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Abstract— We present computational approaches for analyz-
ing/interpreting three-dimensional (3D) structures of large bio-
molecular complexes at intermediate or moderate resolutions (5̊A-
20Å). Two problems are addressed: one is the 3D alignment
(matching) between segmented subunits and the other is the
secondary structure identification within subunits. For the first
problem, we propose a fast algorithm to spatially correlate two
subunits. A number of applications are discussed and illustrated,
including measuring similarities, averaging subunits, refining
segmentation, and fitting atomic structures. For the second prob-
lem, we propose an efficient algorithm to detect the secondary
structures, including both alpha-helices and beta-sheets, of a
protein density map. The performance of our approaches is
demonstrated on both experimentally reconstructed virus maps
and computationally simulated protein density maps.

Index Terms— Structure Analysis, Alignment, Similarity Mea-
sure, Segmentation, Secondary Structure Detection, Skeletoniza-
tion, Cryo-EM Maps, 3D Reconstruction

I. I NTRODUCTION

COMPUTATIONAL biology has emerged as an increas-
ingly active field in recent years due to the great demands

of computational approaches in solving various biological
problems. We are now moving from a genomic to a proteomic
era, meaning that we are now facing a more challenging task
than analyzing the genome sequences: i.e., understanding of
how proteins function in and around cells. The 3D structures
of proteins are the essential factors that “code” the functions of
proteins. Therefore, determining and analyzing the 3D struc-
tures of proteins and in particular large biological complexes
is extremely important for studying their functions.

X-ray crystallography [1], [2] and nuclear magnetic reso-
nance (NMR) [3], [4] are two primary techniques that have
been used to reveal the structures of most existing protein folds
seen in the Protein Data Bank (PDB) [5]. While individual pro-
teins or small complexes provide important information, they
do not give a full picture of a functional biological complex.
Structural determination of large biological complexes (e.g.,
viruses, ion channels, and the ribosome) therefore offers a
more complete structural and functional description of the pro-
tein machinery. Knowledge of these structures would provide
not only the mechanistic descriptions for how macromolecules
interact in an assembly but also clues in developing therapeutic
interventions related to diseases. While x-ray crystallography
and NMR spectroscopy are quite often restricted to relatively
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small biological structural units, cryo-electron microscopy
(cryo-EM) of single particles, has steadily become a powerful
tool in revealing structures of large bio-molecular complexes
[6], [7]. The rapid development of this technique has made it
possible to resolve the biological complexes at sub-nanometer
resolutions (6̊A-10Å) [8], [9], [10], [11]. In addition, cryo-
EM approach can also capture multiple functional states of
a complex, allowing us to directly study the dynamics of an
interacting protein machinery.

Signal/Image processing techniques have been extensively
used in 3D structure reconstructions at cellular and molecular
levels. In particular, most of modern signal/image processing
algorithms, including image restoration, noise reduction, con-
trast enhancement, object detection, alignment, classification,
3D reconstruction, boundary segmentation, skeletonization,
and so on, have found fruitful applications in the single
particle cryo-EM approach, as will be explained with more
details in Section II. Although a number of software for
performing 3D reconstructions from cryo-EM data have been
made widely available in recent years (e.g., EMAN [12],
SPIDER [13], IMAGIC [14]), quantitative and automatic anal-
ysis/interpretation of the reconstructed bio-molecular assem-
blies still remains undeveloped. Current ways for interpreting
reconstructed maps depend mainly upon visual inspections
with the help of various graphic tools. Due to the large
physical size and complexity of the bio-molecular assemblies,
however, it is not only tedious and subjective but also very
difficult to visually interpret the detailed features/activities of
an interacting bio-molecular system. For this reason, automatic
structural analysis of large bio-molecular complexes has be-
come increasingly and critically important.

In our previous work [15], we presented an automatic ap-
proach of segmenting the reconstructed maps of bio-molecular
complexes into dozens to thousands of individual subunits. The
automatic segmentation without doubt makes it much easier to
interpret the bio-molecular assemblies, allowing us to isolate
the subunits and interpret each of them individually without
interference from the others. For symmetric structures (such
as most viruses), the segmentation also helps eliminate the
structural redundancy. In the present paper, we will address
two follow-up tasks. The first is to find the spatial alignment
and structural similarity between two segmented subunits,
based on which a couple of applications will be discussed. The
second task that we shall address is the secondary structure
identification within a segmented subunit. The demand of
locating alpha-helices and beta-sheets becomes increasingly
critical as the resolution of the reconstructed maps approaches
higher than 10̊A [8]. Knowing the exact positions and orienta-
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tions of secondary structures can help us extract the maximum
biological information from the reconstructed cryo-EM maps.

The rest of this paper is organized as follows. We start in
Section II with a brief introduction to 3D electron microscopy
imaging techniques. Then we discuss how the segmented sub-
units are aligned in 3D space and a number of applications will
be shown in Section III. Our algorithm of secondary structure
detection is discussed and results on both reconstructed and
simulated maps are demonstrated in Section IV. Finally we
conclude this paper in Section V.

