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Abstract

Volumetric smooth particle data arise as atomic coordinates with electron density kernels for molecular
structures, as well as fluid particle coordinates with a smoothing kernel in hydrodynamic flow simulations.
In each case there is the need for efficiently computing approximations of relevant surfaces (molecular
surfaces, material interfaces, shock waves, etc), along with surface and volume derivatives (normals,
curvatures, etc.), from the irregularly spaced smooth particles. Additionally, molecular properties (charge
density, polar potentials), as well as field variables from numerical simulations are often evaluated on
these computed surfaces. In this paper we show how all the above problems can be reduced to a fast
summation of irregularly spaced smooth kernel functions. For a scattered smooth particle system of
M smooth kernels in R3, where the Fourier coefficients have a decay of the type 1/ω3, we present an
O(M + n3 log n + N) time, Fourier based algorithm to compute N approximate, irregular samples of a
level set surface and its derivatives within a relative L2 error norm ǫ, where n is O(M1/3ǫ1/3). Specifically,

a truncated Gaussian of the form e−bx2

has the above decay, and n grows as
√

b. In the case when the
N output points are samples on a uniform grid, the back transform can be done exactly using a Fast
Fourier transform algorithm, giving us an algorithm with O(M + n3 log n + N log N) time complexity,
where n is now approximately half its previously estimated value.

1 Introduction

Particle systems are used for modeling a number of physical world scenarios ranging from cosmological
systems, vortex flows, to molecular systems [24, 13, 18, 15]. The applications are wide and varied and
include chemistry, material science, and bio-engineering. A typical astrophysics computation attempts to
follow the evolution of a system of cosmological boundaries, modeled by a collisionless gas particle system. An
important computation performed on the volumetric particle system is that of force calculations, i.e. given M
particles in three dimensions compute the effect of the gravitational or hydrodynamic force on a given particle
by the other particles. These are often termed as M -body problems. The traditional model of molecules
(including proteins, nucleic acids and sugars) is a collection of atomic centers with each atom modeled as a
Gaussian function. Isotropic Gaussian kernels have been traditionally used to describe atoms due to their
ability to approximate electron density maps and their analyticity [6, 17]. One description of molecular shape
is provided by a suitable level set of the electron density of the molecule[5, 23]. Hydrophobicity is defined
as the lack of affinity to water by a region of a molecule. Polar or charged regions are seen to form weak
interactions with water molecules, while non polar or hydrophobic regions cluster together away from the
water. This function is represented as a set of atoms with partial charges. Point set interpolation techniques
[20],[2][1], are being developed to fit surfaces for spatial point cloud measurement data.

In each of the cases of volumetric particle systems there is the need for efficiently computing smooth ap-
proximations of relevant surfaces (molecular surfaces, density or temperature interfaces, vorticity thresholds,
shock waves, etc), along with surface derivatives (normals, curvatures, etc.) at uniform or adaptive grids
and irregular surface/volumetric meshes. Error bounded surfaces are computed using contouring techniques
like marching cubes and adaptive grids. This requires evaluation of the summation function and its normal
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(a) Views of the density function dur-
ing intermediate time steps of a cos-
mological explosion. The particles are
smoothed using isotropic gaussian ker-
nels weighted by the density of the
particle.

(b) An isosurface of the electron den-
sity of the large ribosomal subunit
(PDB:1JJ2.PDB). By using different
parameters in the smoothing kernel
and colors, we are able to distinguish
large features and chains in the mole-
cule.

(c) Gaussian curvature, with the col-
ors blending from red (-ve) to white
(0) to green (+ve).

Figure 1: Smooth particle simulations and molecular electron density representations are two common exam-
ples of volumetric particle data. In the first image, we present an example of a cosmological simulation. The
second image represents the molecular surface computed from a smooth particle (Gaussian) representation
of atoms. In the third image, we show the Gaussian curvature function over a surface.

values at progressively refined adaptive meshes. All of these are shown to reduce to solving a set of equations

of the form: f(x) =
M−1
∑

i=0

cik(x − xi). The main contributions of this paper include (1). An approximate

fast summation technique for rapidly evaluating the summation of particle data with isotropic kernels onto
a regular, irregular or adaptive grid. (2). Bounding the error in the function approximation and (3). An
algorithm to update the function when sets of particles move relative to each other.

The rest of the paper is as follows: In section §2 we summarize some of the past work in fast summations.
The core computations in several applications are shown to be fast summations of kernels in section §3.
We then present our algorithm and various error bounds in the following section. Lastly, in section §5, we
compare our technique with direct summations and Fast Fourier approximations. The proofs for most of our
bounds are presented in the appendix.

2 Prior Related work

Several approaches to computing the Discrete Fourier Transform (DFT) polynomial have surfaced during
the last decade [10, 11, 21, 26, 12, 3, 4, 27]. A review of many of these approaches can be found in [28].
In [27] the domain is split into subintervals and each subinterval is then projected onto a space of local
Chebyshev polynomials. An alternate expansion is done in [3], Chebyshev polynomials are replaced with
a Taylor expansion. For Fourier Transforms with singularities, Beylkin employs a series projections onto
multi-resolution spaces [4]. Dutt et. al [10, 11] represent the DFT polynomial as a multi-pole expansion.
For M non equidistant samples, the multi-pole approximate construction obtains the first M frequencies in
O(M log M) computational steps and O(M) storage. The drawbacks are that such constructions require
a fast multi-pole method, which leads to a complex implementation. Many of these approaches have been
introduced for 1D domains. Extensions to multi-dimensions are possible through tensor products. In this
paper, we follow the NFFT approach of Potts, Elbel and Steidl [21, 26, 12].
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3 Reductions of applications to summation of kernels

We present problems from a variety of domains whose main computation step can be reduced to a summation
of kernel functions.

