
Self-Evaluating Compilation

Applied to Loop Unrolling

Nicholas Nethercote, Doug Burger, and Kathryn S. McKinley

The University of Texas at Austin

Abstract. Well-engineered compilers use a carefully selected set of op-
timizations, heuristic optimization policies, and a phase ordering to pro-
duce good machine code. Designing a compiler with one heuristic per
optimization that works well with other optimization phases is a challeng-
ing task. Although compiler designers evaluate the optimization heuris-
tics and phase ordering before deployment, compilers typically do not
statically evaluate nor refine the quality of their optimization decisions
during a specific compilation.
This paper identifies a class of optimizations for which the compiler can
evaluate the effectiveness of its heuristics and phase interactions stati-
cally, and when necessary re-run optimization phases, using information
from the evaluation phase to guide its heuristics. We call this approach
self-evaluating compilation (SEC). This model avoids some of the diffi-
culties of predicting phase interactions, and perfecting any one heuristic.
The SEC model was motivated by loop unrolling and other optimizations
for the TRIPS architecture. TRIPS has a limit on instructions that the
compiler can place in an atomic execution unit (a TRIPS block), yet each
block has a fixed minimum cost. The goal of loop unrolling (and other op-
timizations) is to produce as full a block as possible without exceeding
the block size, since an unnecessary block with a small number of in-
struction degrades performance. Because unrolling enables downstream
optimizations, it needs to occur well before code generation, but this
position makes it impossible to predict the final number of instructions.
However, eventually the compiler generates code and can, on a per-loop
basis, determine if it unrolled too much or too little or just right. If need
be, SEC unrolling then goes back and adjusts the unroll amount ac-
cordingly and reruns subsequent optimization phases. We demonstrate a
prototype SEC unrolling implementation that automatically matches the
best hand unrolled version for a set of microbenchmarks on the TRIPS
architectural simulator.
Although motivated by TRIPS compilation challenges, SEC is broadly
applicable to helping solve compilation phase ordering and heuristic de-
sign for resource constraints such as register and code size limitations
which can be measured statically and occur when compiling for embed-
ded, VLIW, and partitioned hardware.

1 Introduction

This paper introduces a self-evaluating compilation (SEC) model in which the
compiler adjusts its heuristic policies based on static self-evaluation.

1.1 Compiler Phase Ordering and Heuristic Design

Most compilers include numerous optimization phases. Because finding the opti-
mal code transformation is often NP-complete, most optimizations use heuristic
policies. Compiler writers typically tune individual heuristic policies experimen-
tally, based on benchmark behaviors and optimization interactions with previous
and subsequent phases. Since phases interact in complex ways, heuristics are not
necessarily robust to changes made to another phase or due to phase reordering
(e.g., when users specify optimization flags other than the default). To improve
the design of individual heuristics, some researchers have turned to machine
learning to tune transformation policies [1–3]. To solve the phase ordering prob-
lem, compilers have typically relied on a separation of concerns. They typically
postpone the handling of resource constraints until the end of compilation, for
instance, assuming infinite registers for most of compilation and performing reg-
ister allocation near the end. Most compilers never evaluate during a specific
compilation the quality of their upstream predictions. As more resources be-
come constrained, this separation of concerns degrades the compiler’s ability to
produce high quality code due to the increasing difficulty of predicting how early
decisions influence resource constraints.

Increasing hardware complexity is making this problem harder. For instance,
shrinking technology increases clock-speed but exposes wire delays, causing less
and less of the chip to be reachable in a single cycle [4]. To address this problem,
architects are increasingly partitioning resources such as register banks, caches,
ALUs (e.g., partitioned VLIW [5–7] and EDGE architectures [8, 9]), and the
entire chip (e.g., chip multiprocessors). Partitioning exposes on-chip latencies
and resource constraints to the compiler and thus exacerbates the phase ordering
problem and makes the separation of concerns solution with no subsequent static
evaluation less appealing.

The example that motivated the SEC approach is creating blocks full of
useful instructions for the block atomic execution model in EDGE architectures.
Specifically, the TRIPS prototype EDGE architecture has a maximum block
size of 128 instructions which the architecture maps at runtime on to a grid
of 16 processors which hold 8 instructions per block [8, 10]. This mapping has
a fixed overhead. To amortize this overhead and maximize performance, the
compiler tries to fill each block with useful instructions while minimizing the
total number of blocks. For example, loop unrolling is one method the compiler
uses to fill blocks. The compiler performs unrolling early to enable downstream
optimizations such as redundant code elimination. However, if it unrolls too
much, the resulting code has unnecessary blocks, and if it unrolls too little, each
block is less efficient than it could be. Predicting the exact number of instructions
in a block early in the compilation cycle requires modeling the effect of all down
stream optimizations for the specific loop, and is thus virtually impossible.

A simpler, more familiar example is loop unrolling for conventional archi-
tectures. Unrolling enables redundant code elimination and better scheduling,
but too much unrolling can degrade instruction cache locality and cause register
spilling [11]. Spilling is almost always undesirable, since it increases (1) the num-

ber of instructions (loads and stores), (2) latency (two to three cycles in modern
caches compared to single cycle register access), and (3) energy consumption
due to the cache access. To gain the benefits of unrolling, compilers typically
perform it well before register allocation and thus it is difficult for the unroller
to predict how its decisions will affect register spilling.

