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Abstract

We present a notation that allows a dense linear algebra algorithm to be represented in a way that is
visually recognizable. The primary value of the notation is that it exposes subvectors and submatrices
allowing the details of the algorithm to be the focus while hiding the intricate indices related to the arrays
in which the vectors and matrices are stored. The applicability of the notation is illustrated through a
succession of progressively complex case studies ranging from matrix-vector operations to the chasing of
the bulge of the symmetric QR iteration. The notation facilitates comparing and contrasting different
algorithms for the same operation as well as similar algorithms for different operations. Finally, we point
out how algorithms represented with this notation can be directly translated into high-performance code.

1 Introduction

The pedagogical value of this paper lies with a notation for representing, visually, algorithms for dense linear
algebra operations. This notation has been effective for presenting well-known linear algebra algorithms in
undergraduate and graduate courses and for presenting new algorithms in our recent papers [16, 19, 18, 27].
In addition, it has facilitated the systematic and automatic derivation of such algorithms [14, 15, 26, 3, 4, 6].
The strength of the notation is that it avoids indexing and that much of the high-level information that
supports the algorithm is captured.

Standard texts in numerical linear algebra, like those written by Golub and Van Loan [13], Demmel [7],
Stewart [28], and many others, often develop the theory behind algorithms by partitioning matrices and
then discussing how different submatrices are affected, updated, and/or used without the use of indices for
exposing individual entries in matrices. We point the reader to a few examples:

Demmel [7]: LU factorization: Sections 2.3 and 2.6.3; Cholesky factorization: Section 2.7.1.

Golub and Van Loan [13]: LU factorization: Section 3.2.10; Error analysis for LU factorization: Section
3.3.1; Cholesky factorization: Sections 4.2.5 and 4.2.6.

∗This work was supported in part by NSF grants ACR-0305163 and CCF-0342369
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Stewart [28]: Cover of book; LU factorization: pages 117 and 118; Cholesky factorization: Theorem 3.8
and Algorithm 3.9.

By contrast, algorithms in these same texts are typically expressed by exposing intricate indices into the
arrays that store matrices and vectors. The popularity of Matlab’s M-script language [25] for prototyping
new algorithms supports and reinforces that view of how algorithms must be expressed: Algorithms are often
presented in texts and other papers using “Matlab-like” notation.

The disparity between how one reasons about algorithms and how they are then represented may have a
number of possible roots. First, the area of numerical linear algebra developed at a time when typesetting
papers and books was expensive. Because of this, it was important to represent algorithms concisely, in as
little space as possible. We will see that representing algorithms with explicit indexing has this property.
Second, the coding style for implementing the algorithms traditionally exposes explicit indexing. As a
result, compilers were written to optimize code that exposed indexing. This then encouraged programmers
to continue to write code in the same fashion, since compilers were reasonably good at optimizing such code.
Papers and books have continued to present algorithms with exposed indices since it is perceived that this
makes it easier for the reader to translate the algorithms to such traditional code. Finally, we have noticed
that there are a number of people who reason about matrix algorithms in terms of indices. For them the
traditional way of representing algorithms is more natural.

We will show that if concepts are naturally expressed via the partitioning of matrices (and/or vectors),
and are often accompanied by pictures that focus on submatrices being updated and/or used, then algorithms
can, and perhaps should, similarly be expressed by tracking partitioned matrices (and/or vectors). It is this
observation that naturally leads to a notation for expressing algorithms that deviates dramatically from the
norm and from how algorithms are typically represented in code. The same observation should motivate how
algorithms are to be coded, for example through Application Programming Interfaces (APIs) that mirror
the notation used to express the algorithms [5].

The paper is organized as follows: Section 2 is a motivating example: first, it shows how algorithms for
the Cholesky factorization are traditionally derived and represented; then, by contrast, the same algorithms
are also displayed by means of a new representation. Sections 3, 4 and 5 are a parade of case studies
to which the new notation is applied, starting from simple matrix-vector and matrix-matrix operations
(Section 3), passing through the most common matrix factorizations (Section 4), and concluding with the
more complicated QR algorithm (Section 5). Section 6 is a short discussion on a coding interface that closely
mirrors the newly introduced notation, while Section 7 gives a final summary and comments.

2 A Motivating Example

In this section, we will use the Cholesky factorization as a motivating example.

2.1 Definition

Given a symmetric positive definite matrix A, the Cholesky’s theorem tells us that there exists a lower
triangular matrix L such that A = LLT . Matrix L is known as the Cholesky factor. It is unique if its
diagonal elements are restricted to be positive.

We will denote this operation by A := Γ(A), which should be read as “A becomes (is overwritten by) its
Cholesky factor.” Typically, only the lower or upper triangular part of A is stored, and it is that part that is
then overwritten with the result. In this discussion, we will assume the lower triangular part of A is stored
and overwritten.
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for j = 1 : n
αj,j :=

√
αj,j

for i = j + 1 : n
αi,j := αi,j/αj,j

endfor

for k = j + 1 : n
for i = k : n

αi,k := αi,k − αi,jαk,j

endfor
endfor

endfor

for j = 1 : n
αj,j :=

√
αj,j

9
=
; αj+1:n,j := αj+1:n,j/αj,j

9
>>>=
>>>;

αj+1:n,j+1:n :=
αj+1:n,j+1:n − tril(αj+1:n,jαT

j+1:n,j)

endfor

Figure 1: Formulations of the Cholesky factorization that expose indices.

2.2 Unblocked algorithm

The most common algorithm for computing A := Γ(A) can be derived as follows: Consider A = LLT .
Partition

A =
(

α11 ?
a21 A22

)
and L =

(
λ11 0
l21 L22

)
.

Remark 1. We adopt the commonly used notation where Greek lower case letters refer to scalars, lower
case letters refer to (column) vectors, and upper case letters refer to matrices. The ? refers to a part of A
that is neither stored nor updated.

By substituting these partitioned matrices into A = LLT we find that

(
α11 ?
a21 A22

)
=

(
λ11 0
l21 L22

)(
λ11 0
l21 L22

)T

=
(

λ2
11 ?

λ11l21 l21l
T
21 + L22L

T
22

)
,

from which we conclude that

λ11 =
√

α11 ?

l21 = a21/λ11 L22 = Γ(A22 − l21l
T
21)

.

These equalities motivate the algorithm

1. Partition A →
(

α11 ?
a21 A22

)
.

2. Overwrite α11 := λ11 =
√

α11.

3. Overwrite a21 := l21 = a21/λ11.

4. Overwrite A22 := A22 − l21l
T
21 (updating only the lower triangular part of A22).

5. Continue with A = A22. (Back to Step 1.)

The algorithm is typically presented in a text using Matlab-like notation as illustrated in Fig. 1.

