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Abstract

We consider a network where users can issue certificatesdiwatify the public keys of other
users in the network. The issued certificates in a networlstdore a set of certificate chains
between users. A user can obtain the public key of other userfrom a certificate chain from
u to v in the network. For the certificate chain fromto v, u is called the source of the chain
andv is called the destination of the chain. Certificates in edtdircare dispersed between the
source and destination of the chain such that the followimdition holds. If any uset needs to
securely send messages to any other wsigr the network, then, can use the certificates stored
in v andwv to obtain the public key of (thenw can use the public key af to set up a shared key
with v to securely send messagesv)o The cost of dispersing certificates in a set of chains among
the source and destination users in a network is measureldebtotal number of certificates that
need to be stored in all users. A dispersal of a set of cettfichains in a network is optimal if
no other dispersal of the same chain set has a strictly loast: ¢tn this paper, we show that the
problem of computing optimal dispersal of a given chain seNP-Complete. Thus, minimizing
the average number of certificates stored in any node is NRplate. We identify three special
classes of chain sets that are of practical interests andedgwee polynomial-time algorithms that
compute optimal dispersals for each class. We also preserpidlynomial-time extensions of these

algorithms for more general classes of chain sets.
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|. INTRODUCTION

We consider a network where users would like to send messagesely to other users. A

user who would like to send a secure message is calkmlieceand a user who is intended



to receive such a message is calledestination

In the Internet, it is common that one source may wish to semdsages to many
destinations. For example, a source Alice may wish to sendteelit card number securely
to several destination shopping sites, say Amazon.comy.e@a, and priceline.com. The
secure communication between a source and a destinatiatiscfed by encrypting each
exchanged message with a shared key only known to the sondcdestination.

In this network, each user, whether source or destination, has a private kkey and a
public keybk,. In order for a source, to share a keyk with a destinatiorw, u encrypts
key sk using the public keyk, of v and send the result, denoté#,{sk}, to v. Only v
can decrypt this message and obtain k&yshared withu. This scenario necessitates that
knows the public keyk, of v. In the above example, Alice needs to know the public keys
of Amazon, eBay, and priceline.

If a useru knows the public keyk, of another usew in the network, then;, can issue
a certificate, called a certificate fromto v, that identifies the public keyk, of v. This
certificate can be used by any user that knows the public key tf further acquire the
public key ofv.

A certificate fromu to v is of the following form:
rky < u,v,bk, >

This certificate is signed using the private key, of u, and it includes three items: the
identity of the certificate issuer, the identity of the certificate subjeet and the public key
of the certificate subjedik,. Any user that knows the public kéy, of v can usebk, to
obtain the public keyk, of v from the certificate from: to v. Note that when a user obtains
the public keybk, of userv from the certificate, the user not only finds out wha{ is, but
also acquires the proof of the association thiat is indeed the public key of user.

The certificates issued by different users in a network camepeesented by a directed
graph, called theertificate graplof the network. Each node in the certificate graph represents
a user in the network. Each directed edge from noed®e nodew in the certificate graph

represents a certificate fromto v in the network.
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Fig. 1. A certificate graph of Alice and Bob

Fig. 1 shows a certificate graph for a network with two sourédige and Bob, and six

destinations, Amazon, eBay, priceline, Amex, Visa, andcBier. According to this graph,

Alice issues three certificates
(Alice, Amazon), (Alice, eBay), and (Alice, priceline), and
Bob issues three certificates

(Bob, Amex),(Bob, Visa), and Bob, Discover)

A more efficient way to support secure communication betwten sources and the
destinations is to introduce some intermediaries betwhensburces and the destinations.
The number of introduced intermediaries is much smallen e number of sources and
the number of destinations. Each intermediary has its ovslipand private key pair. The
sources know the public keys of intermediaries and the nme€eliaries issue certificates of
the public keys of the destinations. For example, two intsfiaries, namely VeriSign and
CertPlus, can be introduced between the two sources andxtlestinations in Fig. 1. The

result is the certificate graph in Fig. 2.

Fig. 2. A certificate graph with intermediaries

According to the certificate graph in Fig. 2, Alice needs tsues only one certificate

to VeriSign and Bob needs to issue only one certificate to Rlgst Alice can then use
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the two certificates Alice, VeriSign) and (VeriSign, Amazon) to obtain the public key
bk amazon, @nd so can securely send messages to Amazon. Also, Bob eatheistwo
certificates(Bob, Cert Plus) and (CertPlus,Visa) to obtain the public keyky;,,, and
then can securely send messages to Visa.

Note that there is a certificatd ériSign, Amex) in the certificate graph in Fig. 2 that
is not needed to support secure communication between amgesand any destination in
Fig. 1. This redundancy is removed by specifying which ‘iéiegte chains” are being used
by the sources and destinations. Certificate chains areedeéia follows:

A simple path from a source to a destinatior in a certificate grapld- is called achain
from v to v in G. u is the sourceof the chain andv is the destinationof the chain. For
usersu andwv in a certificate graplhG, if « wishes to securely send messages tdhen
there must be a chain fromto v in G. On the other hand, if there is a chain framrto v,
thenwu does not necessarily wish to securely send messagesFig. 3 shows the six chains
that are needed to support the secure communications betlvedwo sources and the six
destinations in Fig. 1. Since Alice does not need to secuwelymunicate with Amex, the

certificate chain Qlice, VeriSign),(VeriSign, Amex) in the certificate graph in Fig. 2 is

Fig. 3. Certificate chains from Fig. 2

not included in Fig. 3.

The certificates in each chain need to be dispersed betweesotlrce and destination of
the chain such that if a souraewishes to securely send a message to a destinatiben
u can obtain the public key af from the set of certificates stored inandv. (Note that to
“store a certificate in a user” does not necessarily meanthieatiser has a local copy of the

certificate. Rather, it means that the user only needs to kmgre to find the certificate, if



a need for that certificate arises, either in its local steragin a remote location.)
For example, assume that each source in Fig. 3 stores iifozeet to the corresponding
intermediary, and that each destination in Fig. 3 storesémgficate from its corresponding

intermediary to itself. Thus,
Alice stores the certificated(ice, VeriSign),

Bob stores the certificateBpb, CertPlus),
Amazon stores the certificat® ¢riSign, Amazon),
eBay stores the certificat® ériSign, eBay),
priceline stores the certificatd ériSign, priceline),
Amex stores the certificateCert Plus, Amex),
Visa stores the certificate’ert Plus, Visa), and

Discover stores the certificat€'ért Plus, Discover)

In this case, if Alice wishes to securely send messages telpre, then Alice can use the
two certificates stored in Alice’s computer and pricelinebgige to obtain the public key
of priceline and securely send the messages to pricelindifiCates that are not part of
any chain are not stored because they are not needed. Thilgsisated by the certificate
(VeriSign, Amez), which appears in Fig. 2 but is not stored in Amex.