Particle hydrodynamics simulations Smooth particle hydrodynamics or SPH [16] is a Lagrangian
numerical hydrodynamics method that considers particles as smooth functions (kernels) decaying from the
particle centers. The value of a field f at a point in space is then given by the sum of the contributing smooth
kernels, f(x) =

∑M
j=1 γjk(x − xj). A typical choice is that of the Gaussian kernel, given by k(x − xj) =

e−|x−xj|
2/h2

π3/2h3
with width defined by the smoothing length h. In figure 1(a), we show a SPH simulation data of

a cosmological explosion rendered using isosurface and volume rendering.

Electron density and associated properties of molecules The electron density of a molecule with M

atoms, centered at xj , j ∈ {1..M} can be written as f(x) =
M
∑

j=1

γjk(x−xj) where γj and k are typically chosen

from a quadratic exponential description of atomic electron density. We use the kernel: e−
d

r2
((x−xj)

2−r2) =

γjk(x − xj), where γj = ed, and k(x − xj) = e−
d

r2
(x−xj)

2

. The atomic kernels are affected by the radius r
of individual atoms and the decay parameter d. In figure 1(b) we show the surface of an electron density
map of a ribosome, generated as a summation of atoms, where each atom was represented as a truncated
Gaussian. When describing the affinity of the molecules surface to the solvent (usually water), each atom is
assigned a partial charge (say ci for the ith atom) based on type, bonding and structure in the molecule. It
is also common to approximate the charges on all atoms of a given residue in a protein with the same value.
Thus the hydrophobicity function h(x) for a molecule of M atoms, using the sum of Gaussians approach is

given by h(x) =
M−1
∑

j=0

cje
− d

r2
(x−xj)

2

Surface modeling Surface modeling using blobby models or RBF models are used to represent objects
in a compact form. 3D objects are modeled as set of scattered points whose convolution with a kernel
approximates the original object. ”Blobby models” [5] are also used to reconstruct computer models of
objects sampled in the real world. Objects modeled in this fashion are known as ”blobby models”, ”Soft
objects” [29] and ”meta balls” . Other kernel functions used include Gaussians and truncated polynomials
of the form:

k(x) =











a(1 − 3x2

b2 ) 0 ≤ x < b/3,
3a
2 (1 − x

b )2 b/3 ≤ x < b,

0 b ≤ x

k(x) =

{

a(1 − 4x2

9b6 + 17x4

9b4 − 22x2

9b2 ) 0 ≤ x < b,

0 b ≤ x

The use of different Radial Basis Function (RBF) as the kernel is seen to lead to different continuity
guarantees, constraints and energy minimizations. Thin plate splines ( of the form r2 log r) are shown to be
especially useful as they minimize the bending energy. (=

∫ ∫

R2

f2
xx +2f2

xy + f2
yydxdy for R2). The paper [20]

introduces the concept of Moving Least Squares (MLS). This method is used for modeling and rendering
from a set of point clouds. This concept is further expanded in [1], where Alexa et al describe a method for
displaying surfaces from point set clouds. This error bounded scheme locally approximates the surface with
polynomials using Moving Least Squares (MLS). Variants of [20] include Amenta et al ([2]), by redefining
the MLS surface and minimizing a different error functional.

Derivatives, Normals, Curvatures Particle datasets define surfaces where derivatives including normals
and curvatures could be required. We show that the derivatives are also summations of kernels. Spivak
[25] provides a good exposition to Gauss’ 1827 work Disquisitiones generales circa superficies curvas (see
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also General Investigations of Curved Surfaces, Raven Press, 1965, an English translation). Differential
properties including curvatures and normals for implicit surfaces is covered in [19], which the authors state
is a translation of a German paper [9]. These equations are also presented in [8]. A more rigorous study is
presented in [30]. Here, we derive explicit equations for the curvatures. Consider the intersection of a plane
with a surface, such that the plane passes through the normal at some intersection point. At that point,
the curve of intersection has some curvature κ. Euler showed that as the plane is rotated about its single
degree of freedom, the curvature has a minimum and a maximum value, with the directions being orthogonal
(assuming the surface is not flat). These two curvatures κ1, κ2 are known as the principle curvatures. The
average of the principle curvatures is called as the Mean curvature H = κ1+κ2

2 . Let M be a 2D submanifold
defined as f(x, y, z) = 0. Let the Gauss field (or normal field) ν : M → S2 ⊂ R3. The Gaussian curvature at

a point p within an area A can be defined as: K(p) = limA→p
ν(A)

A . Let dν be the Weingarten map defined
as dν(vp) = [vp(νx), vp(νy), vp(νz)] and Π the second fundamental form defined as Π(p)(vp, wp) = − <
dν(vp), wp >. Then (see [25]): K(p) = det(dν : Mp → Mp) = det(Π(γ1, γ2)), γ1, γ2 ∈ Mp, orthonormal
The Weingarten map, and the second fundamental form on two orthonormal vector in the tangent plane is
also known as the shape operator S = −Dn. We assume that the surface is in C2 and compute the gradient
vector field g and the unit normal vector field n. The change of the normal field defines the curvature matrix
C, with the principle curvatures being its eigenvalues.

