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Abstract

Modern CMPs are designed to exploit both instruction-lpaeallelism within processors and thread-
level parallelism across processors, but the balance bettye granularity of each processor and the
number of processors must be chosen at design time. In thexpae propose a microarchitecture that
allows this balance to be dynamically adjusted. The miatigecture, which implements the TRIPS
instruction set, consists of a large number of fine-graisadjle-issue processor cores. By changing a
set of OS-visible configuration registers, the system sarfévean aggregate multiple cores to form larger,
more powerful processors, depending on the needs of thiablaihreads. For instance, a 64-core chip
could be configured as 64 1-wide processors, 1 64-wide psoces any combination in between. We
quantify the area and performance overheads associategmitiding the capability to compose larger
processors out of multiple small ones, find the distinct ideafiguration for each of several applica-
tions, and show the additional benefits gained by explichgiber support for specific configurations.



(a) 32 1-wide TFlex config. (b) 8-processor TFlex config. (c) One 32-wide TFlex config.
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Figure 1: A 32-core, 65nm TFlex chip

1 Introduction

The recent reduction in frequency scaling rates implies rii@st performance improvements in the future
will come from exploiting more concurrency. Concurrency te exploited by many levels of modern sys-
tems: by hardware (ILP/superscalar processors), by stipptire ISA and compiler (VLIW architectures),
or by the compiler or programmer in parallel systems. Singesscalar and VLIW processors’ widths have
not scaled recently, industry has been moving to chip nroltgssors in the hope that software threads will
provide the concurrency needed for future performancesgain

The disadvantage to CMPs is their relative inflexibility. darrent designs, the granularity (i.e. issue
width) and number of processors on each chip are fixed atriéisig, based on the designers’ best guesses
about workloads and power/performance requirements. Oegleyed, however, the right balance between
granularity and number of cores per chip changes as the saikinix changes. Currently, simultaneous
multithreaded (SMT) cores on a chip multiprocessor aregiess’ best attempt to provide some flexibility
in balancing the number of threads running with the perferreeof each thread.

In this paper, we describe ISA and microarchitectural supjop a composable CMP, that consists of a
large number of simple, single-issue processor cores #rabe aggregated to form more powerful logical
processors. We use the term “core” to denote one of the sjmsiplgle-issue processor tiles, and “processor”
to denote a logical processor formed from one or more harlwares. In the design we simulate in this
paper, each thread can be run transparently on a logicakgsor that may be composed of any power-
of-two number of cores between one and 32 cores (althoughsli®@ theoretical maximum) as shown in
Figure 1.

The composability is provided on two levels. At the ISA lewsk exploit the features of an Explicit
Data Graph Execution (EDGE) instruction set. Specifically,use the TRIPS instruction set, which breaks
programs up into sequences of 128-instruction blocks titatnally execute in dataflow order. Each core
in this microarchitecture has a 128-instruction windowd aan thus run one TRIPS block at a time. If two
cores are participating, each core can hold half (64 instnug) of each of two blocks, thus doubling the
data cache capacity and bandwidth, issue width, and issustowi size.

The second level is microarchitectural. To achieve a higireke of composability, the microarchitec-
ture must be fully distributed, with no centralized res@sic The composable microarchitecture contains
innovations that permit instruction fetch, branch preditt block control, and memory disambiguation to
be fully distributed. All microarchitectural resourceg arsed no matter how many cores are allocated per
thread.



This complete distribution allows high flexibility when cpwsing processors. A chip with 32 cores
could obviously run 32 threads on one core each (Figure Lathk same chip could also run one thread
across 32 cores, supporting 32 blocks in flight for a maximundew size of 4096 instructions (Figure 1c),
or any point in between. For example, such a chip could alpp@t configurations like one running eight
threads: two threads running on eight cores each, two temeathing on four cores each, and four threads
running on two cores each (Figure 1b).

The capability to balance the number of processors with thaugarity of individual processors gives
the OS significant flexibility with respect to choosing thedvaare’s ideal configuration. The right mix
depends on a number of factors. With more available thra&gsly throughput is paramount, the right
approach is to scale down the processor granularity andnneads on fewer cores each. If the system is
near power or thermal limits, the running threads may besgodbwn to fewer cores each, with the unused
cores being clock- or power-gated.

Depending on its available parallelism and execution biehagach thread will have an ideal number
of cores that maximizes performance. For threads with loe-@irained concurrency, or poor cache or
predictor behavior, a small number of cores provides thaligeint. For predictable benchmarks with
copious fine-grained concurrency, the ideal number of cocaeshe as many as 16 or 32. Software support
by the compiler has the potential to alter this ideal poimg¢e code can be spatially scheduled to be most
amenable to running on large, wide-issue logical procesdarthis paper, we measure the performance of
kernels running on a range of processor sizes (from simglgei to 32-wide) both with and without size-
explicit scheduling support from the compiler.

