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An Incremental Approach to

Verifying the Intentional Naming System

Hormoz Zarnani, B.S.
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Supervisor: J Strother Moore

Lookup-Name is the name resolution algorithm for the Intentional Naming System

(INS). We formalize this algorithm in the ACL2 logic and develop a specification for

its correctness. We discuss certain difficulties that arise in our formalization of this

algorithm which restrict our ability to prove its correctness. We describe a simpler

version of the algorithm, specify it, and prove it correct. We discuss how the proof of

the simple algorithm can be used as a guide to prove the original algorithm correct.
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Chapter 1

Introduction

The Intentional Naming System (INS) is a scheme for resource discovery in dynamic

networked environments. In INS, services are referred to by intentional names, not

by their low-level network locations. This naming system has a number of algorithms

that perform various operations on intentional names.

The original design of INS was modeled in Alloy and was analyzed using the

Alloy Analyzer (AA)1 as described in [4]. Alloy exposed several flaws in both the

algorithms of INS and its underlying naming semantics. Those flaws were fixed and

the corrected version of INS was analyzed using Alloy. The new design of INS was

found to have no more errors.

AA’s analysis is sound; however, since it performs bounded checking, its

analysis is incomplete. Being a sound analyzer, AA found “real” flaws in INS (i.e.

they were not false positives). But because AA is incomplete, it may not necessarily

have found all of the flaws in INS. Besides, it is possible that the corrections made

to INS introduced new errors, and Alloy missed them when it was used to analyze
1Alloy is a declarative, structural modeling language based on first-order logic and is used

for expressing complex structural constraints and behavior. The Alloy Analyzer is a SAT-based
constraint solver that provides fully automatic simulation and checking.
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the re-designed system.

Lookup-Name, the name resolution algorithm of INS responsible for resolving

queries to records in databases, is one of the most important algorithms of this

naming system. AA revealed the largest number of bugs in Lookup-Name than in

any other algorithm of INS.

In this paper, we present our attempt to prove the correctness of Lookup-

Name. We formalize this algorithm and develop a correctness specification for it.

Our formalization of the algorithm led to a complex model that was awkward to

reason about formally.2 Our failed attempts at verifying Lookup-Name suggested a

need to simplify the problem. Hence, we abstracted out the details of the complex

model that were causing us to stagnate and reduced the problem to one that is

easier to reason about.

We recognized that the operation of Lookup-Name can be viewed as two

separate tasks: decide tree containment and collect records. We observed that one,

namely deciding tree containment, can be addressed separately. We described a

simple algorithm to decide tree containment, specified it, and proved it correct. We

believe that the theorems we proved to verify this simple algorithm will be suggestive

of those we will need to prove for the actual problem. That is to say, we anticipate

that the proof of the correctness of the Lookup-Name algorithm will involve many

lemmas that are closely related to those we proved for the tree containment problem.

The remainder of this paper is organized as follows. In Chapter 3 we present

our ACL2 model of Lookup-Name and the two data structures that it uses, namely

queries and databases, as well as our specification of its correctness. In Section 3.2.3,

we discuss the complexities of our formalization of the algorithm in more detail. In
2We stress here that ACL2 has been successfully used to verify much more complex designs than

ours. We use the word “complex” above relative to our available time for this project.
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Chapter 4, we describe our simplification of the problem – we introduce a simplified

algorithm to only decide tree containment; develop a specification of correctness

similar to that we developed for Lookup-Name; and verify the simplified algorithm.

Finally, in Chapter 5 we summarize the paper and discuss our future work plans.
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Chapter 2

Background

2.1 The Intentional Naming System

The Intentional Naming System (INS) is a scheme for resource discovery and service

location in dynamic networks of devices and computers [1]. In INS, services are

described and referred to by intentional names. These names describe a set of

properties that a service provides. This naming scheme allows client applications

to refer to what service they are looking for as opposed to where the desired service

is located. In other words, clients refer to the service they intend to obtain by

describing it (e.g. “the nearest color printer for transparencies”), not by specifying

its low-level network location (e.g. a host name such as “18.13.0.44”). INS also

allows applications (i.e. clients and service providers) to communicate seamlessly

despite changes in the mapping from service names to service locations while a

session is in progress.

An intentional name is an arrangement of alternating levels of attributes

and values in a tree structure which represent the service property. The mapping

between service descriptions and their locations is maintained by name resolvers.
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The database in a name resolver provides three key operations: resolving

queries to records, adding new services, and finding the name used by a given service

in its advertisement. Queries are resolved to appropriate service(s) using the Lookup-

Name operation.1 Adding new services and finding services are performed using the

Add-Name and Get-Name operations, respectively.

2.2 ACL2

We use ACL2 in our study of formalizing and reasoning about the Lookup-Name

algorithm. For that reason, we give a brief introduction to ACL2 in this section.2

“ACL2” stands for A Computational Logic for Applicative Common Lisp,

which is the name of a functional programming language, a first-order mathematical

logic, and a mechanical theorem prover. It is a theorem prover in the Boyer-Moore

tradition that uses rewriting, decision procedures, mathematical induction and many

other proof techniques to prove theorems in a first-order mathematical theory of

recursively defined functions and inductively constructed objects.

ACL2 has a Definitional Principle, which is one of the means by which the

theory can be extended. When a user submits a function definition, she must prove

that the function terminates. Non-recursive functions always terminate. However,

for recursive functions, she must prove “measure conjectures” establishing that some

measure of the arguments is decreasing in a well-founded way under the tests gov-

erning the recursion. Only after she has proved these conjectures is the definitional

equation “admitted” as a new axiom. We show an example of proving measure

conjectures for a (mutually) recursive function on page 27.

ACL2 also has an Induction Principle. It is one of the inference rules that
1This algorithm will be the focus of this paper.
2The block quotations in this section have been taken from [3] with permission of the authors.
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enables us to prove theorems in ACL2. It is entirely based on

One of the rules of inference in ACL2 is the Induction Principle. It is based

on well-founded induction up to ε0. We show an example of an inductive proof in

Section B.1.

For more detailed information about the ACL2 logic, we refer the reader

to [2, 3].
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Chapter 3

Formalization of The

Lookup-Name Algorithm

In this chapter, we present our formal model of the Lookup-Name algorithm. We

then develop a correctness specification for this algorithm. Finally, we discuss the

complexities of the model.

3.1 The ACL2 Model

3.1.1 INS Data Structures

Lookup-Name operates on two types of data structures – queries (a.k.a. intentional

name specifiers) and databases (a.k.a. intentional name resolver trees). Our model

of these data structures is based on the INS description in [1].
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AV-Trees

Queries and databases are represented as a special form of trees called attribute-

value trees (or av-trees), which are trees with alternating levels of attribute nodes

and value nodes. We model these trees as lists in ACL2. In general, a tree is modeled

as a list of the form (data . children), where data is the information contained

in the root node of the tree and children is the list of the subtrees. We do not

use a tag field for specifying the type of the node because it can be determined

by the position of the node relative to the root of the tree. In an av-tree, every

attribute node has at least one (value) child. Another constraint on av-trees is that

the children of node are mutually unique. In other words, no two siblings are the

same.

Queries

Queries (a.k.a. name specifiers) are special kinds of av-trees. In queries, the only

information that a node contains is either an attribute or a value. We call the

attribute (or the value) of an attribute (or value) node the “label” of that node.

Queries have a structural constraint: that attribute nodes have “exactly” one child

(as opposed to “at least” one child). The mutually recursive functions1 q-avp,

q-vap, and q-av-listp, as shown in Figure 3.1.1 recognize an attribute-rooted

query, a value-rooted query, and a list of value-rooted queries, respectively.
1A note about mutual recursion: in general, when we define functions to operate on trees with

arbitrary branching (i.e. each node can have an arbitrary number of children), we need two mutually
recursive functions, one to operate on a single tree and another to operate on a list of trees. For
that reason, most of the functions we define in this paper will be mutually recursive.
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(mutual-recursion
(defun q-avp (x)

(and (consp x)
(q-vap (car (children x)))
(null (cdr (children x)))))

(defun q-vap (x)
(and (consp x)

(consp (data x))
(q-av-listp (children x))))

(defun q-av-listp (x)
(if (endp x)

(null x)
(and (q-avp (car x))

(q-av-listp (cdr x))))))

Figure 3.1: Model of a query

Databases

Databases (a.k.a. name trees) are another special kind of av-trees. There are two

differences between the structure of queries and databases. First, there is no con-

straint on the number of children for a node in a database other than those on

av-trees. Second, a value node in a database contains “pointers” to records. So, for

a database value node, data is another list of the form (value . records). So, a

value rooted database tree is a list of the form ((value . records) . children),

where children is a list of attribute rooted database trees. The mutually recursive

functions in Figure 3.1.1 recognize a well-formed database.

Reading the recognizer for a database tree (Figure 3.1.1) clause-by-clause:

(1.1) and (2.1) ensure that the node is a consp (recall that trees are modeled as

consp’s; a singleton tree is one whose cdr is an endp). (2.2) and (2.3) ensure

that a value node’s data is composed of two parts, namely a (value) label and a

record set. (1.3) and (2.4) check that the children of a node are mutually unique,

9



(mutual-recursion
(defun db-avp (x) ; (1)

(and (consp x) ; (1.1)
(consp (children x)) ; (1.2)
(no-dup-vals-p (children x)) ; (1.3)
(db-va-listp (children x)))) ; (1.4)

(defun db-vap (x) ; (2)
(and (consp x) ; (2.1)

(consp (data x)) ; (2.2)
(true-listp (rec x)) ; (2.3)
(no-dup-atts-p (children x)) ; (2.4)
(db-av-listp (children x)))) ; (2.5)

(defun db-av-listp (x) ; (3)
(if (endp x) ; (3.1)

(null x) ; (3.2)
(and (db-avp (car x)) ; (3.3)

(db-av-listp (cdr x))))) ; (3.4)
(defun db-va-listp (x) ; (4)
(if (endp x) ; (4.1)

(null x) ; (4.2)
(and (db-vap (car x)) ; (4.3)

(db-va-listp (cdr x)))))) ; (4.4)

Figure 3.2: Model of a database
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ensuring that the database tree is “unambiguous.” (1.2) ensures that an attribute

node is always followed by at least one value node. (1.4) ensures that the children

of an attribute node are value nodes (i.e. they are well-formed value-rooted database

trees). Similarly, (2.5) ensures that the children of a value node are attribute nodes.

We define NIL to be the empty list of trees, and hence lines (3.2) and (4.2).

3.1.2 Lookup-Name

As mentioned before, Lookup-Name is the name resolution algorithm of INS. Given

a query and a database, the Lookup-Name algorithm retrieves the set of all records

in the database that match the query. It does so by first initializing the result set to

all possible records in the database, and then reducing the result set through a series

of recursive calls. It is a depth-first algorithm that recurs on both of its inputs.

The corrected version of Lookup-Name published in [4] is shown in Algo-

rithm 1. Lookup-name,2 shown in Figure 3.3, is the ACL2 model of the corrected

Lookup-Name algorithm.

In the definition of lookup-name, all-recs is a function that collects all of

the records in a database. Att-assoc is a function that reruns the first (attribute-

rooted) tree in its second argument that has a root matching the tree in its first

argument. Val-assoc works in a similar manner and is used for . (These two

functions are analogous to the assoc function.) Int defines the set intersection in

our sets book, which is a light-weight set theory.3 Compute-s-prime is a function

that performs the computation corresponding to the lines 8 - 12 of Algorithm 1.