g = [
∂f

∂x
,

∂f

∂y
,

∂f

∂z
], n =

g

||g||
, C =

264 ∂nx
∂x

∂nx
∂y

∂nx
∂z

∂ny
∂x

∂ny
∂y

∂ny
∂z

∂nz
∂x

∂nz
∂y

∂nz
∂z

375
Let the eigenvalues of the above matrix be [0, κ1, κ2]. The characteristic polynomial can be written as

−λ(λ−κ1)(λ−κ2) = |C−λI| = −λ3+|C|+λ2(C11+C22+C33)+λ(C12C21+C13C31+C32C23−C11C11−C22C22−C33C33) Letting
α = C11 + C22 + C33, β = C12C21 + C13C31 + C32C23 − C11C11 − C22C22 − C33C33 Solving for the eigenvalues, we get:
κ1 = (α−

p
α2 + 4β)/2, κ2 = (α+

p
α2 + 4β)/2 Using H = κ1+κ2

2 , K = κ1κ2, we obtain H = α
2 , K = −β. As shown

in [8], the elements of C can also be written in terms of the Hessian matrix H :Cij =
Hij ||g||2−gidotj

||g||3 , dotj =

g.[Hj0 Hj1 Hj2]
T Let fx = ∂f

∂x etc. Expanding the equation for H and K, we obtain:

H =
⊕(f2

x(fyy + fzz)) − 2 ⊕ (fxfyfxy)

2(⊕(f2
x))1.5

, K =
2 ⊕ (fxfy(fxzfyz − fxyfzz))

(⊕(f2
x))2

where ⊕ stands for cyclic summation over x, y, z, for example, ⊕(f2
x) = f2

x + f2
y + f2

z . See figure 1(c) for an
example rendering of the Gaussian curvature over a surface. In each case, we see that the curvature
function of particle datasets are also well posed summation problems. For example, in order to compute
the mean curvature, we need to obtain fx, fy, fz, fxx etc. All of these functions are summations of
derivatives of the original kernel.

4 Error bounded surface and derivative computation

We present a NFFT [21] based technique to compute summations of the form:

f(x) =

M−1
∑

i=0

cik(x − xi) (4.1)

where k has different smoothness assumptions. We also present algorithms to compute the above for the
cases of uniform, non uniform and adaptive output points.

4.1 NFFT based fast summation algorithms

We follow the method outlined in [22],[7] to express the summation in the Fourier series form (see Appendix

§A): f(x) =
M−1
∑

i=0

cik(x−xi) ≈
∑

ω∈In

CωKωe2πix.ω, where Cω and Kω are the Fourier series coefficients of the

function of input centers and a kernel k. Where In denotes a 3D grid of indices: {k : [−n/2..n/2)3, k ∈ I}.
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Most kernels used in applications are tensor products or radially symmetrical, allowing us to compute these
coefficients efficiently. In [22], a FFT over a n3 grid was used to obtain the coefficients. Since n is a discrete
value and varies with user defined accuracy, their method only obtains an approximation to the coefficients.
In order to obtain the Fourier coefficients, we first perform a truncation of the kernel. We scale the location
of M input points to lie in (−0.25..0.25]3. This ensures that the truncation has zero error. For kernels like
the cubic bspline and Gaussians, the sync and the kernel are both tensor products. Hence obtaining the
Fourier coefficients in 1D is sufficient. Consider the Gaussian kernel g(x) = e−x2

. For the truncated version,

the Fourier series in 1D are G(w) =
0.5
∫

0.5

e−x2

e−2πiwxdx. We use MAPLE to compute this numerically.

Algorithm

• n is computed from the error bounds and is proportional to M1/3, ǫ3/2, where the ǫ is a user defined
error level, for kernels whose Fourier coefficients decay at least inversely with the frequencies.

• K~ω is computed numerically.

• C~ω is computed approximately the using NFFT’ algorithm [21].

• f(~x) is computed using an Inverse Fourier Transform for uniform grids and using the NFFT algorithm
for non uniformly distributed output points.

The cost of the algorithm depends on n. We first show bounds on n for different kernels.

Lemma For tensor product kernels with Fourier coefficients Kω, the number of coefficients n needed is at
most:

n = min(n̂) :
∑

ω∈In̂

(Kω)2 ≥ V

2π
− Mminj(|cj |2)V

(||c||1)2
(
ǫ

3
)2

where V is the integral of the kernel from (−0.5..0.5]3.

Lemma For tensor product kernels whose Fourier coefficients decay at least inversely with frequency, the
number of coefficients n needed is O(M1/3ǫ3/2).

Lemma The fourier coefficients of a Gaussian function e−Bx2

decay as the inverse of the frequency ω:

Gω ≤ max(
1

2π
√

π
,

1

2π
erf(

π√
B

),
3
√

B

eπ3/2
, 4

√

2

πe
,
Be−(1+π2/B)

π4
)
1

ω
, (ω ≥ 2)

The truncation of the Gaussian can be expressed as convolution with a sync function in Fourier space.
Hence the Fourier series coefficients of the truncated Gaussian function can be now written as∞
∫

−∞

√

π
B e−π2t2/Bsin(2πω)/(2πω − t)dt. We then bound the sync function with a polynomial and integrate

by parts to obtain the result.

See appendix §B.1 for proofs of the above lemmas.

Cost

• G~ω are computed numerically to the desired accuracy. Since for most applications (like electron density
computation) the kernel size is known, these coefficients can be precomputed once.

• Given NFFT’ sampling parameters α ≈ 2, m ≈ 3, the cost of computing C~ω is O(Mm3 + n3 log n) and
takes O(M + (αn)3) space.