In the rest of this paper, we first describe related work thatgrovided aspects of processor composabil-
ity. Section 3 then describes the microarchitectural stppmeded to compose these processors, including
the high-level microarchitecture, distributed controfl@®pendence prediction, distributed disambiguation,
and the control register interface. Section 4 evaluatefpeance and performance potential, quantifying
the sources of performance loss in the fully distributedro@cchitecture. Section 5 shows initial perfor-
mance improvements possible if compiler support is addesthedule instructions for specific processor
sizes. Finally, we conclude in Section 6.

2 Related approaches

The ability to adapt multiprocessor hardware to fit the neddbe available software is clearly desirable,
both in terms of overall performance and power efficiencyl[d, The amount of prior research performed
to address this problem has been considerable, and fall¢hirde broad categories. In the first, researchers
design large cores and provide the capability to resize areseubcomponents of the processor. In the
second, researchers attempt to provide higher singledhperformance from a collection of distributed
units. In the third, researchers explicitly implement npldt distinct granularities to match up the software
with the appropriate hardware.

2.1 Decomposing large cores

The most popular approach for decomposing large cores ¢édhdatbeen Simultaneous Multithreading [22],

in which multiple threads share a single large, out-of-oi#e. The OS achieves adaptive granularity by
adjusting the number of threads that are mapped to one @@ceBhe advantages to SMT are extremely

low overheads for providing the adaptive granularity. Theadvantages are that the range of granularity
is limited, since processors are typically restricted tddag-wide, and threads sharing the same core may
cause significant interference.



What Albonesi has termed “adaptive processing” [2] inveldgnamically resizing large structures in
an out-of-order core, powering fractions of them down basedxpected requirements, thus balancing
power consumption with performance, by efficiently mappihgeads to right-sized hardware structures.
Researchers have proposed adjusting cache size via wayisqa¢ window size [8], the issue window
coupled with the load/store queue and register file [17],iagde width, along with the requisite functional
units [4]. While adaptive processing permits improved gnefficiency by adjusting the core’s resources to
the needs of the running application, it does not permit adiagned tradeoff between core granularity and
number of threads. While combining adaptive processing &M T might achieve that goal, the complexity
and overheads on a large-centralized core would be sigmifica

Finally, conjoined-core chip multiprocessing [16] aimspi@mvide some shared resources, with other
explicitly partitioned resources, effectively creatingpybrid between SMT and CMP approaches. Similar
to SMT approaches, the degree of granularity configurateiwéen single threads versus multiple threads
has a range more limited than the approach presented inahés.p

2.2 Composing Processors from Smaller Cores

Many research efforts have aimed to synthesize a more polarfe out of smaller or clustered compo-
nents. Clustered superscalar processors [5] and the capspibported Multicluster design [6] both aim to
improve the scalability of a large, out-of-order superacaly using multiple, clustered execution resources.
While this approach improves the complexity of each clysteshares the disadvantage that adaptive pro-
cessing has of the inability to trade off multiple threadsdore granularity.

More akin to this paper is the prior work that builds largegit@l processors out of smaller discrete
units. Most of this prior work uses independent sequenceitte smaller units, even for the modes in
which the distributed resources are aggregated for a ssuftevare thread. Multiscalar processors [19]
used speculation to fill up independent processing eleni{eatked stages), with each of the speculative
stages starting from a predicted, control-independenitpoithe program. The Multiscalar design used a
shared resource (the ARB) for memory disambiguation, athdali permit the stages to run distinct software
threads independently.

The subsequent speculative threads work [10, 14] adap&etitiitiscalar execution model to a CMP
substrate that could execute separate threads on thedadivbirocessors when not in speculative threads
mode. This approach is the most similar to that which we desdn this paper, but differs in that each
speculative thread has an independent sequencer, thusi@oendiscontiguous logical instruction issue
window, which can create additional mis-speculations atichecommunication overhead.

Thread-level speculation, as well as this work, aim for cosgle processors using out-of-order issue
for high ILP. Other composable approaches have providditats exposed architectures that can be parti-
tioned. The best example is the RAW architecture [21], aroiigmt and early tiled architecture. The RAW
compiler can target any number of single-issue RAW tilesmfog a single static schedule across them.
Each tile still has its own instruction sequencer, althotlgdy are highly synchronized with one another.
Multiple tasks can be run across a set of tiles provided thelh ¢éask was compiled for the number of tiles
to which it was allocated.

Zhong et al. propose a VLIW architecture whose distributets have independent sequencers [24].
While this architecture does not provide multi-grain coafapility, it is a small-step to provide RAW-
like reconfiguration for multiple threads. The distributsgljuencers are related to the distributed control
predictor we describe in this paper.