1.2 Improving Optimization Quality

Previous solutions to solving the phase interaction problem include Dean and
Chambers who explored static evaluation for inlining on other optimization
phases [12] and Brasier et al. who iterated register allocation and instruction
scheduling to resolve their tensions [13]. Both of these approaches require all par-
ticipating phases to annotate and encode the results of their decisions. Thus, each
phase must be appropriately engineered for all interacting optimizations, and
must be cognizant of their phase ordering and influence on other optimization
passes. The SEC model both simplifies and generalizes over these approaches.

Instead of trying to model and perfect all the heuristics and phase interac-
tions, SEC focuses on improving a single optimization heuristic, statically eval-
uates its decisions after performing other interacting phases, and if necessary,
adjusts the heuristic for the particular code fragment and re-optimizes. More
formally, given a sequence of ordered compilation phases {P1, P2, . . ., Pn}, Pi

records its optimization decisions. After some later phase Pk, k > i, a static eval-
uation phase PEi

measures the effectiveness of Pi. If PEi
decides Pi’s decisions

were poor, the compiler uses a checkpoint/rollback mechanism to re-run Pi and
the subsequent phases, feeding back information from PEi

’s static evaluation
to help Pi adjust its heuristic and do a better job. To minimize the additional
compile time, the compiler loops back at most once and/or performs Pi and
subsequent phases on just the affected code fragment, e.g., a loop or procedure.
For repeated compilation of the same code, using a repository would eliminate
repeated iterative compilation [14], or could explore many phase interactions
incrementally, thus keeping the per-compile cost overhead down.

For example, SEC unrolling (Pi) check points the intermediate representa-
tion, and records how many times it unrolls each loop. After other optimizations,
the static evaluation phase (PEi

) counts the instructions in a block. Assume the
best unroll amount is n, if the compiler unrolls too little n− 1, PEi

will go back
and unrolling more, if it unrolls too much by n + 2 PEi

will go back and unroll
less. To go back, the compiler discards the code fragments in question, reloads
the checkpoint, and invokes the loop unroller again, but adjusts its heuristic
using the feedback from PEi

to choose a better unroll factor, and then invokes
subsequent phases.

Not all transformations are suited to SEC. The key requirement is that the
phase Pi can simply and statically record its decisions, and that PEi

can stati-
cally evaluate the resulting code quality. In unrolling, Pi records the number of
iterations it unrolls, and the code generator (or a separate PEi

phase) counts the
instructions in a block. Suitable SEC transformations include any that increase
or change usage of limited resources (such as inlining, unrolling, register alloca-

tion, and scheduling), and have simple evaluation functions (such as instruction
count, registers, loads/stores, or code size).

This paper makes the following contributions.

• Section 3 presents the self-evaluating compilation (SEC) model that gen-
eralizes previous self-evaluating approaches. SEC mitigates the problem of
selecting the perfect heuristic and phase ordering. It is suitable for both
ahead-of-time and just-in-time compilation and can be implemented in var-
ious ways with different simplicity/efficiency trade-offs.

• Sections 4 and 5 evaluate SEC by showing that it improves the effectiveness
of loop unrolling for the TRIPS processor which is particularly sensitive to
choosing the right unroll factor.

• Section 6 lists additional compiler transformations suited to SEC, and a
useful variation called cloning SEC.

Although SEC was motivated by our particular compilation problem on TRIPS,
it is applicable in many more settings. For instance, embedded programs also
have strict instruction space requirements and limited register files. Compilers
for embedded processors could more easily assess the costs and benefits of code
expanding (e.g., inlining, unrolling) and code size reduction (e.g., procedure
abstraction, inlining) transformations with the SEC model.

2 Related Work

This section compares SEC with related work on selecting good optimization
heuristics, phase ordering, and other compiler feedback loops.

2.1 Designing Optimization Heuristics

The difficulty of designing good heuristics for individual optimizations is wit-
nessed by a diversity of advanced approaches [3, 15, 1, 2, 16] that automate this
process. For example, Stephenson et al. [1, 2] use genetic algorithms to derive hy-
perblock formation, register allocation, and prefetching; and supervised learning
for unrolling. Cavazos and Moss [3] use supervised learning to decide whether
to schedule blocks in a Java JIT. SEC is complementary to learning heuristics
that are likely dependent upon phase ordering.

2.2 Phase Interactions

The most closely related work [13, 12] performs static self-evaluation, but is not
as general or as simple as SEC. Brasier et al. use a static feedback loop to re-
duce the antagonism between instruction scheduling and register allocation in a
system called CRAIG [13]. It first performs instruction scheduling followed by
register allocation; if it spills too much, it starts over and does register allocation
before performing incremental instruction scheduling, moving towards late as-
signment. CRAIG thus reorders phases and refines its scheduling heuristic based
on spill feedback. SEC generalizes beyond these two closely related phases by
communicating more information across more phases.

Dean and Chambers use inlining trials to avoid designing a heuristic that
models the exposed optimization opportunities for subsequent phases [12]. After

inlining, each subsequent phase must carefully track how inlining influenced its
decisions. If inlining does not enable optimizations that reduce the resulting code
size (a static measure), the compiler reverses the inlining decision, recompiles
the caller, and records the decision to prevent future inlining of this method
and similar ones. This approach is limited because it requires changes to all
subsequent phases for each optimization it wishes to evaluate. Section 6 describes
how SEC inlining eliminates the need to change all intervening phases.

2.3 Iterative Compilation

Iterative compilation seeks to evaluate the extent of the phase ordering problem
and to improve over default orderings. Iterative compilation turns on or off and
reorders phases and empirically evaluates hundreds or thousands of compile-
execute sequences to find the configuration that produces the fastest or smallest
code for a particular program. Results show that default compiler phase or-
derings and settings are far from optimal [17–20]. Because the configuration
space is huge, researchers use search techniques such as genetic algorithms and
simulated annealing to reduce the number of compile-execute cycles. In com-
parison, SEC chooses one fixed order, but incurs substantially smaller compile
time overheads. Iterative compilation also has the disadvantage that if the com-
piler changes (e.g., adds a new optimization or changes a heuristic), one should
perform the trials again. SEC is more robust to compiler changes.