Note that, again, we are using mutual recursion. This is due to the fact

that ACL2 does not have any looping constructs. As a consequence, the for loop
2ACL2 is case-insensitive. Therefore Lookup-name and lookup-name are the same symbols.
3We developed a light-weight set theory book in order to reason about sets of records. The

interested reader is referred to Appendix A.1.2 for the details of this set theory.
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Algorithm 1 Lookup-Name
Lookup-Name(T, n)

1: S ← the set of all possible records
2: for each av-pair p := (na, nv) in n do
3: Ta ← the child of T such that Ta’s attribute = na’s attribute
4: if Ta = null then
5: return ∅
6: end if
7: if nv = ∗ then {wild card matching}
8: S′ ← ∅
9: for each Tv which is a child of Ta do

10: S′ ← S′ ∪ all the records in subtree rooted at Tv and its subtrees
11: end for
12: S ← S ∩ S′

13: else {normal matching}
14: Tv ← the child of Ta such that Tv’s value = nv’s value
15: if Tv = null then
16: return ∅
17: end if
18: if p is a leaf node then
19: S ← S ∩ all the records in subtree rooted at Tv and its subtrees
20: else
21: S ← S ∩ Lookup-Name(Tv, p)
22: end if
23: end if
24: end for
25: return S

12



(mutual-recursion
(defun lookup-name (db q)

(declare (xargs :measure (1+ (acl2-count q))))
(let ((db-children (children db))

(q-children (children q))
(s (all-recs db)))

(lookup-name-for db-children q-children s)))
(defun lookup-name-for (db-av-list q-av-list s)
(let* ((qa (car q-av-list))

(qv (car (children qa)))
(dba (att-assoc qa db-av-list))
(dbv (val-assoc qv (children dba))))

(cond
((endp q-av-list) s)
((endp dba) nil)
((eq (r-val qv) ’*) ;; Wild-card matching
(compute-s-prime (children dba)))
((endp dbv) nil)
((endp (children qv))
(lookup-name-for
db-av-list (cdr q-av-list) (int s (all-recs dbv))))

(t
(lookup-name-for
db-av-list (cdr q-av-list) (int s (lookup-name dbv qv))))))))

Figure 3.3: Model of the Lookup-Name algorithm
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camera
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NE−43

servicebuilding
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camera printer

R0

R1

query database

Lookup−Name (database, query) = {R0}

Figure 3.4: An Example of the Lookup-Name Operation

corresponding to the lines 2 - 24 must be modeled as a recursive function. Since

there is a recursive call to Lookup-Name inside the for loop, the two functions

lookup-name and lookup-name-for have to be defined mutually-recursively. (The

for loop corresponding to the computation of S′ also has to be modeled as a recursive

function, and hence compute-s-prime; but notice that it is not part of the mutual

recursion because it does not contain a call to any of the functions in the mutual-

recursion.)

The task of lookup-name is to initialize S (line 1 of Algorithm 1), and

the task of lookup-name-for to the rest of the computation. Almost the entire

actual computation is done in lookup-name-for. An example of the Lookup-Name

operation is shown in Figure 3.4.
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3.2 Correctness Specification

The correctness of lookup-name may be informally stated as follows: a record r is

in the result set of lookup-name on the query q and the database db if and only if

r satisfies q in db.

3.2.1 Notion of Satisfiability

To express the notion of satisfies, we have to define several concepts.

Path Set

Define a path p in a tree T to be a sequence of nodes such that the first element of

p is a node in T and every i + 1st node in p is a child of the ith node in T .

Now define the path set of T to be the set of all paths in T such that the first

element of the path is the root of T and the last element of the path is a tip of T .

(As a consequence, the cardinality of the path set of a tree is equal to the number

of the tips of that tree.) Let flattening a tree mean to enumerate the elements of

the path set of that tree. Below we define flatten1 to perform this operation.

(mutual-recursion
(defun flatten1 (x)

(if (tipp x)
(list (list (data x)))

(fold-cons (data x) (flatten1-list (children x)))))
(defun flatten1-list (xs)
(if (endp xs)

nil
(append (flatten1 (car xs))

(flatten1-list (cdr xs))))))

15



Reachability

We say that a record r is reachable in path p2 through path p1 if the following two

conditions hold: first, p1 is a prefix of p2; second, r is in the suffix of p2 resulting

from chopping off p1.

In order to formalize the notion of reachability described above, we first have

to formalize the concept of a record being in a path. In-path defines this concept.

(defun in-path (flg r path)
(cond
((endp path) nil)
((eq flg ’va)
(or (member r (rec (car path)))

(in-path ’av r (cdr path))))
(t (in-path ’va r (cdr path))))) ;; No records in an att node. Skip.

Since in an av-tree the type of the nodes alternate from one level to the next,

a path in an av-tree will be a sequence of nodes with alternating types. We will

call this an av-path. The argument flg in the definition of in-path is a flag that

specifies the type of the first node in path. If the flag is va, then the first element

on the path is a value node (it is an attribte node otherwise). The type of the first

node on a path determines the type of the rest of nodes on the path, just as with

av-trees where the type of the root node determines the types of the rest of the

nodes.

Having defined in-path, we can define reachable which determines if a

record r is in a path p2 through another path p1.

(defun reachable (flg r p1 p2)
(if (endp p1)

nil
(if (eq flg ’va)

(cond

16



((eq ’* (val (car p1)))
(in-path ’va r p2))
((equal (val (car p1))

(val (car p2)))
(if (endp (cddr p1))

(in-path ’va r p2)
(reachable ’av r (cdr p1) (cdr p2))))

(t nil))
(cond
((equal (att (car p1))

(att (car p2)))
(reachable ’va r (cdr p1) (cdr p2)))
(t nil)))))

With reachable we can only express the reachability of a record in one

path through another path. However, recall that trees are made of a set of paths,

and therefore in order to express the notion of a record satisfying a query tree in

a database tree, we must be able to express the reachability of a record through

a set of paths in another set of paths. Below we define member-reachable, to

express the reachability of a record in a set of paths through a single path, and

subset-reachable, to express the reachability of a record in a set of paths through

another set of paths.

(defun member-reachable (flg r qp dbp-list)
(if (endp dbp-list)

nil
(or (reachable flg r qp (car dbp-list))

(member-reachable flg r qp (cdr dbp-list)))))

(defun subset-reachable (flg r qp-list dbp-list)
(if (endp qp-list)

t
(and (member-reachable flg r (car qp-list) dbp-list)

(subset-reachable flg r (cdr qp-list) dbp-list))))

17



Satisfiability

Having defined the notions of path set and reachability, we can now define the notion

of “satisfies” discussed earlier.

(defun satp (r q db)
(subset-reachable ’va r (flatten1 q) (flatten1 db)))

Another, yet more formal way to think about “satisfies” is the following: r

satisfies q in db if and only if the path set of q is a subset-reachable of the path

set of db with respect to r.

3.2.2 Statement of the Correctness Theorem

Having defined the notion of satisfiability, we can state the correctness theorem for

lookup-name as follows. (Databasep and queryp are aliases for db-vap and q-vap,

which are recognizers for a value-rooted database tree and a value-rooted query tree,

respectively.)

(defthm lookup-name-correct
(implies (and (databasep db)

(queryp q))
(iff (member r (lookup-name db q))

(satp r q db))))

3.2.3 Complexity of the Formalization

The first and perhaps the most difficult aspect of our formalization of the problem

is that there is a lot of mutual recursion involved. In general, mutually recursive

functions are somewhat awkward to reason about formally. In our case, we have

four-way mutually recursive functions, two of which are due to the data structures

being trees (with unbounded branching) and two are due to the alternation of the
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node types. We have tried to eliminate some of the mutual recursion, but we never

succeeded.

Another problem arises from the fact that Lookup-Name examines two con-

secutive nodes at a time, and compares the nodes in a rather out-of-order manner.

Looking at the algorithm, we see that Lookup-Name always assumes that the root

of the tree has already been matched and starts by looking at the immediate chil-

dren of the root. Of course, it always matches the roots of the two trees before the

next recursive call. This “look-ahead matching” also adds to the complexity of the

challenge.

We have, however, developed a strategy to attack the problem. We observe

that the operation of Lookup-Name can be viewed as a two-step operation: given

a pair of query and database, it first determines if the query is “contained” in the

database; then, if the result of the first problem is positive, it determines if a record

appears in every subtree to which the tips of the first subtree point. The next

chapter will address the first of these two problems.
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Chapter 4

The Simplified Problem

In this chapter, we describe a simplified version of the Lookup-Name algorithm,

which we call Tree-Containment. We then formalize this algorithm, specify it, and

prove it correct.

In order to eliminate the complexity of the problem, we make three simpli-

fying assumptions:

• We abstract out the notion of a record, thereby changing the reachability

problem into a prefixness problem. We define the prefixness problem as follows:

given two paths, determine if one is a prefix of the other. This is the most

important simplification we make.

• We assume that the nodes of a tree are homogeneous. This reduces the com-

plexity of our mutual recursions by a factor of two.1

• Eliminate the notion of a wild card.
1By the complexity of a mutual recursion we mean the number of functions in it.
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4.1 The Tree Containment Problem

Recall that we can think of Lookup-Name as an algorithm that performs two tasks:

given two trees T1 and T2, it determines if T1 matches (or is “contained” in) T2; if

so, it then returns the intersection of the records of the subtrees of T2 to which the

tips of T1 point. In other words, Lookup-Name solves two problems, namely the

“tree containment” problem and the “data collection” problem. We believe that

we can first focus on the (more difficult) tree containment problem and address it

separately, and then focus on the data collection problem.

We can informally state the tree containment problem as follows: given a

pair of trees, decide whether the first is contained in the second. We say that a tree

is “contained” in another if and only if at each level, all of the nodes of the first

tree have a match in the second tree at the same level, and the parent of the every

node in the first tree is the same as that of its match in the other tree. We assume

no restriction on the structure of the trees. Also, no (wild card) symbol is to be

interpreted in a special way. Moreover, both input trees are of the same type.

4.2 The Model

In this section, we formalize the Tree-Containment algorithm. We present our ACL2

model of the data structure used and then model the algorithm.

4.2.1 Data Structure

As a consequence of our abstracting out the notion of a record, the nodes in the

new tree will not be composite as they were with Lookup-Name (i.e. a label and

a record set contained in the value nodes). For the sake of simplicity, we assume
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(mutual-recursion
(defun atreep (x)

(if (atom x) ; (1)
t

(and (atom (car x)) ; (2.1)
(consp (cdr x)) ; (2.2)
(atree-listp (cdr x))))) ; (2.3)

(defun atree-listp (xs)
(if (endp xs)

(null xs) ; (3)
(and (atreep (car xs)) ; (4.1)

(not (member (root (car xs)) ; (4.2)
(strip-roots (cdr xs))))

(atree-listp (cdr xs)))))) ; (4.3)

Figure 4.1: Model of the simplified tree

that the nodes in our trees are atoms. Unlike av-trees, there is no restriction on the

depth of the tip nodes.2 We will model a singleton tree as an atom, and a forest as

a list of the form (root . children), where every element of children is another

well-formed tree (i.e. a single-noded tree or another forest).

The formal definition of a well-formed tree is given by atreep and its mutu-

ally recursive counterpart atree-listp as shown in Figure 4.2.1.

We now briefly explain the tree recognizer clause-by-clause. (1) recognizes

a singleton tree. (2) recognizes a forest; (2.1) requires that the root of the forest

be an atom, and (2.2) ensures that the node has at least one child (since it is a

forest; otherwise it would have been recognized by clause (1)). (2.3) ensures that

the children of x are a list of well-formed trees.