II. 3D CRYO-ELECTRON M ICROSCOPYIMAGING

Electron microscopy (EM) imaging has been largely used
in structural biology to study the activities of cells and
organelles. Three-dimensional electron microscopy (3D-EM)
imaging plays a unique role in EM for its capability of
revealing the three dimensional structures of biological units.
The mathematical principle of 3D-EM reconstruction from
projection data (experimental EM images) is basically the
same as that commonly used in 3D medical imaging (Com-
puted Tomography or CT scan, for example). The major
difficulty with EM images is due to the extremely low signal-
to-noise ratio (SNR). This is true partly because the electron
dose used in EM imaging has to be kept in a very low level
(approximately 0.5∼4 e/Å2) in order to reduce the radiation
damages of electrons to the specimen. The flash cooling
technique, known as cryo-EM, is to quickly cool the samples
to liquid nitrogen temperature (about 77K or less) such that the
surrounding water does not form crystalline ice. This technique
proved to be very successful in preserving the native structures
of specimen while reducing the radiation damages [6], [16].

Due to different sample preparation and data collection
methods, 3D-EM includes three major techniques: elec-
tron crystallography, electron tomography, and single parti-
cle method. Electron crystallography [17], similar to x-ray
crystallography, can reveal the bio-molecular structures at an
atomic resolution. However, the weakness of this technique
is that a two-dimensional crystal has to be grown for cryo-
EM imaging, which in many cases is hard to do. Electron
tomography [18], [19], on the other hand, is a powerful and
unique tool for studying 3D ultra-structures of cell organelles
or whole cells at a relatively low resolution. Mathematically,
the 3D structure of a cell specimen can be reconstructed from
a series of 2D projections in different tilt angles. There are
several methods to collect the projection data: single-axis tilt,
double-axis tilt, and uniform conical tilt, depending on how
the specimen is rotated under the fixed camera. However, the
tilt angles cannot exceed certain degree (usually±700) due
to the tilt-stage and specimen thickness limitations [20], [21].
For this reason, the reconstructed density maps always have
significant distortions in certain regions, commonly known as
the missing wedge (pyramid, or cone) problem. Besides this
problem, the resolution of this type of reconstructions is often
limited in the range of20Å∼ 200Å because of the limited
electron dose used on a single specimen due to the radiation
damages [18], [19].

The solution to remedy the above problems is by taking
averages of a number of structurally identical particles in

random orientations. On one hand, the average of particles
in the same orientation (after proper alignment) can improve
the signal-to-noise ratio (SNR). On the other hand, particles
in different orientations are very likely complementary to
each other such that the missing wedge (pyramid, or cone)
of one particle could be filled by another. This technique,
known assingle particle cryo-EM reconstruction, can achieve
a resolution of about6Å [8], [22]. To reduce the radiation
damages, each particle is imaged only from one tilt angle
and thousands of (or more) particles are used to reconstruct
a single 3D structure. Fig. 1(a) shows an overall pipeline of
single particle reconstruction and analysis. Each of the steps
will be explained below in more details.

A. Particle Picking

Thousands of (or more for non-symmetric structures) par-
ticle images need to be collected in order to reconstruct
a 3D density map at moderate to intermediate resolutions
(20Å ∼ 6Å) [8]. Usually each electron micrograph contains
dozens to hundreds of particles, each of which corresponds to
one projection of the 3D biological object under investigation.
The goal of particle picking is to box out all particles that
look reasonably good in both size and shape. Fig. 1(b) shows
a small portion of the electron micrograph of the rice dwarf
virus [8]. From this picture we can also see how noisy a typical
particle image looks. The particles can be boxed out manually
and there are some software which provide this function (e.g.,
EMAN [12]). This method however is subjective and becomes
very tedious when tens of thousands of particles need to
be picked. Fortunately there are a number of computational
approaches for automatic or semi-automatic particle picking.
Most of these methods utilize cross-correlation scoring (e.g.,
[26]) while some of them are based on feature/edge detection
(e.g., [27]). Interested readers can refer to a good review paper
[28] or a special issue ofJournal of Structural Biology[29]
for various methods on this topic.

B. Particle Classification and Alignment

Among the whole set of picked particles, some of them may
appear the same (subject to in-plane rotations) while some
others look completely different. Particle classification is to
find all the particle images that have the same appearance
but not necessarily in the same orientation, while particles
alignment is to align those particles in the same class to
the same orientation. The classified and aligned particles can
be averaged such that the class average has a significantly
improved signal-to-noise ratio (SNR), compared to the original
individual particles images. In principle, averaging a number
of particle images is the core idea of single particle reconstruc-
tion approach, in order to achieve a sub-nanometer resolution
from extremely noisy data. Although particle classification
and alignment are conceptually different, they are actually
dependent upon each other− the alignment is performed
on classified particle images but in return, correctly aligned
particles also help classify the particle images more accurately.
There are reference-based and reference-free methods, both
of which are based on the conventional cross-correlation and
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(a) Overall pipeline of the single particle reconstruction and analysis (b) Particle images/reconstruction

Fig. 1. Illustrations of single particle cryo-EM technique. (a) The overall pipeline, including particle picking, particle classification/alignment, orientation
assignment, 3D reconstruction, and map interpretation. In addition, EM contrast transfer function (CTF) correction [23], anisotropic filtering [24], and adaptive
contrast enhancement [25] may also be applied before or after 3D reconstructions, to improve the signal-to-noise ratio. (b) An example of electron micrography
images showing particle picking (top) and 3D reconstruction from 2D projections (bottom).

Fourier analysis [21]. More recently, the probability-based
methods, such as the maximum likelihood approach [30], [31].
became increasingly popular for their better performance in
classifying and aligning particle images.