2.4 Feedback-Directed Optimization

Smith defines feedback-directed optimizations (FDO) [21–24,14] as a family of
techniques that alter a program’s execution based on tendencies observed in its
present or past runs. FDO is orthogonal to SEC since it typically uses dynamic
edge, path, or method profiling to select which code to optimize, and to guide
heuristics. Arnold et al. add a repository to combine online and offline (previously
profiled) optimization plans that incorporate the costs and benefits of online
optimization [14]. SEC instead feeds back static evaluations, e.g., code size or
register usage, and then adjusts heuristics to avoid phase ordering problems, all
without ever executing the program. SEC and FDO are thus complementary.

3 Self-Evaluating Compilation

This section describes SEC in three parts. First, it explains SEC’s most general
form for ahead-of-time compilation. Second, it discusses three specific instances
of SEC, with different simplicity/efficiency trade-offs. Finally, it describes how
SEC can complement just-in-time compilation.

3.1 General SEC

SEC involves the following compiler phases.

run pre(PCP) on all fragments (e.g., loop, module, etc.) 1
for each fragment F 2

Finfo := (empty); N := 0 3
run PCP on F 4
while (true) 5

run between(PCP , Pi) on F 6
run Pi on F, using Finfo if non-empty 7
run between(Pi, PEi

) on F 8
if N < the loop limit 9

run PEi
on F , and record Finfo 10

run between(PEi
, PLB) on F 11

run PLB : if (N = loop limit or F evaluated ok) 12
exit inner loop 13

run PRB on F 14
N := N + 1 15

run post(PLB) on all fragments 16

Fig. 1. Pseudocode of general SEC. pre(P) gives the phases that precede P ;
between(P, Q) gives the phases between P and Q; post(Q) gives the phases that come
after Q.

�

�

�

�1
�

�

�

�
4:PCP

�

�

�

�6
�

�

�

�
7:Pi

�

�

�

�8
�

�

�

�
10:PEi

�

�

�

�11
�

�

�

�
12:PLB

�

�

�

�16

�

�

�

�
14:PRB

Finfo

Fig. 2. Control flow of general SEC. Solid lines represent control flow, dashed lines
represent data flow. The number labels correspond to pseudocode lines in Figure 1.

PCP : Checkpoints code fragments (e.g. saves them to memory or file).
Pi: Transforms/optimizes the code using a heuristic.
PEi

: Evaluates the effectiveness of the Pi transformation.
PLB : Determines if the current code fragment is acceptable or should be

recompiled with a modified heuristic, based on the results of PEi

and the number of times Pi has executed.
PRB : Rolls back to a checkpointed code fragment.

Figure 1 gives the pseudocode for the most general form of SEC. Figure 2 shows
its control flow and data flow in a diagram. SEC involves two main loops. The
inner loop is the heart of SEC. It processes one code fragment at a time, where a
fragment could be a loop, a procedure, or even a whole module. It performs the
transformation phase Pi and subsequent phases, then runs PEi

to evaluate Pi’s
decisions. It uses PRB to roll back the fragment to the version checkpointed by
PCP if necessary, and repeats until the fragment F is deemed “good enough”.
The outer loop iterates through the code fragments one at a time.

Pi and PEi
interact in three key ways. First, Pi must indicate to PEi

what

decisions it made. Pi does this by annotating the code. In our example, Pi

identifies the unrolled loop and the unroll factor to PEi
. Second, PEi

must be able

to meaningfully evaluate Pi’s decisions. PEi
must include a static measurement

that evaluates code quality. A simple example is “this unrolled loop has too many
spills.” The performance improvements obtained with SEC depend heavily on
the accuracy of PEi

’s evaluations. Third, PEi
should help Pi improve its decisions

on any rejected fragment. In our example, PEi
could indicate that the chosen

unroll factor was too high (e.g., more blocks than necessary and at least one
under-full block) or too low (e.g., one under-full with room for more unrolled
iterations), or just right. If needed, the unrolling heuristic then can change the
unroll factor accordingly. Figure 2 depicts this information flow with a dashed
line.

Thus far we have discussed using one Pi/PEi
pair, but the compiler can use

more. For example, one could employ a single large inner loop: perform all the
Pi transformations on a fragment, then later do all the PEi

evaluations, and
if any transformations were unsatisfactory, loop back and redo them all. This
requires only checkpointing once, but all Pi phases would be re-run even if only a
single PEi

evaluation failed. Alternatively, one could employ more checkpointing
and have multiple inner loops, which might overlap or be entirely separate. The
best configuration would depend on how the different Pi phases interact and the
increase in compile time the system is willing to tolerate.

3.2 Specific Instances of SEC

We can partially or fully instantiate general SEC by specifying some or all of its
parameters: the size of each fragment F , the loop limit N , the workings of the
phases Pi, PEi

, PCP , PRB , PLB , and the phases present in each of pre(PCP),
between(PCP , Pi), between(Pi, PEi

), between(PEi
, PLB) and post(PLB). The fol-

lowing paragraphs describe three such general instances, and Section 4 presents
an SEC optimization: unrolling for TRIPS.