Atree-listp recognizes a list of “sibling” trees. We require that all siblings

have unique roots. The reason we put this restrictions on sibling trees is that we
2In an av-tree, all tips have to appear at even levels. This is because only value nodes can appear

as tips, and a value node can only be at an even level.
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are trying to model trees to resemble those of INS, namely av-trees.3 Unambiguity

also has a significant impact on the way we define the notion of correctness. We

define NIL to be an empty list of trees, hence (3). (4) recognizes a non-empty list

of sibling trees.

Note that if atree-listp were to recognize an arbitrary list of trees, then

we would use clauses (4.1) and (4.3) only. But we add clause (4.2) to check for

the unambiguity constraint. Equivalently, we could have performed this check in

atreep with (no-duplicatesp (strip-roots (cdr x)). Obviously, this would be

much more efficient than the current implementation because it would require only

one call to strip-roots. Also, one might argue that the latter way of defining the

recognizer is preferable because that way atree-listp would be a recognizer for an

arbitrary list of trees, whereas this definition of the recognizer is for a list of trees

that have mutually unique roots. That is, it recognizes a list of “sibling” trees.4

But we claim that our choice of defining the recognizer this way is a reasonable

one because we will always be reasoning about a list of siblings; we will never have

to reason about an arbitrary list of trees. Since we always will be only concerned

with “proving theorems” that involve these functions, and our definition of the tree

recognizer will make it much easier to reason about them than if they were defined

in the other way, we insist that our definitions of atreep and atree-listp are most

suitable for our purposes.
3In INS trees, a node has unique children, which is essential when searching a list of siblings for

a match.
4As a matter of fact, this is how we checked for unambiguity in our INS tree recognizers an

in our original definition of the recognizer. But when proving the completeness theorem for the
simplified problem, we realized that this way of defining trees is best.
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(mutual-recursion
(defun contdp (t1 t2)

(declare (xargs :measure (+ (acl2-count t1)
(acl2-count t2))))

(cond
((not (requal t1 t2)) nil)
((tipp t1) t)
((tipp t2) nil)
(t (contd-listp (chdn t1) (chdn t2)))))

(defun contd-listp (t1-list t2-list)
(declare (xargs :measure (+ (acl2-count t1-list)

(acl2-count t2-list))))
(if (endp t1-list)

t
(and (contdp-aux (car t1-list) t2-list)

(contd-listp (cdr t1-list) t2-list))))
(defun contdp-aux (t1 t2-list)
(declare (xargs :measure (+ (acl2-count t1)

(acl2-count t2-list))))
(if (endp t2-list)

nil
(or (contdp t1 (car t2-list))

(contdp-aux t1 (cdr t2-list))))))

Figure 4.2: Model of the Tree-Containment algorithm

4.2.2 Model of the Tree Containment Algorithm

Since our objective behind working on this simplified problem is to develop the

intuition of how to solve the actual problem (of verifying Lookup-Name), we will

define an algorithm to solve the tree containment problem that is similar to Lookup-

Name.

Define a depth-first algorithm to decide tree containment as follows: if the

roots of the trees are different, then the answer is negative. Otherwise, determine if

every child of the first tree is contained in one of the children of the second tree.

Figure 4.2.2 shows the model of contdp in ACL2.
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Contdp decides if tree t1 is contained in t2. Contd-listp decides if a list

of trees t1-list are contained in another list of trees t2-list, i.e. every tree in

t1-list is contained in at one of the trees in t2-list. Finally, contdp-aux decides

if a tree t1 is contained in one of the trees in t2-list.

Reading these three mutually recursive functions clause-by-clause, (1) if the

roots of the trees do not match, then t1 is not contained in t2. (2) if the roots of

the trees match and the t1 tree is a leaf node, then the t1 tree is contained in t2.

(3) if t2 is a leaf node but t1 is not, then t1 is not contained in t2. (4) otherwise,

i.e. if the roots of the trees match and none of them is a leaf, determine if every

tree in the list of the children of t1 is contained in one of the trees in the list of the

children of t2. (5) if we have exhausted the list of the children of t1, i.e. if all of

the children of t1 were contained in one of the children of t2, then t1, is contained

in t2. (6.1) otherwise, i.e. if there are some children of t2 left to check, then the

first child in the list of the children of t1 must be contained in at least one the

trees in the list of the children of t2, and (6.2) the every other child of t1 must

be contained in a child of t2. The auxiliary function contdp-aux determines if a

single tree is a contained in a list of trees. Basically, (7) says that if the list of the

children of t2 has been exhausted, then the search for a match has failed, so t1 is

not contained in t2. (8.1) if t1 (a subtree of t1 in contdp) contained in the first

element of t2-list (a subtree of t2 in contdp) then a match was found. (8.2),

otherwise, continue searching the rest of list of the children of t2 in contdp.

The reader might notice that the two functions contd-listp and contd-aux

are very similar in structure to the set theory function subsetp and member.5 This is

not surprising. In fact, one way to think about what the tree containment algorithm

does is that it checks if two trees have the same roots, and then checks if the children
5These functions are define in ACL2, in our set theory book.
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of one are a “subset” (up to tree-containment) of the children of the other. The

main difference between these functions is that subsetp and memberp use equal to

compare two objects for equality, whereas contd-listp and contd-aux use contdp

to check for tree-containment. This observation will help us through out the proof

process.

Below is an example of some well-formed and ill-formed trees.

(defthm Example0
(let ((t1 ’A)

(t2 ’(A))
(t3 ’(A B))
(t4 ’(A B C))
(t5 ’(A (B C) D))
(t6 ’(A (B (C D))))
(t7 ’(A B B))
(t8 ’(A (B D) (C D)))
(t9 ’((A D) B C)))

(and
(atreep t1)
(not (atreep t2))
(atreep t3)
(atreep t4)
(atreep t5)
(atreep t6)
(not (atreep t7))
(atreep t8)
(not (atreep t9))))

:rule-classes nil)

The above conjuncts inform us that t1 is a well-formed (singleton) tree. t2

is not a tree because it is not a singleton tree (since it is a consp), but it does

not have any children, which is impossible. t3 is well-formed because it is a tree

with two nodes A and B, where A is the root and B is the child of A. t4, t5, and t6

are well-formed. t7 is ill-formed because the root of the tree, A, has two identical
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children, and thus it is ambigous. t9 is ill-formed because the root of a tree must

be an atom, i.e. a single node, whereas this tree has another tree as its root.

4.2.3 Termination Argument

In order to get ACL2 to admit a function, we must prove that it always terminates

on any input. For non-recursive functions this task is trivial. On the other hand,

proving termination for recursive functions requires finding some measure that de-

creases in every recursive call, which can be difficult at times. It can be even more

difficult for mutually recursive functions, functions with reflexive definitions [2], and

functions that recur on an argument before performing certain checks.

Let’s consider contdp. Why does this function terminate? If we remove the

specified measures in the three mutually recursive functions defined in Section 4.2.2

and submit the functions to ACL2, the theorem prover’s heuristics will not find an

appropriate measure and the mutually recursive functions will not be admitted.

As mentioned before, to prove termination for recursive functions, find a

measure that decreases in every recursive call. This task is relatively easy for singly

recursive functions because there is only one measure to be dealt with. However, for

mutually recursive functions, we must do more work – we have to prove that a mea-

sure of the arguments of every function in the mutually recursive clique is smaller

than the measure of every call to a mutually recursive function. We found the mea-

sures for the three mutually recursive functions in the model of Tree-Containment

as follows: let m1, m2, and m3 be the measures for contdp, contdp-list, and

contdp-aux respectively. We must find m1, m2, and m3 such that:

• (m2 (chdn t1) (chdn t2)) < (m1 t1 t2)

• (m3 (car t1-list) t2-list) < (m2 t1-list t2-list)
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• (m2 (cdr t1-list) t2-list) < (m2 t1-list t2-list)

• (m1 t1 (car t2-list)) < (m3 t1 t2-list)

• (m3 t1 (cdr t2-list)) < (m3 t1 t2-list)

We observe that the sum of the acl2-count’s of the arguments of each

function satisfies the above conditions.

Notice that clauses (2) and (3) in the definition of contdp are not neces-

sary; that is, we could have removed those two clauses and still define an equiva-

lent function. To see why, let’s consider what would happen if we removed those

two checks: for non-tipp t1 and t2, the behavior of the function would be un-

changed. But suppose t1 were a tipp (i.e. (chdn t1) is an endp), then the flow

of the execusion would reach (contd-listp (chdn t1) (chdn t2)), which would

return t since t1-list is bound to an endp (because (chdn t1) is an endp). Sim-

ilarly, if t2 were a tipp (i.e. (chdn t2) is an endp), then the control flow would

reach (contd-listp (chdn t1) (chdn t2)), which would then call (contdp-aux

(car t1-list) t2-list) in contd-listp (assuming that t1 is not a tipp), which

would be NIL because (contdp-aux anything endp) would be NIL. So if we omit

caluses (1) and (2) in contdp, those cases would be handled by the base cases

of contd-listp and contdp-aux. But we chose to test for and handle these two

cases in contdp because this way, the measures for our mutually recursive functions

would be straight forward, and therefore their termination proof would be much

easier. More importantly, this choice would make it much easier to reason about

these mutually recursive functions.
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4.3 Verification

In this section, we develop a notion of correctness for the Tree-Containment algo-

rithm and then use it to prove contdp correct.6

4.3.1 Specification

There may be many different ways to formalize the notion of correctness for the Tree-

Containment algorithm. Since, again, the purpose of solving the tree containment

problem is to learn how to solve the more complex problem of verifying the INS

Lookup-Name, we will define a notion of correctness similar to the one we defined

in Section 3.2.

We desire contdp to have the following property.

(defthm contdp-correct
(implies (and (atreep x)

(atreep y))
(iff (contdp x y)

(satp x y))))

That is to say, given a pair of well-formed trees x and y, x is contained in

y if and only if x satisfies y. The notion of satisfiability in the tree containment

problem is similar to that we defined for Lookup-Name. However, we will neeed to

replace the notion of reachability by a weaker one.

Path Set

We use the same definition of path set and flatten for enumerating the members

of the path set for a tree. The following example demonstrates the function of

flatten.
6We do not explain the proof in this draft. But the ACL2 proof scripts are in appendix A.3.
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(defthm Example2
(let ((t6 ’(A (B E F) (C G (H I)) D)))
(equal
(flatten t6)
’((A B E)
(A B F)
(A C G)
(A C H I)
(A D))))

:rule-classes nil)

Prefixness

We now define the most fundamental function in our definition of the notion of

correctness for contdp. We defined the prefixness problem earlier. We define the

function prefixp below which decides prefixness. Given a pair of paths p1 and p2,

prefixp determines if p1 is a prefix of p2. The reader might notice the structural

similarity between this function and reachable which we defined for the notion

of correctness for Lookup-Name. The difference between the two functions is that

reachable answers two questions: (1) is p1 a prefix of p2 and (2) does a record r

appear along the suffix of p2 after chopping off p1. But prefixp only answers the

first question.

(defun prefixp (p1 p2)
(cond
((endp p1) t)
((endp p2) nil)
(t (and (equal (car p1) (car p2))

(prefixp (cdr p1) (cdr p2))))))

Are-prefixes-in, defined below, checks that every path in its first argument

is a prefix of another in its second argument.
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(defun are-prefixes-in (p-list1 p-list2)
(if (endp p-list1)

t
(and (is-a-prefix-in (car p-list1) p-list2)

(are-prefixes-in (cdr p-list1) p-list2))))

Is-a-prefix-in, defined below, determines if a path p is a prefix of at least

one path in a set of paths p-list.