Dispersal of certificate chains and its cost are defined iti@et. In Section IIl, we show
that finding an optimal dispersal of any set of chains is NRyglete. Thus it becomes of
interest to characterize the special cases of practicaidst where the problem can be solved
efficiently, as well as effective heuristic algorithms tdveogeneral instances of problems.
Subsequently, we identify three special classes of chamtlat are of practical interests and
devise three polynomial-time algorithms that computeroptidispersals for each class. For
instance, the example dispersal above reflects the cewifiispersal in Secure Socket Layer
(SSL). Such chain sets are defined as “short” chain sets itioBely/, and we present an
algorithm that computes an optimal dispersal of any givesrtsthain set. We also present

two extensions of these algorithms for more general clagbebain sets.



[I. CERTIFICATE DISPERSAL

In this section, we introduce definitions and notations tecdée the optimal dispersal
and prove two theorems of the properties of an optimal dssper

A certificate graphG is a directed graph in which each directed edge, calledrtficate
is a pair {, v), whereu andwv are distinct nodes i¢7. For each certificateu( v) in G, u
is called theissuerof the certificate and is called thesubjectof the certificate. Note that
according to this definition no certificate has the same nadeoth its issuer and subject.

A sequence of certificates( vi)(vi, v2)- - - (vk_1, vi) iN a certificate grapldz, where the
nodesvy, vy, - -+, v; are all distinct, is called ahain from v, to v in G. Nodew, is called
the sourceof the chain and node, is called thedestinationof the chain. A set of chains in
a certificate graplt is called achain setof G.

A dispersalD of a chain setC'S assigns a set of certificates @S to each source node
and each destination node @hS such that the following condition holds. The certificates in
each chain from a source nodeto a destination node in C'S are in the setD.u U D.v,
whereD.u and D.v are the two sets of certificates assigned by dispdpstd nodesu and
v, respectively. Thus, given a chain @S, the source node and the destination node of
the chain can find all the certificates in the chain in the/3etU D.v. When the source node
u and the destination node need to search for a chain fromto v, then they can simply
mergeD.u and D.v to construct a certificate graght, ,, and search for a simple path from
u to v in G,,. If there is a simple path from to v in G,,, then this path is a certificate
chain fromu to v. On the other hand, if there is no path framo v in G, ,, then nodes:
andv recognize that there was no certificate chain in the git/éh

Let D be a dispersal of a chain sétS. The costof dispersalD, denotedcost.D, is the
sum of the number of certificates in the sets assigned by @dighP to every source or
destination node irC'S.

cost.D = Z |D.v|

vis a source or destination nodeGts

A dispersalD of a chain setC'S is optimal if and only if for any other dispersaD’ of



the same chain sé&t.s,

cost.D < cost.D'

In other words, an optimal dispersBl of a chain seCC'S minimizes the average number of
certificates stored in each node.

Dispersal of a chain set is useful for many types of systene.di&cuss three example

types of systems here.

i) Deployed systems: In a deployed system, all the certdgatre dispersed among
the nodes in the system before the nodes start on a particugsion. For example,
consider mobile units participating in a military operaticChains that can be used
for authentication are carefully chosen and dispersedh ket stores the assigned
set of certificates by a dispersal of chosen chains. The angtsleployed in mission
and when a unit needs to authenticate another unit, they tddawx® guarantee that
any other unit will be available. Thanks to dispersal, thege nodes can use the
certificates stored in each unit to find a certificate chaimfiane to the other. Many
military applications fit in this type of systems.

i) Client-Server systems: In a client-server system, éhare only a limited number of
certificate authorities that issue certificates. In suckesys, it is not necessary to collect
all the certificates to optimally disperse them. For exampieSecure Socket Layer
(SSL) systems, VeriSign is one of the few certificate auttesi A server, for example
Amazon.com, does not need to know all the certificates in yiséemn but only stores
the certificate(Amazon.com,VeriSign). This is an optimal dispersal (more details
are in Section 1V) of this SSL system.

iii) Evolving systems: In an evolving system where certifgsamay be issued and revoked
during the execution of the system, the system can start avitbptimal dispersal of
such system and gradually diverge from the dispersal. Evanvthe system diverges
from its dispersal, it is still beneficial to start with an mpaél dispersal as long as the
changes in certificates are not a major portion of certifcatehe system. Moreover,

the dynamic dispersal protocol in [1] disperses newly idstertificates and revocation



certificates so that the system stabilizes back to dispersal
Let (u, v) be a certificate that appears in one or more chains in a chaifi$eand letD
be a dispersal of’'S. Thelocation setof certificate(u, v) assigned byD, denotedD(u, v),
is defined as a set of all nodessuch that(u,v) is in the set of certificate®.z. It is
straightforward to show that the cost of dispersakqualsy_,, ,\ccs |D(u,v)].
The location setD(u,v) of a certificate(u, v) assigned by a dispers@ of a chain set
C'S is optimalif and only if for any other dispersaD’ of CS, |D(u,v)| < |D'(u,v)].
Theorem 1: Let D be a dispersal of a chain sétS. If D is optimal, then for every
certificate(u, v) in C'S the location seD(u,v) is optimal.
Proof: The proof is by contradiction. Assume thatis optimal, and there exists another
dispersalD’ of C'S where for some certificatéu, v) in C'S, |D(u,v)| > |D'(u, v)|.

Now consider the following assignment of certificates toheaode inC'S.

D'(z,y) if (z,9) = (u,v),

D(z,y) if (z,y) # (u,v)

Note thatD" is a dispersal ofC'S. This is true because for any chain from a nade

D"(z,y) :=

to another nodg in CS, all the certificates in the chain are i".i U D".j. Consider a
certificate(z, y) in the chain fromi to j in C'S, where(z, y) # (u,v). D(z,y) contains node
i or node; by the definition of dispersal, s®"(z,y) contains node or nodej. In other
words, any certificatéz, y) in a chain from nodé to nodej in C'S, where(z,y) # (u,v),

is in D".iu D".j. Similarly, for certificate(u, v), if (u,v) is in a chain from: to j in CS,

D'(u,v) contains node or node; by the definition of dispersal, sD”(u, v) contains node
i or nodej. In other words, if certificatg¢u, v) is in a chain from node to j in C'S, then
(u,v) is in D".iU D".j. Therefore, for any given chain from a nodéo another nodg in

CS, all the certificates in the chain are in".i U D".j. Thus,D" is a dispersal o'S.

The cost of dispersaD” is computed as follows.

cost.D" = Z |D".v| = < Z |D(:1:,y)|> + |D'(u,v)|

veCS (z,y)eCS,(z,y)#(u,v)



By the assumptionD’(u,v)| < |D(u,v)

cost.D" = ( Z |D(l’ay)|> + |D'(u, v)|
(z,y)€CS,(2,y)#(u,v)

< ( > |D(a:,y)|> + |D(u,v)| = cost.D

(,y)€CS,(2,y)#(u0)

Thus, the cost of dispersal” is less than the cost of disperdalcontradicting the assumption
that D is an optimal dispersal. [ ]
Therefore, the location sd?(u, v) assigned by an optimal disperdalis optimal for every
certificate(u, v) in C'S.