Remark 2. Similar to the tril function in Matlab, we use tril(B) to denote the lower triangular part
of matrix B.
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for j = 1 : n in steps of nb

b := min(n− j + 1, nb)

Aj:j+b−1,j:j+b−1 := Γ(Aj:j+b−1,j:j+b−1)

Aj+b:n,j:j+b−1 := Aj+b:n,j:j+b−1A−T
j:j+b−1,j:j+b−1

Aj+b:n,j+b:n := Aj+b:n,j+b:n − tril(Aj+b:n,j:j+b−1AT
j+b:n,j:j+b−1)

endfor

Figure 2: Blocked algorithm for computing the Cholesky factorization. Here nb is the block size used by the
algorithm.

2.3 Blocked algorithm

In order to attain high performance, the computation is cast in terms of matrix-matrix multiplication by so-
called blocked algorithms. For the Cholesky factorization a blocked version of the algorithm can be derived
by partitioning

A →
(

A11 ?
A21 A22

)
and L →

(
L11 0
L21 L22

)
,

where A11 and L11 are b× b. By substituting these partitioned matrices into A = LLT we find that

(
A11 ?
A21 A22

)
=

(
L11 0
L21 L22

)(
L11 0
L21 L22

)T

=
(

L11L
T
11 ?

L21L
T
11 L21L

T
21 + L22L

T
22

)
.

From this we conclude that
L11 = Γ(A11) ?

L21 = A21L
−T
11 L22 = Γ(A22 − L21L

T
21)

.

An algorithm is then described by the steps

1. Partition A →
(

A11 ?
A21 A22

)
, where A11 is b× b.

2. Overwrite A11 := L11 = Γ(A11).

3. Overwrite A21 := L21 = A21L
−T
11 .

4. Overwrite A22 := A22 − L21L
T
21 (updating only the lower triangular part).

5. Continue with A = A22. (Back to Step 1.)

An algorithm that explicitly indexes into the array that stores A is given in Fig. 2.

Remark 3. The Cholesky factorization A11 := L11 = Γ(A11) can be computed with the unblocked algo-
rithm or by calling the blocked Cholesky factorization algorithm recursively.
Operations like L21 = A21L

−T
11 are computed by solving a linear system with multiple right-hand sides

(TRSM). See also Section 3.2.

2.4 Alternative representation

When explaining the above algorithm in a classroom setting, invariably it is accompanied by a picture
sequence like the one in Fig. 3(left) and the (verbal) explanation:
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done

done

done

partially

updated

Beginning of iteration

ATL

ABL

?

ABR

↓ ↓

Repartition

A00 ? ?

aT
10

α11 ?

A20 a21 A22

↓ ↓

UPD.

UPD. UPD.

Update

√
α11

a21
α11

A22−
a21aT

21

↓ ↓

@
@R

done

done

done

partially

updated

End of iteration

ATL

ABL

?

ABR

Figure 3: Left: Progression of pictures that explain Cholesky factorization algorithm. Right: Same pictures,
annotated with labels and updates.

Beginning of iteration: At some stage of the algorithm (Top of the loop), the computation has moved
through the matrix to the point indicated by the thick lines. Notice that we have finished with the
parts of the matrix that are in the top-left, top-right (which is not to be touched), and bottom-left
quadrants. The bottom-right quadrant has been updated to the point where we only need to perform
a Cholesky factorization of it.

Repartition: We now repartition the bottom-right submatrix to expose α11, a21, and A22.

Update: α11, a21, and A22 are updated as discussed before.
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Algorithm: A := Chol unb(A)

Partition A→
ţ

ATL ?

ABL ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
ţ

ATL ?

ABL ABR

ű
→

0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

where α11 is 1× 1

α11 :=
√

α11

a21 := a21/α11

A22 := A22 − tril(a21aT
21)

Continue withţ
ATL ?

ABL ABR

ű
←

0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

endwhile

Algorithm: A := Chol blk(A)

Partition A→
ţ

ATL ?

ABL ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ?

ABL ABR

ű
→

0
@

A00 ? ?

A10 A11 ?
A20 A21 A22

1
A

where A11 is b× b

A11 := Γ(A11)
A21 := A21 tril(A11)−T

A22 := A22 − tril(A21AT
21)

Continue withţ
ATL ?

ABL ABR

ű
←

0
@

A00 ? ?
A10 A11 ?

A20 A21 A22

1
A

endwhile

Figure 4: Unblocked and blocked algorithms for computing the Cholesky factorization.

End of iteration: The thick lines are moved, since we now have completed more of the computation, and
only a factorization of A22 (which becomes the new bottom-right quadrant) remains to be performed.

Continue: The above steps are repeated until the submatrix ABR is empty.

To motivate our notation, we annotate this progression of pictures as in Fig. 3 (right). In those pictures,
“T”, “B”, “L”, and “R” stand for “Top”, “Bottom”, “Left”, and “Right”, respectively. This then motivates
the format of the algorithm in Fig. 4 (left). A similar explanation can be given for the blocked algorithm,
which is given in Fig. 4 (right). In the algorithms, m(A) indicates the number of rows of matrix A.

Remark 4. Clearly Fig. 4 does not present the algorithm as concisely as the algorithms given in Figs. 1
and 2. However, it does capture to a large degree the verbal description of the algorithm mentioned above
and therefore, in our opinion, reduces both the effort required to interpret the algorithm and the need for
additional explanations.

Remark 5. The notation in Figs. 3 and 4 allows the contents of matrix A at the beginning of the iteration
to be formally stated:

A =
(

ATL ?

ABL ABR

)
=

(
LTL ?

LBL ÂBR − tril(LBLLT
BL)

)
,

where LTL = Γ(ÂTL), LBL = ÂBLL−T
TL , and ÂTL, ÂBL and ÂBR denote the original contents of the

quadrants ATL, ABL and ABR, respectively.
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Algorithm: y := Trsv(U, y)

Partition

U →
ţ

UTL UTR

0 UBR

ű
, y →

ţ
yT

yB

ű

where UBR is 0× 0, yB has 0 elements
while m(UBR) < m(U) do

Repartition
ţ

UTL UTR

0 UBR

ű
→

0
@

U00 u01 U02

0 υ11 uT
12

0 0 U22

1
A,

ţ
yT

yB

ű
→

0
@

y0

η1

y2

1
A

where υ11 and η1 are 1× 1

Variant 1:
η1 := η1 − uT

12y2

η1 := η1/υ11

Variant 2:
η1 := η1/υ11

y0 := y0 − u01η1

Continue withţ
UTL UTR

0 UBR

ű
←

0
@

U00 u01 U02

0 υ11 uT
12

0 0 U22

1
A,

ţ
yT

yB

ű
←

0
@

y0

η1

y2

1
A

endwhile

Algorithm: Y := Trsm(U, Y )