(defun is-a-prefix-in (p p-list)
(if (endp p-list)

nil
(or (prefixp p (car p-list))

(is-a-prefix-in p (cdr p-list)))))

Note that are-prefixes-in and is-a-prefix-in are structurally very sim-

ilar to subset-reachable and member-reachable in the definition of the notion

correctness for Lookup-Name in Section 3.2.1. Also, note that the structure of

the two set-theory functions subsetp and memberp are very similar to that of

are-prefixes-in and is-a-prefix-in the definition of notion correctness for contdp.

The only difference between these functions and the set-theory functions is that

are-prefixes-in and is-a-prefix-in are only concerned with a weaker condi-

tion than equality, namely with prefixness, and therefore we use prefixp for com-

parison. The set theory functions, on the other hand, are concerned with equality

and therefore use equal for comparison. (Of course, one fundamental difference is

that equal is an equivalence relation but prefixp is not; but that is perfectly fine

because contdp is not an equivalence relation either.)

Having said that, we can think of a tree satisfying another tree as follows: a

tree satisfies another if and only if its paths set is a subset, up to prefixness, of the

paths set of the other tree.
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(defun satp (t1 t2)
(are-prefixes-in (flatten t1) (flatten t2)))

4.3.2 Proof

In this section, we give a high-level overview of the correctness proof for Tree-

Containment. The complete proof script is in Section A.3.3.

We split the correctness theorem into a soundness and a completeness theo-

rem. Informally stated, assuming that x and y are well-formed trees, the soundness

theorem is “if tree x is recognized to be contained in y by contdp, then x satisfies

y;” the correctness theorem is “if tree x satisfies y, then contdp recognizes x to be

contained in y.”
Below are the the formulas for the soundness and completeness theorems for

contdp.

(defthm contdp-sound
(implies (and (atreep x)

(atreep y)
(contdp x y))

(satp x y)))

(defthm contdp-complete
(implies (and (atreep x)

(atreep y)
(satp x y))

(contdp x y)))

We would like to prove these two theorems by induction. Note that atreep

and contdp are mutually recursive. When we prove theorems about mutually recur-

sive functions by induction, we have to state the theorem about all of the functions

in the mutually recursive clique. To see why, consider the following example. Sup-

pose f(x) and g(x) are mutually recursive functions, i.e. f makes a call to g and
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vice versa. Now imagine a theorem that states “f has a property p” as follows:

hypotheses ⇒ p(f(x)). Denote this formula by a(x). To prove this theorem by in-

duction, we must assume some hypothesis of the form a(x′), where x′ is some smaller

piece of x that is passed to g. But a(x) does not involve g. Hence we cannot assume

a(x′), and therefore a(x) cannot be proved by induction. Similarly, the soundess

and completeness theorems cannot be inductively proved as they are stated.

We could make the above theorems to be a conjunction of implications involv-

ing appropriate combinations of the functions contdp, contdp-list, contdp-aux,

atreep, and atree-listp. This method would work fine; however, it often requires

the user to supply induction hints for every theorem that involves mutually recur-

sive functions. We need to prove many such theorems, so we seek an alternative

method to ease the theorem proving process. Our approach is to convert every mu-

tually recursion to a flagged singly recursive form; establish the equivalence of the

singly recursive functions to their corresponding mutual recursion; and then prove

all of our theorems about the singly recursive functions. In our case, we define

atreep-fn with a two-way flag – one corresponding to atreep and atree-listp

– and contdp-fn with a three-way flag.7 This method has the advantage that by

instantiating the flag we can capture all appropriate combinations of the mutually

recursive functions. To do so, all we have to do is to use an induction scheme that

involves the flag to one of the mutually recursive functions.

Soundness

The following formula is the statement of the theorem for the soundness of the singly

recursive form of contdp.

7See the proof script in Section A.3.3 for the details.
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(defthm contdp-sound-general-case

(implies (and (contdp-fn flg x y)

(equal flg1 (flg1 flg))

(equal flg2 (flg2 flg))

(atreep-fn flg1 x)

(atreep-fn flg2 y))

(are-prefixes-in

(flatten-fn flg1 x)

(flatten-fn flg2 y))))

In the above formula, the functions flg1 and flg2 are used to determine

the appropriate flag for atreep-fn. More precisely, they are used to determine the

structure of the trees x and y. For instance, when flg is ’aux, i.e. when contdp-fn

corresponds to contdp-aux, we want the first argument of contdp-fn to be a single

tree and the second argument to be a list of trees. So (flg1 ’aux) will be ’tree

and (flg2 ’aux) will be ’list, and therefore the atreep-fn function will ensure

that x is a single tree and y is a list of trees.

In order to prove the above theorem we have to prove a number of lemmas

relating are-prefixes-in and the functions that flatten-fn is made of, such as

fold-cons and append. Some of these theorems include, are-prefixes-in dis-

tributes over append in its first formal; also, append is commutative in the second

formal of are-prefixes-in. Many times to prove a lemma about are-prefixes-in

we have to prove an analogue lemma about is-a-prefix-in.

Completeness

The following is the completeness theorem for contdp.
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(defthm contdp-complete-general-case

(implies (and

(atreep-fn (flg1 flg) x)

(atreep-fn (flg2 flg) y)

(are-prefixes-in

(flatten-fn (flg1 flg) x)

(flatten-fn (flg2 flg) y)))

(contdp-fn flg x y)))

Most of the lemmas proved in the soundness proof relating are-prifexes-in

and is-a-prefix-in to functions like append are used in the completeness proof.

Additionally, we must prove lemmas relating are-prifexes-in and is-a-prefix-in

to prefixp. Many of the lemmas for the completeness proof make extensive use

of the assumption that the children of a node are unique. One such theorem,

are-prefixes-in-append, allows us to distribute are-prefixes-in over append

in the second argument of are-prefixes-in. Four corollaries of this lemma were

used in the proof of the completeness theorem.

In total, we proved 26 definitions and 56 lemmas to prove the correctness of

contdp. 20 out of these 26 definitions were established to obtain the correctness

theorem and the remaining were introduced in the proof (e.g. conversion of the

mutual recursions to singly recursive form, new functions to reason about the type

of certain functions, etc.). Our the 56 lemmas, 15 were list-processing facts; 16 were

used in the soundess proof. The remaining lemmas, toghether with many of the

lemmas we proved in the soundness proof helped us establish the completeness of

contdp.
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4.4 Incrementally Extending Simple to Actual Model

In this section, we breifly describe how the simplified problem of Tree-Containment

can be incrementally changed back to the original problem of Lookup-Name.8

Recall that the most significant simplification we made in the tree contain-

ment problem was to disregard the notion of reachability. Our first step to extend

the tree containment problem is to change the contd function so that it returns the

set of all nodes in the subtree(s) of the second tree to which the tip(s) of the first

tree point. We will call this new function lookup-node.

In order to formalize this new function, we have to define another function,

an iterator, that collects all of the nodes in a tree. Below we define all-nodes to

collect the nodes of a tree.

(mutual-recursion
(defun all-nodes (x)

(if (tipp x)
(list (root x))

(cons (root x)
(all-nodes-list (chdn x)))))

(defun all-nodes-list (xs)
(if (endp xs)

nil
(append (all-nodes (car xs))

(all-nodes-list (cdr xs))))))

Having defined all-nodes, we modify contdp and its mutually recursive

counter-parts as follows: replace all occurrences of t by an appropriate call to

all-nodes-list; then change all occurrences of and and or by int and unn, re-

spectively.9 The occurrences of nil will not be changed. But notice that nil meant
8We have not yet experimented with this approach, and so we do not have any results to support

it. But doing so is part of our future work plans (see Section 5.2).
9Int and unn, defined in the sets book, compute the intersection and the union of sets, respec-

tively. See Appendix A.1.2 for more details.
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false in the context of contdp, but now it denotes the empty set. Below is the

definition of lookup-node.

(mutual-recursion
(defun lookup-node (t1 t2)

(declare (xargs :measure (+ (acl2-count t1)
(acl2-count t2))))

(cond
((not (requal t1 t2)) nil)
((tipp t1) (all-nodes-list (chdn t2)))
((tipp t2) nil)
(t (lookup-node-listp (chdn t1) (chdn t2)))))

(defun lookup-node-listp (t1-list t2-list)
(declare (xargs :measure (+ (acl2-count t1-list)

(acl2-count t2-list))))
(if (endp t1-list)

(all-nodes-list t2-list)
(int (lookup-node-aux (car t1-list) t2-list)

(lookup-node-listp (cdr t1-list) t2-list))))
(defun lookup-node-aux (t1 t2-list)
(declare (xargs :measure (+ (acl2-count t1)

(acl2-count t2-list))))
(if (endp t2-list)

nil
(unn (lookup-node t1 (car t2-list))

(lookup-node-aux t1 (cdr t2-list)))))))

Note that our use of the function unn in lookup-node-aux is justified because

we assume that the arguments to contdp are well-formed trees, which means that

no two siblings are the same. This implies that if there is a match for t1 in t2-list,

then it is unique.

The following example demonstrates the function of lookup-node.

(defthm Example3
(let ((t1 ’A)

(t2 ’(A B C))
(t3 ’(A (B F (H I D)) (C (E F G) D))))
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(and
(set-equal (lookup-node t1 t2)

’(B C))
(set-equal (lookup-node t1 t3)

’(B C D E F G H I))
(set-equal (lookup-node t2 t3)

’(F D))))
:rule-classes nil)

We should be able to use a very similar notion of correctness as the one we

developed for lookup-name to specify lookup-node. We also should be able to prove

the correctness of lookup-node with similar lemmas to those in the proof of the

correctness of contdp. Note that the main differences between lookup-node and

lookup-name are that the former assumes that the nodes are atomic, and it uses the

entire node for comparison and also returns whole nodes in its result set; however,

the former assumes that there are two parts to the nodes of a tree (i.e. the nodes

are composite) – a label and a record set – and it uses the label for comparison

and returns records as its result set. In addition, lookup-nodes does not know

the notion of attributes and values, and therefore does not discriminate the nodes

when constructing its result set. On the other hand, lookup-name only uses the

even-leveled nodes (i.e. the value nodes) to construct its result set.

The next step is to introduce the notion of attributes and values. This will

require two changes: modifying data structures to ensure the appropriate structure

(as with db-vap and q-vap); modifying the algorithm to visit two consecuitive nodes

at a time. We will call this algorithm lookup-val-nodes.

The previous two steps are very important in our extending contdp to

lookup-name. We anticipiate two (or possibly more) other steps in the process of

transforming the simple model to the complex model. Of these include introducing

the concept of composite nodes for value nodes and introducing the notion of a wild-
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Algorithm Data Structure(s) New notion / change
contdp atom Trees –
lookup-nodes atom Trees Prefixness to Reachability
lookup-val-nodes atom AV-Trees Heterogeneous nodes
lookup-recds composite AV-Trees Composite nodes
lookup-name composite AV-Trees Wild card

Table 4.1: Incrementally Extending the Tree-Containment

card. We call the former lookup-recds. After introducing the notion of records, we

can add the notion of a wild-card, thereby obtaining the actual algorithm, Lookup-

Name. Table 4.4 summarizes the steps to change contdp to lookup-name.
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Chapter 5

Conclusion

5.1 Summary

We presented our formalization of Lookup-Name, INS’s name resolution algorithm,

and our attempt to verify the algorithm. We also presented an approach to solv-

ing this problem by reducing the problem to a simpler one which, we beleive, can

guide us in verifying the complex model. We show a possible way of incrementally

extending the simple model to the full-blown model of the Lookup-Name algorithm.