C. Orientation Assignment

Particle classification and alignment can provide us with
a series of class averages corresponding to projections in
different orientations. Unfortunately in most cases the particles
(henceforth the class averages) appear in randomly-chosen
orientations such that we do not have the clue of which
orientation each class average corresponds to. Mathematically
the relative orientations between two projections of the same
3D object can be determined by thecommon line theorem
[7]. However, this method is very time-consuming and the
accuracy may not be good enough due to the noise. Another
approach for estimating orientations is based on an initial 3D
model [12]. The initial model can be built from a representa-
tive subset of projections whose orientations are determined by
the common line method or randomly-assigned Euler angles.
From the initial model, one can compute a series of projections
by re-projecting the 3D model in different angles. The class
averages can be compared against each of the projections and
assigned with the orientation of the best-matched projection.
The advantage of the model-based approach is that the ori-
entation assignment is quite straightforward and additionally
the particle classification and alignment can be simultaneously
conducted during the orientation assignments.

D. Reconstruction and Refinement

The mathematical theorem is well established for 3D re-
construction from 2D projections, given that the orientation
of each projection is known. Fig. 1(b) illustrates the 3D
reconstruction from a series of projections in different angles.
The most popular methods include the direct Fourier space
reconstruction [12] and the real-space filtered back projection
method [7]. As we mentioned earlier, the reconstructed 3D
model can be used as an initial model to refine the particle
classification/alignment as well as the orientation assignment.
The refined class averages and their orientations are then
used to generate a better 3D model. This iterative process is
repeated until no significant improvement is observed.

E. Map Interpretation

The reconstructed maps do not convey meaningful informa-
tion until they are correctly interpreted. The map interpretation
is usually performed in two directions as shown in Fig. 1(a).
For maps at intermediate resolution (6Å−10Å), the secondary
structures are visible and detectable. A pseudo-atomic model
can be built based on the detected secondary structures and
their topological connections [8]. When the resolutions of
the reconstructed maps degrade beyond10Å, however, we
cannot see the secondary structures with high confidence but
we still can build the pseudo-atomic models by fitting a
high-resolution PDB structure into the cryo-EM map based
only on the density distributions [32]. In both cases, the
segmentation of meaningful subunits is very helpful for fast
and accurate interpretations [15]. In the following sections,
we will present a few computational approaches on automatic
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structural interpretations but major efforts will be made to
solve two problems: 3D structural alignment between subunits
and secondary structure identification within subunits.

III. 3D STRUCTUREALIGNMENT

The goal of 3D structure alignments is to find the transfor-
mation matrix from one subunit to another, such that the two
subunits are best matched according to a pre-defined similarity
scoring function. In the following we will first discuss how to
define the similarity score between two density maps. Then we
propose a fast algorithm for aligning two subunits, followed
by a couple of applications in structural analysis of cryo-EM
maps.

A. Similarity Scoring Function

The traditional similarity scoring function between two
scalar maps, denoted byf and g, is defined by cross-
correlation as follows:

S1
f ,g(T) = ∑

i, j,k

f (i, j,k)×g(T(i, j,k)), (1)

where T is the transformation matrix fromf to g. The 3D
structural alignment is to find the bestT, given two mapsf and
g, such that the above-defined similarity function reaches the
highest. It is easy to see that maximizingS1

f ,g(T) is equivalent
to minimizing the square difference betweenf andg:

S2
f ,g(T) = ∑

i, j,k

( f (i, j,k)−g(T(i, j,k)))2. (2)

The advantage of the cross-correlation method is that the
fast Fourier transform (FFT) can be employed to speed up the
searching in the translational space (three degrees of freedom).
As we will see shortly later, the FFT method may not be the
best way in our case. Therefore, we shall define the similarity
scoring function in real space. However, in order to speed
up the searching process, we define the similarity score on
a set of critical points, instead of the whole set of voxels.
The critical points are those that best capture the features
of the molecular density map. In most cases, the critical
points can be defined by the local maxima, local minima, and
saddle points of the scalar map. If the data is noisy, one may
consider preprocessing the map using gradient vector diffusion
as discussed in [15]. Our similarity scoring function is hence
defined in the following way:

S3
f ,g(T) = 1−

∑M
m=1 | f (cm)−g(T(cm))|+∑N

n=1 | f (T−1(dn))−g(dn)|
∑M

m=1 max{ f (cm), g(T(cm))}+∑N
n=1 max{ f (T−1(dn)), g(dn)} , (3)

wherecm,m= 1,2, · · · ,M, are critical points off anddn,n =
1,2, · · · ,N, are critical points ofg. Fig.2 illustrates the idea of
this similarity scoring function. There are two major differ-
ences betweenS3

f ,g(T) and S2
f ,g(T). First, the new similarity

scoring function is based only on the critical points. Therefore,
the searching for the bestT usingS3

f ,g(T) is much faster than
the searching usingS2

f ,g(T), as the latter one is based on all the

voxels of f andg. Secondly, the scoring function ofS3
f ,g(T) is

normalized such that the similarity scores are always scaled to
the range of [0, 1], where0 means no similarity and1 means
the highest similarity.

Fig. 2. Illustration of similarity calculation based on critical points.