2.3 Providing Multiple Granularities

Finally, some proposals aim to match an application’s deaity needs by providing the hardware that best
suits the application. Single-ISA, heterogeneous multe@rchitectures [15] provide a discrete number of
processor sizes on a CMP. This approach increases desigriecatyand limits the number of granularity
options, but does not suffer from the overhead of making tliegssors variable-grain or composable.
Alternatively, custom-fit processors choose the rightrgsae for specific applications at design time, which
clearly increases efficiency at the expensive of run-timaHikty [7, 9].

3 Microarchitectural Support for Composable Processors

Fully composable processors must necessarily be comptiigtiibuted, with no centralized hardware struc-
tures. In addition, it is desirable to have no unused harewdher in small processor mode or large proces-
sor mode. RAW microprocessors [23] achieve this goal, withdisadvantage of requiring the compiler to
generate code for one configuration oalpriori.

The composable microarchitecture we describe here implentiee TRIPS ISA [18]. Called TFlex, the
microarchitecture supports complete distribution of altessary hardware structures, with a small amount
of additional hardware for large configurations. The TRIB8 klready supports distributed register files,
instruction issue logic, and ALUs, as seen in the originalARmicroarchitecture. TFlex adds four ca-
pabilities in a distributed fashion: I-cache managemeext-block prediction, L1 D-cache management,
memory disambiguation hardware. We describe the distobwpproach for all structures below.

3.1 TFlex core microarchitecture

Figure 2 shows the high-level microarchitecture of a sifigfi¢ex core. While many variants are possible,
this is the default configuration that we simulate. Eachviiddial core has sufficient hardware resources to
run exactly one TRIPS instruction block at a time: 128 res#on stations, a load/store queue containing
40 entries, a 8-Kbit next-block predictor, an 4KB L1 I-cadiank, a 4KB block header cache bank, and an
8KB L1 D-cache bank. The 3-ported register file holds the I28itectural registers. The execution units
are connected to a 64-bit wide operand transfer networkttambtlacksides of the L1 caches are connected
to a 128-bit wide memory transfer network, which servicesses to the L2.

Each core is a full-fledged processor, capable of issuing@lesinstruction per cycle from the 128-
instruction window. Instructions may be issued out of ordéeying the intra-block dataflow constraints.
The bypass network supports back-to-back execution ofrakgrd instructions. Loads can be stalled in the
load-store queue, depending on the results from the depeagedictor.

When running in single-core mode, some of the hardware showvime core is unused. The register
forwarding logic for inter-block communication, the opedanetwork queues and bypasses, and eight of the
40 entries in the LSQ are all extra logic to support multiekl@xecution across multiple cores. However,
this added support is small compared to the overall areaeofdhe.

3.2 Area Estimation

Table 1 shows the area occupied by the various componentd iex core. We obtained the area esti-
mates for the 130nm technology from an implementation ofralar core implemented in an 130nm ASIC
methodology. Note that a custom implementation would yikedve better densities. We obtained the es-
timates for the other technology nodes by assuming linealingcof both logic and wiring. In a 65nm
process, the architecture shown in Figure 1 would recfrgmm?, and be able to function as a high-end,
ultra-wide-issue uniprocessor or a fine-grained, 32-wayPCMll in under 100nm?2.
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Figure 2: One-core TFlex microarchitecture

Structures per core Size (inmm?)
130nm| 90nm | 65nm | 45nm
(impl.) (scaled)

Exec. (RS+ALUs+Logic) 2.82 141 | 0.71 | 0.36
Register Files and Queues 0.87 0.44 | 0.22 | 0.11

L1 I-caches 092 | 046 | 0.23 | 0.12
Next Block Predictor 0.24 0.12 | 0.06 | 0.03
L1 D-caches 0.95 043 | 022 | 0.11
Load/Store Queues 0.24 0.12 | 0.06 | 0.03
Operand Routers(1x) 0.38 0.19 0.1 0.05
Total Area per core 6.42 3.21 | 161 .81

Total Area for 16 core prog 102.4 | 51.2 | 25.6 | 12.8
Area for 2MB S-NUCAL2| 1405 | 67.4 | 351 | 16.9

Area for Figure 1 | 345.3]169.8] 86.3 | 425 |

Table 1:Area estimates for TFlex cores and CMP

3.3 EDGE ISA background

Explicit Data Graph Execution (EDGE) instruction sets hiave distinguishing features. First, they employ
block-atomic execution, in which groups of instructions execute as a logical atammit, either committing
all of their output state changes or none (in some senserkesdctions). Second, they suppdirtect-
instruction communication within each block, allowing instructions to specify thegméndent instructions
in the instruction itself, rather than communicating thgbua shared namespace like a register file. This
feature is what permits the instruction window to be comptesaby altering where instruction targets are
mapped, blocks may be mapped across a varying number of cores

The TRIPS ISA is an EDGE architecture that supports 128tingbn blocks, with 32 loads or stores
per block. Each target field in each instruction is nine Wtsjen bits to specify the consuming instruction
number, and two bits to specify whether a produced operaateit operand, a right operand, or a predicate.
Within each block, instructions execute in dataflow orderoading to the statically generated dataflow
graph. Sequential load/store ordering within and acrosskislis preserved by five-bit load/store sequence



