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Abstract

We consider a network where users can issue certificates thatidentify the public keys of other

users in the network. The issued certificates in a network constitute a set of certificate chains

between users. A useru can obtain the public key of other userv from a certificate chain fromu to v in the network. For the certificate chain fromu to v, u is called the source of the chain

and v is called the destination of the chain. Certificates in each chain are dispersed between the

source and destination of the chain such that the following condition holds. If any useru needs to

securely send messages to any other userv in the network, thenu can use the certificates stored

in u andv to obtain the public key ofv (thenu can use the public key ofv to set up a shared key

with v to securely send messages tov). The cost of dispersing certificates in a set of chains among

the source and destination users in a network is measured by the total number of certificates that

need to be stored in all users. A dispersal of a set of certificate chains in a network is optimal if

no other dispersal of the same chain set has a strictly lower cost. In this paper, we show that the

problem of computing optimal dispersal of a given chain set is NP-Complete. Thus, minimizing

the average number of certificates stored in any node is NP-Complete. We identify three special

classes of chain sets that are of practical interests and devise three polynomial-time algorithms that

compute optimal dispersals for each class. We also present two polynomial-time extensions of these

algorithms for more general classes of chain sets.

Index Terms

D.4.6 Security and Privacy Protection, D.4.6.b Authentication, K.6.5 Security and Protection,

K.6.5.a Authentication, certificate graph, certificate dispersal, public-key management

I. I NTRODUCTION

We consider a network where users would like to send messagessecurely to other users. A

user who would like to send a secure message is called asourceand a user who is intended
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to receive such a message is called adestination.

In the Internet, it is common that one source may wish to send messages to many

destinations. For example, a source Alice may wish to send her credit card number securely

to several destination shopping sites, say Amazon.com, eBay.com, and priceline.com. The

secure communication between a source and a destination is protected by encrypting each

exchanged message with a shared key only known to the source and destination.

In this network, each useru, whether source or destination, has a private keyrku and a

public key bku. In order for a sourceu to share a keysk with a destinationv, u encrypts

key sk using the public keybkv of v and send the result, denotedbkvfskg, to v. Only v
can decrypt this message and obtain keysk shared withu. This scenario necessitates thatu
knows the public keybkv of v. In the above example, Alice needs to know the public keys

of Amazon, eBay, and priceline.

If a useru knows the public keybkv of another userv in the network, thenu can issue

a certificate, called a certificate fromu to v, that identifies the public keybkv of v. This

certificate can be used by any user that knows the public key ofu to further acquire the

public key ofv.

A certificate fromu to v is of the following form:rku < u; v; bkv >
This certificate is signed using the private keyrku of u, and it includes three items: the

identity of the certificate issueru, the identity of the certificate subjectv, and the public key

of the certificate subjectbkv. Any user that knows the public keybku of u can usebku to

obtain the public keybkv of v from the certificate fromu to v. Note that when a user obtains

the public keybkv of userv from the certificate, the user not only finds out whatbkv is, but

also acquires the proof of the association thatbkv is indeed the public key of userv.

The certificates issued by different users in a network can berepresented by a directed

graph, called thecertificate graphof the network. Each node in the certificate graph represents

a user in the network. Each directed edge from nodeu to nodev in the certificate graph

represents a certificate fromu to v in the network.
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Fig. 1. A certificate graph of Alice and Bob

Fig. 1 shows a certificate graph for a network with two sources, Alice and Bob, and six

destinations, Amazon, eBay, priceline, Amex, Visa, and Discover. According to this graph,

Alice issues three certificates

(Ali
e, Amazon), (Ali
e, eBay), and (Ali
e, pri
eline), and

Bob issues three certificates

(Bob, Amex),(Bob, V isa), and (Bob, Dis
over)
A more efficient way to support secure communication betweenthe sources and the

destinations is to introduce some intermediaries between the sources and the destinations.