A complex but efficient instance. Code fragments are procedures, and
the inner loop executes at most twice. PCP and PRB are simple: PCP saves a copy
of a procedure in memory, and PRB discards the changed code and reverts to the
saved code. The phase sequences between(PCP , Pi) and between(PEi

, PLB) are
empty. We do not specify the other parameters—Pi, PEi

, pre(PCP), between(Pi, PEi
)

and post(PLB)—so this instance still has some generality.

This instance is efficient—it minimizes the number of phases that are re-run,
and the small fragment size reduces phase re-running times and the size of the
checkpoint. However, it requires some structural support in the compiler, e.g., the
ability to run multiple phases in succession on a single procedure. Procedures are
a good general choice for fragments as they are not too big, but are still stand-
alone units. Smaller units are possible, but it would require more work to join
up a re-compiled fragment with other sub-procedure fragments. The efficiency
of this instance depends on how often Pi makes bad decisions; if it makes no bad
decisions, no phase re-running will occur at all.

First pass Second pass
�

�

�

�6
�

�

�

�
7:Pi

�

�

�

�8
�

�

�

�
10:PEi

�

�

�

�11
�

�

�

�6
�

�

�

�
7:Pi

�

�

�

�8
�

�

�

�11

Finfo

Fig. 3. Control flow of an easy-to-implement instance of SEC. Solid lines represent
control flow, dashed lines represent data flow. The number labels correspond to pseu-
docode lines in Figure 1.

A simpler instance. A variant of the first instance involves changing the
size of the code fragments to an entire module, which effectively removes the
outer loop. This structure is less efficient—checkpointing and possibly re-running
phases for the entire module—but simpler to implement. Note that although the
fragment size is a whole module, the heuristics are adjusted at a finer level. For
example, with loop unrolling PEi

will include information about every unrolled
loop in Finfo . As a result, the fragment size does not affect accuracy, only the
amount of checkpointing and phase re-running performed.

An easy-to-implement instance. At the other end of the complexity/efficiency
spectrum is the instance shown in Figure 3. The compiler runs to completion
twice. In the first pass PEi

writes Finfo for the whole module to a file. In the
second pass Pi reads Finfo from this file and adjusts its decisions accordingly;
PEi

does not need to be re-executed. Each code fragment is an entire module.
PCP and PRB are no-ops; since the compiler runs twice, the original source code
serves as the checkpoint. Both pre(PCP) and post(PLB) are empty.

This instance is an excellent way to trial SEC in an existing compiler, since
the only change needed is support for writing and reading the data file; the inner
loop can be implemented by a wrapper script. (We implemented SEC exactly
this way for our evaluation in Section 5; Section 4.3 has more details.) And even
though it sacrifices efficiency for simplicity, it only doubles compilation time.

4 An SEC Example: Loop Unrolling for TRIPS

In this section we review loop unrolling, describe the TRIPS architecture and
the unique challenges it poses to the loop unroller, and explain how we use SEC
to guide loop unrolling in the TRIPS compiler.

4.1 Loop Unrolling

Loop unrolling is a common transformation which duplicates a loop’s body one
or more times. The unroll factor is the number of copies of the loop body in the
final unrolled loop; an unroll factor of one means no unrolling. The simplest case
is when the loop trip count is known statically and the unroll factor divides it
evenly; the unrolled loop on the right has an unroll factor of three.

for (i = 0; i < 120; i++) { for (i = 0; i < 118; i += 3) {

b(i); => b(i); b(i+1); b(i+2);

} }

We restrict this discussion to loops with sufficiently large trip counts, but the
same framework flattens loops with small trip counts. If the loop trip count is
known statically but the unroll factor does not divide it evenly, or the loop trip
count is statically unknown but invariant, a “clean-up” loop performs the final
few iterations. If the trip count is known statically, the clean-up loop can be
flattened.

for (i = 0; i < n; i++) { for (i = 0; i < n-2; i += 3) {

b(i); => b(i); b(i+1); b(i+2);

} }

for (; i < n; i++) {

b(i);

}

Loop unrolling can improve program performance on traditional architectures in
two ways. First, the unrolled loop requires fewer instructions, because there are
fewer loop tests and backward branches, and in some forms, fewer updates of the
index variable. Second, it enables other optimizations. For example, if the body
loads or stores the same memory location on distinct adjacent iterations, scalar
replacement can replace some memory accesses with register accesses. Also, loop
unrolling exposes instruction level parallelism (ILP) allowing better instruction
scheduling.

Loop unrolling may degrade performance if loops are unrolled too much. For
example, it can increase register pressure if scalar replacement uses too many
registers and causes spilling. Another potential problem is that the increased
code size can degrade the performance of the instruction cache.

4.2 TRIPS

TRIPS is a prototype implementation of a new class of microprocessor architec-
tures called EDGE (Explicit Data Graph Execution) designed to provide high
performance and low power consumption in the face of technology trends such
as increasing clock speed and increasing wire delays [8, 25, 10]. The prototype
design is complete and working chips should be operational in 2006.

Unlike traditional architectures that operate at the granularity of a single
instruction, EDGE ISAs are based on blocks of instructions. EDGE architec-
tures implement serial, block-atomic execution, mapping each block on to the
ALU grid (as depicted in Figure 4), executing it atomically, committing it, and
fetching the next block. Execution within blocks is purely dataflow, so that each
instruction forwards its results directly to its consumers in that block without
going through a shared register file (registers are only used for inter-block value
passing). Each block is a hyperblock—a single-entry, multiple-exit set of predi-
cated basic blocks [26, 27]—with some additional constraints [8].