5.2 Future Work

We have only briefly described how we expect to extend the simple model and obtain

the actual model. We plan to experiment with this approach and determine how it

will lead us to the proof of the correctness of the original algorithm, Lookup-Name.
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Appendix A

ACL2 Event Files

A.1 Helpers

A.1.1 List Processing

(in-package "ACL2")

(defun rev (x)
(if (endp x)

nil
(append (rev (cdr x)) (list (car x)))))

(defun fold-cons (a list)
(if (endp list)

nil
(cons (cons a (car list))

(fold-cons a (cdr list)))))

(defun fold-append (list list-list)
(if (endp list-list)

nil ;; may be i’ll need to replace this by list-list; if I do this, then
;; I can remove the (true-listp list) hypothesis in my endp-fold-append
(cons (append list (car list-list))

(fold-append list (cdr list-list)))))
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(defun fold-list (list)
(if (endp list)

nil
(cons (list (car list))

(fold-list (cdr list)))))

(defthm append-is-assoc
(equal (append (append a b) c)

(append a (append b c))))

(defthm append-nil
(implies (true-listp x)

(equal (append x nil)
x)))

(defthm true-listp-append
(implies (true-listp y)

(true-listp (append x y))))

(defthm distrib-of-fold-cons-over-append
(equal (fold-cons a (append list1 list2))
(append (fold-cons a list1)
(fold-cons a list2))))

(defthm distrib-of-fold-append-over-append
(equal (fold-append x (append a b))

(append (fold-append x a) (fold-append x b))))

(defthm endp-fold-append
(implies (and (endp a)

(true-listp list))
(equal (fold-append a list)

list)))

; ------------------------------------------------------------------------------

(defthm consp-fold-cons
(equal (consp (fold-cons x y))

(consp y)))
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(defthm consp-append
(equal (consp (append x y))

(or (consp x)
(consp y))))

(defthm car-fold-cons
(equal (car (fold-cons x y))

(if (endp y)
nil

(cons x (car y)))))

(defthm cdr-fold-cons
(equal (cdr (fold-cons x y))

(if (endp y)
nil

(fold-cons x (cdr y)))))

A.1.2 Set Theory

;; sets.lisp

(in-package "ACL2")

(include-book "list-helpers")

;; Ultra light-weight set-theory

(defun set-equal (x y)
"Double containment"
(and (subsetp x y)

(subsetp y x)))

(defthm subsetp-cons
(implies (subsetp x y)

(subsetp x (cons a y))))

(defthm set-equal-reflexive
(set-equal x x))

(defthm set-equal-symmetric
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(implies (set-equal x y)
(set-equal y x)))

(defthm subsetp-reflexive
(subsetp x x))

(defthm subsetp-transitive
(implies (and (subsetp x y)

(subsetp y z))
(subsetp x z)))

(defthm set-equal-transitive
(implies (and (set-equal x y)

(set-equal y z))
(set-equal x z)))

(defequiv set-equal)

;;------------------------------------------------------------------------------

(defun empty-setp (x)
(endp x))

(defun binary-unn (x y)
"Computes the union of two sets"
(cond
((empty-setp x) y)
(t (cons (car x) (binary-unn (cdr x) y)))))

(defmacro unn (x y &rest rst)
(xxxjoin ’binary-unn

(cons x (cons y rst))))

;; Computes the union of a list of sets

(defun big-unn (sets)
(if (endp sets)

nil
(unn (car sets)

(big-unn (cdr sets)))))
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(defun binary-int (x y)
"Computes the intersection of two sets"
(cond
((endp x) nil)
((member (car x) y) (cons (car x) (binary-int (cdr x) y)))
(t (binary-int (cdr x) y))))

;; Computes the intersection of a list of sets

(defmacro int (x y &rest rst)
(xxxjoin ’binary-int

(cons x (cons y rst))))

;;------------------------------------------------------------------------------

;; Alternative definition for binary union.

;; The difference between binary-unn2 and binary-unn (above) is that
;; binary-unn2 always returns a true-listp.

(defun binary-unn2 (x y)
(declare (xargs :measure (+ (acl2-count x) (acl2-count y))))
(cond
((and (endp x) (endp y)) nil)
((consp x) (cons (car x) (binary-unn2 (cdr x) y)))
(t (cons (car y) (binary-unn2 x (cdr y))))))

(defthm bin-unn-endp-true-list
(implies (and (endp x) (true-listp y))

(equal (binary-unn2 x y) y)))

(defthm binary-unn2=binary-unn
(implies (true-listp y)

(equal (binary-unn2 x y)
(binary-unn x y))))

(in-theory (disable binary-unn2 bin-unn-endp-true-list binary-unn2=binary-unn))

;;------------------------------------------------------------------------------

46



;; Theorems about unn

(defthm unn-is-assoc
(equal (unn (unn x y) z)

(unn x (unn y z))))

(defthm member-unn
(iff (member a (unn x y))

(or (member a x)
(member a y))))

(defthm unn-subsetp1
(subsetp x (unn x y)))

(defthm unn-subsetp2
(subsetp y (unn x y)))

(defthm two-subsets-unn
(implies (and (subsetp x z)

(subsetp y z))
(subsetp (unn x y) z)))

(defthm unn-is-comm
(set-equal (unn x y)

(unn y x)))

(defthm binary-unn-nil
(implies (true-listp x)

(equal (binary-unn x nil) x)))

(defthm binary-unn-true-listp
(implies (true-listp y)

(true-listp (binary-unn x y))))

;;------------------------------------------------------------------------------

;; Theorems about int

(defthm member-int
(iff (member a (int x y))
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(and (member a x)
(member a y))))

;; Not only are (int (int x y) z) and (int x (int y z)) set-equal, but also
;; they are equal

(defthm int-is-assoc
(equal (int (int x y) z)

(int x (int y z))))

(defthm int-subsetp
(and (subsetp (int x y) x)

(subsetp (int x y) y)))

(defthm subsetp-int
(implies (and (subsetp a x)

(subsetp a y))
(subsetp a (int x y))))

(defthm int-is-comm-set-equal
(set-equal (int x y)

(int y x)))

;;------------------------------------------------------------------------------

(in-theory (disable set-equal))

A.2 Lookup-Name

A.2.1 Model of Lookup-Name

;; ins-defs.lisp

(include-book "sets")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Generic tree:
;;
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;; (data . children)

;; Accessors & predicates for a generic tree:

(defun data (x) (car x))
(defun children (x) (cdr x))
(defun tipp (x) (endp (children x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Accessors

;; Accessors for the attribute, value, and records of the data of a node.

(defun att (x) x)
(defun val (x) (car x))
(defun rec (x) (cdr x))

;; Accessors for the attribute, value, and records of the root of a tree

(defun r-att (x) (att (data x)))
(defun r-val (x) (val (data x)))
(defun r-rec (x) (rec (data x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun strip-root-atts (av-list)
(if (endp av-list)

nil
(cons (r-att (car av-list))

(strip-root-atts (cdr av-list)))))

(defun strip-root-vals (va-list)
(if (endp va-list)

nil
(cons (r-val (car va-list))

(strip-root-vals (cdr va-list)))))

;; The following functions check if a list of value-rooted trees (or a list of
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;; attribute-rooted trees) has two trees with the same root label.

(defun no-dup-vals-p (va-list)
(no-duplicatesp (strip-root-vals va-list)))

(defun no-dup-atts-p (av-list)
(no-duplicatesp (strip-root-atts av-list)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Database nodes:
;;
;; - db-av is a list of the form (att . non-empty-db-va-list).
;; I.e. it is a list of the form (att db-va . db-va-list)
;;
;; - db-va is a list of the form ((val . recs) . av-list)
;;
;; We put no restriction on att or val. Recs, however, has to be a true-listp.

(mutual-recursion
(defun db-avp (x)
(and (consp x)

(consp (children x)) ;; At least one child
(no-dup-vals-p (children x)) ;; No duplicate value nodes
(db-va-listp (children x))))

(defun db-vap (x)
(and (consp x)

(consp (data x))
(true-listp (rec x))
(no-dup-atts-p (children x)) ;; No duplicate attribute nodes
(db-av-listp (children x))))

(defun db-av-listp (x)
(if (endp x)

(null x)
(and (db-avp (car x))

(db-av-listp (cdr x)))))
(defun db-va-listp (x)
(if (endp x)

(null x)
(and (db-vap (car x))

(db-va-listp (cdr x)))))
)
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;; Singly recursive version of db-avp, etc.

(defun dbp (flg x)
(cond
((eq flg ’av)
(and (consp x)

(consp (children x)) ;; At least one child
(no-dup-vals-p (children x)) ;; No duplicate value nodes
(dbp ’va-list (children x))))

((eq flg ’va)
(and (consp x)

(consp (data x))
(true-listp (rec x))
(no-dup-atts-p (children x)) ;; No duplicate attribute nodes
(dbp ’av-list (children x))))

((eq flg ’av-list)
(if (endp x)

(null x)
(and (dbp ’av (car x))

(dbp ’av-list (cdr x)))))
(t
(if (endp x)

(null x)
(and (dbp ’va (car x))

(dbp ’va-list (cdr x)))))))

(defthm dbp-mutrec-to-singrec-lemma
(equal (dbp flg x)

(cond ((equal flg ’va) (db-vap x))
((equal flg ’av) (db-avp x))
((equal flg ’av-list) (db-av-listp x))
(t (db-va-listp x)))))

(defthm dbp-mutrec-to-singrec
(and (equal (db-vap x)

(dbp ’va x))
(equal (db-avp x)

(dbp ’av x))
(equal (db-va-listp x)
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(dbp ’va-list x))
(equal (db-av-listp x)

(dbp ’av-list x))))

(in-theory (disable dbp-mutrec-to-singrec-lemma))

(defthm dbp-true-listp
(implies (dbp flg x)

(true-listp x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Query nodes:
;;
;; - q-av is a list of the form (att q-va . nil)
;; - q-va is a list of the form ((val . ignore-cdr) . q-av-list)

(mutual-recursion
(defun q-avp (x)
(and (consp x)

(q-vap (car (children x)))
(null (cdr (children x)))))

(defun q-vap (x)
(and (consp x)

(consp (data x))
(q-av-listp (children x))))

(defun q-av-listp (x)
(if (endp x)

(null x)
(and (q-avp (car x))

(q-av-listp (cdr x)))))
)

;; Singly recursive version of q-avp, etc.