The number of introduced intermediaries is much smaller than the number of sources and

the number of destinations. Each intermediary has its own public and private key pair. The

sources know the public keys of intermediaries and the intermediaries issue certificates of

the public keys of the destinations. For example, two intermediaries, namely VeriSign and

CertPlus, can be introduced between the two sources and the six destinations in Fig. 1. The

result is the certificate graph in Fig. 2.

Fig. 2. A certificate graph with intermediaries

According to the certificate graph in Fig. 2, Alice needs to issue only one certificate

to VeriSign and Bob needs to issue only one certificate to CertPlus. Alice can then use
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the two certificates (Ali
e, V eriSign) and (V eriSign;Amazon) to obtain the public keybkAmazon, and so can securely send messages to Amazon. Also, Bob can use the two

certificates(Bob;CertP lus) and (CertP lus; V isa) to obtain the public keybkV isa, and

then can securely send messages to Visa.

Note that there is a certificate (V eriSign, Amex) in the certificate graph in Fig. 2 that

is not needed to support secure communication between any source and any destination in

Fig. 1. This redundancy is removed by specifying which “certificate chains” are being used

by the sources and destinations. Certificate chains are defined as follows:

A simple path from a sourceu to a destinationv in a certificate graphG is called achain

from u to v in G. u is the sourceof the chain andv is the destinationof the chain. For

usersu and v in a certificate graphG, if u wishes to securely send messages tov, then

there must be a chain fromu to v in G. On the other hand, if there is a chain fromu to v,

thenu does not necessarily wish to securely send messages tov. Fig. 3 shows the six chains

that are needed to support the secure communications between the two sources and the six

destinations in Fig. 1. Since Alice does not need to securelycommunicate with Amex, the

certificate chain (Ali
e, V eriSign),(V eriSign, Amex) in the certificate graph in Fig. 2 is

not included in Fig. 3.

Fig. 3. Certificate chains from Fig. 2

The certificates in each chain need to be dispersed between the source and destination of

the chain such that if a sourceu wishes to securely send a message to a destinationv thenu can obtain the public key ofv from the set of certificates stored inu andv. (Note that to

“store a certificate in a user” does not necessarily mean thatthe user has a local copy of the

certificate. Rather, it means that the user only needs to knowwhere to find the certificate, if
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a need for that certificate arises, either in its local storage or in a remote location.)

For example, assume that each source in Fig. 3 stores its certificate to the corresponding

intermediary, and that each destination in Fig. 3 stores thecertificate from its corresponding

intermediary to itself. Thus,

Alice stores the certificate (Ali
e, V eriSign),

Bob stores the certificate (Bob, CertP lus),
Amazon stores the certificate (V eriSign, Amazon),

eBay stores the certificate (V eriSign, eBay),

priceline stores the certificate (V eriSign, pri
eline),
Amex stores the certificate (CertP lus, Amex),

Visa stores the certificate (CertP lus, V isa), and

Discover stores the certificate (CertP lus, Dis
over)
In this case, if Alice wishes to securely send messages to priceline, then Alice can use the

two certificates stored in Alice’s computer and priceline website to obtain the public key

of priceline and securely send the messages to priceline. Certificates that are not part of

any chain are not stored because they are not needed. This is illustrated by the certificate

(V eriSign, Amex), which appears in Fig. 2 but is not stored in Amex.

Dispersal of certificate chains and its cost are defined in Section II. In Section III, we show

that finding an optimal dispersal of any set of chains is NP-complete. Thus it becomes of

interest to characterize the special cases of practical interest where the problem can be solved

efficiently, as well as effective heuristic algorithms to solve general instances of problems.