7 2 5 9 9
|Opcode |PR| XOP| Target 1 | Target 0 |

Target type 7

00 = no target

General (arithmetic)
TRIPS instruction format

Example.. Instruction #5 (ADI?) hasa 01 = predicate Target ID
target O field of 0x17F, targeting the 10 = left operand 0<=X<=127

left operand of instruction #127. 11 = right operand

Inst. 5, target O field: Inst.5 in block 1, target 0 field:
High-order two bits of target selects left operand, High-order two bits of target (10) selects left operand,
low-order seven bits index into entry 127 of low-order two bits (11) select X, Y location of target core,
the instruction window. block ID (01) forms high-order two bits of operand index
Core 0 Core 1

Core 0

operand
Right
operand

Left

128 inst. window
128 inst. window

5]

[TTTTTTT predicate

—|

128 inst.window

128 inst. window
128 inst. window

(a) One-core example (b) Four-core example

Figure 3: Two-core block mapping

IDs in the instruction bits.

Figure 3 shows how the control logic translates instructargets to find the dependent instruction that
must receive a produced operand. In single-core mode,dhslation is trivial: each seven-bit target field
merely serves as an index into the 128-entry instruction RANE remaining two bits in the target field
determine where to save the produced operand. As the nurhipartaipating cores grows, more of the
7-bit field is used to determine the destination core, aneéfewe used to index into the instruction buffer.

As Figure 3 shows, when running in four core mode, the harelwan support up to four blocks in flight,
for a total window size of 512 instructions. Each 128-insti@an block is distributed across the four cores,
so each instruction buffer at each core holds 32 instrustitom each of the four blocks in flight. Two of the
seven bits now specify the core to which the result must bexwanicated, and five of the bits specify which
of the 32 instructions for that block the result is targetatghe destination core. Using these features of an
EDGE ISA, distributing the instruction issue window and A4 Bicross multiple cores is straightforward.

3.4 Distributed branch prediction and control

When running a thread across multiple cores, one altem&ito designate one core as the master control
core, handling all next-block prediction, fetch commandssprediction flushing, and block commit. The
downside to this alternative is that the branch predicti@iesand control logic in the other participating
cores will go unused.

In the TFlex microarchitecture, we instead implement aithisted control protocol. Each in-flight block
is owned by exactly one core, which initiates the fetch, jgtedhe next block, and commits the block. Block
ownership is determined by the low-order bits of the blocirads. When a block emits its exit branch, the



branch is routed to the owning block (based on its address}r@nspeculation is confirmed (or a flush is
generated).

The distributed next-block predictor uses an Alpha 212Kk&{bcal-global tournament predictor with a
return address stack. To perform distributed block exit @anglet prediction, several extensions are neces-
sary. The local history table does not change, since brartblaémap to a given core will always map to that
core, preserving local histories. To support global prgatic the global history register is transmitted from
core to core as each prediction is made. Since the preditzigas in each core are very small, we use his-
tory folding to support longer histories. On a flush, the aosming the block generating the misprediction
initiates the correct fetch and re-sends the rolled backailbistory vector to the new block owning core.
For target prediction, the branch and call target buffeesaaldress partitioned. The most challenging aspect
to this distributed predictor is maintaining return addrstacks correctly. The RAS is distributed across the
cores, which requires keeping extra state to maintain ie Sthcks from all the participating cores together
form a logical global stack. The call core identifier and te&urn core identifier need to be kept, so the
correct core is accessed when performing RAS predictiom® tdp two entries of the RAS are also held
by the current predicting core. These are then updated dssacy and sent to the next core along with the
global histories for the next prediction. This is done sd tha incur no additional penalty in fetching the
top of the stack when we encounter a return immediatelyiotig a return. The two overheads of using
all of the distributed predictor state are (1) the potelytilming latencies to route the global vector and RAS
head from core to core for each prediction, and (2) a potgntiggher control misprediction rate. More
mispredictions are possible because, although every eeseascomplete global history when making a pre-
diction, each branch only updates the second-level glaitée ton one core when committing. This reduces
constructive aliasing. History folding also impacts thespnediction rates. To support longer histories along
with smaller tables and also enable easy patrtitioning basdaock address, we could use perceptron style
predictors [12].

3.5 Distributed instruction fetch

There are two options for flexible caching of blocks acrossramosable substrate. First, the entire block
may be cached at the core that owns it, and be delivered toaihes when the block is fetched. Second, the
block may be distributed equally in the I-caches acrossaligipating cores. We choose the latter option
to achieve increased bandwidth but, at the cost of someianglitcomplexity. If the blocks are distributed
across the I-caches, there are two ways to handle contrabrals can compete for all of the global I-cache,
or whether a fraction of each I-cache is “owned” by each pigiditing core, in effect assigning each core
some number of sets to manage. An additional design optievhether each I-cache has its own tags,
permitting the global I-cache to hold fragments of a bloakwbether the I-cache banks act as slave banks
to a global master. We assume that a fraction of each I-cachemed by one of the cores, and that the
tagless banks act as slave banks. The I-cache hit rate $oddkign will be lower than if all cores shared all
I-cache sets (due to mapping imbalance), but with a gremtiglgied block fetch protocol and I-cache miss
handling.