Partition

U →
ţ

UTL UTR

0 UBR

ű
, Y →

ţ
YT

YB

ű

where UBR is 0× 0, YB has 0 rows
while m(UBR) < m(U) do

Determine block size b
Repartition

ţ
UTL UTR

0 UBR

ű
→

0
@

U00 U01 U02

0 U11 U12

0 0 U22

1
A,

ţ
YT

YB

ű
→

0
@

Y0

Y1

Y2

1
A

where U11 is b× b, Y1 has b rows

Variant 1:
Y1 := Y1 − U12Y2

Y1 := U−1
11 Y1

Variant 2:

Y1 := U−1
11 Y1

Y0 := Y0 − U01Y1

Continue withţ
UTL UTR

0 UBR

ű
←

0
@

U00 U01 U02

0 U11 U12

0 0 U22

1
A,

ţ
YT

YB

ű
←

0
@

Y0

Y1

Y2

1
A

endwhile

Figure 5: Algorithms for the solution of a triangular system. Left: Single right-hand side. Right: Multiple
right-hand sides. We note that the operation Y1 := U−1

11 Y1 is typically itself implemented as the computation
of the solution of the smaller triangular system U11X1 = Y1, where X1 overwrites Y1.

3 Case Studies, Part I: Simple Operations

In this section, we discuss a cross-section of algorithms for simple linear algebra operations. These operations
are among those supported by the widely used Basic Linear Algebra Subprograms (BLAS) [9, 8].

3.1 Matrix-vector operations

Matrix vector operations are operations that take a matrix and one or more vectors as operands, and perform
O(n2) operations when the matrix is n×n. Examples include different forms of matrix-vector multiplication
(Matvec: y := αAx+βy), rank-1 update (Rank1: A := αxy +A), and the solution of a triangular system
(Trsv: y := A−1y, where A is a triangular matrix). We will focus on this last operation.

Let U be an upper triangular matrix and consider the linear system Ux = y. The Trsv operation
overwrites y with the solution to this linear system, y := x = U−1y. Partitioning

U →
(

υ11 uT
12

0 U22

)
, x →

(
χ1

x2

)
, and y →

(
η1

y2

)
,

we have (
υ11 uT

12

0 U22

)(
χ1

x2

)
=

(
η1

y2

)
, or,

{
υ11χ1 = η1 − uT

12x2

U22x2 = y2.
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We conclude that if x2 has already been computed, overwriting y2, then χ1 can be computed by χ1 =
(η1 − uT

12y2)/υ11, overwriting η1. The algorithm for this is given in Fig. 5(left), Variant 1.
An alternative algorithm can be derived as follows: Partition

U →
(

U00 u01

0 υ11

)
, x →

(
x0

χ1

)
, and y →

(
y0

η1

)
.

Then (
U00 u01

0 υ11

)(
x0

χ1

)
=

(
y0

η1

)
, or,

{
U00x0 + u01χ1 = y0

υ11χ1 = η1,

which suggests that χ1 can be computed by solving the second equation, overwriting η1, after which y0 can
be updated with y0−η1u01. The computation continues by solving the smaller triangular system U00x0 = y0.
These observations are represented in the algorithm in Fig. 5(left), Variant 2.

As was mentioned for the Cholesky factorization in Remark 2.4, our notation allows us to mathematically
describe the contents of vector y before and after execution of the loop-iterations. Let ŷT and ŷB to
respectively denote the original contents of yT and yB , then the algorithms for Variant 1 and 2 maintain in
y the contents (

yT

yB

)
=

(
ŷT

xB

)
and

(
yT

yB

)
=

(
ŷT − UTRxB

xB

)
,

respectively, where xB = U−1
BRŷB .

3.2 Matrix-matrix operations

Matrix-matrix operations are operations that take several matrices as operands and perform O(n3) operations
on O(n2) data. Examples include different forms of matrix-matrix multiplication (Matmat: C := αAB +
βC) and the solution of a triangular system with multiple right-hand sides (Trsm: Y := A−1Y , where
A is a triangular matrix). We will focus on this last operation as it is closely related to trsv. We will
discuss algorithms that cast most computations in terms of matrix-matrix multiplications, for performance
reasons [21].

Let U be an upper triangular matrix and consider the operation, Trsm, that overwrites Y := X under
the constraint UX = Ŷ . Again, Ŷ denotes the original contents of matrix Y . Partition, conformally,

U →
(

UTL UTR

0 UBR

)
, X →

(
XT

XB

)
, Y →

(
YT

YB

)
, and Ŷ →

(
ŶT

ŶB

)
.

Then (
UTL UTR

0 UBR

)(
XT

XB

)
=

(
ŶT

ŶB

)
, or,

{
UTLXT = ŶT − UTRXB

UBRXB = ŶB .

From this we conclude that XB should be computed before ŶT − UTRXB which in turn must be computed
before XT .

Two blocked algorithms for computing this operation are given in Fig. 5(right). Variant 1 and Variant 2
correspond to the algorithms that maintain in Y the contents

(
YT

YB

)
=

(
ŶT

XB

)
and

(
YT

YB

)
=

(
ŶT − UTRXB

XB

)
,

respectively, where XB = U−1
BRŶB .

Remark 6. In [3] we show how algorithms for this and other operations can be systematically derived.
The new notation facilitates the methodology presented in that paper.
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Algorithm: A := Chol unb(A)

Partition A→
ţ

ATL ?

ABL ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
ţ

ATL ?

ABL ABR

ű
→

0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

where α11 is 1× 1

Variant 1:

aT
10 := aT

10 tril(A00)−T

α11 :=
q

α11 − aT
10a10

Variant 2:

α11 :=
q

α11 − aT
10a10

a21 := (a21 −A20a10)/α11

Variant 3:

α11 :=
√

α11

a21 := a21/α11

A22 := A22 − tril(a21aT
21)

Continue withţ
ATL ?

ABL ABR

ű
←

0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

endwhile

Algorithm: A := Chol blk(A)

Partition A→
ţ

ATL ?

ABL ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ?

ABL ABR

ű
→

0
@

A00 ? ?

A10 A11 ?
A20 A21 A22

1
A

where A11 is b× b

Variant 1:

A10 := A10 tril(A00)−T

A11 := Γ(A11 − tril(A10AT
10))

Variant 2:

A11 := Γ(A11 − tril(A10AT
10))

A21 := (A21 −A20AT
10) tril(A11)−T

Variant 3:

A11 := Γ(A11)

A21 := A21 tril(A11)−T

A22 := A22 − tril(A21AT
21)

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 ? ?
A10 A11 ?

A20 A21 A22

1
A

endwhile

Figure 6: Unblocked and blocked algorithms for computing the Cholesky factorization.

4 Case Studies, Part II: Factorization Algorithms

Next, we show how our notation can be used to represent algorithms for factoring matrices. In addition to
a more thorough discussion of the Cholesky factorization, we review the LU factorization (with and without
pivoting) and the QR factorization via Householder transformations.