Theorem 2: Let D be a dispersal of a chain s€tS. If for every certificate(u, v) in C'S
the location setD(u, v) is optimal, thenD is an optimal dispersal of’'S.

Proof: The proof is by contradiction. Leb be a dispersal for a chain s€tS and for

every certificate(u, v) in CS the location setD(u,v) is optimal. Also, letD' be another
dispersal ofC'S wherecost.D' < cost.D. By the definition of the cost of dispersal,

Z |D'(u,v)| = cost.D" < cost.D = Z |D(u,v)|
(u,v)eCS (u,v)eC'S

Thus, there must be at least one certificaiev) in CS such that|D’(u,v)| < |D(u,v)].
This contradicts the definition of an optimal location sef @fv). n
Therefore, ifD(u, v) is optimal for every certificat¢u, v) in a chain seC'S, thenD is an

optimal dispersal ot”'S.

[11. NP-COMPLETENESS OF OPTIMAL DISPERSAL OF CHAIN SETS

In this section, we show that the chain dispersal problemRsQdmplete by a reduction

from the vertex cover problem. For convenience, these twablpms are described below.

« The Vertex Cover (VC) Problem: Given a connected grépland a positive integer
k, we ask if there exists a vertex cover of sigek. Any instance of this problem can
be represented by the pdifz, k). For directed graphs, the VC problem can be defined
similarly by ignoring the directions associated with thesarthe resulting problem on

directed graphs remains NP-complete.
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« The Certificate Dispersal (CD) Problem: Given a chainGstand a positive integer
m, we ask if there exists a dispers@l of C'S such thatcost.D < m. Any instance of
this problem can be represented by the géis, m).

Theorem 3: CD is NP-Complete.

Proof: First, we show that CD is in NP. Given an instan@s, m) of CD, and a
dispersalD of CS with cost.D < m, one can verify in polynomial-time that indedd is
a dispersal olC'S andcost.D < m. To verify thatD is a dispersal o”’'S, one checks that
all the certificates in each chain from a nodeéo another node in C'S are inD.u U D.v.
OnceD is verified as dispersatpst.D is computed as the sum @b.u| for each node: in
CS and can be compared ta. The time complexity of this verification step @(p x n),
wherep is the number of chains in the chain set and the length of the longest chain in
CS.

Second, we show that VC reduces to CD in polynomial-timee@ian instancé¢G, k) of
VC, we construct an instang€’'S, m) of CD such that the CD instance has a yes answer if
and only if the given VC has a yes answer. The constructiors ifokows:

i) For each edgéu,v) in G, C'S has a chain(u, z)(z, y)(y, v) of length 3.

i) Let nt be the number of nodes that have outgoing edgés,iandn~ be the number

of nodes that have incoming edgesGh Setm =n*™ +n~ + k.

(CD < VC) We now show that if the instandér, k) of VC has a yes answer, then the
corresponding instancg’'S, m) of CD has a yes answer. Lef be a vertex cover o7,
where | X| < k. For each node: in the coverX, assign certificatéz,y) in C'S to D.u.
For each node: in G, if there exists(u, z) in C'S, then assign certificat@:, =) to D.u. For
each nodev in G, if there exists(y,v) in C'S, then assign certificatgy, v) to D.v. In the
following two steps, we prove thaP is a dispersal of”’'S whose cost is at most.

i) D is a dispersal of”’S: For any chain inC'S from a nodeu to a nodev, the chain

consists of three certificatés, =), (z,y), and(y, v). Certificate(u, z) is stored inD.u
and certificate(y, v) is stored inD.v. For certificate(z, y), (z,y) is stored in every

node in the vertex cover off. By the definition of the vertex cover, for each edge
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(u,v) in G, the vertex cover contains nodeor nodev. Certificate(z, y) is assigned

to every node in the vertex cover 6f, so (z,y) is stored inD.u or D.v. Thus, every
certificate in the chain from to v is stored inD.uU D.v, as required by the definition
of dispersal.

cost.D < m: For each node: in G that has any outgoing edges, there is certificate
(u,z) in C'S that is assigned only to nodeby D. Similarly, for each node in G that
has any incoming edges, there is certificatev) in C'S that is assigned only to node

v by D. For certificate(z, y), (z,y) is assigned to all the nodes in the vertex cover, so

(z,y) is assigned to at mogt nodes. In totalcost.D is at mostm = (k +nt +n").

The above argument shows thatis a dispersal of construct&dS andcost.D < m. This

proves that if an instance of VQZ, k) has a yes answer, then the corresponding instance

of CD (C'S,m) has a yes answetr.

(CD = VC) We now show that if the constructed instan@@sS, m) of CD has a yes
answer, then the given instan@@, k) of VC has a yes answer. L& be a dispersal of’S,
wherecost.D < m. For every edgéu,v) in G, there is chainu, z)(z,y)(y,v) in CS. For
certificates(u, z) and(y, v), they will be assigned to at least one node|B¢u, z)| > 1 and
|D(y,v)| > 1. The number of suclu,z) certificates isn* and the number of sucfy,v)
certificates is1 . So certificat€z, y) is assigned to at mostnodes, wheré ism—n*—n".

In other words,

D(z,y)| < k.

Now, for each edgéu,v) in G, there is chair{u, z)(z, y)(y,v) in CS, and(z, y) is stored
in D.uU D.v. In other words, for each edde, v) in G, the location set oD(z, y) contains
nodew or nodewv. Therefore, the location set @ (z, y) is a vertex cover of7. The size of
the location setD(z,y) is at mostk, so the size of the vertex cover is at méstand the
instance(G, k) of VC has a yes answer.

In conclusion, the above proof shows that CD is in NP and VQueced to CD in
polynomial-time. Therefore, CD is NP-Complete. [ |

In the light of the above complexity result, it becomes of aripnce to identify special

classes of chain sets of practical interest for which théblpra can be solved efficiently.
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This direction is pursued in the following cases.

i) Short chain sets In Section IV, we start by investigating the class of chaditss

ii)

where each chain is of length at most 2. This class of chamisdghe one currently
being used in the Secure Socket Layer (SSL) protocol. Réuatlthe chain set in the
example in Fig. 3 in Section | falls into this class.

Disconnected chain setsin Section V, we investigate the class of chain sets where
for a given certificate, no node can be both the source and élséndtion of any
chain that contains this certificate. This reflects a systdmre/ the authentication is
needed in an asymmetric manner. For example, when therdianscand servers in
the system, one can imagine that clients would use cersficiat authenticate servers,
while servers would use passwords to authenticate cli&ush asymmetric systems
can be represented as this class of chain sets.