In the TFlex microarchitecture, each participating coreagges a fraction of the global I-cache, realized
as a fraction of the sets in each I-cache bank. For examgtajtritores were participating, each of the cores
would be responsible for managing 1/4 of the sets in eacheofatr I-cache banks.

TRIPS blocks contain two portions: a block header of 128%ydad 128 4-byte instructions. The head-
ers contain block mode state, information about storesdrbtbck, and register read and write instructions,
which orchestrate the injection of register values intoltloek and aggregate register writes from the block.
Each core contains a 4KB header cache, for holding the headdhe cached blocks that it owns, and a
4KB slave I-cache bank. Associated with the header cacha set of I-cache tags, which inform the core



which blocks it has cached in its distributed slave I-cachakss.

As another example, assume that 16 cores were participatimd) that core 2 receives a next-block
prediction. It performs a lookup in its block header caclgs tahile launching the next-block prediction in
parallel and routing the prediction (when complete) to thie¢hat owns the next predicted block. On a hit,
the index of the line holding the block would be sent to eacthefl6 slave I-cache banks, upon which each
of them would load eight instructions from their I-cache barto their issue window. On a miss, the block
owner would send a request to memory for 640 bytes (in the@eséull-sized block), decide in which set
the block would reside at each bank, and send the relevamidtisns to each |-cache bank when the data
returned.

The block owner must also distribute the read and write liletions from the header to the pertinent
register files. Registers are interleaved among the comdlzn the low-order bits of the register (e.g., in
an eight-core configuration, core 0 would hold registers @63 etc., up through 120). Currently we do not
exploit the unused space in each register file as cores asgladdold transient register writes (those are
held in the register forwarding queues shown in Figure #gaigh that is a planned extension.

3.6 Distributed memory disambiguation

Each core has an 8KB, 2-way L1 D-cache bank. When runningngiesicore mode, each thread would have
access to only one such bank. With each core added to the sechpoocessor, however, the bandwidth and
capacity scales: each running thread obtains 8KB more of ichéhe capacity and an additional memory
port. Each bank is addressed based on the low-order bitedflhndex, thus cache-line interleaving the
banks across the cores, as originally proposed by Sohi arkr [20].

This cache-line interleaving presents two challengesst ftris difficult for the compiler to place loads
and load consumers near the cache bank, even if the numberesf is known at compile time, as the set
of banks to which a load will issue is typically unknown. TFast will result in extra routing latency from
core to core. We assume a 15-cycle (plus routing delay), ZB2Hyank static NUCA [13] L2 array on the
right-hand side of the chip.

Second, the hardware must be able to handle disambiguairoallfloads in flight. The load/store
gueues are address interleaved just as the data cacheaisirey the possibility of overflowing one LSQ
bank. Since each core has a 40-entry LSQ, in one-core magle®Q cannot overflow, since there is only
one block in flight with a maximum of 32 loads and/or storeswieeer, in the two-core configuration, the
window size doubles, to 256 instructions, 64 of which maydaals or stores. If more than 40 of those map
to a single core, that LSQ patrtition will overflow. Prior wdnks shown that both throttling fetch to prevent
overflow and flushing on overflows cause significant perfoicedasses.

In the TFlex microarchitecture, we implement flow controlgiwarantee forward progress and make
flushes extremely rare. We reserve a fraction of each LSQt(#eshfor the oldest block in flight. If an LSQ
bank is full, and a load or store from the oldest block arribe pipeline is flushed and the oldest block
is run in single-block mode to guarantee forward progrets lbad or store from one of the speculative
blocks arrives at a core its LSQ bank is full (except for treerged 4 entries that it cannot use), the request
is NACKed, returned to the issue window, where it waits uatillock commits before re-issuing. An extra
bit per issue window entry is required to track this statethvifie 40 entries per LSQ bank and the NACK
capability, the performance of the load/store queues idynikentical to that of fully-sized LSQ banks in
every core.

3.7 Configuration interface

When the OS wishes to allocate a group of cores to serve agla 8gical processor, it must follow several
steps. First, any threads running on those cores must lreupted and saved in the process table. Second,
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the data caches must be flushed, writing back dirty data aatidating all blocks. Third, the OS must write
into configuration registers in the control tiles at eachledbree pieces of information: (1) how many cores
are participating in this processor, (2) what the topolofthe logical processor is (i.e. four by four cores),
and (3) each processor’s location in that topology. Wittséhtinree pieces of information, the control logic
can correctly configure the instruction cache, plus deteenm where each register file access, load, store,
branch prediction, and operand must be routed by the mitwamnk. It is certainly possible for the OS to
vary the logical processor size to exploit different apgiicn phases, but the phases must be coarse grained
to amortize the cost of interrupting the running threadsfarghing the caches.