• The Inverse Fourier Transform takes O(N3 log N) time and O(N3) memory. To expand p output points
only, the computational cost is O((αn)3 log(αn)) + mp and takes O((αn)3 log(αn) + p) space.
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4.2 Summation to different types of output point distributions

Depending on the application, we need to compute summations and their derivatives on either adaptive
grids, uniform grids or non-uniformly distributed points.

4.2.1 Summation to a non-uniformly distributed set of points

Using the NFFT algorithm, we can compute the summation from the frequencies at N non-uniformly dis-
tributed points by approximating the inverse step as a sum of compactly supported functions φ such as
bsplines or truncated Gaussians:

f(x) = k ⊗
M−1
∑

i=0

δ(x − ci) ≈ φ ⊗
∑

i∈Iñ

h⌊x−i⌋δ(⌊x − i⌋) (4.2)

where φ is a locally supported function, h is the uniform set of coefficients of φ. In is a cubic set of indices:
{{i, j, k} : i, j, k ∈ −n/2 .. n/2 − 1}. The truncated function has support of size 2m + 1 and m ≈ 3. The
new number of frequencies required are ñ = αn, α ≈ 2. The algorithm uses
O(Mm3 + (αn)3 log(αn) + Nm3) time and O((αn)3 + N + M) memory.

4.2.2 Summation to a uniform grid

We can eliminate the errors in the inverse step (from the Fourier coefficients to the summations) by using a
3D IFFT. The algorithm uses O(Mm3 + n3 log(n) + N log(N)) time and O(n3 + N + M) memory.

4.2.3 Summation from non-uniform centers to a uniform sub-grid

Consider solving equation (4.1) on a sub-grid of size L × L × L embedded in Π3. This is especially useful
for AMR data visualization. As shown in (4.2), we can represent particle data as a grid h of compactly
supported functions φ with a certain desired precision. The output to any subgrid is a convolution of φ with
the corresponding subgrid in h. This convolution can be computed efficiently using a Fast Fourier transform
in O(L3 log L). The precomputation cost for obtaining h is O(Mm3 +n3 log(n)). Each update for a uniform
subgrid costs O(L3 log L).

4.3 Derivatives computation

We have already expressed derivatives as summations of kernel functions. The Fourier transform derivative
theorem can be used to obtain these derivatives at uniform grid positions. In equation (4.2), we have a set
of compactly supported functions φ contributing to each point k. The derivative of a convolution is the
convolution of the derivative of either function with the other. Hence we can express the derivative of the
function as: fx(x) =

∑

k∈In,m(x) hkφx(x− k
n ), where In,m(x) is the set {l ∈ In : nx−m ≤ l ≤ nx+m}. The

order of the memory and computation costs is the same as that of the fast summation algorithm.

4.4 Updating moving sets of particles

In the case of flexible objects, like biomolecules, it is required to update functions and their derivatives due
to the displacement of the centers. Hence it is useful to update function f defined in equation (4.1) when the
M centers move relative to one another over time. If we are given a representation of the object such that
centers which move together are grouped, then we can take advantage of that distribution. Otherwise, we can
break up the centers spatially in to a collection of sets S, and consider which of them changed positions over
time. In the case of biomolecules, flexible structures naturally give rise to a disjoint union S of the centers M
(this set could also be hierarchically refined). In biochemical terms, these groups are called domains. Given a
set of Md points a moving domain, we can compute the new function in O(m3Md +α3Md log(α3Md)+m3N)
time. The result follows directly from the linearity of the summation operation and the fact that nd is
proportional to Md for our application.
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5 Implementation and Results

We used the FFTW package [14] to perform the fast Fourier transforms. The code was implemented and
tested on Linux and SGI. The results were obtained from a single 400MHz processor of a SGI Onyx 2.
Since ours is an approximation method, we have used three different error threshold: 1%, 5% and 10%.
We provide both L2 error norms and images in each case. Since we can perform function computation
of smoothed particle data to both uniformly and non uniformly distributed output points, we present two
different cases: 1). Summation to uniformly distributed output points, 2). Summation to non uniformly
distributed output points.

5.1 Summation of particle data from Non-uniform centers to uniform output

grid points

The fast surface and volume extraction algorithm was used on both SPH and molecular data sets. In order
to compare our approximation algorithm with existing techniques, we provide timing and error results with
two data sets. In these experiments, we vary: 1). Number of centers M , 2). Number of output points N , 3).
The drop off parameter of the Gaussian/exponential. The different methods we compare are 1). Truncated
kernels brute force summation. The kernels are truncated to lengths depending on the error accepted in a
truncation. A simple quadratic cost algorithm is used to compute the summation at the output points. 2).
The discretized regular fast Fourier transform method. In this method, each center is discretized to a grid
point. The Fourier transform of the entire grid is taken and the summation required at an output point is
taken to be the result at the closest grid point. 3). The algorithm described in section § 4 is used. Two
different test cases are considered: The myoglobin, a small molecule containing 1221 atoms, blurred to a
resolution of 1283 and the large ribosomal subunit, containing 90403 atoms, blurred to a larger resolution
of 5123. Table 5.2.2 shows the timing and memory results for obtaining the volumetric summation of the
smoothed atoms of myoglobin. We have chosen a very fine resolution of 1A and a coarser resolution of
4A. The 1A resolution shows very fine atomistic details and the gaussian has a sharp decay, leading to a
broader frequency response. In this case, it is seen that the direct summation always performs better than a
convolution. Our approximation technique outperforms the FFT in all three error categories. The errors show
that even for 1%L2 error, our method consumes less memory than the FFT. At the 4A resolution, chosen to
show the secondary structure features of the molecule, our approximation algorithm clearly outperforms both
the direct and the FFT methods. It should also be noted that as we go to coarser resolutions, our algorithms
performance in both time and memory improves while the contrary is true for time in the direct summation
case. In Table 5.2.3, in the case of the large ribosomal subunit, we see similar results as above. For fine
resolutions, a direct summation is better than our method, while at coarser resolutions, our algorithm vastly
outperforms other techniques.