Concise graphs In Section VI, we investigate the class of chain sets whieeechains
are derived from acyclic certificate graphs. This class ceflsystems where the need
for authentication is uni-directional. For example, angrhrchical system where a
lower level user is authenticated by a higher level usernotitthe other way around,

would be represented by an acyclic certificate graph.

For all these three classes of chain sets, we present poightime algorithms that compute

optimal dispersals of chain sets in each class and prove dpémality.

Also below, we identify two classes of parameterized cha&its shat are defined using

an integer parametet. In the first class, each chain set has at mosthains with 3 or

more certificates. In the second class, each chain set hassat:modes that may act both

as sources and destinations. For both classes, we obtamnagpoial-time algorithms that

compute optimal dispersals whénis fixed.

IV. OPTIMAL DISPERSAL OFSHORT CHAIN SETS

In the previous section, we proved that computing an optidigbersal of any chain set,

which includes chains whose length is 3 or more, is NP-cotaple this section, we show
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that there is a polynomial-time algorithm that computes ptingal dispersal of any chain
set whose chains are all of length at most 2. This class ohcbetis is currently in use in
the Internet in Secure Socket Layer (SSL).

A chain setC'S is shortif and only if the length of the longest chain @S is at most 2.
For example, consider the star certificate graph in Fig.. 4fabhis certificate graph, assume
that each satellite node, ¢, or d, wishes to securely communicate with every other satellite

node. Fig. 4(b) shows the resulting short chain set.

(a) (b)

Fig. 4. An Example of Short Chain Set

ALGORITHM 1 : optimal dispersal of short chain sets

INPUT: a short chain set'S
OUTPUT: a dispersaD of C'S
STEPS:
1: for each nodes in CS, D.u:= {}
2: for each certificatdu,v) in C'S do
3: if there is a node: such that
the source or destination of every chain that fa) is «
4: then add (u,v) to D.z
5: elseadd (u, v) to both D.w and D.v

Algorithm 1 computes an optimal dispersal of a short chain Gensider the certificate
(b,a) in the example short chain set in Fig. 4. Chains that h@ye) are (b,a)(a,c) and

(b,a)(a,d). Sob is the source of every chain that hd@sa). Therefore, Algorithm 1 assigns
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(b,a) to D.b. After considering all the certificates in the short chait) #ee optimal dispersal

computed by Algorithm 1 as follows:

{D.a= {}, D.b={(a,b),(b,a)},

{(a,¢),(c;a)}, D.d = {(a,d),(d,a)}}

D.c

Theorem 4: Given a short chain seét'S, the dispersaD of C'S computed by Algorithm
1 is optimal.

Proof: The proof consists of two parts. First, we show that Algeonth computes a
dispersalD. Second, we show thd® is optimal.

Proof of First Part

By the definition of dispersal in Section Il, if all the certdites in each chain from a
source node: to a destination node in C'S are in setD.u U D.v, then D is a dispersal
of C'S. In other words, if a certificatéu, v) is stored in the source or destination nodes of
every chain that containg:, v), thenD is a dispersal.

By Algorithm 1, every certificatdu, v) is stored either inD.z of some noder, or both
D.u and D.v. Since the maximum length of a chain @S is 2, every chain that contains
(u,v) starts atu or ends aw. Hence if(u, v) is stored in bothD.« and D.v then certificate
(u,v) is stored in the source or destination node of every chaindbwtains(u, v). If (u,v)
is stored in node:, then by Algorithm 1z is either the source node or the destination node
of every chain that contain@, v). Therefore,(u, v) is stored in the source or the destination
node of every chain that contairs, v).

Proof of Second Part

The proof is by contradiction. LeD be the dispersal of a short chain €& computed
by Algorithm 1 andD' be another dispersal @'S. Assume thatost.D' < cost.D. There
must be at least one certificate, v) such that|D'(u, v)| < |D(u,v)|.

Let (u,v) be such a certificateD’(u, v)| < |D(u,v)|. By Algorithm 1, |D(u, v)| is either
1 (if there exists some nodethat is the source or destination node of every chain that has

(u,v)) or 2 (otherwise). TherefordD'(u,v)| = 1 and |D(u,v)| = 2, and there exists no
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nodez in C'S that is the source or destination node of every chain that(tas). By the
definition of dispersal, the node in D'(u, v) should be the source or a destination of every
chain that containgu,v) in C'S. This contradicts that there exists no naden C'S such
that z is the source or destination node of every chain that(has).
Thereforecost.D < cost.D' for any dispersaD’ of C'S. Algorithm 1 computes an optimal
dispersal of a short chain séts. [ |
The time complexity of Algorithm 1 i€)(ep), wheree is the number of certificates in the

input short chain set anglis the number of chains in the chain set.

V. OPTIMAL DISPERSAL OFDISCONNECTEDCHAIN SETS

In this section, we identify a special class of chain sets prasent an algorithm that
computes an optimal dispersal for this class of chain sefolpnomial-time. A chain set
C'S is disconnectedf and only if for every certificatéu, v) in C'S, the set of source nodes of
the chains that contaifu, v) and the set of destination nodes of the chains that cofiain
are disjoint. This reflects a system where the authenticatiqperformed in an asymmetric
manner. For example, when there are clients and serverg isytem, one can imagine that
clients would use certificates to authenticate serverslevgdarvers would use passwords to
authenticate clients. Such asymmetric systems can beseyiszl as disconnected chain sets.

Fig. 5 shows an example of a disconnected chain set.

{

Fig. 5. An Example of Disconnected Chain Set

(d,a) has the set of source nod¢s} and the set of destination nodé¢s}, which are
disjoint. (a, b) has the set of source nodés} and the set of destination nodés e}, which
are disjoint. Every certificate in this chain set has didj@ats of source and destination

nodes.
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ALGORITHM 2 : optimal dispersal of disconnected chain sets

INPUT: a disconnected chain s€tS
OUTPUT: a dispersaD of C'S
STEPS:
1: for each node: in G, D.u := {}
2: for each certificatéu, v) in G do
3: G'=(V',E') whereV' = {} andE' = {}
for each chain from node to nodey that containgu,v) do
add nodeg andy to V'

4
5
6: add(z,y) to £
7 compute a minimal vertex cover of the bipartite gragh
8

add (u,v) to each node in the vertex cover

Algorithm 2 computes an optimal dispersal of a disconnechkadn set. Consider certificate
(a,b) in the example disconnected chain set in Fig. 5. AlgorithmoBstructs a bipartite
graphG' for certificate(a, b), whereG' = (V', E'), V'={a, ¢, e}, andE'={(a, ¢), (a, €)}. The
vertex cover of minimum size of’ is {a}. Thus,(a,b) is stored inD.a. After considering
all certificates in the chain set, the example disconnedtaihcset is optimally dispersed by

Algorithm 2 as follows:

{D.a = {(a,b),(b,c),(c,d)}, D.b={}, D.c ={},
D.d= {(a,c),(d,a)}, D.e = {(d,e)}}

Theorem 5: Given a disconnected chain s€tS, the dispersalD of C'S computed by
Algorithm 2 is optimal.
Proof: The proof consists of two parts. First, we show that AlgentB produces a
dispersal. Second, we show that the resulting dispersaitimal.