In the TRIPS prototype, a key constraint is that each block is fixed-size and
holds at most 128 instructions. Each ALU in the 4 × 4 ALU grid has up to 8
instructions in each block mapped onto it (4×4×8 = 128). Up to 16 instructions
can execute per cycle, one per ALU. Up to 8 blocks can be in-flight at once (7
of them speculatively), resulting in a 1,024-wide instruction window.

Fig. 4. The TRIPS prototype compilation target.

The biggest challenge for the TRIPS compiler [10] is to create blocks full
of useful instructions; ideally it will produce high quality blocks with close to
128 instructions, maximizing ILP and minimizing the fixed per-block execution
overheads. To achieve this goal, the compiler’s main tools are the use of predi-
cation to include multiple basic blocks in each TRIPS block, inlining, and loop
unrolling. The TRIPS compiler also uses SEC block combining.

4.3 Challenges for Loop Unrolling on TRIPS

To maximize TRIPS performance, the loop unroller would ideally produce un-
rolled loops containing exactly, or slightly less than, 128 instructions. This re-
quirement presents quite a challenge for upstream optimizations such as un-
rolling. Consider a loop with a known trip count of 120, in which each loop body
has 31 instructions, and the loop test and exit are 4 instructions. If the unroll
factor is 3, the block size is 31 × 3 + 4 = 97 instructions, and the loop will
execute in 40 blocks.

In comparison, an unroll factor of 4 yields a block size of 31 × 4 + 4 = 128
instructions, and the loop will execute in only 30 blocks. However, if the size of
the loop body is 32 instructions, an unroll factor of four produces a loop size of
132 instructions which requires two TRIPS blocks, and 60 block executions. An
unroll factor of 2 produces this same result.

This example demonstrates that accurate instruction counts are vital for
loop unrolling on TRIPS; in some cases, even underestimating the size of a
loop body by one instruction can harm code quality. This example assumes that
all duplicated loop bodies have the same size, but downstream optimizations
like common subexpression elimination and test elision will change the resulting
code size further complicating the unrollers job. The TRIPS compiler performs
unrolling early in the optimization sequence because many optimizations, such as
scalar replacement, can further improve code quality after unrolling. Therefore,

accurate instruction counts are not available to the unroller and become available
only near the end of compilation. We use SEC to solve this problem.

4.4 SEC Heuristic Adjustment

We currently use the simple two-pass SEC instance described in Section 3.2. In
the first pass, the compiler performs the phases pre(Pi) (represented by box 6
in Figure 3), which include parsing, inlining, and conversion to a static-single
assignment, control flow graph intermediate (IR) form. The loop unroller (Pi)
then executes for the first time. For each candidate loop, it estimates the number
of TRIPS instructions in the loop body (SB), and the loop and exit tests (SE) by
examining each IR instruction in the loop. If SB + SE > 128, no unrolling takes
place, otherwise it selects an unroll factor of U1 = (128−SE)/SB. Loops that are
larger than half a block are therefore never unrolled; we have experimented with
trying to unroll to fit three loop bodies in two blocks, but with little success.
One exception is that the unroller flattens loops with a known loop bound up to
512 instructions. Because flattened loops have no back edges, subsequent phases
can easily merge them with surrounding blocks.

After unrolling, Pi marks the unrolled loops with the estimated sizes. The
compiler then performs the phases in between(Pi, PEi

) (box 8 in Figure 3), which
in the TRIPS compiler include many optimizations (scalar replacement, constant
propagation, global value numbering, etc.), code generation, and hyperblock for-
mation. PEi

then measures the actual sizes of the unrolled loops—accurate mea-
surements are now possible—and writes its measurements (Finfo) to the data
file. The final phases in post(PEi

) then run; they include splitting of too-large
blocks, register allocation, and instruction scheduling.

The second pass is like the first except Pi does not use IR-based loop size
estimation. Instead, for each unrolled loop it reads from the data file (Finfo) the
measured size of the entire unrolled loop (SL) and the loop test and exit (SE2). It
then estimates the size of each loop body as SB2 = (SL−SE2)/U1. This estimate
is imperfect because the iterations in an unrolled loop are not always exactly the
same size, but it improves over the IR-based estimate (Section 5.1 quantifies the
difference). With this more accurate loop size estimate, it can now compute the
new unroll factor, U2 = (128−SE2)/SB2, and compilation continues to the end.

This application of SEC results in fuller TRIPS blocks, reducing the block
execution count and speeding up programs, as the next section shows.

5 Evaluation

This section evaluates SEC’s effectiveness in improving loop unrolling for TRIPS.
Because TRIPS hardware is not yet available, we use a simulator for our ex-
periments. It is cycle-accurate and slow, so we use only microbenchmarks for
our evaluation. The suite consists of 14 microbenchmarks containing key inner
loops extracted from SPEC2000, five kernels from an MIT Lincoln Laboratory
radar benchmark (doppler GMTI, fft2 GMTI, fft4 GMTI, transpose GMTI, for-
ward GMTI), a vector add kernel (vadd), a ten-by-ten matrix multiply (ma-
trix 1), and a discrete cosine transform (dct8x8). Because these benchmarks are
all dominated by loops, the unrolling benefits should be large.