4.1 Cholesky factorization, revisited

Let us define the computation of the Cholesky factorization as the overwriting of A := L = Γ(Â) where
LLT = Â, the original contents of A. Partitioning the matrices we find that

(
LTL 0
LBL LBR

)(
LTL 0
LBL LBR

)T

=

=
(

LTLLT
TL ?

LBLLT
TL LBLLT

BL − LBRLT
BR

)
=

(
ÂTL ?

ÂBL ÂBR

)
,

so that
LTL = Γ(ÂTL), LBL = ÂBLL−T

TL , and LBR = Γ(ÂBR − LBLLT
BL).
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Variant 1: Variant 2:(
ATL ?

ABL ABR

)
=

(
LTL ?

ÂBL ÂBR

) (
ATL ?

ABL ABR

)
=

(
LTL ?

LBL ÂBR

)

Variant 3:(
ATL ?

ABL ABR

)
=

(
LTL ?

LBL ÂBR − tril(LBLLT
BL)

)

Figure 7: States maintained in matrix A corresponding to the algorithms given in Fig. 6 below.

From this we note that LTL should be computed before LBL, which in turn should be computed before LBR:
Upon completion of the factorization A must contain

(
ATL ?

ABL ABR

)
=

(
LTL ?

LBL LBR

)
.

Previously, we saw that our notation allows us to identify algorithms by the contents that are maintained
in the matrix or vector that is being updated. For the Cholesky factorization three possibilities are identified
in Fig. 7. The algorithms (both unblocked and blocked) that maintain the indicated contents are given in
Fig. 6.

Remark 7. In [2] we show how algorithms for the Cholesky factorization can be systematically derived
from the contents that are to be maintained in matrix by the algorithm.

4.2 LU factorization

Given a matrix A of size m× n with m ≥ n, its LU factorization is given by A = LU , where L is unit lower
trapezoidal and U is upper triangular. This factorization is a reformulation of Gaussian Elimination and it
exists under well-known conditions. We use the notation {L\U} = LU(Â) to bring the attention to the fact
that the function LU() takes a matrix A and returns two triangular matrices, L and U ; these two matrices
can be stored overwriting the strictly lower and the upper triangular parts of A respectively. The diagonal of
L consists of ones and is not stored. In the following discussion, {L\U}TL and {L\U}BR are abbreviations
for {LTL\UTL} and {LBR\UBR}, respectively.

Five unblocked algorithms have been proposed since Gauss first proposed Gaussian elimination. Parti-
tioning the matrices into quadrants, we find that

(
LTL 0
LBL LBR

)(
UTL UTR

0 UBR

)
=

(
LTLUTL LTLUTR

LBLUTL LBLUTR + LBRUBR

)

=

(
ÂTL ÂTR

ÂBL ÂBR

)
,

where Â denotes the original contents of A. If A is to be overwritten with the final result, this means that
upon completion A must contain

(
ATL ATR

ABL ABR

)
=

( {L\U}TL UTR

LBL {L\U}BR

)
,

where

{L\U}TL = LU(Â) UTR = L−1
TLÂTR

LBL = ÂBLU−1
TL {L\U}TL = LU(Â− LBLUTR)

.
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Variant 1: Variant 2:ţ
ATL ATR

ABL ABR

ű
=

Ã
{L\U}TL ÂTR

ÂBL ÂBR

! ţ
ATL ATR

ABL ABR

ű
=

Ã
{L\U}TL UTR

ÂBL ÂBR

!

Variant 3: Variant 4:ţ
ATL ATR

ABL ABR

ű
=

Ã
{L\U}TL ÂTR

LBL ÂBR

! ţ
ATL ATR

ABL ABR

ű
=

Ã
{L\U}TL UTR

LBL ÂBR

!

Variant 5:ţ
ATL ATR

ABL ABR

ű
=

Ã
{L\U}TL UTR

LBL ÂBR − LBLUTR

!

Figure 8: States maintained in matrix A corresponding to the algorithms given in Fig. 9 below.

In Fig. 8 we give five states maintained by the algorithms given in Fig. 9, which correspond to the five
classic unblocked algorithms for computing the LU factorization [28], as well as their blocked counterparts.

Remark 8. In [14] we show how algorithms for the LU factorization can be systematically derived from
the contents that are to be maintained in matrix by the algorithm.

4.3 LU factorization with partial pivoting

It is well-known that the LU factorization is numerically unstable under general circumstances. In practice,
LU factorization with partial pivoting solves these stability problems. For details on this subject we suggest
the reader consult any standard text on numerical linear algebra. In this section, we will assume that the
reader is familiar with the subject as we introduce new notation for presenting it.
Definition 1 An n × n matrix P is said to be a permutation matrix, or permutation, if, when applied to
a vector x = (χ0, χ1, . . . , χn−1)

T, it merely rearranges the order of the elements in that vector. Such a
permutation can be represented by the vector of integers, (π0, π1, . . . , πn−1)

T, where {π0, π1, . . . , πn−1} is a
permutation of the integers {0, 1, . . . , n− 1} and the permuted vector Px is given by (χπ0 , χπ1 , . . . , χπn−1)

T.
If P is a permutation matrix then PA rearranges the rows of A exactly as the elements of x are rearranged
by Px.

We will see that when discussing the LU factorization with partial pivoting, a permutation matrix that
swaps the first element of a vector with the π-th element of that vector is a fundamental tool. We will denote
that matrix by

P (π) =





In if π = 0



0 0 1 0
0 Iπ−1 0 0
1 0 0 0
0 0 0 In−π−1


 otherwise,

where n is the dimension of the permutation matrix. In the following we will use the notation Pn to indicate
that the matrix P is of size n. Let p be a vector of integers satisfying the conditions

p = (π0, . . . , πk−1)
T
, where 1 ≤ k ≤ n and 0 ≤ πi < n− i, (1)

then Pn(p) will denote the permutation:

Pn(p) =
(

Ik−1 0
0 Pn−k+1(πk−1)

)(
Ik−2 0

0 Pn−k+2(πk−2)

)
· · ·

(
1 0
0 Pn−1(π1)

)
Pn(π0).
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Algorithm: A := LU unb(A)

Partition A→
ţ

ATL ATR

ABL ABR

ű

where ATL is 0× 0
while n(ATL) < n(A) do

Repartition
ţ

ATL ATR

ABL ABR

ű
→

0
@

A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1
A

where α11 is 1× 1

Variant 1:

a01 := L−1
00 a01

aT
10 := aT

10U−1
00

α11 := α11 − aT
10a01

Variant 2:

aT
10 := aT

10U−1
00

α11 := α11 − aT
10a01

aT
12 := aT

12 − aT
10A02

Variant 3:

a01 := L−1
00 a01

α11 := α11 − aT
10a01

a21 := (a21 −A20 a01)/α11

Variant 4:

α11 := α11 − aT
10a01

a21 := (a21 −A20 a01)/α11

aT
12 := aT

12 − aT
10A02

Variant 5:

a21 := a21/α11

A22 := A22 − a21aT
12

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A

endwhile

Algorithm: A := LU blk(A)

Partition A→
ţ

ATL ATR

ABL ABR

ű

where ATL is 0× 0
while n(ATL) < n(A) do

Determine block size b
Repartition

ţ
ATL ATR

ABL ABR

ű
→

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

where A11 is b× b

Variant 1:

A01 := L−1
00 A01

A10 := A10U−1
00

A11 := LU(A11 −A10A01)

Variant 2:

A10 := A10U−1
00

A11 := LU(A11 −A10A01)

A12 := L−1
11 (A12 −A10A02)

Variant 3:

A01 := L−1
00 A01

A11 := LU(A11 −A10A01)

A21 := (A21 −A20A01)U
−1
11

Variant 4:

A11 := LU(A11 −A10A01)

A21 := (A21 −A20A01)U
−1
11

A12 := L−1
11 (A12 −A10A02)

Variant 5:

A11 := LU(A11)

A21 := A21U−1
11

A12 := L−1
11 A12

A22 := A22 −A21A12

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

endwhile

Figure 9: Unblocked algorithm for computing the LU factorization. In this figure, n(A) is a function that
yields the number of columns of matrix A and Lii and Uii denote the unit lower triangular matrix and upper
triangular matrix stored over Aii, respectively.
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Algorithm: [A, p] := LUpiv unb( A )

Partition

A→
ţ

ATL ATR

ABL ABR

ű
, p→

ţ
pT

pB

ű

where ATL is 0× 0, pT has 0 elements
while n(ATL) < n(A) do

Repartition
ţ

ATL ATR

ABL ABR

ű
→

0
@

A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1
A,

ţ
pT

pB

ű
→

0
@

p0

π1

p2

1
A

where α11 and π1 are scalars

Variant 3 (with pivoting):

a01 := L−1
00 a01

α11 := α11 − aT
10a01

a21 := a21 −A20a01ůţ
α11

a21

ű
, π1

ÿ
:= Pivot

ţ
α11

a21

ű

a21 := a21/α11ţ
aT
10 aT

12
A20 A22

ű
:=P (π1)

ţ
aT
10 aT

12
A20 A22

ű

Variant 4 (with pivoting):

α11 := α11 − aT
10a01

a21 := a21 −A20a01

aT
12 := aT

12 − aT
10A02ůţ

α11

a21

ű
, π1

ÿ
:= Pivot

ţ
α11

a21

ű

a21 := a21/α11ţ
aT
10 aT

12
A20 A22

ű
:=P (π1)

ţ
aT
10 aT

12
A20 A22

ű

Variant 5 (with pivoting):
ůţ

α11

a21

ű
, π1

ÿ
:= Pivot

ţ
α11

a21

ű

a21 := a21/α11ţ
aT
10 aT

12
A20 A22

ű
:=P (π1)

ţ
aT
10 aT

12
A20 A22

ű

A22 := A22 − a21aT
12

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A,

ţ
pT

pB

ű
←

0
@

p0

π1

p2

1
A

endwhile

Algorithm: [A, p] := LUpiv blk( A )

Partition

A→
ţ

ATL ATR

ABL ABR

ű
, p→

ţ
pT

pB

ű

where ATL is 0× 0, pT has 0 elements
while n(ATL) < n(A) do

Determine block size b
Repartition

ţ
ATL ATR

ABL ABR

ű
→

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

ţ
pT

pB

ű
→

0
@

p0

p1

p2

1
A

where A11 is b× b , p1 is b× 1

Variant 3 (with pivoting):

A01 := L−1
00 A01

A11 := A11 −A10A01

A21 := A21 −A20A01ůţ
A11

A21

ű
, p1

ÿ
:= LUpiv

ţ
A11

A21

ű

ţ
A10 A12

A20 A22

ű
:= P (p1)

ţ
A10 A12

A20 A22

ű

Variant 4 (with pivoting):

A11 := A11 −A10A01

A21 := A21 −A20A01

A12 := A12 −A10A02ůţ
A11

A21

ű
, p1

ÿ
:= LUpiv

ţ
A11

A21

ű

ţ
A10 A12

A20 A22

ű
:= P (p1)

ţ
A10 A12

A20 A22

ű

A12 := L−1
11 A12

Variant 5 (with pivoting):
ůţ

A11

A21

ű
, p1

ÿ
:= LUpiv

ţ
A11

A21

ű

ţ
A10 A12

A20 A22

ű
:= P (p1)

ţ
A10 A12

A20 A22

ű

A12 := L−1
11 A12

A22 := A22 −A21A12

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

ţ
pT

pB

ű
←

0
@

p0

p1

p2

1
A

endwhile

Figure 10: Unblocked and blocked algorithms for LU factorization with partial pivoting. Here the matrix is
pivoted like LAPACK does, so that P (p)A = LU upon completion. In this figure, Lii denotes the unit lower
triangular matrix stored over Aii.
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Remark 9. In the algorithms, the subscript that indicates the matrix dimentions is omitted.

Example 1 Let aT
0 , aT

1 , . . . , aT
n−1 be the rows of a matrix A. The application of P (p) to A yields a matrix

that results from swapping row aT
0 with aT

π0
, then swapping aT

1 with aT
π1+1, aT

2 with aT
π2+2, until finally aT

k−1

is swapped with aT
πk−1+k−1.

Remark 10. For those familiar with how pivot information is stored in LINPACK and LAPACK, notice
that those packages store the vector of pivot information (π0 + 1, π1 + 2, . . . , πk−1 + k)T.

Having introduced our notation for permutation matrices, we can now define the LU factorization with
partial pivoting: Given an m × n matrix A, with m ≥ n, we wish to compute a) a vector p of n integers
which satisfies the conditions (1), b) a unit lower trapezoidal matrix L, and c) an upper triangular matrix
U so that P (p)A = LU . An algorithm for computing this operation is typically represented by

[A, p] := LUpiv(A),

where upon completion A has been overwritten by {L\U}.
Using our notation, unblocked and blocked algorithms for computing LUpiv are given in Fig. 10. Three

variants are given, corresponding to the Variants 3–5 in Fig. 9 to which pivoting has been added. The
function [x, π] = Pivot(x) determines the index of the element in vector x that has the maximal absolute
value and swaps the first element of x with the maximal (in absolute value) element.

4.4 Computing an orthonormal basis

The goal of the Gram-Schmidt process is to compute an orthonormal basis for the space spanned by the
columns of a given m × n matrix A (for m ≥ n) with n linearly independent columns. The vectors that
constitute the orthonormal basis become the columns of an m×n matrix Q. A particular case of this problem
can be stated as computing [Q,R] = QR(A), where R is an n× n upper triangular matrix so that A = QR.
In this case, Q has the property that the first k columns of Q span the space spanned by the first k columns
of A, for k = 1, . . . , n.