Proof of First Part:
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Let D.u be the set of certificates assigned to a nade C'S by Algorithm 2. Consider
any certificate(u,v) in a chain from a source node to a destination nodg in C'S. By
Algorithm 2, since there is a chain fromto y that goes througtiu, v), there is an edge
(z,y) in G' for (u,v). By the definition of vertex cover, for edge;,y) in G', nodex or
nodey is in the vertex cover. Therefore, for the chain franto y, (u,v) is stored inD.x
or D.y. This is true for all the certificates in the chain framto y, for any chain inC'S.
Hence,D satisfies the dispersal condition in Section Il, Bds a dispersal o”'S.

Proof of Second Part:

By Theorem 2, if we can find a dispersal where D(u,v) of every certificate(u, v)
in CS is optimal, thenD is an optimal dispersal of’S. So we only need to prove that
a dispersal computed by Algorithm 2 produces an optimaltiosaset of each certificate
in C'S. The proof is by contradiction. Assume there is anotheratisgd D' of C'S, where
cost.D' < cost.D. There must be at least one certificatev) where|D'(u, v)| < |D(u,v)|.
For every chain from a node to a nodey that containg(u, v), D'(u,v) should contain:
or y. Therefore,D'(u,v) is a vertex cover of the bipartite graghl constructed for(u, v),
where|D'(u,v)| < |D(u,v)|. This contradicts thaD(u, v) is the vertex cover of minimum
size of G’ by line 7 in Algorithm 2. ThereforeD(u,v) is an optimal location set ofu, v)
for every certificatqu, v) in C'S. By Theorem 2,D is optimal. [ |

For each certificaté¢u, v), the graphG’ constructed for(u, v) is a bipartite graph. It is
because the set of source nodes of the chains that cdmtaipand the set of the destination
nodes of the chains that contain, v) are disjoint by the definition of disconnected chain
set. Finding a vertex cover in a bipartite graph is a well knqwvoblem in graph theory,
which takesO(n'e') steps wherex’ is the number on nodes i& ande' is the number of
edges inG'. In the worst case’ = n ande’ = p, wheren is the number of nodes i6'S,
and p is the number of chains i@'S. Therefore, the time complexity of Algorithm 2 is

O(e x np)=0O(enp), wheree is the number of certificates i€'S.
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VI. OPTIMAL DISPERSAL OFCONCISE GRAPHS

In this section, we present an algorithm that computes @btulispersal for chain sets
“derivable” from a class of certificate graphs called coeaigrtificate graphs. A certificate

graphG is calledconciseif and only if it satisfies the following two conditions.

i) Short Cycles Every simple directed cycle it is of length 2.

i) Non-redundancy G has at most one chain from any node to any other node.

Concise certificate graphs represent many useful ceréfsatems. For example, a hierarchi-
cal certificate system would typically generate a tree-staertificate graph. Any tree-shaped
certificate graph is a concise certificate graph.

Fig. 6(a) shows an example of a concise certificate graphe M@t in a concise graph
there can be two opposite direction certificates betweenaidyacent nodes. We refer to any
such pair of certificates asvins and we refer to each one of those certificates aswire
certificateof the other. In the concise graph in Fig. 6(a), the two cestés(b, c) and(c, b)

are twins.

(@) (b)

Fig. 6. An Example of Concise Certificate Graph and Derivabitain Set

A chain set isderivablefrom some certificate grapfd if and only if the chain set consists
of all the certificate chains id7. For example, the chain set in Fig. 6(b) is derivable from
the certificate graph in Fig. 6(a).

Algorithm 3 computes an optimal dispersal of a concise fieate graph. Consider cer-
tificate (b, ¢) in the example concise certificate graph in Fig. 6(a). Algponi 3 computes the

set of nodes from which there is a chainitodenotedR.b, as {a,b}. Also, Algorithm 3
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ALGORITHM 3 : optimal dispersal of concise certificate graphs

INPUT: a concise certificate graph

OUTPUT: a dispersaD of the chain setC'S derivable fromG

STEPS:

1: for each node: in G, D.u := {}

2: for each certificatéu, v) in G do

3: compute the setR.u that contains, and every node: from which there is a chain
to » in G and this chain does not contain the twin certificateu)

4: compute the setR.v that containsy and every node: to which there is a chain
from v in G and this chain does not contain the twin certificéieu)

5: if |R.u|l < |R.v|

6: then for every noder in R.u, add(u,v) to D.x

7: elsefor every nodey in R.v, add(u,v) to D.y

computes the set of nodes to which there is a chain trodenotedr.c as{c}. |R.b| > |R.c

so (b, c) is stored inc. After considering all the certificates in the graph, thenegbe concise

certificate graph is optimally dispersed by Algorithm 3 abofes:

{ Da={(ab} Db={(cb}
D.c={(b¢)}, D.d={(b,d)} }

Theorem 6: Given a concise certificate grapgh, the dispersalD of the chain setC'S
derivable fromG computed by Algorithm 3 is optimal.
Proof: We divide the proof into two parts. First, we show that Algom 3 computes
a dispersalD. Second, we show thdD is optimal.
Proof of First Part:
We show that the certificate subsddsz, computed by Algorithm 3 for every nodein

G, satisfy the condition of dispersal in Section II.
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Consider a pair of nodesg andwv,, where there is a chaing, v;), (vi, v2), - -, (Wr_1, V)
from v, to v, in G. By the definition of the derivable chain set, the chain frggmio v, is in
CS. For each certificatév;, v;11) in this chain, the two set®.v; and R.v;,; are computed
by Algorithm 3. Since there is a chain fromg to v; in G, R.v; containsvy. Similarly, since
there is a simple directed chain from,; to v, in G, R.v;;; containsvg. By line 5-7 in
Algorithm 3, (v;, v;41) is stored either in all nodes iR.v; or in all nodes inR.v;,,. Because
R.v; containsy, and R.v;;; containsvy, certificate(v;, v;11) is stored either inD.vy or in
D.vg. Thus, every certificat€u;, v;11) in the chain fromwv, to vy is stored inD.vy U D.vy.
Hence,D is a dispersal of the chain sétS derivable fromG.