Unrolling Policies
Block Count Reduction Cycle Count Reduction

none by 3% Est% SEC% none by 3% Est% SEC%

art 2 22061 66.3 66.3 84.9 504565 61.6 61.6 79.1
vadd 54334 84.0 84.1 84.1 439449 71.9 73.3 73.3
transpose GMTI 78349 83.8 83.8 83.8 1027366 75.4 75.5 75.5
matrix 1 24665 81.5 81.5 81.5 383814 68.7 68.7 68.7
art 3 30051 49.9 76.8 80.9 443259 47.8 70.0 68.9
art 1 16651 64.3 66.2 78.9 233755 50.5 56.7 67.4
twolf 1 38631 53.7 65.3 76.6 689344 57.7 58.4 62.7
twolf 3 14051 49.8 49.7 66.3 673539 2.3 2.8 6.3
gzip 1 2395 32.9 54.7 57.3 24664 -10.1 -5.8 -2.3
bzip2 2 32911 44.7 51.7 52.5 426155 31.4 38.8 41.0
bzip2 1 15682 0.2 0.2 49.6 410409 30.9 31.2 39.5
doppler GMTI 11190 43.8 12.5 37.5 396943 21.0 15.7 24.4
equake 1 16405 62.2 37.3 37.3 331378 55.1 43.9 43.9
gzip 2 8986 40.6 30.2 30.2 129110 48.5 31.7 31.7
forward GMTI 11825 -5.1 13.5 13.5 392571 11.0 14.7 14.7
ammp 2 30951 5.5 16.5 11.0 910693 32.1 36.0 34.7
ammp 1 60751 0.0 8.9 8.9 1891762 0.0 -8.1 -8.1
dct8x8 3046 9.2 4.2 4.2 61756 11.8 41.2 41.2
parser 1 7051 -33.0 0.0 0.0 225255 11.6 6.1 0.0
bzip2 3 15531 0.0 -48.3 0.0 400906 14.0 -1.6 0.0
fft4 GMTI 9745 -9.2 -8.2 -8.2 142233 -8.8 -10.6 -10.6
fft2 GMTI 8378 -23.3 -9.5 -9.5 245022 -10.9 -2.7 -2.7

arith. mean 31.9 33.5 41.9 30.6 31.7 34.1

Table 1. Block and cycle results for unrolling. Column 1 gives the benchmark name.
Column 2 (none) gives the number of blocks executed with no unrolling. Columns 3–5
give the percentage reduction in the number of blocks executed vs. no unrolling: column
3 (by 3%) is default unrolling, column 4 (Est%) is IR size estimation only, column 5
(SEC%) is SEC. Columns 6–9 give the corresponding cycle results.

5.1 Goals

SEC unrolling has three goals: 1) to improve the size estimates and thus produce
fuller blocks; 2) to execute fewer blocks at runtime because each block is fuller;
and 3) to ultimately speed up the program by reducing the time required to map
blocks onto the ALU grid, and by exposing more ILP.

5.2 Results

SEC works well in improving the unroller’s estimates of loop sizes, the first goal.
The microbenchmark suite has 33 candidate loops. On the first pass, using the
IR-based loop size estimator, the average relative error of this estimate was 61%.
On the second pass, using the back end measurements of the resulting loop sizes,
the average relative error was 6%. Most of the estimates by the second pass were
within 1 or 2%; the worst result was a 24% underestimate. Poor final estimates
correlated with the worst initial estimates, since the unroll factor chosen in the
second pass was quite different from the first pass, and thus there was more room

for error. Performing this cycle a third time attains small improvements, but is
not worth the extra compilation time.

Table 1 quantifies how well SEC unrolling achieves the second and third
goals. We perform the following four experiments.

• No unrolling (none).
• Default unrolling (by 3): unroll by three for unknown loop bounds; for known

bounds, flatten loops if the flattened size is less than 200 statements; other-
wise choose an unroll factor based on an IR estimate.

• IR code estimation (Est): the compiler estimates the number of TRIPS in-
structions from the IR.

• SEC corrected estimation (SEC): uses the two-pass compiler structure and
phases described above.

On average, SEC decreases the average number of blocks executed by 10% over
the default unroller, and 8% over Est. It attains this result by substantial im-
provements over default unrolling on art 2, art 3, twolf 1, twolf 3, and bzip2 1,
and avoiding the substantial degradations of Est and default on parser 1, bzip2 3,
and fft2 GMTI. For art 2 and art 3 the improvement comes from SEC using
higher unroll factors (6 and 8 instead of 3) for loops with small bodies; for the
others the improvement comes from choosing lower unroll factors (e.g. 2 instead
of 3, 3 instead of 6) for loops with larger bodies, so that the entire unrolled loop
fits within one block. Est is only marginally better than the default non-TRIPS-
specific policy, which shows that the TRIPS-specific unrolling policy is of little
use without SEC’s accurate size estimates.

The cycle count improvements with SEC are smaller than the block count
improvements. This is due to architectural complications that are beyond the
scope of this paper. However, these results are more encouraging than they seem.
Currently the TRIPS compiler does not perform instruction-level hyperblock
optimizations, so the code it produces still has some “fat”. Experiments with
hand-coded microbenchmarks show that cycle count improvements due to loop
unrolling increase as code quality goes up. For example, we have seen that better
scalar replacement reduces twolf 3’s run-time by around 20%.

Taken together, the dynamic block size and block execution results demon-
strate that SEC can help bridge the phase ordering problem and provide im-
proved heuristics for loop unrolling.

6 Discussion

This section describes other potential SEC optimizations SEC instances for mit-
igating its compilation time, and how to integrate SEC in a JIT compiler and
with interprocedural optimizations.

6.1 Other Potential SEC Optimizations

This section describes other optimizations that interact with resource usage and
are thus amenable to static evaluation with SEC.

• Loop unrolling can also increase register spilling. PEi
could decide to reject

any loop in which unrolling causes a register spill.