(defun qp (flg x)
(cond
((eq flg ’av)
(and (consp x)

(qp ’va (car (children x)))
(null (cdr (children x)))))
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((eq flg ’va)
(and (consp x)

(consp (data x))
(qp ’av-list (children x))))

(t
(if (endp x)

(null x)
(and (qp ’av (car x))

(qp ’av-list (cdr x)))))))

(defthm qp-mutrec-to-singrec-lemma
(equal (qp flg x)

(cond ((equal flg ’va) (q-vap x))
((equal flg ’av) (q-avp x))
(t (q-av-listp x)))))

(defthm qp-mutrec-to-singrec
(and (equal (q-vap x)

(qp ’va x))
(equal (q-avp x)

(qp ’av x))
(equal (q-av-listp x)

(qp ’av-list x))))

(in-theory (disable qp-mutrec-to-singrec-lemma))

(defthm qp-true-listp
(implies (qp flg x)

(true-listp x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun databasep (x) (db-vap x))
(defun queryp (x) (q-vap x))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Unions the records of a database

(mutual-recursion
(defun all-recs (db-va) ;; All records in a value-rooted tree
(if (tipp db-va)
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(r-rec db-va)
(unn (r-rec db-va)

(all-recs-av-list (children db-va)))))
(defun all-recs-av (db-av)
(if (tipp db-av)

nil
(all-recs-va-list (children db-av))))

(defun all-recs-va-list (db-va-list)
(if (endp db-va-list)

nil
(unn (all-recs (car db-va-list))

(all-recs-va-list (cdr db-va-list)))))
(defun all-recs-av-list (db-av-list)
(if (endp db-av-list)

nil
(unn (all-recs-av (car db-av-list))

(all-recs-av-list (cdr db-av-list)))))
)

;; Singly-recursive version of all-recs

(defun all-recs-fn (flg db)
(cond
((eq flg ’va)
(if (tipp db)

(r-rec db)
(unn (r-rec db)

(all-recs-fn ’av-list (children db)))))
((eq flg ’av)
(if (tipp db)

nil
(all-recs-fn ’va-list (children db))))

((eq flg ’av-list)
(if (endp db)

nil
(unn (all-recs-fn ’av (car db))

(all-recs-fn ’av-list (cdr db)))))
(t
(if (endp db)

nil
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(unn (all-recs-fn ’va (car db))
(all-recs-fn ’va-list (cdr db)))))))

(defthm all-recs-to-all-recs-fn
(and (equal (all-recs x)

(all-recs-fn ’va x))
(equal (all-recs-av x)

(all-recs-fn ’av x))
(equal (all-recs-av-list x)

(all-recs-fn ’av-list x))
(equal (all-recs-va-list x)

(all-recs-fn ’va-list x))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun compute-s-prime (db-va-list)
(if (endp db-va-list)

nil
(unn (all-recs (car db-va-list))

(compute-s-prime (cdr db-va-list)))))

(defthm compute-s-prime=all-recs-va-list
(equal (compute-s-prime db-va-list)

(all-recs-va-list db-va-list)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Node matching functions
;;
;; The following functions are similar to the native assoc function. They
;; lookup a node in a list of nodes. They are different from the native assoc
;; in that they use a particular field of an object for matching.

(defun att-assoc (q-av db-av-list)
(cond
((endp db-av-list) nil)
((equal (r-att q-av)

(r-att (car db-av-list)))
(car db-av-list))
(t
(att-assoc q-av (cdr db-av-list)))))
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(defun val-assoc (q-va db-va-list)
(cond
((endp db-va-list) nil)
((equal (r-val q-va) (r-val (car db-va-list)))
(car db-va-list))
(t
(val-assoc q-va (cdr db-va-list)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Model of Lookup-Name

;; The measure for lookup-name-for is acl2-count of q-av-list.

(mutual-recursion
(defun lookup-name (db q)

(declare (xargs :measure (1+ (acl2-count q))))
(let ((db-children (children db))

(q-children (children q))
(s (all-recs db)))

(lookup-name-for db-children q-children s)))
(defun lookup-name-for (db-av-list q-av-list s)
(let* ((qa (car q-av-list))

(qv (car (children qa)))
(dba (att-assoc qa db-av-list))
(dbv (val-assoc qv (children dba))))

(cond
((endp q-av-list) s)
((endp dba) nil)
((eq (r-val qv) ’*) ;; Wildcard matching
(compute-s-prime (children dba)))
((endp dbv) nil)
((endp (children qv))
(lookup-name-for
db-av-list (cdr q-av-list) (int s (all-recs dbv))))

(t
(lookup-name-for
db-av-list (cdr q-av-list) (int s (lookup-name dbv qv)))))))

)

;;------------------------------------------------------------------------------
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;; singly-recursive version of lookup-name

(defun m-lookup (flg x)
(if (eq flg ’for)

(acl2-count x)
(1+ (acl2-count x))))

(defun lookup-name-fn (flg db q s)
(declare (xargs :measure (m-lookup flg q)))
(if (eq flg ’for)

(let* ((qa (car q))
(qv (car (children qa)))
(dba (att-assoc qa db))
(dbv (val-assoc qv (children dba))))

(cond
((endp q) s)
((endp dba) nil)
((eq (r-val qv) ’*)
(compute-s-prime (children dba)))
((endp dbv) nil)
((endp (children qv))
(lookup-name-fn ’for
db (cdr q) (int s (all-recs dbv))))

(t
(lookup-name-fn ’for
db (cdr q) (int s (lookup-name-fn ’lkp dbv qv s))))))

(let ((db-av-list (children db))
(q-av-list (children q))
(s (all-recs db)))

(lookup-name-fn ’for db-av-list q-av-list s))))

(defthm lookup-name-fn-to-lookup-name
(equal (lookup-name-fn flg db q s)

(if (eq flg ’for)
(lookup-name-for db q s)

(lookup-name db q))))

(in-theory (disable lookup-name-fn-to-lookup-name))

(defthm lookup-name-to-lookup-name-fn
(and (equal (lookup-name db q)
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(lookup-name-fn ’lkp db q s))
(equal (lookup-name-for db-av-list q-av-list s)

(lookup-name-fn ’for db-av-list q-av-list s)))
:hints (("Goal"

:in-theory (e/d (lookup-name-fn-to-lookup-name)
(lookup-name-fn lookup-name lookup-name-for)))))

A.2.2 Specification of Lookup-Name

;; ins-spec.lisp

(ld "ins-defs.lisp")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Notion of correctness

(mutual-recursion
(defun flatten1 (x)

(if (tipp x)
(list (list (data x)))

(fold-cons (data x) (flatten1-list (children x)))))
(defun flatten1-list (xs)
(if (endp xs)

nil
(append (flatten1 (car xs))

(flatten1-list (cdr xs)))))
)

(defun flatten1-fn (flg x)
(if (eq flg ’flatten)

(if (tipp x)
(list (list (data x)))

(fold-cons (data x) (flatten1-fn ’flatten-list (children x))))
(if (endp x)

nil
(append (flatten1-fn ’flatten (car x))

(flatten1-fn ’flatten-list (cdr x))))))

(defthm true-listp-flatten1-fn
(true-listp (flatten1-fn flg x)))
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(defthm flatten=flatten1
(equal (flatten-fn flg x stk)

(fold-append (rev stk)
(flatten1-fn flg x))))

(in-theory (disable flatten=flatten1))

(defthm flatten-to-flatten-fn-lemma
(equal (flatten-fn flg x stack)

(if (equal flg ’flatten)
(flatten x stack)

(flatten-list x stack)))
:rule-classes nil)

(defthm flatten-to-flatten-fn
(and (equal (flatten x stack) (flatten-fn ’flatten x stack))

(equal (flatten-list x stack) (flatten-fn ’flatten-list x stack)))
:hints (("Goal" :use ((:instance flatten-to-flatten-fn-lemma (flg ’flatten))

(:instance flatten-to-flatten-fn-lemma (flg ’flatten-list))))))

;;------------------------------------------------------------------------------

;; Thm: flatten always returns a non-empty list
;;
;; and
;;
;; if (rev stack) is a true-listp, flatten always returns true-listp.

(defthm Example1
(let ((db0 ’((root)))

(db1 ’((root r0)))
(db2 ’((root)

(serv ((printer r0 r1))
((scanner r2)))

(bldg ((main r1))
((aces r0 r2)))))

(q0 ’((root)))
(q1 ’((root)

(serv ((printer)))))
(q2 ’((root)
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(serv ((printer)))
(bldg ((main)))))

(q3 ’((root)
(serv ((printer))

((scanner))))))
(and
(databasep db0)
(databasep db1)
(databasep db2)
(queryp q0)
(queryp q1)
(not (queryp q3))
(set-equal (lookup-name db2 q2)

’(r1))
(equal (flatten1 db2)

’(((root) serv (printer r0 r1))
((root) serv (scanner r2))
((root) bldg (main r1))
((root) bldg (aces r0 r2))))))

:rule-classes nil)

;; We define a well-formed value-attribute path to be a non-empty true-listp of
;; node data in which
;;
;; 1) every even element is a well-formed value node data, i.e. it is a cons
;; with its cdr being a well-formed record set (i.e. a true-listp)
;;
;; 2) we put no restriction on the odd nodes because they correspond to
;; attributes
;;
;; 3) The length of the path is odd because there must be a value node data
;; followed by an av-path (i.e. zero or more pairs of attribute-values,
;; i.e. an attribute followed by a va-path).
;;
;; Remark: the definition of va-pathp and av-pathp are a lot like those of
;; db-vap (or q-vap) and db-avp (or q-avp), respectively.
;;
;; Remark: the length of a va-path is always odd, and the length of an av-path
;; is always even.
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(mutual-recursion
(defun va-pathp (p)

(and (consp (car p))
(true-listp (rec (car p)))
(av-pathp (cdr p))))

(defun av-pathp (p)
(if (endp p)

(null p)
(va-pathp (cdr p))))

)

;; Singly-recursive version of va-pathp and av-pathp

(defun pathp-fn (flg p)
(if (eq flg ’va)

(and (consp (car p))
(true-listp (rec (car p)))
(pathp-fn ’av (cdr p)))

(if (endp p)
(null p)

(pathp-fn ’va (cdr p)))))

(defthm pathp-to-pathp-fn
(and (equal (va-pathp p)

(pathp-fn ’va p))
(equal (av-pathp p)

(pathp-fn ’av p))))

;; Some potentially useful theorems are below:
;;
;; 1) Any path is a true-listp
;;
;; 2) Reversing an av-path and appending it onto the left of a va-path results
;; in a va-path.
;;
;; 3)
;;
;; (thm (implies (or (db-vap x)
;; (q-vap x))
;; (va-path-listp (flatten1 x))))
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(defthm true-listp-pathp-fn
(implies (pathp-fn flg x)

(true-listp x)))

;; In-path determines if r can be found in the record set of a value
;; node along the path path.
;;
;; If flg is ’va, then we’re looking at a path that starts with a value.

(defun in-path (flg r path)
(cond
((endp path) nil)
((eq flg ’va)
(or (member r (rec (car path)))

(in-path ’av r (cdr path))))
(t (in-path ’va r (cdr path))))) ;; A record can never be in an

;; attribute, so search the
;; rest of the path.

;; Determines if record r is reachable in the database path dbp through the
;; query path qp.

(defun reachable (flg r p1 p2)
(if (endp p1)

nil
(if (eq flg ’va)

(cond
((eq ’* (val (car p1)))
(in-path ’va r p2))

((equal (val (car p1))
(val (car p2)))

(if (endp (cddr p1))
(in-path ’va r p2)

(reachable ’av r (cdr p1) (cdr p2))))
(t nil))

(cond
((equal (att (car p1))

(att (car p2)))
(reachable ’va r (cdr p1) (cdr p2)))
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(t nil)))))

;; Determines if record r is reachable in at least one database path in
;; dbp-list from the query path qp.

(defun member-reachable (flg r qp dbp-list)
(if (endp dbp-list)

nil
(or (reachable flg r qp (car dbp-list))

(member-reachable flg r qp (cdr dbp-list)))))

;; Determines if every query path in qp-list leads to record r through at least
;; one of the database paths in dbp-list.

(defun subset-reachable (flg r qp-list dbp-list)
(if (endp qp-list)

t
(and (member-reachable flg r (car qp-list) dbp-list)

(subset-reachable flg r (cdr qp-list) dbp-list))))

;; Satp checks if r satisfies query q in database db.