Subsequently, we identify three special classes of chain sets that are of practical interests and

devise three polynomial-time algorithms that compute optimal dispersals for each class. For

instance, the example dispersal above reflects the certificate dispersal in Secure Socket Layer

(SSL). Such chain sets are defined as “short” chain sets in Section IV, and we present an

algorithm that computes an optimal dispersal of any given short chain set. We also present

two extensions of these algorithms for more general classesof chain sets.
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II. CERTIFICATE DISPERSAL

In this section, we introduce definitions and notations to describe the optimal dispersal

and prove two theorems of the properties of an optimal dispersal.

A certificate graphG is a directed graph in which each directed edge, called acertificate,

is a pair (u, v), whereu and v are distinct nodes inG. For each certificate (u, v) in G, u
is called theissuerof the certificate andv is called thesubjectof the certificate. Note that

according to this definition no certificate has the same node as both its issuer and subject.

A sequence of certificates (v0, v1)(v1, v2)� � � (vk�1, vk) in a certificate graphG, where the

nodesv0, v1, � � � , vk are all distinct, is called achain from v0 to vk in G. Nodev0 is called

the sourceof the chain and nodevk is called thedestinationof the chain. A set of chains in

a certificate graphG is called achain setof G.

A dispersalD of a chain setCS assigns a set of certificates inCS to each source node

and each destination node inCS such that the following condition holds. The certificates in

each chain from a source nodeu to a destination nodev in CS are in the setD:u [ D:v,

whereD:u andD:v are the two sets of certificates assigned by dispersalD to nodesu andv, respectively. Thus, given a chain inCS, the source nodeu and the destination nodev of

the chain can find all the certificates in the chain in the setD:u[D:v. When the source nodeu and the destination nodev need to search for a chain fromu to v, then they can simply

mergeD:u andD:v to construct a certificate graphGu;v, and search for a simple path fromu to v in Gu;v. If there is a simple path fromu to v in Gu;v, then this path is a certificate

chain fromu to v. On the other hand, if there is no path fromu to v in Gu;v, then nodesu
andv recognize that there was no certificate chain in the givenCS.

Let D be a dispersal of a chain setCS. The cost of dispersalD, denoted
ost:D, is the

sum of the number of certificates in the sets assigned by dispersal D to every source or

destination node inCS. 
ost:D = Xv is a source or destination node inCS jD:vj
A dispersalD of a chain setCS is optimal if and only if for any other dispersalD0 of
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the same chain setCS, 
ost:D � 
ost:D0
In other words, an optimal dispersalD of a chain setCS minimizes the average number of

certificates stored in each node.

Dispersal of a chain set is useful for many types of systems. We discuss three example

types of systems here.

i) Deployed systems: In a deployed system, all the certificates are dispersed among

the nodes in the system before the nodes start on a particularmission. For example,

consider mobile units participating in a military operation. Chains that can be used

for authentication are carefully chosen and dispersed. Each unit stores the assigned

set of certificates by a dispersal of chosen chains. The unitsare deployed in mission

and when a unit needs to authenticate another unit, they do not have guarantee that

any other unit will be available. Thanks to dispersal, thesetwo nodes can use the

certificates stored in each unit to find a certificate chain from one to the other. Many

military applications fit in this type of systems.

ii) Client-Server systems: In a client-server system, there are only a limited number of

certificate authorities that issue certificates. In such systems, it is not necessary to collect

all the certificates to optimally disperse them. For example, in Secure Socket Layer

(SSL) systems, VeriSign is one of the few certificate authorities. A server, for example

Amazon.com, does not need to know all the certificates in the system but only stores

the certificate(Amazon:
om; V eriSign). This is an optimal dispersal (more details

are in Section IV) of this SSL system.

iii) Evolving systems: In an evolving system where certificates may be issued and revoked

during the execution of the system, the system can start withan optimal dispersal of

such system and gradually diverge from the dispersal. Even when the system diverges

from its dispersal, it is still beneficial to start with an optimal dispersal as long as the

changes in certificates are not a major portion of certificates in the system. Moreover,

the dynamic dispersal protocol in [1] disperses newly issued certificates and revocation
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certificates so that the system stabilizes back to dispersal.