B. 3D Alignment Algorithm

Let us consider two subunitsA andB, as shown in blue and
magenta respectively in Fig. 3, and we want to align subunitA
to subunitB. In our previous paper [15] we discussed how to
automatically detect the local symmetry axes, based on which
we could segment each of the subunits. Given the segmented
subunitsA andB and the symmetry axes, we can transformA
to B in four steps:

1) TranslateA by t0.
2) RotateA by r0.
3) TranslateA by t.
4) RotateA by r.

Since the symmetry axes of bothA andB are given, the first
two of above transforms, the translationt0 and the rotationr0,
are uniquely determined by the symmetry axes. However, the
translationt and the rotationr have to be decided based on
the similarity scores between the density maps ofA and B
as discussed in Section III-A. Therefore, the transformation
from one subunit to another has two degrees of freedom: one
translation and one rotation, as illustrated in Fig. 3.

Fig. 3. The alignment between two subunits include translationst0 andt, and
rotationsr0 and r. But only t and r are unknown and need to be determined
based on the similarity scoring function.

Putting the four transformation matrices together, we have
the following matrix that transforms subunitA to subunitB:

T(t, r) = M4(r)×M3(t)×M2(r0)×M1(t0) (4)

The matricesM1,M2,M3,M4 are conventional transforma-
tion matrices for translations or rotations. One can easily
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(a) Segmented trimers (b) Old segmentation (c) New segmentation (d) Averaged trimer

Fig. 4. Illustrations of segmentation and averaging on rice dwarf virus (RDV). (a) The five independent trimers arranged on the virus capsid (viewed from
outside). (b) The segmentation results without subunit alignment (viewed from inside). (c) The segmentation results with subunit alignment showing better
consistence between subunits. (d) The averaged trimer (in green) looks less noisy and more symmetric than the original trimer (in golden).

derive the exact expressions for these matrices based on the
given information (e.g., symmetry axes with starting/ending
points). Substituting Equation 4 into Equation 3, we have
the following maximization equation for the 3D alignment
between subunitsA and B, with density functionsf and g
respectively:

max
{t,r}

{S3
f ,g(t, r) = 1−

∑M
m=1 | f (cm)−g(Tt,r (cm))|+∑N

n=1 | f (T−1
t,r (dn))−g(dn)|

∑M
m=1 max{ f (cm), g(Tt,r (cm))}+∑N

n=1 max{ f (T−1
t,r (dn)), g(dn)}}, (5)

where Tt,r is the transformation matrix fromA to B as
defined in Equation 4. The range oft is user-defined. In
our experiments we assumed thatt ∈ [−10,10] in pixel unit.
The range ofr is from 00 to 3600 for general objects. But
most of maps we are currently dealing with are the virus
structures which have some types of symmetries. Therefore,
the segmented subunits usually have n-fold symmetry and the
range ofr should be from00 to

(
360
n

)0
.

There are a number of optimization techniques to find
the {t, r} that maximize the similarity score betweenA and
B as defined in Equation 5. We adopted a simple two-
level hierarchical method. On the coarse level, the translation
variablet is sampled by every one pixel unit from−10 to 10
and the rotation variabler is sampled by every50 from 00 to(

360
n

)0
wheren is the fold number of the symmetry. For each

combination of theset andr, we calculate the similarity score
and the one that maximizes the scoring function is the solution
of Equation 5 on the coarse level, denoted by{t(1), r(1)}. On
the fine level, the sampling is taken within a small range
aroundt(1) andr(1). For the translation, the sampling is taken
on the interval[t(1)−0.9, t(1)+0.9] by every0.1 pixel unit. The
sampling for rotation is on the interval[r(1)−40, r(1) +40] by
every10. Again, the similarity score for each of these samples
is calculated and the best one, denoted by{t(2), r(2)}, gives
the final solution of Equation 5. By substituting{t(2), r(2)}
into Equation 4, we have the transform matrixT(t(2), r(2)),
which gives the 3D alignment from subunitA to B. A couple
of applications will be discussed below.

C. Applications

We will consider two examples in this section. The first
one is the rice dwarf virus (RDV), which has a perfect
icosahedral symmetry at a resolution of6.8Å [8]. There are
five independent subunits with 3-fold local symmetry, also
known as trimers, as shown in Fig.4(a). The second example
is the bacteriophageφ29 at a resolution of15Å [33]. This
map has a 5-fold global symmetry imposed along the vertical
axis. As shown in Fig. 5(a), there are ten independent subunits
including one tail on the bottom (subunit#3), three 5-fold
subunits (#0, #1, #2), and six 6-fold subunits (#4∼ #9).

1) Segmentation Improvement:Our previous segmentation
algorithm [15] is based on the multi-seeded fast marching
method [34]. In this method each subunit is assigned with
an initial contour which keeps growing according to a pre-
defined speed function and eventually stops on the boundaries
between subunits. When the symmetry is considered, some of
the subunits are dependent (identical) and hence the contours
corresponding to those subunits must grow simultaneously by
the same amount in the same way. With this constraint, our
previous segmentation [15] incorporated the global symmetry
(for example, icosahedral for RDV and 5-fold forφ29) and
the local n-fold symmetry of each subunit into the segmen-
tation. However, we did not consider the structural similarity
between the independent subunits. In other words, the contours
corresponding to independent subunits grew independently.
This can sometimes yield noticeable errors especially when
the boundaries between subunits are undistinguishable. An
example is shown in Fig.4(b). This is the segmentation of the
outer layer of the rice dwarf virus (RDV) and five types of
trimers are colored differently (see Fig.4(a) for their relatively
locations). We can see that some subunits (for example, the
yellow ones) occupy more space than the others. To remedy
this problem, we can utilize the 3D subunit alignment we
discussed in Section III-B, such that the contours within all
the subunits grow simultaneously by the same amounts in the
properly-aligned directions. The results with this additional
constraint are shown in Fig. 4(c). We can see that the subunits
in the new results look much more uniform and consistent than
those seen in Fig.4(b). However, it should be pointed out that
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(a) Density map (b) Segmentation (c) Averaged map (d) Manually-fitted monomers