(defun satp (r q db)
(subset-reachable ’va r (flatten1 q) (flatten1 db)))

;; (defun satp (r q db)
;; (subset-reachable r (flatten1 q) (flatten1 db)))

(defconst *q2* ’((root)
(serv ((printer)))
(bldg ((main)))))

(defconst *q1* ’((root)
(serv ((printer)))))

(defconst *q0* ’((root)))

(defconst *db2* ’((root)
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(serv ((printer r0 r1))
((scanner r2)))

(bldg ((main r1))
((aces r0 r2)))))

(defthm Example2
(let ((db0 ’((root)))

(db1 ’((root r0)))
(db2 ’((root)

(serv ((printer r0 r1))
((scanner r2)))

(bldg ((main r1))
((aces r0 r2)))))

(q0 ’((root)))
(q1 ’((root)

(serv ((printer)))))
(q2 ’((root)

(serv ((printer)))
(bldg ((main)))))

(q3 ’((root)
(serv ((printer))

((scanner))))))
(and (flatten1 db0)

(flatten1 db1)
(flatten1 db2)
(flatten1 q0 )
(flatten1 q1 )
(flatten1 q2 )
(flatten1 q3 )
(satp ’r0 q1 db2)
(not (satp ’r0 q2 db2))))

:rule-classes nil)

;;------------------------------------------------------------------------------

(defthm consp-flatten1-fn
(equal (consp (flatten1-fn flg x))

(if (equal flg ’flatten)
t

(consp x))))
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;; This is suggested by failed proof of member-reachable-cons-fold-cons
(defthm not-in-path-not-reachable
(implies (not (in-path flg r p2))

(not (reachable flg r p1 p2))))

(defthm member-reachable-nil-path
(not (member-reachable flg r nil p)))

(in-theory (disable member-reachable-nil-path))

(i-am-here)

(defthm lookup-name-sound-general-case
(implies (and (dbp (if (equal flg ’for) ’av-list ’va) db)

(qp (if (equal flg ’for) ’av-list ’va) q)
(member r (lookup-name-fn flg db q s))
(if (equal flg ’for)

t
(equal (caar q) (caar db))))

(subset-reachable (if (equal flg ’for) ’av ’va)
r
(flatten1-fn (if (equal flg ’for)

’flatten-list
’flatten)

q)
(flatten1-fn (if (equal flg ’for)

’flatten-list
’flatten)

db)))
:otf-flg t
:hints (("Goal"

:induct (lookup-name-fn flg db q s)
:do-not ’(eliminate-destructors generalize fertilize)
:do-not-induct t))

:rule-classes nil)

(skip-proofs
(defthm reachable-fold-append-flatten1-fn

(iff (subset-reachable r
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(fold-append qp q-path-list)
(fold-append dbp db-path-list))

(if (eq ’failure (chop qp dbp))
nil

(subset-reachable r
q-path-list
(fold-append (chop qp dbp) db-path-list)))))

)

(skip-proofs
(defthm lookup-name-sound

(implies (and (databasep db)
(queryp q)
(member r (lookup-name db q)))

(satp r q db))
:hints (("Goal" :in-theory (enable flatten=flatten1)))
:rule-classes nil)

)

(skip-proofs
(defthm lookup-name-complete

(implies (and (databasep db)
(queryp q)
(satp r q db))

(member r (lookup-name db q)))
:rule-classes nil)

)

(defthm lookup-name-correct
(implies (and (databasep db)

(queryp q))
(iff (member r (lookup-name db q))

(satp r q db)))
:hints (("Goal"

:use ((:instance lookup-name-sound)
(:instance lookup-name-complete))

:in-theory (disable member lookup-name satp
lookup-name-to-lookup-name-fn)))

:rule-classes nil)
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A.3 Tree-Containment

A.3.1 Model of Tree-Containment

(in-package "ACL2")

(include-book "list-helpers")

;; Accessors for an integer tree

(defun root (x)
(if (atom x) x (car x)))

(defun chdn (x)
(cdr x))

(defun tipp (x)
(atom x))

(defun strip-roots (atree-list)
(if (endp atree-list)

nil
(cons (root (car atree-list))

(strip-roots (cdr atree-list)))))

;; (root . children); root

;; Recognizer for a tree of atoms

(mutual-recursion
(defun atreep (x)

(if (atom x)
t

(and (atom (car x))
(consp (cdr x)) ;; There must be at least one child
(atree-listp (cdr x)))))

(defun atree-listp (xs)
(if (endp xs)

(null xs)
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(and (atreep (car xs))
(not (member (root (car xs)) (strip-roots (cdr xs))))
(atree-listp (cdr xs)))))

)

;; Determines if two trees have the same root

(defun requal (t1 t2)
(equal (root t1)

(root t2)))

;; Determines if t1 is contained in t2 from the root

(mutual-recursion
(defun contdp (t1 t2)

(declare (xargs :measure (+ (acl2-count t1)
(acl2-count t2))))

(cond
((not (requal t1 t2)) nil)
((tipp t1) t)
((tipp t2) nil)
(t (contd-listp (chdn t1) (chdn t2)))))

(defun contd-listp (t1-list t2-list)
(declare (xargs :measure (+ (acl2-count t1-list)

(acl2-count t2-list))))
(if (endp t1-list)

t
(and (contdp-aux (car t1-list) t2-list)

(contd-listp (cdr t1-list) t2-list))))
(defun contdp-aux (t1 t2-list)
(declare (xargs :measure (+ (acl2-count t1)

(acl2-count t2-list))))
(if (endp t2-list)

nil
(or (contdp t1 (car t2-list))

(contdp-aux t1 (cdr t2-list)))))
)

;; Graphical representations of t1, t2, t3, t4, and t5, respectively:

68



;; t1:
;;
;; 1

;; t2:
;;
;; 1
;; / \
;; 2 3

;; t3:
;;
;; 1
;; / \
;; 2 3
;; |
;; 6

;; t4:
;;
;; 1
;; / \
;; 2 4

;; t5:
;;
;; 1
;; / | \
;; 2 3 4
;; /\ /\ |
;; 5 8 6 7 9

(defthm Example1
(let ((t1 1)

(t2 ’(1 2 3))
(t3 ’(1 2 (3 6)))
(t4 ’(1 2 4))
(t5 ’(1 (2 5 8) (3 6 7) (4 9))))

(and
(contdp t1 t1)
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(contdp t1 t2)
(contdp t1 t3)
(contdp t1 t4)
(contdp t1 t5)
(contdp t2 t2)
(contdp t2 t3)
(contdp t2 t5)
(contdp t3 t5)
(not (contdp t4 t3))
(contdp t4 t5)
))

:rule-classes nil)

A.3.2 Specification of Tree-Containment

(in-package "ACL2")

(include-book "contdp-defs")

;; Notion of correctness

(mutual-recursion
(defun flatten (x)
(if (tipp x)

(list (list x))
(fold-cons (root x) (flatten-list (chdn x)))))

(defun flatten-list (xs)
(if (endp xs)

nil
(append (flatten (car xs))

(flatten-list (cdr xs)))))
)

;; t6:
;;
;; 1
;; / | \
;; 2 3 4
;; /\ /\
;; 5 8 6 7
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;; |
;; 9

(defthm Example2
(let ((t6 ’(1 (2 5 8) (3 6 (7 9)) 4)))
(equal
(flatten t6)
’((1 2 5)
(1 2 8)
(1 3 6)
(1 3 7 9)
(1 4))))

:rule-classes nil)

;; Determines if p1 is a prefix of p2. This is analogous to "reachable" in
;; INS.

(defun prefixp (p1 p2)
(cond
((endp p1) t)
((endp p2) nil)
(t (and (equal (car p1) (car p2))

(prefixp (cdr p1) (cdr p2))))))

;; The following determines if there exists a path in p-list (a list of paths) such
;; that p-list is a suffix of it.
;;
;; This is analogous to reachable1 in INS.

(defun is-a-prefix-in (p p-list)
(if (endp p-list)

nil
(or (prefixp p (car p-list))

(is-a-prefix-in p (cdr p-list)))))

;; The following function determines if "every" path in p-list1 is a prefix of a
;; path in p-list2.
;;
;; This is analogous to reachable2 in INS.
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(defun are-prefixes-in (p-list1 p-list2)
(if (endp p-list1)

t
(and (is-a-prefix-in (car p-list1) p-list2)

(are-prefixes-in (cdr p-list1) p-list2))))

(defun satp (x y)
(are-prefixes-in (flatten x) (flatten y)))

A.3.3 Proof of Tree-Containment

(in-package "ACL2")

(include-book "contdp-spec")

;; First convert all mutually recursive functions to singly recursive form.

(defun atreep-fn (flg x)
(if (eq flg ’tree)

(if (atom x)
t

(and (atom (car x))
(consp (cdr x)) ;; There must be at least one child
(atreep-fn ’list (cdr x))))

(if (endp x)
(null x)

(and (atreep-fn ’tree (car x))
(not (member (root (car x)) (strip-roots (cdr x))))
(atreep-fn ’list (cdr x))))))

(defthm atreep-to-atreep-fn-lemma
(equal (atreep-fn flg x)

(if (eq flg ’tree)
(atreep x)

(atree-listp x))))

(defthm atreep-to-atreep-fn
(and (equal (atreep x)

(atreep-fn ’tree x))
(equal (atree-listp x)
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(atreep-fn ’list x))))

(in-theory (disable atreep-to-atreep-fn-lemma))

(defun contdp-fn (flg t1 t2)
(declare (xargs :measure (+ (acl2-count t1)

(acl2-count t2))))
(cond
((eq flg ’tree)
(cond
((not (requal t1 t2)) nil)
((tipp t1) t)
((tipp t2) nil)
(t (contdp-fn ’list (chdn t1) (chdn t2)))))

((eq flg ’list)
(if (endp t1)

t
(and (contdp-fn ’aux (car t1) t2)

(contdp-fn ’list (cdr t1) t2))))
(t
(if (endp t2)

nil
(or (contdp-fn ’tree t1 (car t2))

(contdp-fn ’aux t1 (cdr t2)))))))

(defthm contdp-to-contdp-fn-lemma
(equal (contdp-fn flg t1 t2)

(cond
((eq flg ’tree) (contdp t1 t2))
((eq flg ’list) (contd-listp t1 t2))
(t (contdp-aux t1 t2)))))

(defthm contdp-to-contdp-fn
(and
(equal (contdp t1 t2) (contdp-fn ’tree t1 t2))
(equal (contd-listp t1 t2) (contdp-fn ’list t1 t2))
(equal (contdp-aux t1 t2) (contdp-fn ’aux t1 t2))))

(in-theory (disable contdp-to-contdp-fn-lemma))
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(defun flatten-fn (flg x)
(if (eq flg ’tree)

(if (tipp x)
(list (list x))

(fold-cons (root x) (flatten-fn ’list (chdn x))))
(if (endp x)

nil
(append (flatten-fn ’tree (car x))

(flatten-fn ’list (cdr x))))))

(defthm flatten-to-flatten-fn-lemma
(equal (flatten-fn flg x)

(if (eq flg ’tree)
(flatten x)

(flatten-list x))))

(defthm flatten-to-flatten-fn
(and (equal (flatten x)

(flatten-fn ’tree x))
(equal (flatten-list x)

(flatten-fn ’list x))))

(in-theory (disable flatten-to-flatten-fn-lemma))

; ------------------------------------------------------------------------------

(defthm true-listp-flatten-fn
(true-listp (flatten-fn flg x)))

(defthm consp-flatten-fn
(implies (atreep-fn flg x)