Proof of Second PartThe proof is by contradiction. LeD’ be another dispersal @f'S
where cost.D' < cost.D. Then there must be such a certificdte v) that |D'(u,v)| <
|D(u,v)|. By the definition of dispersalu, v) needs to be stored iB'.z U D'.y for every
chain fromz to y that contain(u,v). By the definition of derivable chain set, certificate
(u,v) is used in every directed chain from any nadén R.u to any nodey in R.v, where
R.u and R.v are the two sets computed by Algorithm 3 for certificétev). In other words,
|D'(u,v)| > min(|R.u|, |R.v|). Since|D(u,v)| = min(|R.u|, |R.v|), |D'(u,v)| > |D(u,v)|.
This contradicts the assumption (@' (u, v)| < |D(u, v)].

Therefore,D computed by Algorithm 3 is optimal. [ |

The complexity of Algorithm 3 igD(en), wheree is the number of certificates in the input

concise certificate graph andis the number of nodes in the concise certificate graph.

VIlI. OPTIMAL DISPERSAL OFK-LONG CHAIN SETS

In Section Ill, we showed that computing an optimal dispecdaany chain set, which
includes chains of length 3 or more, is NP-complete. If adl tthains in a chain set are of
length at most 2, i.e. if the chain set is short, then we canAlgerithm 1 in Section IV
to compute an optimal dispersal of the short chain set. Is gbiction, we consider a more
general class of chain sets where there are a fixed nukmher 1, of chains of length greater

than 2. Consideration of such chain sets is motivated, f&tamce, by the following example.



21

Consider a hierarchical network made of a number of autonsmnsgstems. Certificate chains
within any single autonomous system are expected to be,shbdreas certificate chains
that span multiple autonomous systems are expected to lge Tdre chain set of these
autonomous systems contain mostly shotta-chains, but may contain a fixed number of
long inter-chains. Our main result here is a polynomial-time algonitthat computes an
optimal dispersal for such chain set for fixéd

In this section, we present Algorithm 4 that computes annogitidispersal of a chain set
where there aré chains of length greater than 2 for some constantVe call such sets
k-long chain sets. Roughly speaking, our general strategy is teidenall possible ways of
assigning certificates that appear in long chains to theaatesource and destination nodes,
and then handling the remaining short chains with the aidIgbAthm 1. To develop some
initial intuition, first we show how to compute an optimal jpigsal of an example 1-long

chain set in Fig. 7(b), and then we show how to generalize flamg chain sets.

@) (b)

Fig. 7. An Example of 1-Long Chain Set

Let C'S be the 1-long chain set in Fig. 7(b), which is a chain set ofdbstificate graph
in Fig. 7(a). There is one long chain, a)(a, b)(b, d) and three other short chains. There are
three types of certificates in this chain set.
i) Certificates used only in long chains: for example,d).
A certificate of this type can be dispersed either to the soorcto the destination of
each long chain that contains this certificate. For exanmgaetficate(b,d) in CS is

used only in the long chain and needs to be dispersed eithkeasrtto d. This certificate
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is not used in any other chains, so it does not change the taksmersal whether it
is dispersed t@ or d.

ii) Certificates used only in short chains: for examglgc).
For certificates of the second type, we can use Algorithm lectiSn IV to disperse
such certificates. For example, certificébec) is dispersed to node by Algorithm 1.

iif) Certificates used in both long and short chains: for egkm(a,b), (c,a).
Dispersing a certificate of the third type needs to consideryepossible assignment of
this certificate among sources and destinations of longneh&ior example, certificate
(a,b) is used in three chainsgg, b)(b, ¢), (¢, a)(a,b) and(c, a)(a, b)(b, d). If we choose
to dispers€a, b) to the source: of long chain, then we do not need to dispefseb)
to any other node i'S, sincec happens to be source or destination of all the short
chains that contaifa, b). By contrast, if we choose to disperge b) to the destination
d of long chain, then we need to dispergeb) to other nodes thai sinced is neither
source nor destination of two short chaifsb)(b, ¢) and (¢, a)(a,b). In other words,
D(a,b) could be either{c} or {a,b,d}, depending on whethefa, b) is assigned to
the source or the destination of the long chain. This shoasftr each certificate of
the third type that is used in both long and short chains, thesssignment of this
certificate in sources and destinations of long chains, wex e check which short

chains still needs dispersal of this certificate.

After considering all three types of certificates @i, the resulting optimal dispersal of

CS in Fig. 7(b) becomes as follows:

{ D.a={(be)}, D.b={(c,a)},
D.c={(c,a),(a,b)}, D.d={(b,d)} }

To extend this solution for 1-long chain setiddong chain set, we need to define a terminal
set of a chain set. Aerminal set of a chain set’S is a subset of nodes 'S that consists

of the source or destination of each chain(i§. For example, the four nodesb, ¢, c are
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the sources of all four chains in the chain set in Fig. 7(b){&®,c} is a terminal set of
this chain set. Algorithm 4 computes an optimal dispersak-4dng chain sets using this

terminal set.

ALGORITHM 4 : optimal dispersal of-long chain sets

INPUT: ak-long chain seC'S
OUTPUT: a dispersaD of C'S
STEPS:

1: for each nodes in CS, D.u := {}

2: for each certificatdu,v) in C'S do

3: compute the chain setLS of all long chains that contaitw, v) in C'S

4 for each possible terminal s&f of LS

5: for each nodew in CS, if w € X then Dx.w := {(u,v)} elseDx.w := {}
6 compute the chain setS of all the chains that contaifu, v)

and their sources and destinations are nakin
7 run Algorithm 1 on.S and add the resulting location set (@f, v) to Dx
8: find Dx with the minimal cost

9: for each nodey in C'S, addDx.u to D.u

Consider(c,a) in the example chain set in Fig. 7(b). The set of all long chatimat
contain (¢, a), denotedLsS in Algorithm 4, is {(c,a)(a,b)(b,d)}. For a terminal sefc},
(¢, a) is dispersed to nodeand the set of remaining short chains, dendied Algorithm 4,
becomes{ (b, c)(c,a)}. There is nodé that is the source of every chain B, so (c,a) is
dispersed to nodé. The resulting dispersal dfc,a), {b,c}, is an optimal location set of
(c,a). After considering every certificate, the dispersal of thaneple chain set in Fig. 7(b)
computed by Algorithm 4 becomes the same with the dispetsaleg and this dispersal is
optimal. Theorem 7 shows that Algorithm 4 computes an optdisgpersal of a giverk-long
chain sets.

Theorem 7: Given ak-long chain set”'S, the dispersaD of the chain set’'S computed
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by Algorithm 4 is optimal.
Proof: We divide the proof into two parts. First, we show that Algom 4 computes

a dispersalD. Second, we show thdD is optimal.

Proof of First Part:

We show that the certificate subsddsu, computed by Algorithm 4 for every nodein
C'S, satisfy the condition of dispersal in Section II.