Algorithms for computing Q and R can be described by partitioning A, Q, and R as

A → (
AL AR

)
, Q → (

QL QR

)
, and R →

(
RTL RTR

0 RBR

)
,

where AL and QL have k columns and RTL is k × k. Then

(
AL AR

)
=

(
QL QR

) (
RTL RTR

0 RBR

)
.

Classical Gram-Schmidt Assume that QL and RTL have already been computed. In other words, an
orthonormal basis for AL has already been computed.

Repartition, exposing columns to be updated,
(

AL AR

) → (
A0 a1 A2

)
,

(
QL QR

) → (
Q0 q1 Q2

)
, and

(
RTL RTR

0 RBR

)
→




R00 r01 R02

0 ρ11 rT
12

0 0 R22


 .
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CGS: MGS:ą
AL AR

ć
=

ą
QL ÂR

ć ą
AL AR

ć
=

ą
QL ÂR −QLQT

LÂR

ć

Figure 11: States maintained in matrix A corresponding to the algorithms given in Fig. 12 below.

Algorithm: [A, R] := QR(A)

Partition A→ ą
AL AR

ć
, R→

ţ
RTL RTR

0 RBR

ű

where AL has 0 columns, RTL is 0× 0

while n(AL) < n(A) do
Repartition

ą
AL AR

ć→ ą
A0 a1 A2

ć
,

ţ
RTL RTR

0 RBR

ű
→

0
@

R00 r01 R02

0 ρ11 rT
12

0 0 R22

1
A

where a1 has 1 column, ρ11 is a scalar

CGS:

r01 := AT
0 a1

a1 := a1 −A0r01

ρ11 := ‖a1‖2
a1 := a1/ρ11

MGS:

ρ11 := ‖a1‖2
a1 := a1/ρ11

rT
12 := aT

1 A2

A2 := A2 − a1rT
12

Continue with

ą
AL AR

ć← ą
A0 a1 A2

ć
,

ţ
RTL RTR

RBL RBR

ű
←

0
@

R00 r01 R02

0 ρ11 rT
12

0 0 R22

1
A

endwhile

Figure 12: Orthogonalization via Gram-Schmidt and Modified Gram-Schmidt.

Then

(
A0 a1 A2

)
=

(
Q0 q1 Q2

)



R00 r01 R02

0 ρ11 rT
12

0 0 R22




=
(

Q0R00 Q0r01 + ρ11q1 Q0R02 + q1r
T
12 + Q2R22

)
.

Now, Q0 and R00 have already been computed and we wish to compute the next column of Q and R. From
a1 = Q0r01 + ρ11q1, we deduce that QT

0 a1 = r01 and q1 = (a1−Q0r01)/ρ11. Since q1 must have unit length,
we find that the following steps compute q1:

Classical Gram-Schmidt (CGS) algorithm
r01 := QT

0 a1

q1 := a1 −Q0r01 (= the component of a1 orthogonal to the columns of Q0)
ρ11 := ‖q1‖2
q1 := q1/ρ11 (normalization).

This procedure is summarized in Fig. 12, where the process overwrites A with the orthogonal matrix Q.

Modified Gram-Schmidt The CGS algorithm is notoriously numerically unstable. More stable is the
Modified Gram-Schmidt (MGS) algorithm. In this variant, every time a new column of Q, q1, is computed,
the remaining columns of A are updated by subtracting out the component of those columns that lies in the
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direction of q1. Thus, at the beginning of a given step, a1 and A2 are already orthogonal to the columns of
Q0, which have overwritten A0. The next column, q1 is then computed by normalizing the current contents
of a1. Finally, the columns of A2 are updated by subtracting out the component in the direction of q1:
A2 := A2 − q1r

T
12, where rT

12 = qT
1 A2. The MGS algorithm is also given in Fig. 12, and in Fig. 11 we show

the states maintained in matrix A by the algorithms CGS and MGS.

4.5 QR factorization via Householder transformations

In this section, we introduce one unblocked algorithm for computing the QR factorization via Householder
transformations. Enough background is given so that someone already familiar with this operation will be
able to recognize how our notation supports it.

Householder transformations A Householder transformation (often called a reflector) is a matrix of the
form H = I − βvvT , where v 6= 0 and β = 2/vT v. Notice that H = HT and HT H = H−1H = I. In other
words, H is orthogonal, symmetric, and equals its own inverse.

Now, let x 6= 0 and partition x →
(

χ1

x2

)
. If v is chosen as v =

(
χ1 ± ‖x‖2

x2

)
, then (I − βvvT )x =

( ∓‖x‖2
0

)
holds. In other words, given a vector x, there exists a Householder transformation with the

property that zeroes out the elements below the first element while preserving the norm of the vector1. The
± is picked to equal the sign of χ1, for numerical stability reasons.

The discussion so far can be found in a typical numerical linear algebra text. We will now discuss how
the vector that defines the Householder transformation can be chosen in a more practical way. Given the
vector x, partitioned as before, we will define the Householder transformation instead as I − 1

τ uuT , where

u =
(

1
u2

)
and τ = uT u/2. Clearly this is simply a Householder transformation in disguise: The vector v

in the Householder transformation can be scaled arbitrarily by scaling β correspondingly, and u is derived
from v by dividing it by the first element of v. Thus, given a vector x, partitioned as before, u2 and τ now
must satisfy (

I − 1
τ

(
1
u2

)(
1
u2

)T
)(

χ1

x2

)
=

(
ρ
0

)
.

The following formulae compute u2, τ , and ρ:

u2 :=
{

0 if x = 0
x2/(χ1 ± ‖x‖2) otherwise

τ := 2/uT u = 2/(1 + uT
2 u2)

ρ := ∓‖x‖2.

We introduce the notation
[(

ρ
u2

)
, τ

]
:= h(x) as the function that computes the vector u2, and scalars

ρ and τ from the input vector x.
Let A be an m × n with m ≥ n. We will now show how to compute the QR factorization A → QR ,

which, through a sequence of Householder transformations, eventually zeroes out all elements of matrix A
below the diagonal.

1If x = 0, then β is ill-defined. In that case, we will take v =

ţ
1
0

ű
and β = 2, although some implementations take v = 0

and set β = 0.
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Algorithm: [A, t] := QR(A)

Partition A→
ţ

ATL ATR

ABL ABR

ű
, s→

ţ
tT
tB

ű

where ATL is 0× 0, tT has 0 elements

while n(ABR) 6= 0 do
Determine block size blank
Repartition

ţ
ATL ATR

ABL ABR

ű
→

0
@

A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1
A,

ţ
tT
tB

ű
→

0
@

t0
τ1
t2

1
A

where α11 and τ1 are scalars

ůţ
α11

a21

ű
, τ1

ÿ
:=

ůţ
η

u21

ű
, τ1

ÿ
= h

ţ
α11

a21

ű

wT
12 := (aT

12 + uT
21A22)/τ1

aT
12 := aT

12 − wT
12

A22 := A22 − u21wT
12

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A,

ţ
tT
tB

ű
←

0
@

t0
τ1
t2

1
A

endwhile

Figure 13: Unblocked QR factorization algorithm.