�

�

�

�
pre(PCL)

�

�

�

�
PCL

�

�

�

�
Pi2

�

�

�

�
Pi1

�

�

�

�
between(Pi, PEi

)

�

�

�

�
between(Pi, PEi

)

�

�

�

�
PEi

�

�

�

�
post(PEi

)

Fig. 5. Control flow of cloning SEC.

• We are currently integrating SEC into the TRIPS compiler to improve
TRIPS block formation. When considering the inclusion of multiple basic
blocks for a single TRIPS block, it is difficult to estimate the resulting block
size beforehand because of subsequent optimizations (just like unrolling for
block size). Instead, we optimistically and incrementally combine blocks, run
the optimizations on the the resulting hyperblock, and roll back if it exceeds
128 instructions.

A variant called cloning SEC removes the feedback loop but still uses static
evaluation. Its control flow is shown in Figure 5. Instead of PCP checkpointing
the code, a cloning phase PCL makes one or more temporary clones of a code
fragment. Pi then runs in a different way on each clone. After the intervening
phases are run on each clone, PEi

then statically compares the clones and chooses
the best one, discarding the others. This approach is most useful when Pi can
choose between only a small number of possible transformations (e.g. whether
to inline a particular procedure call or not). The following list gives some cases
where this variation might be applicable.

• If Pi is an inliner, PEi
could evaluate whether inlining increases register

spills or bloats the code too much by comparing fragments in which calls
were inlined and fragments in which they were not. This approach achieves
a similar goal to inlining trials [12] but does not require the phases between Pi

and PEi
to track any additional information. This application is interesting

for embedded platforms where code size is critical.
• Procedure abstraction—in which the compiler factors out matching code se-

quences into a procedure [28]—is sometimes used to reduce code size. How-
ever code size might increase if the register allocator must spill around the
call. Cloning SEC could choose the clone that did not have procedure ab-
straction applied if it ended up being smaller.

• The TRIPS compiler’s back end estimates code size before splitting too-
large blocks, as Section 4.3 described. Sometimes its estimates are inaccu-
rate, partly because the compiler performs some optimizations (e.g. peephole
optimizations) after block splitting, and partly because the estimation is con-
servative in various ways. Cloning SEC could select an unsplit block if it ends
up fitting within 128 instructions.

• Vectorizing compilers targeting SIMD instruction sets will often unroll a loop
by 2 or 4 with the goal of converting groups of scalar operations into single
SIMD instructions. Scalar code in the loop body can prevent this transfor-
mation from working, in which case no unrolling is probably preferable, but

it is difficult to predict at loop unrolling time. Cloning SEC could be used
to discard any unrolled loops that failed to be vectorized.

The common theme to these uses is that Pi transforms the code in a way that
can result in better (faster and/or smaller) code, but puts stress on a limited
machine resource such as registers or TRIPS block sizes. PEi

then evaluates
whether the increased resource stress is just right or too much or if more stress
could be tolerated. However, SEC must be applied judiciously to select opti-
mizations due its increased compile time that is proportional to the number of
SEC optimizations.

6.2 Just-In-Time and Interprocedural Compilation

SEC can be used as-is in a just-in-time (JIT) compiler. However, many JIT com-
pilers use staged dynamic optimization. This mechanism offers an opportunity
to improve the efficiency of self-evaluation by eliminating the usual re-running
of phases. Instead, the JIT compiler can piggyback the inner loop phases PLB

and PRB onto its existing recompilation loop. This formulation would also com-
plement Arnold et al.’s repository for combining on-line and off-line profiling in
a JIT by providing more accurate benefit measurements [?].

SEC would operate on the JIT’s existing recompilation unit (e.g., methods)
along with its existing PCP and PRB phases. When PEi

evaluates Pi’s decisions,
rather than immediately rejecting substandard code, it records Finfo (e.g., code
size, register spills, etc.) and executes this initial version of the code. If a frag-
ment is hot and worth recompiling, PRB is invoked on it as usual, and Pi can
use Finfo to improve its heuristics during recompilation. This structure elimi-
nates the additional compile-time cost that SEC incurs, requires no additional
checkpointing cost (because it utilizes the JIT compiler’s existing checkpointing
mechanism), and still gains its benefits for hot methods. The only addition re-
quired is the ability to record Finfo (which is typically compact) for each code
fragment.

Another important consideration for SEC is interprocedural analysis. If the
fragment size is less than a whole module, any interprocedural analysis must
take place during pre(PCP) or post(PLB); any analysis between PCP and PLB

might be invalidated by the per-fragment re-running of phases. This requirement
is unlikely to cause problems in practice.

7 Conclusion

We presented a general model of self-evaluating compilation (SEC), in which a
compiler adjusts its heuristic policies based on static self-evaluation. Implement-
ing SEC efficiently in an ahead-of-time compiler requires significant effort, but
one can easily test if it will be worthwhile with the simple two-pass instance from
Section 3.2. JIT compilers with multiple levels of optimization can easily incor-
porate SEC by piggybacking SEC’s evaluation and heuristic tuning on existing
recompilation frameworks. These characteristics are desirable in a field that is
full of clever but complex ideas that do not make it into production compilers—

as Arch Robison noted [29]: “Compile-time program optimizations are similar
to poetry: more are written than actually published in production compilers.”

This paper also identified previous instances of static self-evaluation in the
literature, showed how SEC generalizes them, and described a number of addi-
tional optimization heuristics and phase orderings which could benefit from this
approach. It illustrated effective SEC loop unrolling for the TRIPS architecture
in which the compiler corrected its unrolling heuristic to meet the TRIPS block
size constraints in a simple two pass SEC instance. Furthermore, simulation re-
sults demonstrated that this self-adjusting heuristic improved performance by
reducing the number of executed blocks.