Consider a certificatéu, v). Algorithm 4 computes the chain sétS of for all the long
chains that contaittu, v). Algorithm 4 stores(w, v) in every node in a terminal set dfS.
By the definition of a terminal setu,v) is stored in either source or destination of each
long chain inLS. For all the remaining short chains that containv) in C'S, by line
7-9 in Algorithm 4 (same as line 3-5 in Algorithm 1{u,v) is stored either inD.w for
some nodew or in D.u and D.v. (The rest of proof is same with the optimality proof of
Algorithm 1.) For each remaining short chain, the chain t@ttains(u,v) starts atu or
ends aw. Hence if(u, v) is stored in bothD.« and D.v then certificatgu, v) is stored in the
source or destination node of every remaining chain thatate$\(u, v). If (u,v) is stored
in nodew, then by Algorithm 4, thenw is either the source node or the destination node of
every remaining chain. Thereforéy, v) is stored in the source or the destination node of
every chain that containg:, v). This is true for any certificatéu, v) in C'S. Hence,D is a
dispersal of the chain séts.

Proof of Second Part:

The proof is by contradiction. LeD be the dispersal of &-long chain seC'S computed
by Algorithm 4 andD' be another dispersal @'S. Assume thatost.D' < cost.D. There
must be at least one certificate, v) such that|D'(u, v)| < |D(u,v)|.

There are three cases (@f, v):

i) (u,v) is a certificate used only in long chains.
i) (u,v) is a certificate used only in short chains.

i) (u,v) is a certificate used in both long and short chains.

For case i), Algorithm 4 considers every possible termimal)s of the long chains that
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contain(u, v). Therefore, the resulting)(u, v)| = miny |Dx(u,v)|. By the definition of the
terminal set,D’'(u, v) has to be a terminal set of the long chains that conftajm). In other

words,

D'(u,v)| > miny |Dx(u,v)| = |D(u,v)|. Therefore,|D(u,v)| < |D'(u,v)|

For case ii), Algorithm 4 computes an optimal dispersal @& #fort chains containing
(u,v). The proof is same as the optimality proof of Algorithm 1 fdrost chain sets.
Therefore,|D(u, v)| < |D'(u,v).

For case iii), find a terminal seX of the long chains that contaifu, v), such thatX C
D'(u,v). Since Algorithm 4 considers every possible terminal sethef long chains that
contain(u, v), it also compute® x (u, v) for the found terminal seX’, whereX C Dx(u,v).

For the remaining short chains i, since the sources and destinations of the short chains
in S are not inX, soD'(u,v) \ X should contain source or destination of each chaif.in
Also, Algorithm 1 computes an optimal location set(af v) in S. Therefore,|Dx(u,v) \

X| < |D'(u,v) \ X|. SinceX C D'(u,v) and X C Dx(u,v),

Dx(u,v)| < [D'(u,v)|.
|D(u, v)| = miny [Dx(u,v)|, $0|D(u,v)| < |D'(u,v)|.

In all three caseqdD(u,v)| < |D'(u,v)|, which contradicts the assumption |@(u, v)| >
|D'(u,v)|. Therefore, dispersad computed by Algorithm 4 is optimal. [ |

The time complexity of this algorithm i©(2* x ep), wherek is the number of long chains
in CS, e is the number of certificates i@'S, andp is the number of chains id'S. This
complexity is computed as follows: the number of terminas der k£ long chains isO(2*),
and for each terminal set, the number of short chains to denss O(p). We repeat this

procedure fore certificates. Sincé is a constant, the time complexity becom@g&p).

VIIl. OPTIMAL DISPERSAL OFk-CONNECTED CHAIN SETS

In Section V, we presented Algorithm 2 that computes an agdtidispersal of a dis-
connected chain set. In this section, we investigate monergé class of chain sets where
there are at most nodes in the intersection of the source set and the destmagt of
each certificate in a chain set. We call such chain getsnnectedchain sets. This class

of chain sets models a client-server system that uses tierafit authentication methods.
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As discussed in Section V, in some client-server systensntsl authenticate servers via
certificates, whereas servers authenticate clients vier gtteans, e.g. passwords. However,
there may be a few mutual authentications via certificatésd®n servers. These certificates
used by servers may have non-empty intersection of the samd destination sets. Such
client-server systems can be represented-asnnected chain sets.

Fig. 8(b) shows an example dfconnected chain set, which is a chain set of the certificate
graph in Fig. 8(a). For certificatg, b), the sources of the chains that containd) are{a, c}
and the destinations of such chains &g, d}. The intersection of two sets {g}. Similarly,
the cardinality of the intersection set is at most 1 for evesytificate in this chain set, so

the chain set in Fig. 8(b) is-connected.

(@) (b)

Fig. 8. An Example ofl-Connected Chain Set

Assume thaia, b) is stored inD.c in some dispersabD of this chain set. The remaining
chain to be dispersed i, b)(b, c)(c, d). Certificate(a,b) can be stored either iD.a or in
D.d, either of which makes no difference in the dispersal cost.a@sume thata, b) is not
stored inD'.c in some dispersaD’ of this chain set. Certificatéz, b) needs to be stored in

D'.a andD'.b. We can repeat this process for each certificate to find thpeial as follows:

(Da= {(ab),(bc)}, Db={(cd),(da)l
De= {(ab)}, D.d = {(c,d)} }

This is also an optimal dispersal of this 1-connected chatn s

To extend this solution for 1-connected chain settoonnected chain set, we need to
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define anintersectionset of a certificate. An intersection set of a certificaigv) in a chain
setCS is a set of nodes that appear both in the set of sources aneétlo¢ destinations of
the chains that contaifu, v). For certificate(a, b) in Fig. 8(b), the sources of the chains that
contain (a,b) are {a,c} and the destinations of such chains dtec,d}. The intersection
of two sets is{c}, so{c} is the intersection set dk,b). Algorithm 5 computes an optimal

dispersal ofk-connected chain sets using this intersection set.

ALGORITHM 5 : optimal dispersal of-connected chain sets

INPUT: ak-connected chain s&tS
OUTPUT: a dispersaD of C'S
STEPS:

1: for each node: in CS, D.u := {}

2: for each certificatéu, v) in C'S do

3: compute the intersection sefS of (u,v)

4 for each subseX of /.S

5: for each nodev in CS, if w € X then Dx.w := {(u,v)} elseDx.w := {}
6 compute the chain sefS of all the chains that contaifu, v)

and their sources and destinations are nakin

7: for each chain fromy to z in S

8: if y € IS\ X then add (u,v) to Dx.z and remove the chain frorfi
9: if z€ IS\ X then add (u,v) to Dx.y and remove the chain frorfi
10: run Algorithm 2 on .S and add the resulting location set (@f, v) to Dx

11: find Dx with the minimal cost

12: for each node: in C'S, addDx.u to D.u

The proof of the optimality of this algorithm is straightéesrd. Since this algorithm
considers every possible subset of the intersection set,gtiaranteed to find the optimal
location set of each certificate. By Theorem 2, the disparsaiputed by this algorithm is

optimal.
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The time complexity of this algorithm i© (2% x enp), wherek is the tight upper bound
of the number of nodes in intersection sets of all the ceatiéis inC'S, n is the number of
nodes inC'S, e is the number of certificates i6'S, andp is the number of chains id'S.
Since there are at mostnodes in the intersection set of each certificate, there taneoat
2% subsets of the intersection set. For each subset, we rurrithign2, whose complexity
is O(enp). Therefore, the total time complexity becom@§2¥enp). Sincek is a constant,

the time complexity becomeS(enp).