In the first iteration, we partition

A →
(

α11 aT
12

a21 A22

)
.

Let [(
ρ11

u21

)
, τ1

]
= h

(
α11

a21

)

be the Householder transform computed from the first column of A. Then applying this Householder trans-
form to A yields

(
α11 aT

12

a21 A22

)
:=

(
I − 1

τ

(
1
u2

)(
1
u2

)T
) (

α11 aT
12

a21 A22

)

=
(

ρ11 aT
12 − wT

12

0 A22 − u21w
T
12

)
,

where wT
12 = (aT

12 + uT
21A22)/τ1. Computation of a full QR factorization of A proceeds with the updated

matrix A22. The complete unblocked algorithm is given in Fig. 13.

Remark 11. We refer the interested reader to [16] for a more complete treatment of the QR factorization
that presents unblocked and blocked algorithms as well as extensions that support out-of-core computation
of a QR factorization. How to aggregate Householder transformations in support of a blocked algorithm is
discussed in [18].

17



××
×××
×××
×××
×××
×××
×××
××

+

+

Beginning of iteration

TT L T T
ML

TML TMM T T
BM

TBM TBR

↓ ↓
× ×
×××
×××
×××
×××
×××
×××
××

+

+

Repartition

T00 t10

T T
10

τ11 tT
21

t21 T22 t32

tT
32

τ33 tT
43

t43 T44

↓ ↓
× ×
×××
×××
×××
×××
×××
×××
××

+

+ Update

T00 t10

tT
10

τ11 tT
21

t21 T22 t32

tT
32

τ33 tT
43

t43 T44

↓ ↓
× ×
×××
×××
×××
×××
×××
×××
××

+

+
End of iteration

TT L T T
ML

TML TMM T T
BM

TBM TBR

Figure 14: One step of “chasing the bulge” in the implicitly shifted symmetric QR algorithm.

5 Case Studies, Part III: The QR Algorithm

For the expert reader, we now discuss a much more advanced algorithm: The QR algorithm [11, 22], for
computing the eigenvalues of a symmetric tridiagonal matrix T . We will assume that the reader is already
intimately familiar with that algorithm. A good reference is [13].

For each iteration of this algorithm, the following steps are executed:
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Algorithm: T := ChaseBulge(T )

Partition T →
0
@

TTL ? ?

TML TMM ?

0 TBM TBR

1
A

where TTL is 0× 0 and TMM is 3× 3

while m(TBR) > 0(Check!!) do
Repartition

0
@

TTL ? 0

TML TMM ?

0 TBM TBR

1
A→

0
BBBB@

T00 ? 0 0 0

tT10 τ11 ? 0 0
0 t21 T22 ? 0

0 0 tT32 τ33 ?
0 0 0 t43 T44

1
CCCCA

where τ11 and τ33 are scalars
(during final step, τ33 is 0× 0)

Compute (c, s) s.t. GT
c,st21 =

ţ
τ21
0

ű
, and Assign t21 =

ţ
τ21
0

ű

T22 = GT
c,sT22Gc,s

tT32 = tT32Gc,s (not performed during final step)

Continue with

0
@

TTL ? 0

TML TMM ?

0 TBM TBR

1
A←

0
BBBB@

T00 ? 0 0 0

tT10 τ11 ? 0 0

0 t21 T22 ? 0

0 0 tT32 τ33 ?

0 0 0 t43 T44

1
CCCCA

endwhile

Figure 15: Chasing the bulge.

• Determine a shift ρ (approximate eigenvalue of T ).

• Determine a first Givens’ rotation G that annihilates the first element of the first subdiagonal of matrix
T − ρI.

• Update T := GT TG. This creates a nonzero in the first element of the second subdiagonal.

• Determine Givens’ rotations that “chase the bulge” to make matrix t again tridiagonal.

It is this last step that we discuss in this section.
A typical intermediate stage in the chasing of the bulge is illustrated in Fig. 14. We are now using more

lines to track progress through the matrix: An initial 3× 3 partitioning becomes a 5× 5 partitioning, which
then becomes again a 3× 3 partitioning to set up the next iteration.

This example gives us the opportunity to ask the question why in the other examples matrices were
partitioned into a 2 × 2 partitioning and repartitioned to a 3 × 3 partitioning. The answer is that a 2 × 2
partitioning is needed to track the four quadrants. To be able to identify the submatrices that are moved
from one side of the thick line to the other, the two 2×2 partitionings are superimposed, creating the familiar
3× 3 partitioning.

In order to identify the bulge, a 3 × 3 partitioning is needed at the top of the loop, as well as at the
bottom of the loop, as illustrated in the left-most and right-most pictures in Fig. 14. By superimposing these
two pictures, the 5 × 5 partitioning appears, which now identifies submatrices that are to be moved across
the thick line boundaries. The resulting algorithm for chasing the bulge is now given in Fig. 15.
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n = size(A,1);

for j=1:nb:n

b = min( n-j+1, nb );

A(j:j+b-1,j:j+b-1) = Chol(A(j:j+b-1,j:j+b-1));

A(j+b:n,j:j+b-1) = A(j+b:n,j:j+b-1) / tril( A(j:j+b-1,j:j+b-1);

A(j+b:n,j+b:n) = A(j+b:n,j+b:n) - ...

tril(A(j+b:n,j:j+b-1)*A(j+b:n,j+b-1)’);

end

Figure 16: Traditional Matlab code for blocked Cholesky factorization.

function [ A_out ] = Chol_blk( A, nb_alg )

[ ATL, ATR, ...

ABL, ABR ] = FLA_Part_2x2( A, ...

0, 0, ’FLA_TL’ );

while ( size( ATL, 1 ) < size( A, 1 ) )

b = min( size( ABR, 1 ), nb_alg );

[ A00, A01, A02, ...

A10, A11, A12, ...

A20, A21, A22 ] = FLA_Repart_2x2_to_3x3( ATL, ATR, ...

ABL, ABR, ...

b, b, ’FLA_BR’ );

%------------------------------------------------------------%

A11 = Chol_unb( A11 );

A21 = A21 / tril( A11 )’;

A22 = A22 - tril( A21 * A21’ );

%------------------------------------------------------------%

[ ATL, ATR, ...

ABL, ABR ] = FLA_Cont_with_3x3_to_2x2( A00, A01, A02, ...

A10, A11, A12, ...

A20, A21, A22, ...

’FLA_TL’ );

end

A_out = [ ATL, ATR

ABL, ABR ];

return

Figure 17: FLAME@lab (Matlab) code for a blocked Cholesky factorization.

