeletons were shown in Fig.8. (b) The skeletons detected from the blurred map and compared with the PDB structu
(c) The detected helices are compared with the PDB structures. (d) The blurred map of rat CD4 (PDBID = 8&ideafThe skeletons (corresponding to
beta-sheets) detected from the blurred map. (f) The sheets are compared with the PDB structures.

(a) Blurred map (b) Helix-sheet (map) (c) Helix-sheet (PDB) (d) Another view of (b) (e) Another view of (c)

Fig. 10. Secondary structure identification on the triose phosphate isomerase from chicken muscle (PDBID = 1tim). (a) The qurreEﬁMapn e

x-ray crystal structure. (b) The alpha-helices (green) and beta-sheets (pink) detected using our method. (c) The detected helices/sheets are compared wi
PDB structures. We can see that most helices/sheets agree very well with the PDB structure except that one small alpha-helix that is immediately adjace
a long helix is missed (indicated by red arrow). This result also agrees with that seen in [35]. (d) Another view of (b). (e) Another view of (c).

(a) Blurred map  (b) Helix-sheet (map) (c) Helix-sheet (PDB) (d) Another view of (c)

Fig. 11. Secondary structure identification on the bluetongue virus VP7 (PDBID = 1bvp). () The blurred ®&gioat the x-ray crystal structure. (b) The
alpha-helices (green) and beta-sheets (pink) detected using our method. (c) The detected helices/sheets are compared with the PDB structures. All alpha-t
and major portions of beta-sheets are correctly identified and agree very well with the PDB structure. Although two small alpha-helices (indicated by r
arrows) are misidentified due to a couple of turns running into each other, our results show better performance than the method proposed in [35]. (d) Ano
view of (c). (e) A closer view of the detected skeletons together with the PDB structure. The chosen region is roughly in the rectangular area right below
center of (c).
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(a) Reconstructed maps and segmentation (b) Segmented proteins

Fig. 12. The example of a real cryo-EM reconstructed map. (a) The reconstructed map of the rice dwarf virus (left), the segmented double capsid lay
(top-right), and the segmentation of the outer layer (bottom-right). (b) The segmented P3 protein (left) and P8 protein (top-right). (c) The detected alpha-heli

(c) Detected helices and sheet

(green) and beta-sheets (pink) from the P3 and P8 proteins.
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