(equal (consp (flatten-fn flg x))
(if (eq flg ’tree)

t
(consp x)))))

(defthm is-a-prefix-in-append
(equal (is-a-prefix-in p (append p-list1 p-list2))

(or (is-a-prefix-in p p-list1)
(is-a-prefix-in p p-list2))))
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(defthm are-prefixes-append
(equal (are-prefixes-in (append list1 list2) list3)

(and (are-prefixes-in list1 list3)
(are-prefixes-in list2 list3))))

(defthm are-prefixes-append1
(implies (are-prefixes-in list1 list2)

(are-prefixes-in list1 (append list2 list3))))

(defthm are-prefixes-in-append-comm
(equal (are-prefixes-in list1 (append list2 list3))

(are-prefixes-in list1 (append list3 list2))))

(defthm not-equal-cons-not-is-a-prefix-in
(implies (not (equal x1 x2))

(not (is-a-prefix-in (cons x1 p)
(fold-cons x2 p-list)))))

(defthm is-a-prefix-in-cons
(equal (is-a-prefix-in (cons x1 p)

(fold-cons x2 p-list))
(and (equal x1 x2)

(is-a-prefix-in p p-list))))

;;------------------------------------------------------------------------------

(defthm are-prefixes-fold-cons
(equal (are-prefixes-in (fold-cons x1 p-list1)

(fold-cons x2 p-list2))
(if (equal x1 x2)

(are-prefixes-in p-list1 p-list2)
(endp p-list1))))

(defthm are-prefixes-in-cons
(implies (are-prefixes-in x y)

(are-prefixes-in x (cons e y))))

;; The following two functions are used in the statement of the soundness and
;; completeness theorems for determining the type of the input trees (i.e. a
;; single tree vs. a list of trees).
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(defun flg1 (flg)
(cond
((eq flg ’tree) ’tree)
((eq flg ’list) ’list)
(t ’tree) ;; This case corresponds to ’aux
))

(defun flg2 (flg)
(cond
((eq flg ’tree) ’tree)
((eq flg ’list) ’list)
(t ’list) ;; This case corresponds to ’aux
))

;; Soundness

(defthm contdp-sound-general-case
(implies (and (contdp-fn flg x y)

(equal flg1 (flg1 flg))
(equal flg2 (flg2 flg))
(atreep-fn flg1 x)
(atreep-fn flg2 y))

(are-prefixes-in
(flatten-fn flg1 x)
(flatten-fn flg2 y))))

;;------------------------------------------------------------------------------

(defthm prefixp-reflexive
(prefixp x x))

(defthm prefixp-transitive
(implies (and (prefixp x y)

(prefixp y z))
(prefixp x z)))

(defthm are-prefixes-in-reflexive
(are-prefixes-in x x))

(defthm not-is-prefix-in
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(implies (and (not (is-a-prefix-in x z))
(is-a-prefix-in y z))

(not (prefixp x y))))

(defthm are-prefixes-in-transitive
(implies (and (are-prefixes-in x y)

(are-prefixes-in y z))
(are-prefixes-in x z)))

(defthm or--are-prefixes-in--append
(implies (or (are-prefixes-in x y)

(are-prefixes-in x z))
(are-prefixes-in x (append y z))))

;;------------------------------------------------------------------------------

(defthm is-a-prefix-in-not-member
(implies (and (consp p)

(not (member (car p) (strip-cars y))))
(not (is-a-prefix-in p y))))

;; Recognizes a list of conses (equivalent to alistp, except that alistp
;; requires the list to be a true-listp as well)

(defun consp-listp (list)
(if (endp list)

(null list)
(and (consp (car list))

(consp-listp (cdr list)))))

(defthm true-listp-consp-listp
(implies (consp-listp x)

(true-listp x)))

(defthm consp-listp-append
(implies (and (consp-listp x)

(consp-listp y))
(consp-listp (append x y))))

(defthm consp-listp-fold-cons
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(consp-listp (fold-cons x list)))

(defthm consp-listp-flatten-fn
(consp-listp (flatten-fn flg x)))

(defthm non-empty-consp-listp-are-prefixes-in
(implies (and (consp p-list1)

(consp-listp p-list1)
(not (subsetp (strip-cars p-list1)

(strip-cars p-list2))))
(not (are-prefixes-in p-list1 p-list2))))

;; Very important theorem

(defthm are-prefixes-in-append
(implies
(not (member b (strip-cars list)))
(equal (are-prefixes-in (fold-cons a x)

(append (fold-cons b y)
list))

(or (are-prefixes-in (fold-cons a x)
(fold-cons b y))

(are-prefixes-in (fold-cons a x)
list)))))

(defthm are-prefixes-in-append-cor
(implies
(not (member b (strip-cars list)))
(equal (are-prefixes-in (fold-cons a x)

(append list
(fold-cons b y)))

(or (are-prefixes-in (fold-cons a x)
(fold-cons b y))

(are-prefixes-in (fold-cons a x)
list)))))

(defthm member-strip-cars-fold-cons
(iff (member a (strip-cars (fold-cons b x)))

(if (consp x)
(equal a b)
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nil)))

(defthm contdp-complete-general-case-subgoal-1-3
(implies (and (consp x2)

(atreep-fn ’list x2))
(not (are-prefixes-in (fold-cons x1 (flatten-fn ’list x2))

(list (list x1))))))

(defthm strip-cars-append
(equal (strip-cars (append x y))

(append (strip-cars x)
(strip-cars y))))

(defthm member-append
(iff (member e (append x y))

(or (member e x)
(member e y))))

(defthm strip-roots-strip-cars
(implies
(atreep-fn ’list tree-list)
(iff (member x (strip-roots tree-list))

(member x (strip-cars (flatten-fn ’list tree-list))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defthm are-prefixes-in-append-cor2
(implies
(not (member e (strip-cars y)))
(equal
(are-prefixes-in (flatten-fn ’tree x)

(append y (fold-cons e z)))
(or (are-prefixes-in (flatten-fn ’tree x)

(fold-cons e z))
(are-prefixes-in (flatten-fn ’tree x)

y))))
:hints (("Goal"

:expand (flatten-fn ’tree x))))

(defthm are-prefixes-in-append-cor3
(implies
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(not (member e (strip-cars y)))
(equal
(are-prefixes-in (flatten-fn ’tree x)

(append (fold-cons e z) y))
(or (are-prefixes-in (flatten-fn ’tree x)

(fold-cons e z))
(are-prefixes-in (flatten-fn ’tree x)

y))))
:hints (("Goal"

:expand (flatten-fn ’tree x))))

(defthm are-prefixes-in-append-cor4
(implies
(not (member (car y) (strip-cars (flatten-fn ’list (cdr y)))))
(equal
(are-prefixes-in (flatten-fn ’tree x)

(cons (list (car y))
(flatten-fn ’list (cdr y))))

(or (are-prefixes-in (flatten-fn ’tree x)
(fold-cons (car y) ’(nil)))

(are-prefixes-in (flatten-fn ’tree x)
(flatten-fn ’list (cdr y))))))

:hints (("Goal"
:in-theory (disable are-prefixes-in-append-cor3)
:use (:instance are-prefixes-in-append-cor3

(e (car y))
(z ’(nil))
(y (flatten-fn ’list (cdr y)))))))

(defthm contdp-complete-general-case
(implies (and

(atreep-fn (flg1 flg) x)
(atreep-fn (flg2 flg) y)
(are-prefixes-in
(flatten-fn (flg1 flg) x)
(flatten-fn (flg2 flg) y)))

(contdp-fn flg x y)))

(defthm contdp-correct
(implies (and (atreep x)

(atreep y))
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(iff (contdp x y)
(satp x y))))
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Appendix B

A Detailed Explanation of an

Inductive Proof

B.1 Distributivity of Fold-cons over Append

ACL2 !>
(defthm distrib-of-fold-cons-over-append
(equal (fold-cons a (append list1 list2))

(append (fold-cons a list1)
(fold-cons a list2))))

Name the formula above *1.

Perhaps we can prove *1 by induction. Three induction schemes are
suggested by this conjecture. These merge into two derived induction
schemes. However, one of these is flawed and so we are left with one
viable candidate.

We will induct according to a scheme suggested by (FOLD-CONS A LIST1),
but modified to accommodate (APPEND LIST1 LIST2). These suggestions
were produced using the :induction rules BINARY-APPEND and FOLD-CONS.
If we let (:P A LIST1 LIST2) denote *1 above then the induction scheme
we’ll use is
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(AND (IMPLIES (AND (NOT (ENDP LIST1))
(:P A (CDR LIST1) LIST2))

(:P A LIST1 LIST2))
(IMPLIES (ENDP LIST1)

(:P A LIST1 LIST2))).
This induction is justified by the same argument used to admit FOLD-
CONS, namely, the measure (ACL2-COUNT LIST1) is decreasing according
to the relation O< (which is known to be well-founded on the domain
recognized by O-P). When applied to the goal at hand the above induction
scheme produces the following two nontautological subgoals.

Subgoal *1/2
(IMPLIES (AND (NOT (ENDP LIST1))

(EQUAL (FOLD-CONS A (APPEND (CDR LIST1) LIST2))
(APPEND (FOLD-CONS A (CDR LIST1))

(FOLD-CONS A LIST2))))
(EQUAL (FOLD-CONS A (APPEND LIST1 LIST2))

(APPEND (FOLD-CONS A LIST1)
(FOLD-CONS A LIST2)))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/2’
(IMPLIES (AND (CONSP LIST1)

(EQUAL (FOLD-CONS A (APPEND (CDR LIST1) LIST2))
(APPEND (FOLD-CONS A (CDR LIST1))

(FOLD-CONS A LIST2))))
(EQUAL (FOLD-CONS A (APPEND LIST1 LIST2))

(APPEND (FOLD-CONS A LIST1)
(FOLD-CONS A LIST2)))).

But simplification reduces this to T, using the :definitions BINARY-
APPEND and FOLD-CONS, primitive type reasoning, the :rewrite rules
CAR-CONS and CDR-CONS and the :type-prescription rule FOLD-CONS.

Subgoal *1/1
(IMPLIES (ENDP LIST1)

(EQUAL (FOLD-CONS A (APPEND LIST1 LIST2))
(APPEND (FOLD-CONS A LIST1)

(FOLD-CONS A LIST2)))).
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By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/1’
(IMPLIES (NOT (CONSP LIST1))

(EQUAL (FOLD-CONS A (APPEND LIST1 LIST2))
(APPEND (FOLD-CONS A LIST1)

(FOLD-CONS A LIST2)))).

But simplification reduces this to T, using the :definitions BINARY-
APPEND and FOLD-CONS, the :executable-counterpart of CONSP and primitive
type reasoning.

That completes the proof of *1.

Q.E.D.

Summary
Form: ( DEFTHM DISTRIB-OF-FOLD-CONS-OVER-APPEND ...)
Rules: ((:DEFINITION BINARY-APPEND)

(:DEFINITION ENDP)
(:DEFINITION FOLD-CONS)
(:DEFINITION NOT)
(:EXECUTABLE-COUNTERPART CONSP)
(:FAKE-RUNE-FOR-TYPE-SET NIL)
(:INDUCTION BINARY-APPEND)
(:INDUCTION FOLD-CONS)
(:REWRITE CAR-CONS)
(:REWRITE CDR-CONS)
(:TYPE-PRESCRIPTION FOLD-CONS))

Warnings: None
Time: 0.01 seconds (prove: 0.01, print: 0.00, other: 0.00)
DISTRIB-OF-FOLD-CONS-OVER-APPEND
ACL2 !>
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