5.2 Summation of particle data from non-uniform centers to non-uniform out-

put grid points

Smoothed volumetric particle data functions at some predefined surfaces can be estimated using our ap-
proximation algorithm provided in section 4. Also, given an isosurface, it is useful to obtain gradients at
the vertices of the mesh. In table 5.2.1, we provide the times taken, in seconds, to perform the summation
of 90403 atoms of the large ribosomal subunit. We see an almost linear increase in the time required to
compute the output function with respect to the number of output points. Here, we consider building the
grid of compactly supported functions representation from the volumetric particle data as a preprocessing
step. If we consider the smooth mesh of the large ribosomal subunit contains approximately 10000 vertices,
then the estimation of functions like curvatures on it is seen to be in the order of a second. Also, the size of
the higher order grid is 1303, which is compact compared to the 5123 grid required for the whole volume.

6 Conclusion

In this paper, we provide a fast, approximate method to compute summations of volumetric smoothed par-
ticles and their gradients. Surface extraction and gradient computation from particle data can be performed
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Number of output centers time in seconds
1000 0.078514
10000 0.787210
100000 7.867189
1000000 77.809066

Table 5.2.1: Timing and errors for fast summation of Gaussian kernels at different number of non-uniformly
spaced output points, using m = 3 order B-spline grid obtained from the NFFT. The time reported is the
time it takes to compute the function given the sum of b-splines grid representation. We used the large
ribosomal subunit electron density blurring at 1Å resolution and 10% error. Please refer to table 5.2.3 for
the time taken to precompute the grid at different errors and resolution.

Myoglobin (101M.pdb), 1221 atoms, 48Å × 40Å× 40Å, opt. grid size =1283

FFT method time: 16.509123

Res=1 Res=4
Direct 6.730830 14.733616

a b c d a b c d
F.B., ǫ ≈ 1% 4.08 12.26 1.08 96 1.33 8.76 1.13 44
F.B., ǫ ≈ 5% 3.01 11.49 4.74 76 1.17 8.54 5.08 32
F.B., ǫ ≈ 10% 1.69 9.87 9.30 64 1.13 8.50 10.37 24

Table 5.2.2: Timing (in seconds) and errors (L2 percent) for fast summation of 1221 Gaussian kernels to a
128 × 128 × 128 uniform grid. The entries contain the timing in seconds and the actual error for different
resolutions. m = 3 was used for the interpolating functions in each case. The notations are: a: Forward
time in seconds, b: Full time in seconds, c: Actual error, d: αM . Since we perform the blurring in frequency
space, our method would be much faster than the others at such low frequencies. The quadratic algorithms
Gaussian was clamped when it reduced to 10−3 of its peak.

Large ribosomal subunit (1JJ2.pdb), 90403 atoms, 221Å× 221Å× 175Å, opt. grid size =5123

FFT method time: 1425.239929

Res=1 Res=6
Direct 128.577673 5844.995279

a b c d a b c d
F.B., ǫ ≈ 1% 245.53 983.21 0.98 200 7.849469 760.38 0.94 60
F.B., ǫ ≈ 5% 98.22 803.31 4.84 150 4.05421 743.42 4.78 40
F.B., ǫ ≈ 10% 71.79 790.50 10.30 130 3.211702 730.82 10.22 32

Table 5.2.3: Timing (in seconds) and errors (L2 percent) for fast summation of 90403 Gaussian kernels to a
512 × 512 × 512 uniform grid. The entries contain the timing in seconds and the actual error for different
resolutions. m = 3 was used for the interpolating functions in each case. The notations are: a: Forward
time in seconds, b: Full time in seconds, c: Actual error, d: αM . Since we perform the blurring in frequency
space, our method would be much faster than the others at such low frequencies. The quadratic algorithms
Gaussian was clamped when it reduced to 10−3 of its peak. We used a larger resolution range as this is a
relatively large molecule.
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using our approximate Fourier transform based method. We provide a compact representation in the form
of a grid of compactly supported functions for smooth maps. A fast method for updating moving sets of
particles is also presented. All of the algorithms for smooth kernels are shown to be error bounded. Our
results (theoretical and experimental) show that the algorithms presented are faster and more memory effi-
cient than traditional techniques for a range of errors. It should be noted that apart from truncated gaussian
and bsplines, our algorithms are suited to general smooth RBFs like the commonly used thin-plate spline.
As part of future work, we would like to perform adaptive isocontouring directly from the grid of bsplines
representation.

A 3D numerical gas dynamics simulation, which uses a anisotropic version of SPH, was developed by
Paul Shapiro and Hugo Martel of the Galaxy Formation and the Intergalactic Medium Research Group, The
University of Texas at Austin. The data set was used in the generation of the cosmological explosion images
shown in this paper. The myoglobin and large ribosomal subunit data sets are available at the Protein Data
Bank (www.pdb.org, PDB:101M.PDB, PDB:1JJ2.PDB).

References

[1] Marc Alexa, Johannes Behr, Daniel Cohen, Shachar Fleishman, David Levin, and Claudio T. Silva. Computing
and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 9(1):3–15, 2003.