Let (u; v) be a certificate that appears in one or more chains in a chain set CS, and letD
be a dispersal ofCS. The location setof certificate(u; v) assigned byD, denotedD(u; v),
is defined as a set of all nodesx such that(u; v) is in the set of certificatesD:x. It is

straightforward to show that the cost of dispersalD equals
P(u;v)2CS jD(u; v)j.

The location setD(u; v) of a certificate(u; v) assigned by a dispersalD of a chain setCS is optimal if and only if for any other dispersalD0 of CS, jD(u; v)j � jD0(u; v)j.
Theorem 1: Let D be a dispersal of a chain setCS. If D is optimal, then for every

certificate(u; v) in CS the location setD(u; v) is optimal.

Proof: The proof is by contradiction. Assume thatD is optimal, and there exists another

dispersalD0 of CS where for some certificate(u; v) in CS, jD(u; v)j > jD0(u; v)j.
Now consider the following assignment of certificates to each node inCS.D00(x; y) := 8>><>>:D0(x; y) if (x; y) = (u; v);D(x; y) if (x; y) 6= (u; v)
Note thatD00 is a dispersal ofCS. This is true because for any chain from a nodei

to another nodej in CS, all the certificates in the chain are inD00:i [ D00:j. Consider a

certificate(x; y) in the chain fromi to j in CS, where(x; y) 6= (u; v). D(x; y) contains nodei or nodej by the definition of dispersal, soD00(x; y) contains nodei or nodej. In other

words, any certificate(x; y) in a chain from nodei to nodej in CS, where(x; y) 6= (u; v),
is in D00:i [D00:j. Similarly, for certificate(u; v), if (u; v) is in a chain fromi to j in CS,D0(u; v) contains nodei or nodej by the definition of dispersal, soD00(u; v) contains nodei or nodej. In other words, if certificate(u; v) is in a chain from nodei to j in CS, then(u; v) is in D00:i [D00:j. Therefore, for any given chain from a nodei to another nodej inCS, all the certificates in the chain are inD00:i [D00:j. Thus,D00 is a dispersal ofCS.

The cost of dispersalD00 is computed as follows.
ost:D00 = Xv2CS jD00:vj = � X(x;y)2CS;(x;y) 6=(u;v) jD(x; y)j�+ jD0(u; v)j
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By the assumptionjD0(u; v)j < jD(u; v)j,
ost:D00 = � X(x;y)2CS;(x;y)6=(u;v) jD(x; y)j� + jD0(u; v)j< � X(x;y)2CS;(x;y)6=(u;v) jD(x; y)j� + jD(u; v)j = 
ost:D
Thus, the cost of dispersalD00 is less than the cost of dispersalD contradicting the assumption

thatD is an optimal dispersal.

Therefore, the location setD(u; v) assigned by an optimal dispersalD is optimal for every

certificate(u; v) in CS.

Theorem 2: Let D be a dispersal of a chain setCS. If for every certificate(u; v) in CS
the location setD(u; v) is optimal, thenD is an optimal dispersal ofCS.

Proof: The proof is by contradiction. LetD be a dispersal for a chain setCS and for

every certificate(u; v) in CS the location setD(u; v) is optimal. Also, letD0 be another

dispersal ofCS where
ost:D0 < 
ost:D. By the definition of the cost of dispersal,X(u;v)2CS jD0(u; v)j = 
ost:D0 < 
ost:D = X(u;v)2CS jD(u; v)j
Thus, there must be at least one certificate(u; v) in CS such thatjD0(u; v)j < jD(u; v)j.
This contradicts the definition of an optimal location set of(u; v).
Therefore, ifD(u; v) is optimal for every certificate(u; v) in a chain setCS, thenD is an

optimal dispersal ofCS.