4 Methodology and Results

In this section, we study application scalability and THigxroarchitecture scalability. We analyze the per-
formance and area overheads of the proposed microarehi#eeind quantify the performance differentials
between perfect, centralized and distributed implememtatof the branch predictor, LSQs, and I-caches.
We also show speedups of the TFlex microarchitecture cozdpara Alpha 21264 processor.

The benchmarks are drawn from two different benchmark suleEEMBC 2.0, and a suite of signal
processing kernels from MIT Lincoln Labs. We use all benctimaxcept cjpeg and djpeg from the EEMBC
suite and the codes are compiled with Scale compiler with @ibos and optimized for 16 cores. We also
use hand coded LL kernels (corner turn, convolution, matx, vector add, genetic algorithm). The results
are obtained using a cycle-accurate execution driven asimuthat executes TRIPS binaries.

4.1 Potential for Composability

One of the rationales for composability is that applicagibave varied amounts of concurrency. To quantify
the variance, we measured the peak theoretical speedugvablé on various applications in the EEMBC
and Kernels benchmark suite. Our baseline comparison paiata Alpha 21264 processor, with kernels
and EEMBC compiled using the native GEM compiler with the 4-é@rch ev6” flags set. We chose the
Alpha because it has an aggressive ILP core, an ISA that lesadito efficient execution, and a mature and
stable compiler that generates very high-quality code. éftegate the number of cycles, we use a validated
Alpha 21264 simulator.

The ideal speedups are presented in Figure 4. We computedwgpeby executing TRIPS ISA binaries
optimized for 16 cores on the TFlex simulator assuming pedpeculation accuracies, 1-cycle execution
latency for all instructions including memory, and assuyamly operand transfer latency (not contention)
between producers and consumers. The graph shows thaugpgesah range from 1 to 6 for the EEMBC
applications and to 14 for the hand optimized binaries. Swmide variance in applications even within
EEMBC hints at the benefits possible from a composable awadhite.

The difference between the hand-coded kernels and comipdiechmarks is quite large. We note that
the TRIPS compiler, while stable and improving graduallgnerates code of significantly lower quality
than the Alpha native compiler. The difference between Handd code and compiled code can be seen
by comparing the two versions of a2time0l1 and bezier0l1, t&MBC benchmarks that we hand-coded
and also compiled as a reference. Our hope is that the cangaléormance will eventually fall closer
to the hand versions than to its current performance, butevbetween the two points it falls is currently
unknown.

In figure 4, the right bar for each benchmark shows the acpgsdup of TFlex over Alpha. The speedup
number in kernels ranges from 2.1 to 6.4 excepsfa which is almost an entirely serial benchmark. While
the overall average speedup over Alpha in kernels reach®s ABEMBC has the average 6% degradation
compared to Alpha.
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Figure 4: Performance for various applications for prooessomposed of 1 to 32 cores
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Figure 5: Application scalability of some EEMBC benchmatkd 6 cores

Another rationale for composability is that applicatioravé different optimal operating points. In our
studies on peak parallelism, we observed four types of @gimin behaviors, illustrated in Figure 5. The
figure shows the speedup relative to one core in processorpased of 1 to 16 cores. For applications like
pntrchO1 (pointer chasing) there is very little inherentafialism so the performance does not scale as the
number of processors increase. For several of the signeépsing applications in the EEMBC suite, like
fft0, performance scales linearly with an increasing nundjecores. For some applications performance
peaks over after initial scaling (e.g. puwmod01). For stilers applications although the performance
scales with number of processors, the performance dingsistith increasing execution resources (e.g.
ospf). We note that the flat behavior of some of these codéssEysdue to poor code generation by our in-
house TRIPS compiler. Nonetheless, depending on the apgiainditions and the application scalability
the OS may decide to allocate resources to exploit varyiggeds of parallelism.

4.2 Microarchitecture Scalability Analysis

The TFlex microarchitecture can perform poorly becauseigii lbperand communication latency, due to
network congestion, lower branch prediction accuracyh#tasdue to LSQ undersizing, and lower I-cache
hit rates. In this section, we analyze how each of the abosterfa affects performance and compare the
performance with respect to an idealized implementation.

Operand Delivery: The distribution of execution resources and program pamtitg among a large num-
ber of cores in TFlex places higher demands on the operambriet compared to other architectures. For
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instance, significant performance improvements are pleskibseveral applications (as shown in Figure 6)
with an infinite bandwidth network compared to the baselifideX micronetwork. To improve the per-
formance of the network we can increase the the bandwidtinéngésing the number of wires/channels
or employ more sophisticated compiler-support instrucptacement. In this section we study the former
approach while the latter is presented in Section 5. As shHawigure 6 (even) a dual channel operand
network improves the performance by 22% in kernels whichehaigh concurrency and generate heavy
operand network traffic. For the rest of the performanceyaismbection we assume a dual-channel operand
network as the baseline.