[2] Nina Amenta and Yong Kil. Defining point-set surfaces. SIGGRAPH 2004, pages 264–270, 2004.

[3] C. Anderson and M.D. Dahleh. Rapid computation of the discrete fourier transform. SIAM J. Sci. Computing,
17:913–919, 1996.

[4] G. Beylkin. On the fast fourier transform of functions with singularities. Appl. Comput. Harmon. Anal., 2:363–
381, 1995.

[5] James F. Blinn. A generalization of algebraic surface drawing. ACM Trans. Graph., 1(3):235–256, 1982.

[6] S. F. Boys. Electronic wave functions, i: A general method of calculation for the stationary states of any
molecular system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,
200(1063):542–554, February 1950.

[7] Julio Castrillon-Candas, Vinay Siddavanahalli, and Chandrajit Bajaj. Nonequispaced fourier transforms for
protein-protein docking. ICES Report 05-44, The University of Texas Austin, 2005.

[8] Bruno Rodrigues de Araujo and Joaquim Armando Pires Jorge. Curvature dependent polygonization of implicit
surfaces. Computer Graphics and Image Processing, XVII Brazilian Symposium on (SIBGRAPI’04), pages
266–273, 2004.

[9] Peter Dombrowski. Krummungsgroben gleichungsdefinierter untermannigfaltigkeiten riemmannscher mannig-
gfaltigkeiten. Mathematische Nachrichten, 38(3/4):133–180, 1968.

[10] A. Dutt and V. Rokhlin. Fast fourier transform for nonequispaced data. SIAM J. Sci. Computing, 14:1368–1393,
1993.

[11] A. Dutt and V. Rokhlin. Fast fourier transform for nonequispaced data ii. Appl. Comput. Harmon. Anal.,
2:85–100, 1995.

[12] B. Elbel. Fast fourier transform for non equispaced data. Approximation theory, C.K. Chui and L.L. Schumaker
(eds.), Vanderbilt University Press, 1998.

[13] N. Foster and D. Metaxas. Realistic animation of liquids. Graphics Interface ’96, pages 204–212, 1996.

[14] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc. IEEE
Intl. Conf. on Acoustics, Speech, and Signal Processing, volume 3, pages 1381–1384, Seattle, WA, May 1998.

[15] Razif R. Gabdoulline and Rebecca C. Wade. Analytically defined surfaces to analyze molecular interaction
properties. Journal of Molecular Graphics, 14(6):341–353, December 1996.

[16] R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical
stars. Royal Astronomical Society, 181:375–389, 1977.

[17] J.A. Grant and B.T. Pickup. A gaussian description of molecular shape. Journal of Physical Chemistry, 99:3503–
3510, 1995.

[18] H. Green and W. Lane. Particulate clouds: Dusts. D. Van Nostrand Company, Inc. 1964, 1964.

[19] John F. Hughes. Differential geometry of implicit surfaces in 3-space – a primer. Technical Report CS-03-05,
Computer Science Dept., Brown University, 2003.

9



[20] D. Levin. Mesh-independent surface interpolation. In G. Brunnett, B. Hamann, K. Mueller, and L. Linsen,
editors, Geometric Modeling for Scientific Visualization. Springer-Verlag, 2003.

[21] Daniel Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced data: A tutorial in Modern
Sampling Theory: Mathematics and Applications, chapter 12, pages 249–274. 2000.

[22] Daniel Potts, Gabriele Steidl, and Arthur Nieslony. Fast convolution with radial kernels at nonequispaced knots.
Numer. Math., 98(2):329–351, 2004.

[23] George D. Purvis and Chris Culberson. On the graphical display of molecular electrostatic force-fields and
gradients of the electron density. Journal of Molecular Graphics, 4:88–92, 1986.

[24] W. T. Reeves. Particle systems - a technique for modeling a class of fuzzy objects. ACM Transactions on
Graphics, 2(2):91–108, 1983.

[25] Michael Spivak. A Comprehensive Introduction to Differential Geometry, volume 2. Publish or Perish Inc,
Berkeley, USA, 1979.

[26] G. Steidl. A note on fast fourier transforms for nonequispaced grids. Advances in Computational Mathematics,
9:337–352, 1998.

[27] E. Suli and A. Ware. A spectral method of characteristics for hyperbolic problems. SIAM J. Numer. Anal,
28:423–445, 1991.

[28] Anthony Ware. Fast approximate fourier transforms for irregularly spaced data. SIAM Rev., 40:838.

[29] Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Animating soft objects. The Visual Computer, 2(4):235–242,
August 1986.

[30] G. Xu and C. Bajaj. Curvature computations of 2-manifolds in rk. Journal of Computational Mathematics,
21(5):681 – 688, 2003.

10



Appendix

A Fourier series expansion for summations of kernels

Any periodic bounded function can be expanded as a Fourier series. For example, a periodic function in
[−1/2, 1/2] can be expressed as:

f(x) =

∞
∑

j=−∞
ωje

2πijx

where the coefficients ωj =
1/2
∫

−1/2

f(x)e−2πijxdx Let k be the truncated kernel function located at each

center. The truncation does not change the problem being solved as we are interested in a finite domain.
Let In denote a 3D grid of indices: {k : [−n/2..n/2)3, k ∈ I}. Let us expand the kernel function in its
fourier series form:

k(x − xj) =
∑

ω∈I∞

Kωe2πi(x−xj).ω

Substituting the expansion for the Kernel in (4.1), we get

f(x) =

M
∑

i=1

cj(
∑

ω∈I∞

Kωe2πi(x−xj).ω) ≈
M
∑

j=1

cj(
∑

ω∈In

Kωe2πi(x−xj).ω)