III. NP-COMPLETENESS OF OPTIMAL DISPERSAL OF CHAIN SETS

In this section, we show that the chain dispersal problem is NP-Complete by a reduction

from the vertex cover problem. For convenience, these two problems are described below.� The Vertex Cover (VC) Problem: Given a connected graphG and a positive integerk, we ask if there exists a vertex cover of size� k. Any instance of this problem can

be represented by the pair(G; k). For directed graphs, the VC problem can be defined

similarly by ignoring the directions associated with the arcs; the resulting problem on

directed graphs remains NP-complete.
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ost:D � m. Any instance of

this problem can be represented by the pair(CS;m).
Theorem 3: CD is NP-Complete.

Proof: First, we show that CD is in NP. Given an instance(CS;m) of CD, and a

dispersalD of CS with 
ost:D � m, one can verify in polynomial-time that indeedD is

a dispersal ofCS and 
ost:D � m. To verify thatD is a dispersal ofCS, one checks that

all the certificates in each chain from a nodeu to another nodev in CS are inD:u [D:v.

OnceD is verified as dispersal,
ost:D is computed as the sum ofjD:uj for each nodeu inCS and can be compared tom. The time complexity of this verification step isO(p � n),
wherep is the number of chains in the chain set andn is the length of the longest chain inCS.

Second, we show that VC reduces to CD in polynomial-time. Given an instance(G; k) of

VC, we construct an instance(CS;m) of CD such that the CD instance has a yes answer if

and only if the given VC has a yes answer. The construction is as follows:

i) For each edge(u; v) in G, CS has a chain(u; x)(x; y)(y; v) of length 3.

ii) Let n+ be the number of nodes that have outgoing edges inG, andn� be the number

of nodes that have incoming edges inG. Setm = n+ + n� + k.

(CD ( VC) We now show that if the instance(G; k) of VC has a yes answer, then the

corresponding instance(CS;m) of CD has a yes answer. LetX be a vertex cover ofG,

where jXj � k. For each nodeu in the coverX, assign certificate(x; y) in CS to D:u.

For each nodeu in G, if there exists(u; x) in CS, then assign certificate(u; x) to D:u. For

each nodev in G, if there exists(y; v) in CS, then assign certificate(y; v) to D:v. In the

following two steps, we prove thatD is a dispersal ofCS whose cost is at mostm.

i) D is a dispersal ofCS: For any chain inCS from a nodeu to a nodev, the chain

consists of three certificates(u; x), (x; y), and(y; v). Certificate(u; x) is stored inD:u
and certificate(y; v) is stored inD:v. For certificate(x; y), (x; y) is stored in every

node in the vertex cover ofG. By the definition of the vertex cover, for each edge
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to every node in the vertex cover ofG, so (x; y) is stored inD:u or D:v. Thus, every

certificate in the chain fromu to v is stored inD:u[D:v, as required by the definition

of dispersal.

ii) 
ost:D � m: For each nodeu in G that has any outgoing edges, there is certificate(u; x) in CS that is assigned only to nodeu by D. Similarly, for each nodev in G that

has any incoming edges, there is certificate(y; v) in CS that is assigned only to nodev by D. For certificate(x; y), (x; y) is assigned to all the nodes in the vertex cover, so(x; y) is assigned to at mostk nodes. In total,
ost:D is at mostm = (k + n+ + n�).
The above argument shows thatD is a dispersal of constructedCS and
ost:D � m. This

proves that if an instance of VC(G; k) has a yes answer, then the corresponding instance

of CD (CS;m) has a yes answer.

(CD ) VC) We now show that if the constructed instance(CS;m) of CD has a yes

answer, then the given instance(G; k) of VC has a yes answer. LetD be a dispersal ofCS,

where
ost:D � m. For every edge(u; v) in G, there is chain(u; x)(x; y)(y; v) in CS. For

certificates(u; x) and(y; v), they will be assigned to at least one node, sojD(u; x)j � 1 andjD(y; v)j � 1. The number of such(u; x) certificates isn+ and the number of such(y; v)
certificates isn�. So certificate(x; y) is assigned to at mostk nodes, wherek ism�n+�n�.