Distributed Block Predictor Distributing the branch predictor can incur performancesés for several
reasons: longer, compressed and folded histories inageatinsing, loss of constructive aliasing between
blocks mapped to different cores, and finally micronetwookitention that might delay the history and
RAS top-of-stack updates sent to other cores. However,tahdited predictor also has several potential
advantages, such as faster, smaller tables and reducedatigst aliasing. In figure 7 we compare the
misprediction rates of distributed and centralized blooédjctors as we scale the number of cores. The
monolithic predictor compared at each core configuratiaf ke same size as the corresponding distributed
predictor (1KB per core). We show the average predictionlmennfor each of the two benchmark suites.
In general, the distributed predictor performs almost a6 agean equal sized monolithic predictor. As we
scale the number of cores and give more predictor space wevget misprediction rates. For the kernels,
the mispredcition rate flattens out after 16 cores. This estduhe fact that the kernels have a small code
footprint and have very little destructive aliasing. Fig@ shows the performance in IPC with 3 different
configurations: perfect, monolithic and distributed. Oa tverage the performance difference between
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monolithic and distributed is very small.
Distributed Memory Disambiguation Distributing the memory disambiguation hardware can teisul
performance losses in two ways: first, when the instructfooms older blocks cannot be slotted in the LSQ,
all blocks in execution must be flushed. Second, instrustfoom younger blocks may have to be replayed,
causing additional congestion in the network. Figure 9 mspihe performance difference between a two
cycle, 40-entry LSQ at each tile (square markers) comparedtivo cycle, 512-entry (maximally) sized
LSQ replicated at each tile (circle markers). Surprisinghe distributed implementation sometimes even
outperforms the unrealizable maximally sized LSQ. Thegrarince gains come from fewer load violations
with the undersized LSQ. In the undersized LSQ, some loatseisult in violations in the maximally sized
LSQs are delayed (replayed) because LSQ structural haaaishus resulting in fewer violations. To
filter out the effects of memory disambiguation we show thggueance results with perfect memory
disambiguation for the EEMBC benchmarks. With perfectmiisgguation as expected, the undersized LSQ
slightly underperforms or closely matches the maximal cumétion.
Distributed Cache Figure 10 shows the effect of instruction cache and dataecaohthe performance of
different sized configurations. In the graph, for each grolgpplications, we show the performance of the
applications on different sized configurations with bothfeet L1 cache and realistic L1 and L2 cache. As
we can see from the graph, the performance curves of thetiedll and L2 cache follow the corresponding
curve with perfect L1 and L2 cache. All the applications shawthe graph have high L1 instruction cache
hit rate across different sized configurations. Therefthre performance gap between the perfect memory
and realistic memory is mainly caused by the L1 data cacleeedising the number of cores has 2 opposite
effects on the L1 data cache performance. On one hand, with owoes, the total capacity of the L1 data
cache increases, which will result in higher hit rate. Ondtteer hand, when we increase the number of
cores, the average hit and miss latency of the L1 data casberalreases because more cores mean bigger
routing distance between the L1 data cache bank and theroengile.

In this section, we showed that despite all the theoretioakible losses due to distribution the TFlex
microarchitecture performs very close to centralized anpntation in most cases.
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4.3 Area Overheads

In this section, we quantify the area overheads associaitédive various microarchitectures. The perfor-
mance of the TFlex architecture can be improved by incrgaia operand bandwidth and upsizing the
microarchitecture structures. For instance, doublingdperand bandwidth reduces network contention
significantly, closely matching the performance that carob&ined using an infinite network. But the
performance comes at the cost of increased area from repfjche operand routers and the associated
wires. With the dual channel optimization, the area of therapd network increases by 12.46n° at
130nm (20% increase in processor area). While, the areaeagof the dual channel network seems high
at current technology, transistor scaling will enable suetworks in smaller technologies.

Simultaneous performance improvements and area saviegalsy possible with the TFlex microar-
chitecture. For instance in the LSQs, a replicated copy efmtlaximally sized LSQ in each tile will take
a whopping 36mm?2—close to 10% of the die area. The undersized LSQs with 4@esrtiakes up only
(approx) 1% area at 130nm. Additional, but minor, perforogasavings are possible with a slightly larger
64-entry LSQ (data not presented) but increasing the LSQncaease the cycle time negatively. Although
we assumed fixed sizes for the I-caches, D-caches and braadictprs in this study we plan to explore
area-performance tradeoffs for all these parameters umdwtork.