(e) Fitted hexon/penton (f) Closer view of (e) (g) Pseudo-atomic structure

Fig. 5. Illustrations of segmentation, averaging, and structural fitting onφ29. (a) The reconstructed cryo-EM density map ofφ29. The symmetry axes
are detected using our automatic method [15] and a total of ten independent subunits are labeled. (b) The subunits are segmented based on our previous
segmentation method, combined with the 3D alignment approach discussed in Section III-B. (c) The segmented pentons and hexons can be averaged and the
whole structure can be reconstructed from the averaged subunits based on the 3D alignment matrices. (d) Two PDB structures were manually fitted into one
monomer of the chosen penton and one monomer of the chosen hexon. Shown here is the view from the top (head) ofφ29. (e) We can make copies of the
manually-fitted PDB structures to the other monomers of the chosen penton and hexon. (f) A zoomed-in view of (e). (g) We can also make copies of the
fitted PDB structure in (d) to the whole capsid and get a pseudo-atomic structure ofφ29. Shown here is only the top region ofφ29.

the subunits must be segmented before we can align them.
Therefore, our previous segmentation algorithm [15] is still
useful in providing us with the initial segmentation by which
the subunits can be aligned. The segmentation ofφ29 is given
in Fig. 5(b).

2) Similarity Measurement:Another application of our
3D alignment algorithm is the similarity measures between
subunits. This is biologically very important because it tells
us the structural similarity quantitatively between any two
independent subunits. It is computationally straightforward
to get the similarity score between two subunits. In fact, it
is given by the maximum of the similarity scoring function
S3

f ,g(t, r) when Equation 5 is optimized. In Table I we give
the similarity scores between the five independent trimers as
shown and indexed in Fig. 4(a). The scores in bold on the
diagonal indicate how symmetric each individual trimer is and
they are calculated by Equation 3 whereT is the rotation along
the related symmetry axis by an amount of2π

3 (in general,
2π
n , wheren is the fold number). Table II shows the similarity

scores between the four 5-fold subunits ofφ29, where the

indexing numbers are given in Fig. 5(a). Since the tail subunit
(#3) is obviously different from the other three 5-fold subunits,
the similarity scores between the tail and the others are very
low. However, the tail still shows a high 5-fold symmetry
since it locates exactly on the global 5-fold symmetry axis.
In Table III we show the similarity scores between the six 6-
fold subunits. The subunit#5 seems less similar to the others
because it is close to and very likely “disturbed” by the tail
subunit.

TABLE I

SIMILARITY SCORES BETWEEN THE FIVE TRIMERS OFRDV

S1 S2 S3 S4 S5
S1 0.955 0.911 0.848 0.900 0.894
S2 0.926 0.854 0.889 0.880
S3 0.872 0.848 0.845
S4 0.934 0.885
S5 0.856

3) Average Map of Subunits:If the segmented subunits of a
large bio-molecular complex (such as viruses) have high sim-
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TABLE II

SIMILARITY SCORES BETWEEN THE FOUR PENTONS OFφ29

S0 S1 S2 S3
S0 0.991 0.948 0.949 0.344
S1 0.960 0.958 0.306
S2 0.961 0.314
S3 0.991

TABLE III

SIMILARITY SCORES BETWEEN THE SIX HEXONS OFφ29

S4 S5 S6 S7 S8 S9
S4 0.973 0.793 0.947 0.940 0.869 0.880
S5 0.741 0.793 0.785 0.772 0.787
S6 0.971 0.963 0.884 0.884
S7 0.965 0.888 0.884
S8 0.829 0.938
S9 0.842

ilarities, they can be averaged such that the structural analysis
of the whole complex can be simplified to the analysis of a
single averaged subunit. Apparently averaging several subunits
is straightforward if the alignments between any two of them
are known. In general, the averaged map has a higher signal-to-
noise ratio than each individual subunits, which makes it easier
to analyze the structures (e.g., structural fitting or secondary
structure identification, as will be discussed shortly later).
Fig. 4(d) shows one segmented trimer of RDV (in golden)
and the averaged map of the five independent trimers (in
green). We can see that the averaged trimer has higher 3-
fold symmetry and better signal-to-noise ratio. Fig. 5(c) shows
the map constructed from the tail (blue), the averaged penton
(orange) and the averaged hexon (green).