In other words,jD(x; y)j � k.

Now, for each edge(u; v) in G, there is chain(u; x)(x; y)(y; v) in CS, and(x; y) is stored

in D:u[D:v. In other words, for each edge(u; v) in G, the location set ofD(x; y) contains

nodeu or nodev. Therefore, the location set ofD(x; y) is a vertex cover ofG. The size of

the location setD(x; y) is at mostk, so the size of the vertex cover is at mostk, and the

instance(G; k) of VC has a yes answer.

In conclusion, the above proof shows that CD is in NP and VC reduces to CD in

polynomial-time. Therefore, CD is NP-Complete.

In the light of the above complexity result, it becomes of importance to identify special

classes of chain sets of practical interest for which the problem can be solved efficiently.
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This direction is pursued in the following cases.

i) Short chain sets: In Section IV, we start by investigating the class of chain sets,

where each chain is of length at most 2. This class of chain sets is the one currently

being used in the Secure Socket Layer (SSL) protocol. Recallthat the chain set in the

example in Fig. 3 in Section I falls into this class.

ii) Disconnected chain sets: In Section V, we investigate the class of chain sets where

for a given certificate, no node can be both the source and the destination of any

chain that contains this certificate. This reflects a system where the authentication is

needed in an asymmetric manner. For example, when there are clients and servers in

the system, one can imagine that clients would use certificates to authenticate servers,

while servers would use passwords to authenticate clients.Such asymmetric systems

can be represented as this class of chain sets.

iii) Concise graphs: In Section VI, we investigate the class of chain sets where the chains

are derived from acyclic certificate graphs. This class reflects systems where the need

for authentication is uni-directional. For example, any hierarchical system where a

lower level user is authenticated by a higher level user, butnot the other way around,

would be represented by an acyclic certificate graph.

For all these three classes of chain sets, we present polynomial-time algorithms that compute

optimal dispersals of chain sets in each class and prove their optimality.

Also below, we identify two classes of parameterized chain sets that are defined using

an integer parameterk. In the first class, each chain set has at mostk chains with 3 or

more certificates. In the second class, each chain set has at most k nodes that may act both

as sources and destinations. For both classes, we obtain polynomial-time algorithms that

compute optimal dispersals whenk is fixed.

IV. OPTIMAL DISPERSAL OFSHORT CHAIN SETS

In the previous section, we proved that computing an optimaldispersal of any chain set,

which includes chains whose length is 3 or more, is NP-complete. In this section, we show



13

that there is a polynomial-time algorithm that computes an optimal dispersal of any chain

set whose chains are all of length at most 2. This class of chain sets is currently in use in

the Internet in Secure Socket Layer (SSL).

A chain setCS is short if and only if the length of the longest chain inCS is at most 2.

For example, consider the star certificate graph in Fig. 4(a). In this certificate graph, assume

that each satellite node,b, 
, or d, wishes to securely communicate with every other satellite

node. Fig. 4(b) shows the resulting short chain set.

a

d

b c

(a)

f (b; a)(a; 
), (d; a)(a; b),(
; a)(a; b), (
; a)(a; d),(b; a)(a; d), (d; a)(a; 
)g
(b)

Fig. 4. An Example of Short Chain Set

ALGORITHM 1 : optimal dispersal of short chain sets

INPUT: a short chain setCS
OUTPUT: a dispersalD of CS
STEPS:

1: for each nodeu in CS, D:u := fg
2: for each certificate(u; v) in CS do

3: if there is a nodex such that

the source or destination of every chain that has(u; v) is x
4: then add (u; v) to D:x
5: elseadd (u; v) to bothD:u andD:v

Algorithm 1 computes an optimal dispersal of a short chain set. Consider the certificate(b; a) in the example short chain set in Fig. 4. Chains that have(b; a) are (b; a)(a; 
) and(b; a)(a; d). So b is the source of every chain that has(b; a). Therefore, Algorithm 1 assigns



14(b; a) to D:b. After considering all the certificates in the short chain set, the optimal dispersal

computed by Algorithm 1 as follows:fD:a = fg, D:b = f(a; b); (b; a)g,D:
 = f(a; 
); (
; a)g, D:d = f(a; d); (d; a)gg
Theorem 4: Given a short chain setCS, the dispersalD of CS computed by Algorithm

1 is optimal.