IX. RELATED WORK

Several papers have investigated the use of certificatesoftfidentiality, authentication,
and authorization. We summarize the results of these papéhe following paragraphs.

Architectures for issuing, storing, discovery, and vdiitg certificates in networks are
presented in [2], [3], [4], [5], [6], [7], [8], [9], [10]. In alarge scale network such as
today’s Internet, one cannot expect to have a central atihtor issue, store, and validate
all the certificates. A distributed system, where each uagiqgpates in issuing, storing, and
validating certificates is desirable in such a network.

In [11] and [12], distributed architectures for issuing tderates, particularly in mobile
networks, are presented.

In [11], Zhou and Haas present an architecture for issuinificates in an ad-hoc network.
According to this architecture, the network hWaservers. Each server has a different share
of some private key-k. To generate a certificate, each server uses its own shatk twf
sign the certificate. If no more thanservers have suffered from Byzantine failures, where
k > 3t + 1, then the resulting certificate is correctly signed using phivate keyrk, thanks
to threshold cryptography. The resulting certificate carvéefied using the corresponding
public key which is known to every node in the ad-hoc network.

In [12], Kong, Perfos, Luo, Lu and Zhang presented anothstriduted architecture for
issuing certificates. Instead of employikgservers in the ad-hoc network, no special nodes

such as servers are in the network and every node in the retsvprovided with a different
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share of the private keyk. For a nodeu to issue a certificate, the nodeforwards the
certificate to its neighbors and each of them sign the cextdiasing its share ofk. If node

u has at least + 1 correct neighbors (i.e. they have not suffered from anyfasg), then the
resulting certificate is correctly signed using the privieey rk.

Both work assume that a certificate is signed by a speciahfarikey of an authority,
and distribute the private key among many servers or nodgsoBtrast, in [13] and this
paper, we propose a distributed architecture where evedg has both a public key and a
private key so it can issue certificates for any other nodénénrtetwork. This architecture
is very efficient in issuing and validating certificates bahoot tolerate Byzantine failures.
In particular, if one node suffers from Byzantine failurben this node can successfully
impersonate any other node that is reachable from this nodkei certificate graph of the
network. This vulnerability to Byzantine failures is notigune to our certificate work. In fact,
many proposed certificate architectures, e.g. [2], [3],lev[iL2], [4], [10], [9] yield similar
vulnerabilities. Recently, we have identified a metric taleate the damage from this type
of attacks. We call it “vulnerability” of the certificate ggsn and discuss it in more details
in [14].

In [10], Li, Winsborough, and Mitchell presented a role-eés$rust management language
RT, and suggested the use of strongly typed distributed cetéfistorage to solve the
problem of certificate chain discovery in distributed sggraHowever, they do not discuss
how to efficiently assign certificates among the distributemtages. By contrast, our work
focuses on minimizing storage overhead in certificate dg&gdeamong the users while they
have enough certificates so that there is no need for cetéifcdaain discovery.

In [15], Ajmani, Clarke, Moh, and Richman presented a distied certificate storage
using peer-to-peer distributed hash table. This work assutiedicated servers host a SDSI
certificate directory and focuses on fast look-up serviaklaad balancing among the servers.
By contrast, our work assigns certificates to users suchthiea¢ is no need for look-up and
there are no dedicated certificate storage servers. Our aleckfocuses on efficient use of

storages in all users in network.
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In [16], Reiter and Stubblebine investigated how to inceeassurance on authentication
with multiple independent certificate chains. They introgltwo types of independent chains,
disjoint paths (no edge is shared by any two chains) and keaxiive paths (k certificates
need to be compromised to disconnect all these paths). Husrpshows that there are no
polynomial-time algorithms for locating maximum sets othsawith these properties and
presents approximation algorithms.

Perhaps the closest work to ours is [17] where the authorksatity Buttyan, and Capkun,
investigated how to disperse certificates in a certificatgplgramong the network nodes
under two conditions. First, each node stores the same nuofileertificates. Second, with
high probability, if two nodes meet then they have enoughifwates for each of them to
obtain the public key of the other. By contrast, our work i8][And here are based on two
different conditions. First, different nodes may stordedént number of certificates, but the
average number of certificates stored in nodes is minimidedond, it is guaranteed (i.e.
with probability 1) that if two nodes meet then they have agtocertificates for each of
them to obtain the public key of the other (if there exists aiclbetween them in the chain
set).

Later, the same authors have showed in [18] that a lower bamdhe number of
certificates to be stored in a node\i% — 1 wheren is the number of nodes in the system. By
contrast, we showed in [13] that the tight lower bound on terage number of certificates
to be stored in a node is/n, wheree is the number of certificates in the system. Our
work here shows that finding an optimal dispersal of a givesircket is NP-complete, and
presents three polynomial-time algorithms which compuyteneal dispersal of chain sets in
three classes of practical interests and two extensionBesfet algorithms for more general
classes of chain sets.

Zheng, Omura, Uchida, and Wada presented algorithms thmpute optimal dispersals
for strongly-connected graphs and directed graphs in [IBg¢ same authors also showed

the tight upper bounds in these two classes of certificatehgra
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X. CONCLUSION

We have shown that, in general, finding an optimal disperkal given chain set is NP-
complete. We have also discussed three polynomial-timarigthgns, each of which computes
an optimal dispersal for a rich class of chain sets and twersxbns of these algorithms for
two more general classes of chain sets. In [20], we have pie$enore polynomial-time
algorithms which compute an optimal dispersal for moresg#asof chain sets. This result
can be used in any network setting. However, these algosithwa particularly useful when
the network is large. In a large scale network such as todaysnet, one cannot expect
to have a central authority for storing and distributingtiieates among all users in the
network. Instead, users can store a subset of certificatdginetwork so that any user can
obtain the public key of the other whom the user wants to skgwommunicate with (if
there was a chain in the chain set of the network). Moreowesg large scale network, not
all certificate chains in a certificate graph are in use. Cdamguan optimal dispersal of a
chain set instead of the chain set derivable from the cextdigraph of the network reduces
the cost of dispersal.

This result can be also used as a metric to evaluate cerifigaphs. The optimal dispersal
cost is an important property of a certificate graph, sincafécts the storage requirement
of each node in the network. This is especially importantdrhac networks, where mobile

nodes may be more restricted in terms of storage than stablesncan be.
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