4) Semi-Automatic Structural Fitting:As we mentioned
earlier, the structural analysis of large bio-molecular com-
plexes includes two types: structural fitting for moderate
resolution maps (10Å−20Å) and secondary structure analysis
for intermediate (sub-nanometer) resolution maps (5Å−10Å).
We shall give details on how to detect the secondary structures
in Section IV. In this paragraph, we want to briefly show how
to apply the 3D subunit alignment to building a pseudo-atomic
model for a cryo-EM map at moderate resolutions. The idea
is as follows. First, we choose a related PDB structure and
fit it into the monomer (1n of the n-fold subunit). There are a
lot of approaches which can do this computationally (see [32]
for a review on various methods). In our test, we simply fit
the PDB structure manually into the monomers of the chosen
penton and hexon, as shown in Fig. 5(d) in magenta and
cyan respectively. Once we have that, the second step is to
transform the fitted PDB structure to all other subunits using
the transformation matrices obtained from the 3D alignment.
This can be done automatically. Fig. 5(e) shows the model for
one penton and one hexon only and a closer view of the model
is shown in Fig. 5(f). Fig. 5(g) shows the pseudo-atomic model
in the top region ofφ29.

IV. SECONDARY STRUCTURE IDENTIFICATION

Proteins typically contains two types of secondary struc-
tures: alpha-helices and beta-sheets. There have been some

previous work on secondary structure identification. An ap-
proach for detecting alpha helices has been described in [35],
where the alpha helix is modeled with a cylinder (length and
thickness) with Gaussian distribution density function and the
cylinder is cross-correlated with the segmented protein map.
Since the best solution is achieved by exhaustively searching
in translation space (three degrees of freedom) and orientation
space (two degrees of freedom), this method is computation-
ally expensive. Another approach, designed for beta sheet
detection, was recently proposed in [36]. This method uses a
disk (planar) model for beta sheets. It inherits the disadvantage
of slow computational speed due to the exhaustive search in
both translation and orientation spaces.

In the following, we present a skeleton-based approach for
protein secondary structure identifications. Compared to the
previous methods, our approach is extremely fast (hundreds
of times faster) and yields high accuracy as well. Our skele-
tonization method is based on the local structure tensor and is
segmentation-free.

A. Local Structure Tensor

Local structure tensor has been used in image processing
for solving a number of problems such as anisotropic filtering
[37], [24] and motion detection [38]. Given a 3D mapf (x,y,z),
the gradient tensor is defined as:

G =




f 2
x fx fy fx fz

fx fy f 2
y fy fz

fx fz fy fz f 2
z




(6)

This matrix has only one non-zero eigenvalue:f 2
x + f 2

y + f 2
z .

The corresponding eigenvector of this eigenvalue is exactly
the gradient( fx, fy, fz). Therefore, this matrix alone does not
give more information than the gradient vector. To make
the gradient tensor useful, a spatial average (over the image
domain) should be conducted for each of the entries of the
gradient tensor, yielding what is called thelocal structure
tensor. The averaging is usually based on a Gaussian filter:

Tα =




f 2
x ∗gα fx fy∗gα fx fz∗gα

fx fy∗gα f 2
y ∗gα fy fz∗gα

fx fz∗gα fy fz∗gα f 2
z ∗gα




(7)

Heregα is a Gaussian function with standard deviationα. The
eigenvalues and eigenvectors of the structure tensorTα indicate
the overall distribution of the gradient vectors within the
local window, similar to the well-known principal component
analysis (PCA). Three typical structures can be characterized
based on the eigenvalues [37]. Let the eigenvalues beλ1,λ2,λ3

and λ1 ≥ λ2 ≥ λ3. Then we have the following cases (see
Fig.6):

• Spheres:λ1 ≈ λ2 ≈ λ3 > 0.
• Lines: λ1 ≈ λ2 >> λ3 ≈ 0.
• Planes:λ1 >> λ2 ≈ λ3 ≈ 0.
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(a) Spheres (b) Lines (c) Planes

Fig. 6. Three typical cases for a local structure tensor.

B. Skeletonization

There have been a number of skeletonization approaches
including boundary-based methods [39], [40] and boundary-
free methods [41], [42]. While a pre-segmentation is required
in boundary-based methods, boundary-free methods do not
have this requirement but the skeletons are in general extracted
by a skeleton-tracing step. In the following, we present a
method to trace the skeletons based on local structure tensors.

1) Selecting and Classifying Seeds:As we discussed in
Section IV-A, the local structure tensor can distinguish be-
tween spherical, linear, and planar structures. The spherical
case is usually of no interest in skeletonization. Therefore, we
will focus on the other two cases in the following. As we
will see in Section IV-C, these two types of local structures
exactly correspond to the alpha-helices and beta-sheets of a
protein density map.

Seeds are the starting points for tracing the skeletons. There
are multiple ways to define/detect the seed points, but one
thing is common: all the seed points must be on the skeletons.
As we will see shortly later, protein density maps look like
mountains− high densities (features) correspond to the ridges.
Therefore, the skeleton extraction is quite similar to the ridge
tracing. For this reason, we choose the maximal critical points
of the density maps as the seed points of our skeleton-tracers.
The detection of these points was discussed in our previous
work [15].