We limit the number of required frequencies in R3 to just n3, where n3 = O(M) is computed given the
error allowed by the user. Now,

f(x) ≈
∑

ω∈In

Kωe2πix.ω
M
∑

j=1

cje
−2πixj.ω

The second sum is the Discrete Fourier transform of the sum of atom centers. Let us denote these
coefficients by Cω.

f(x) ≈
∑

ω∈In

KωCωe2πix.ω =
∑

ω∈In

Fωe2πix.ω (A.1)

Approximation made in the algorithm Let us denote by f, f̂ the exact and computed summation.
Let the exact and approximate Fourier series coefficients of the function of centers and the truncated kernel
be Cω, Ĉω, Kω, K̂ω.

||f̂ − f ||2 = ||
∑

ω∈I∞

CωKωe2πiω.x −
∑

ω∈In

ĈωK̂ωe2πiω.x + ǫ1||2

= ||
∑

ω∈In

(CωKω − ĈωK̂ω)e2πiω.~x +
∑

ω∈I∞\In

CωKωe2πiω.~x + ǫ1||2

≤ ||
∑

ω∈In

(CωKω − ĈωK̂ω)e2πiω.~x||2 + ||
∑

ω∈I∞\In

CωKωe2πiω.~x||2 + ||ǫ1||2

=

√

(
∑

ω∈In

(CωKω − ĈωK̂ω)2) +

√

(
∑

ω∈I∞\In

(CωKω)2) + ||ǫ1||2

= e1 + e2 + e3
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e1 and e3 are errors due to NFFT’, NFFT. We choose m, α such that these errors are both less than one
third the user allowed error. We are left to choose n such that the second term is also less than ǫ/3. For
error bounds for m, α, please look at [21]. In practise, α ≈ 2, m ≈ 3 gives us errors less than 1% which is
sufficient for our applications.

B Estimating number of Fourier coefficients required for given

precision

In this section, we derive values for n, m, α to keep the theoretical error within the user defined error threshold
ǫ. This analysis thus provides us with both a theoretical an upper bound on the computational and storage
costs of the algorithm and variables. We need to find the minimum value for n which satisfies

||f̂ − f ||2
||f ||2

≤ ǫ

3

Lemma For tensor product kernels with Fourier coefficients Kω, the number of coefficients n needed is
atmost:

n = min(n̂) :
∑

ω∈In̂

(Kω)2 ≥ V

2π
− Mminj(|cj |2)V

(||c||1)2
(
ǫ

3
)2

where V is the integral of the kernel from (−0.5..0.5]3.
Proof

We first bound the denominator ||f ||2 as follows:

||f ||2 =

√

√

√

√

√

∫

I1

(
M
∑

j=1

cjK(x− xj))2dx

≥

√

√

√

√

√

∫

I1

M
∑

j=1

(cj)2(K(x − xj))2dx

≥

√

√

√

√

√

minj(|cj |)2
∫

I1

M
∑

j=1

(K(x− xj))2dx

=
√

Mminj(|cj |)2V , V =

∫

I1

K(x)2dx

|Cω| ≤
M
∑

j=1

|cj ||e−2πixj .ω| =

M
∑

j=1

|cj | = ||c||1

∑

ω∈I∞\In

(CωKω)2 ≤ max|Cω|2
∑

ω∈I∞\In

(Kω)2 = (||c||1)2
∑

ω∈I∞\In

(Kω)2

Let D = M minj(|cj |2)V , error due to term e2 = ǫ/3
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(||c||1)2
∑

ω∈I∞\In

(Kω)2 ≤ D(
ǫ

3
)2

(||c||1)2(
∑

ω∈I∞

(Kω)2 −
∑

ω∈In

(Kω)2) ≤ D(
ǫ

3
)2

(||c||1)2(
V

2π
−

∑

ω∈In

(Kω)2) ≤ D(
ǫ

3
)2

∑

ω∈In

(Kω)2 ≥ V

2π
− D

(||c||1)2
(
ǫ

3
)2

Therefore: n = min(n̂) :
∑

ω∈In̂

(Kω)2 ≥ V
2π − D

(||c||1)2 ( ǫ
3 )2.

Lemma For tensor product kernels whose Fourier coefficients decay at least inversely with frequency, the
number of coefficients n needed is O(M1/3ǫ3/2).
Proof

√

∑

ω∈I∞\In

(CωKω)2

||f ||2
≤ ǫ

3
∑

ω∈I∞\In

(CωKω)2 ≤ (
ǫ||f ||2

3
)2

∑

ω∈I∞\In

(Kω)2 ≤ (
ǫ||f ||2
3||c||1

)2

2
∞
∑

ω=n/2+1

(Kω)2 + (Kn/2)
2 ≤ (

ǫ||f ||2
3||c||1

)2/3

For kernels where Kω decays as 1/n, we have:

2

∞
∑

ω=n/2+1

1

(Kω)2
+

4

n2
≤ π2e2

32
(
ǫ||f ||2
3||c||1

)2/3

Using
∞
∑

ω=n/2+1

1/(Kω)2 ≤
∞
∫

ω=n/2

1/(Kω)2 = 2/n,

1

n
+

1

n2
≤ π2e2

128
(
ǫ||f ||2
3||c||1

)2/3

Hence, we would like to obtain the minimum n which satisfies the above inequality. Since ||c||1 is
proportional to M and ||f ||2 is proportional to

√
M , we see that n3 is proportional to M as n grows.
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B.1 The Fourier coefficients of a truncated Gaussian

We consider the Gaussian kernel g(x) as we use it extensively in our applications. In general, we can consider
any smooth kernel for the analysis. The truncated Gaussian functions Fourier series coefficients Gω are the
convolution of a Gaussian with a sync. We present the decay of Gω and show that it is upper bounded by
1/ω.