References

1. Stephenson, M., Amarasinghe, S., Martin, M.C., O’Reilly, U.M.: Meta optimiza-
tion: Improving compiler heuristics with machine learning. In: Proceedings of PLDI
2003, San Diego, CA (2003)

2. Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised classi-
fication. In: The International Conference on Code Generation and Optimization,
San Jose, CA (2005)

3. Cavazos, J., Moss, J.E.B.: Inducing heuristics to decide whether to schedule. In:
Proceedings of PLDI 2004, Washington, DC (2004) 183–194

4. Agarwal, V., Hrishikesh, M., Keckler, S.W., Burger, D.: Clock rate versus IPC:
The end of the road for conventional microarchitectures. In: Proceedings of the
27th International Symposium on Computer Architecture. (2000) 248–259

5. Kailas, K., Ebcioglu, K., Agrawala, A.K.: CARS: A new code generation framework
for clustered ILP processors. In: International Symposium on High-Performance
Computer Architecture. (2001) 133–143

6. Kessler, C., Bednarski, A.: Optimal integrated code generation for clustered VLIW
architectures. In: Joint Conference on Languages, Compilers and Tools for Em-
bedded Systems. (2002) 102–111

7. Zhong, H., Fan, K., Mahlke, S., Schlansker, M.: A distributed control path archi-
tecture for vliw processors. In: International Conference on Parallel Architectures
and Compilation Techniques, Washington, DC (2005) 197–206

8. Burger, D., Keckler, S.W., McKinley, K.S., et al.: Scaling to the end of silicon with
EDGE architectures. IEEE Computer (2004) 44–55

9. Nagarajan, R., Burger, D., McKinley, K.S., Lin, C., Keckler, S.W., Kushwaha,
S.K.: Instruction scheduling for emerging communication-exposed architectures.
In: International Conference on Parallel Architecture and Compiler Techniques,
Antibes Juan-les-Pins, France (2004) 74–84

10. Smith, A., Burrill, J., Gibson, J., Maher, B., Nethercote, N., Yoder, B., Buger, D.,
McKinley, K.S.: Compiling for edge architectures. In: The International Conference
on Code Generation and Optimization. (2006) To appear.

11. Callahan, D., Carr, S., Kennedy, K.: Improving register allocation for subscripted
variables. In: Proceedings of PLDI 1990, White Plains, NY (1990) 53–65

12. Dean, J., Chambers, C.: Towards better inlining decisions using inlining trials. In:
Proceedings of LFP ’94, Orlando, FL (1994) 273–282

13. Brasier, T.S., Sweany, P.H., Carr, S., Beaty, S.J.: CRAIG: A practical framework
for combining instruction scheduling and register assignment. In: International
Conference on Parallel Architecture and Compiler Techniques, Cyprus (1995)

14. Arnold, M.R., Welc, A., Rajan, V.T.: Improving virtual machine performance
using a cross-run profile repository. In: ACM Conference Proceedings on Object–
Oriented Programming Systems, Languages, and Applications. (2005) 297–311

15. Moss, J.E.B., Utgoff, P.E., Cavazos, J., Precup, D., Stefanovic, D., Brodley, C.,
Scheeff, D.: Learning to schedule straight-line code. In: Neural Information Pro-
cessing Systems – Natural and Synthetic, Denver, CO (1997)

16. Yotov, K., Li, X., Ren, G., Cibulskis, M., DeJong, G., Garzaran, M.J., Padua, D.,
Pingali, K., Stodghill, P., Wu, P.: A comparison of empirical and model-driven
optimization. In: Proceedings of PLDI 2003, San Diego, CA (2003) 63–76

17. Almagor, L., Cooper, K.D., Grosul, A., Harvey, T.J., Reeves, S.W., Subramanian,
D., Torczon, L., Waterman, T.: Finding effective compilation sequences. In: Pro-
ceedings of LCTES 2004, Washington, DC (2004)

18. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space
using genetic algorithms. In: Proceedings of LCTES ’99, Atlanta (1999) 1–9

19. Haneda, M., Knijnenburg, P.M.W., Wijshoff, H.A.G.: Automatic selection of com-
piler options using non-parametric inferential statistics. In: International Con-
ference on Parallel Architecture and Compiler Techniques, St. Louis, MO (2005)
123–132

20. Ladd, S.R.: Acovea: Using natural selection to investigate software complexities
(2003) http://www.coyotegulch.com/products/acovea/.

21. Alpern, B., Attanasio, D., Barton, J.J., et al.: The Jalapeño virtual machine. IBM
System Journal 39 (2000)

22. Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.: A survey of adaptive
optimization in virtual machines. IEEE Computer 93 (2005)

23. Smith, M.D.: Overcoming the challenges to feedback-directed optimization. In:
Proceedings of Dynamo ’00, Boston, MA (2000) 1–11

24. Sun MicroSystems: The Sun HotSpot compiler (2005)
http://www.sun.com/software/communitysource/hotspot/.

25. Nagarajan, R., Sankaralingam, K., Burger, D., Keckler, S.W.: A design space
evaluation of grid processor architectures. In: Proceedings of MICRO34, Austin,
TX (2001) 40–53

26. Fisher, J.A.: Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers C-30 (1981) 478–490

27. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective
compiler support for predicated execution using the hyperblock. In: Proceedings
of MICRO25, Portland, OR (1992) 45–54

28. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 52 (1996) 28–42

29. Robison, A.D.: Impact of economics on compiler optimization. In: Proceedings of
the ACM 2001 Java Grande Conference, Palo Alto, CA (2001) 1–10