6 Representing Algorithms in Code

The notation we presented does not closely resemble how algorithms have traditionally been represented in
code. In this section we show that it is possible to easily define an API for a target language that allows the
code to closely mirror the algorithm.

The translation of the algorithm to traditional Matlab code still introduces a complicated indexing, as is
shown in Fig. 16 for the blocked algorithm of Fig. 4. In order to overcome the indexing, we suggest coding
algorithms in the style illustrated in Fig. 17. For details on this API and similar APIs for other programming
languages, we refer the reader to [5].

The Linear Algebra Package (LAPACK) [1] is a widely used package that supports a broad set of dense
linear algebra operations. It casts most computation in terms of calls to the Basic Linear Algebra Subpro-

20



DO 20 J = 1, MIN( M, N ), NB

JB = MIN( MIN( M, N )-J+1, NB )

*

* Factor diagonal and subdiagonal blocks and test for exact

* singularity.

*

CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )

*

* Adjust INFO and the pivot indices.

*

IF( INFO.EQ.0 .AND. IINFO.GT.0 )

$ INFO = IINFO + J - 1

DO 10 I = J, MIN( M, J+JB+1 )

IPIV( I ) = J - 1 + IPIV( I )

10 CONTINUE

*

* Apply interchanges to columns 1:J-1.

*

CALL DLASWP( J-1, A, LDA, J, J+JB+1, IPIV, 1 )

*

IF( J+JB.LE.N ) THEN

*

* Apply interchanges to columns J+JB:N.

*

CALL DLASWP( N-J-JB-1, A( 1, J+JB ), LDA, J, J+JB+1, IPIV, 1 )

*

* Compute block row of U.

*

CALL DTRSM( ’Left’, ’Lower’, ’No transpose’, ’Unit’, JB,

$ N-J-JB-1, ONE, A( J, J ), LDA, A( J, J+JB ), LDA )

IF( J+JB.LE.M ) THEN

*

* Update trailing submatrix.

*

CALL DGEMM( ’No transpose’, ’No transpose’, M-J-JB-1,

$ N-J-JB-1, JB, -ONE, A( J+JB, J ), LDA,

$ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ), LDA )

END IF

END IF

20 CONTINUE

Figure 18: LAPACK code for blocked LU factorization
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while (b = min(min(FLA_Obj_length( ABR ), FLA_Obj_width( ABR )), nb_alg) )

{

FLA_Repart_2x1_to_3x1( ipivT, &ipiv0,

/* ***** */ /* ***** */

&ipiv1,

ipivB, &ipiv2,

b, /* length ipiv1 split from */ FLA_BOTTOM );

FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ********************* */

/**/ &A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,

b, /* by */ b, /* A11 split from */ FLA_BR );

/* ********************************************************************* */

FLA_LU_unb( A11,

A21, ipiv1 );

FLA_Apply_pivots( FLA_LEFT, FLA_NO_TRANSPOSE, ipiv1, A10,

A20 );

FLA_Apply_pivots( FLA_LEFT, FLA_NO_TRANSPOSE, ipiv1, A12,

A22 );

FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,

ONE, A11, A12 );

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22 );

/* ********************************************************************* */

FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,

/**/ A10, A11, /**/ A12,

/* ************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,

/* with A11 added to submatrix */ FLA_TL );

FLA_Cont_with_3x1_to_2x1( &ipivT, ipiv0,

ipiv1,

/* ***** */ /* ***** */

&ipivB, ipiv2,

/* with ipiv1 added to */ FLA_TOP );

}

Figure 19: FLAME code for blocked LU factorization with partial pivoting (Variant 3).
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grams (BLAS) [24, 9, 8]. A code segment from the LAPACK routine for the blocked LU factorization with
pivoting is given in Fig. 18. Clearly, there is the opportunity for the introduction of indexing errors. Indeed,
we challenge the reader to find the errors that we purposely introduced.

In Fig. 19 we show an implementation of the same algorithm using the FLAME/C API [14]. We be-
lieve that our API naturally captures the algorithm as presented using our notation, thereby reducing the
opportunity for the introduction of inadvertent coding errors. A similar API for FORTRAN has also been
defined. The translation of algorithm to code is essentially equivalent to the application of simple rewrite
rules to that algorithm. Indeed, an API has been defined even for G, the graphical programming language
that underlies LabView [20].

One word on performance: For blocked algorithms the additional cost of hiding intricate indices in code
via the appropriate APIs is amortized over enough computation that it does not adversely affect performance.
Often times the overhead is instead noticeable for unblocked algorithms. However, the code as presented
in Figures 17 and 19 passes to a compiler a lot more high-level information than does code that exposes
intricate indices. Compilers like those pursued by the Broadway project [17] could enable the generation of
highly optimized implementations from algorithms expressed at this level of abstraction.

A recent topic of research relates to the storage of matrices by blocks rather than the traditional row-
or column-major orderings [10, 12, 29]. Our notation and the new APIs allow the very complex indexing
associated with such storage to be completely hidden from the programmer. An alternative (and in our view
better) solution to this problem is to allow matrices to have entries that themselves are matrices, which can
also be accommodated by our notation and APIs [5].

7 Conclusion

The pedagogical contribution of the presented notation is that it allows algorithms to be expressed at the
level of abstraction of the underlying theory. Our notation embraces the notion of subvectors and submatrices
while hiding the physical arrays that store them.

The manner in which compution sweeps through vectors and matrices is often consistent across different
algorithms for computing the same operation. It is how subvectors and aubmatrices are updated that differs.
This important insight is typically obscured by algorithms that explicitly expose indices. Conversely, our
notation highlights this commonality, and thus allows different algorithmic variants to be easily compared
and contrasted. Likewise commonalities and differences between algorithms for different operations can be
exhibited.

The presentation of multiple variants for the same operation leads to some obvious questions. How can
one find all loop-based algorithmic variants for a given linear algebra operation? Are there more variants than
we have presented? Are all variants numerically stable? What are the performance benefits of one variant
over another? What is the relationship between loop-based algorithms and recursive algorithms? Indices
add a level of complexity to the problem that obscures the mathematical statement of these questions and
makes it harder to answer them. Our recent research presents evidence that the proposed notation facilitates
the formal statement of these questions as well as their answers. In [3] we present a systematic approach for
deriving loop-based algorithms. We show the methodology to be sufficiently systematic to enable mechanical
(automatic) generation of algorithms in [4], while initial results regarding numerical stability are given in [6].
A comparative study of the performance benefits for a family of algorithms is provided in [2]. A final comment
on the typesetting of algorithms: we have developed a set of simple commands for typing algorithms using
our notation in LATEX [23]. These commands have been used by undergraduate and graduate students with
no previous exposure to LATEX in classes that we have taught. More information on our research can be
found at http://www.cs.utexas.edu/users/flame/.
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