Since we are dealing with two types of skeletons: linear
and planar, for which the skeleton-tracings are different, we
need to classify each seed point into either linear or planar
types before tracing the skeletons. In [37], the authors used
three eigenvalues of the structure tensor to distinguish the lines
from the planes. However, this criterion does not work well for
protein secondary structures because some parts of proteins
(e.g., coils, turns) look like helices except they are thinner.
Therefore, a better way is to use thicknesses of the secondary
structures along three principle axes. The thickness along any
direction is defined by the width of the region above a pre-
chosen threshold in that direction. Since we know the typical
thickness of a helix, the threshold values can actually be
determined automatically from the seed points that correspond
to the helices based on the initial classification using the simple
criterion in [37]. Once we know the thickness information
for each seed point, we can classify the seeds into linear and
planar according to the following criterion: Lett1, t2, t3 be
the thicknesses corresponding to the eigenvectors as shown in
Fig.6. The following criterion is used to classify the seeds:

• lines: t1+t2
2 > helixmin and t1+t2

2 < helixmax and

min( t1
t2

, t2
t1

) > max( t1
t3

, t2
t3

),
• planes:t1 > sheetmin and t1 < sheetmax and

min( t2
t3

, t3
t2

) > max( t1
t2

, t1
t3

),
where helixmin and helixmax are the minimal and maximal
thicknesses of helices, andsheetmin andsheetmax are the min-
imal and maximal thicknesses of sheets. All these parameters
are provided by users.

2) Tracing Skeletons:The line-tracer is one-dimensional
and hence is much easier than the plane-tracer. To trace a line
structure, we start from the seed in two opposite directions,
and follow the principle axis, defined by the eigenvector cor-
responding to the minimum eigenvalue of the local structure
tensor (see Fig.7(a)). To trace a planar structure, we use the
well-known marching cube method [43]. We start from the
seed point and compute the plane that is perpendicular to
the eigenvector corresponding to the maximal eigenvalue (v1

in Fig.6(c)). The plane partitions all eight vertices of the
cell containing the seed point into two classes: positive and
negative. In addition, the plane intersects with some of the
twelve edges of the cell. Both the classification of the vertices
and the intersection information with the edges can be used
in the marching cube algorithm, yielding a polygon (a list of
triangles) representing the skeletons within the current cell (see
Fig.7(b)). Then we move to the neighboring cells with which
the detected skeleton (polygon) intersects. For the example in
Fig.7(b), we need to check four neighboring cells (back, front,
right, and bottom). For each of those new cells, the “checking”
point (similar to the seeds) is calculated as the center of
the existing intersecting points between the already-detected
skeletons and the new cell. The new polygon within the new
cell is extracted using the idea as explained above, based
on the “checking” point and the new structure tensor around
it. This process is repeated until certain stopping criterion
is reached. The plane-tracer outputs a triangular mesh of
skeletons. The stopping criteria for both line-tracer and plane-
tracer are similar: the tracing process terminates whenever no
new cells satisfy the criteria as discussed in Section IV-B.1.

(a) Line-tracer (b) Plane-tracer

Fig. 7. Skeleton-tracers. (a) Tracing 1D skeletons. (b) Tracing 2D skeletons
(the marching cube method [43]).

3) Merging Skeleton:For each of the seed points, one
can extract a curve or a surface, corresponding to a helix or
sheet, respectively. However, quite often we see more than one
seed points corresponding to the same secondary structure.
One example is illustrated in Fig.8(a) and a closer view is
shown in Fig.8(b). In order to have only one curve/surface for
each helix/sheet, we need to merge the superfluous skeletons
corresponding to the same helix/sheet. Besides eliminating the
redundancy, the merging process can also give balanced skele-
tons because the new skeletons are the average of previously
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redundant ones. Fig.8(c) shows the skeleton after merging. It is
worth pointing out that the topological ambiguity problem seen
in the original marching cube method [43] can be resolved by
an improved algorithm as discussed in [44].

(a) Traced skeleton (b) Closer view (c) Merged skeleton

Fig. 8. Skeleton extraction. (a) The initial skeletons traced by the line-tracer.
(b) A zoomed-in view of the rectangular region as shown in (a). The thick
“dots” are seed points. (c) The skeletons after merging

C. Applications: Protein Secondary Structure Detection

Once the skeletons are extracted, it is quite straightforward
to locate the secondary structures in a protein density map. It is
generally enough to represent beta-sheets using the extracted
triangular mesh. However, if the resolution of the given maps
is higher than 5̊A, it is possible to see the individual beta-
strands. In this case, we can apply the line-tracer to extract
the strands and get a better model of the beta-sheets. As for
alpha-helices, we can easily build a cylinder model for each
helix based on the extracted skeletons.

We have tested our skeleton-based secondary structure
identification approach on a large number of simulated and
experimentally-reconstructed protein density maps. Due to the
space limit, however, we will only show a few examples here.
Fig. 9 illustrates the performance of our approach on the
Gaussian blurred maps of two X-ray atomic structures. The
first example is cytochrome c’ (PDBID = 1bbh). The blurred
map at8Å and detected skeletons are shown in Fig.8. From the
skeletons, four alpha helices are detected as shown in Fig.9(a).
To demonstrate the accuracy of our approach, the skeletons
and detected helices are compared with the PDB structure
in Fig.9(b) and (c). Another example is the blurred map of
rat CD4 (PDBID = 1cid) as seen in Fig.9(d). The detected
skeletons (sheets) are shown in Fig.9(e) and compared with
PDB structures in Fig.9(f).