Lemma The fourier coefficients of a Gaussian function e−Bx2

decay as the inverse of the frequency ω:

Gω ≤ max(
1

2π
√

π
,

1

2π
erf(

π√
B

),
3
√

B

eπ3/2
, 4

√

2

πe
,
Be−(1+π2/B)

π4
)
1

ω
, (ω ≥ 2)

Proof

The truncated gaussian is the product of a gaussian and a box function. In the fourier domain, this can
be expressed as a convolution between a sync and a gaussian. the sync itself can be upper bounded by a
function of type 1/x. Since the second function goes to infinity at 0, we replace the 1/x with a flat function
near the origin. Specifically,

FT (Box) =
2 sin(2πt)

2πt
≤











2 −1 ≤ t ≤ 1
1
πt t > 1

− 1
πt t < 1

Also let

K̂(t) = FT (K)(t) =

√

π

B
e

−π2t2

B

thus we get Gω, ω > 1 as

Gω =

ω−1
∫

−∞

K̂(t)

π(ω − t)
dt +

ω+1
∫

ω−1

2K̂(t)dt +

∞
∫

ω+1

K̂(t)

π(t − ω)
dt

We show that this function has a decay of O(1/ω). Also, due to symmetry, Gω = G−ω .

I1 :

Let

I1 =

0
∫

−∞

K̂(t)

π(ω − t)
dt, I2 =

ω−1
∫

0

K̂(t)

π(ω − t)
dt, I3 =

ω+1
∫

ω−1

2K̂(t)dt, I4 =

∞
∫

ω+1

K̂(t)

π(t − ω)
dt

I1 =

0
∫

−∞

K̂(t)

π(ω − t)
dt ≤

0
∫

−∞

K̂(t)

πω
dt

Since

0
∫

−∞

K̂(t)dt =

0
∫

−∞

√

π

B
e

−π2t2

B dt =
1

2
√

π

I1 ≤ 1

2π
√

π

1

ω

I2 :
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I2 =

ω−1
∫

0

K̂

π(ω − t)
dt =

1
∫

0

K̂

π(ω − t)
dt +

ω−1
∫

1

K̂

π(ω − t)
dt = I2,1 + I2,2

Bounding I2,1:

I2,1 =

1
∫

0

K̂

π(ω − t)
dt ≤

1
∫

0

K̂

πω
dt =

1

ω
√

πB

1
∫

0

e−π2t2/Bdt

Let y = πt/
√

B. Hence, y2 = π2t2/B, dt =
√

B/πdy, t = 0 → y = 0 and t = 1 → y = π/
√

B.

therefore,

I2,1 ≤ 1

ωπ
√

π

π/
√

B
∫

0

e−y2

dy =
1

2πω
(

2√
π

)

π/
√

B
∫

0

e−y2

dy =
1

2πω
erf(

π√
B

)

Bounding I2,2:

Let

f1 =

√

π

B
e−π2t2/B, f2 =

c

t2

Roots(f1 − f2) = (

√

−LW (−π2c√
πB

)B

π
,

√

LW (−π2c√
πB

)B

π
)

We used Maple to compute the roots. LW stands for the LambertW function. Since roots of complex
numbers are complex, and using the properties of the LambertW function, there are no real roots (letting
f2 bound f1) if:

c ≥
√

B

eπ3/2

ω−1
∫

1

1

π(ω − t)

1

t2
dt =

1

ω
(
log(ω − 1)

ω
− 1

ω − 1
− log(2ω − 1)

ω
+ 1 +

log(ω + 1)

ω
) ≤ 3

ω

I2,2 ≤ 3

√
B

eπ3/2

1

ω

I3 :

I3 =

ω+1
∫

ω−1

2K̂dt ≤ 4

√

π

B
e−π2(ω−1)2/B

Let
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I3 ≤ c

ω
, ω̂ = ω − 1, f1 =

d

ω̂
, f2 = 4

√

π

B
e−π2ω̂2/B

Roots(f1 − f2) =
d

√

π/B

√

−LW (−1/8πd2)

2πd2

there is no intersection when there is no real root. this implies that f1 is an upper bound as required. For
no real roots we get:

d ≥
√

8

πe
→ c > 4

√
2πe

I3 ≤ 4

√

2

πe

1

ω

I4 :

I4 =

∞
∫

ω+1

K̂

π(t − ω)
dt ≤

∞
∫

ω+1

K̂

π
dt ≤

∞
∫

ω+1

π

B

e−π2t/B

π
dt =

e−π2(ω+1)/B

π2

Let

I4 ≤ f1 =
c

ω
, f2 =

e−π2(ω+1)/B

π2

Roots(f1 − f2) =
−B LW (−pi4ceπ2/B

B )

π2

there is no intersection when there is no real root. this implies that f1 is an upper bound as required. For
no real roots we get:

−π2ceπ2/B

B
< −e−1 → I4 ≤ Be−(1+π2/B)

π4

1

ω

∴ Gω ≤ max(
1

2π
√

π
,

1

2π
erf(

π√
B

),
3
√

B

eπ3/2
, 4

√

2

πe
,
Be−(1+π2/B)

π4
)
1

ω
, (ω ≥ 2)

For our applications, for all practical values of B:

Gω ≤ 4

√

2

πe

1

ω
(B.1)
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