5 Compiler Support for Composable Processors

For composable processors, the compiler should carefpliynize for communication locality by placing
dependent instructions as closely together as possititeevaecgood communication/computation load bal-
ance by partitioning the program among all resources andgeupport for running a binary on multiple
hardware configurations. To achieve these goals, the cemymled in this study guesses the critical path
within a block and attempts to place instructions in thahp close as possible. However, critical paths
cannot be always predicted correctly when the binary is rudifferent hardware configurations.

While the compilation heuristics (like critical path schédg) may not be portable across different
configurations, the hardware and compiler can mitigate soimeconfiguration effects by using transfor-
mations that preserve the communication locality in thgipal binary. For instance, running the binaries on
a smaller-than-scheduled configuration (shrinking) canmensate for some of the losses by reducing the
communication distances across all dependent instrigctiRanning the binaries on a larger-than-scheduled
configuration (Dilating) may also be beneficial by reducinigjaal resource contention (like spreading out
FP divides).

To study the performance effects of imprecise compilatien inismatches between the compiled con-
figuration and runtime configuration we used binaries coeadibr 1-, 2-, 4-, 8-, 16-, 32- core configurations
and ran them on 1-, 2-, 4-, 8-, 16-, 32- core configurations|(®6 possible permutations between binaries
and hardware core configurations) assuming only one progi@srunning on the chip at any time. For non
matching configurations, we first collapsed adjacent cokitowards the L2 memory banks (refer to Fig-
ure 1) and then collapsed adjacent rows. Similarly for thetetil binaries we moved instructions in the odd
numbered slots to slots in the adjacent cores in the eastaanidesn directions. These transformations are
likely to preserve the communication locality assumed oluded by the compiler in the originally compiler
configurations. Tables 2 shows the performance matrix fmaththe configurations from kernels

As expected the matching binaries produce the best perfarenaniformly across all the processor sizes
and as the degree of mismatch increases the performanes Igssv worse. The 16-core compiled code
degrades the performance by 28% when running on the 2-cocegsor.

Interestingly, the performance loss is less when a binapgpimspiled at larger granularity and shrunk
compared to when it is compiled at smaller granularity andaexded. For example, while there is no
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Hardware Compile Size
1-core | 2-core | 4-core| 8-core| 16-core| 32-core
1-core 0.8 0.8 0.8 0.8 0.8 0.7
2-core 1.7 1.7 1.7 1.7 1.7 1.6
4-core 2.8 2.9 3.0 2.9 2.8 2.8
8-core 3.5 35 3.5 4.5 4.4 4.3
16-core 3.8 3.8 3.8 4.7 5.2 4.9
32-core 3.3 3.1 3.1 3.9 3.9 4.9

Table 2:1PC numbers from kernels

average performance loss to run 32-core compiled binarié8-icores for TFlex configuration, running 16
core compiled binaries in 32 cores degrades the performan28%.

Besides, compared to the best TFlex configuration (usingaté-with 16-core compiled binary), the
additional 8% performance improvement can be obtained byomuizing the number of cores and binaries
to each application.

In summary, the best policy is to profile each application famdl out the maximum number of core to
run and use the binary compiled for that number of core. Ifsike of logical processor should be shrunk
due to power-saving and multi-thread running requirentbethardware can minimize the performance loss
by compacting adjacent columns and rows to optimize theasgkecommunications

6 Conclusions

In this paper we have described microarchitectural sugporun-time configuration of fine-grained CMP
processors, allowing great flexibility in aggregating sotegether to form larger logical processors. A
disadvantage of this approach is that it relies on nonticadil ISA support, using EDGE architectures
rather than RISC or CISC. An advantage is that unlike priorkwthe larger logical processor groups
together distributed resources to form unified logical veses, including instruction sequencing, memory
disambiguation, data caches, instruction caches, registe and branch predictors. That grouping permits
higher performance than previous distributed approachesh(as thread-level speculation) as well as a finer
degree of configurability.

Since most future performance gains will come from conawyefuture systems will need to mine
concurrency from all levels. Depending on the workload nmist aumber of available threads, the right place
to find the concurrency will likely change frequently for geal-purpose systems, rendering the design-time
freezing of processor granularity in traditional CMPs aihygundesirable option. Composable processors
permits the run-time system to make informed decisions tabow to go about exploiting concurrency,
whether it be from a single thread running on many distrithateres, or many threads running on partitioned
resources. Other factors that may affect the resource awafign include power/performance tradeoffs and
the amount of concurrency within each thread.

This configurability provides the OS with another degreereéflom when balancing power and per-
formance. In addition to the potential power advantagesriesd earlier, the OS may combine dynamic
voltage and frequency scaling with processor compositooptimize performance per watt. For example,
depending on the application it may be preferable to runeathion four cores at 1 GHz or on two cores at
2 GHz.

Interesting directions for the future also involve progmaimg methodologies to expose more concur-
rency in single threads, better compiler technology fogratig memory operations to individual spatial
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banks, and hybrid mechanisms that allow for highly efficigmatial inter-thread communication on these
composable substrates.
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