We also tested our approach on two simulated maps con-
taining both alpha-helices and beta-sheets. Fig.10(a) shows the
blurred map of the triose phosphate isomerase from chicken
muscle (PDBID = 1tim) at8Å. The detected alpha-helices
and beta-sheets are shown in Fig.10(b) with density map
and in Fig.10(c) with PDB structure. We can see that most
helices/sheets agree very well with the PDB structure except
that one small alpha-helix that is immediately adjacent to a
long helix is missed (indicated by a red arrow). This result also
agrees with that seen in [35]. Fig.10(d) and (e) give another
view of (b) and (c), respectively. In Fig.11(a) we show a
more complicated simulated map at8Å, blurred from the PDB

structure of the bluetongue virus VP7 (PDBID = 1bvp). This
map contains a total of27 alpha-helices in the lower domain
and a few beta-sheets in the upper domain. The detected alpha-
helices and beta-sheets are shown in Fig.11(b) with density
map and in Fig.11(c) with PDB structure. All27 alpha-helices
and major portions of beta-sheets are correctly identified and
agree very well with the PDB structure. Although two small
alpha-helices (indicated by red arrows) are misidentified due
to a couple of turns getting very close to each other, our
results show better performance than the method proposed
in [35]. Fig.11(d) shows another view of (c). A closer view
of the skeletons together with the PDB structure is shown in
Fig.11(e).

We also demonstrate our approach on a 3D cryo-EM map
reconstructed from experimental samples of the rice dwarf
virus (RDV) [8]. Fig.12(a) shows the reconstructed 3D map
(left), the segmented double capsid layers (top-right), and
segmentation of the outer layer (bottom-right). The segmented
P3 protein (from inner layer) and P8 protein (from outer layer)
are shown in Fig.12(b). The detected alpha-helices and beta-
sheets for both proteins are shown in Fig.12(c).

In addition to the high accuracy, the speed of our approach
is another advantage compared to the previous methods [35],
[36]. The helix-hunter used in [35] may take up to one hour
for the map such as P8 or P3 proteins of RDV, to detect only
the alpha-helices. Our method takes only 3 seconds for P8
protein and 10 seconds for P3 proteins on a typical Linux
workstation with single processor, to detect both alpha-helices
and beta-sheets. We do not have the timings for sheet-miner
as proposed in [36]. However, we believe that the sheet-miner
of [36] should be as slow as, if not slower than, the helix-
hunter of [35] because both methods used exhaustive searching
schemes in the translational and orientational spaces.

V. CONCLUSIONS

In this paper we presented several computational approaches
to automatically analyze structures of cryo-EM maps. In
particular, we proposed fast methods to align (match) two
segmented subunits in 3D space, and to identify secondary
structures of a protein density map. The 3D alignment algo-
rithm provides us with a set of transformation matrices which
proved to be very useful in a number of applications, including
similarity measurements, segmentation improvements, subunit
averaging, and structural fitting between PDB structures and
cryo-EM maps. Our skeleton-based method for secondary
structure identifications is extremely fast (usually hundreds
of times faster) compared to the existing methods [35], [36].
While the existing methods can only detect either helices
or sheets, our approach can detect both types of secondary
structures with high accuracies. When combined with our
previous segmentation method [15], the approaches presented
here can be employed to automatically interpret a wide range
of bio-molecular structures especially those reconstructed by
the single particle cryo-EM technique as introduced in Section
II.
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(a) Detected helices (b) Skeletons (c) Helices with PDB (d) Blurred map (e) Skeletons (f) Sheets

Fig. 9. Examples on two blurred maps of x-ray crystal structures. (a) The alpha-helices detected from the blurred map of cytochrome c’ (PDBID = 1bbh).
The blurred map at8Å and extracted skeletons were shown in Fig.8. (b) The skeletons detected from the blurred map and compared with the PDB structure.
(c) The detected helices are compared with the PDB structures. (d) The blurred map of rat CD4 (PDBID = 1cid) at8Å. (e) The skeletons (corresponding to
beta-sheets) detected from the blurred map. (f) The sheets are compared with the PDB structures.

(a) Blurred map (b) Helix-sheet (map) (c) Helix-sheet (PDB) (d) Another view of (b) (e) Another view of (c)

Fig. 10. Secondary structure identification on the triose phosphate isomerase from chicken muscle (PDBID = 1tim). (a) The blurred maps at8Å from the
x-ray crystal structure. (b) The alpha-helices (green) and beta-sheets (pink) detected using our method. (c) The detected helices/sheets are compared with the
PDB structures. We can see that most helices/sheets agree very well with the PDB structure except that one small alpha-helix that is immediately adjacent to
a long helix is missed (indicated by red arrow). This result also agrees with that seen in [35]. (d) Another view of (b). (e) Another view of (c).

(a) Blurred map (b) Helix-sheet (map) (c) Helix-sheet (PDB) (d) Another view of (c) (e) Zoomed-in skeletons

Fig. 11. Secondary structure identification on the bluetongue virus VP7 (PDBID = 1bvp). (a) The blurred maps at8Å from the x-ray crystal structure. (b) The
alpha-helices (green) and beta-sheets (pink) detected using our method. (c) The detected helices/sheets are compared with the PDB structures. All alpha-helices
and major portions of beta-sheets are correctly identified and agree very well with the PDB structure. Although two small alpha-helices (indicated by red
arrows) are misidentified due to a couple of turns running into each other, our results show better performance than the method proposed in [35]. (d) Another
view of (c). (e) A closer view of the detected skeletons together with the PDB structure. The chosen region is roughly in the rectangular area right below the
center of (c).
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