Proof: The proof consists of two parts. First, we show that Algorithm 1 computes a

dispersalD. Second, we show thatD is optimal.

Proof of First Part:

By the definition of dispersal in Section II, if all the certificates in each chain from a

source nodeu to a destination nodev in CS are in setD:u [ D:v, thenD is a dispersal

of CS. In other words, if a certificate(u; v) is stored in the source or destination nodes of

every chain that contains(u; v), thenD is a dispersal.

By Algorithm 1, every certificate(u; v) is stored either inD:x of some nodex, or bothD:u andD:v. Since the maximum length of a chain inCS is 2, every chain that contains(u; v) starts atu or ends atv. Hence if(u; v) is stored in bothD:u andD:v then certificate(u; v) is stored in the source or destination node of every chain that contains(u; v). If (u; v)
is stored in nodex, then by Algorithm 1x is either the source node or the destination node

of every chain that contains(u; v). Therefore,(u; v) is stored in the source or the destination

node of every chain that contains(u; v).
Proof of Second Part:

The proof is by contradiction. LetD be the dispersal of a short chain setCS computed

by Algorithm 1 andD0 be another dispersal ofCS. Assume that
ost:D0 < 
ost:D. There

must be at least one certificate(u; v) such thatjD0(u; v)j < jD(u; v)j.
Let (u; v) be such a certificate,jD0(u; v)j < jD(u; v)j. By Algorithm 1, jD(u; v)j is either

1 (if there exists some nodex that is the source or destination node of every chain that has(u; v)) or 2 (otherwise). Therefore,jD0(u; v)j = 1 and jD(u; v)j = 2, and there exists no
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nodex in CS that is the source or destination node of every chain that has(u; v). By the

definition of dispersal, the nodew in D0(u; v) should be the source or a destination of every

chain that contains(u; v) in CS. This contradicts that there exists no nodex in CS such

that x is the source or destination node of every chain that has(u; v).
Therefore,
ost:D � 
ost:D0 for any dispersalD0 of CS. Algorithm 1 computes an optimal

dispersal of a short chain setCS.

The time complexity of Algorithm 1 isO(ep), wheree is the number of certificates in the

input short chain set andp is the number of chains in the chain set.

V. OPTIMAL DISPERSAL OFDISCONNECTEDCHAIN SETS

In this section, we identify a special class of chain sets andpresent an algorithm that

computes an optimal dispersal for this class of chain sets inpolynomial-time. A chain setCS is disconnectedif and only if for every certificate(u; v) in CS, the set of source nodes of

the chains that contain(u; v) and the set of destination nodes of the chains that contain(u; v)
are disjoint. This reflects a system where the authentication is performed in an asymmetric

manner. For example, when there are clients and servers in the system, one can imagine that

clients would use certificates to authenticate servers, while servers would use passwords to

authenticate clients. Such asymmetric systems can be represented as disconnected chain sets.

Fig. 5 shows an example of a disconnected chain set.f (d; a),(a; b)(b; 
),(a; 
)(
; d),(a; b)(b; 
)(
; d)(d; e)g
Fig. 5. An Example of Disconnected Chain Set(d; a) has the set of source nodesfdg and the set of destination nodesfeg, which are

disjoint. (a; b) has the set of source nodesfag and the set of destination nodesf
; eg, which

are disjoint. Every certificate in this chain set has disjoint sets of source and destination

nodes.
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ALGORITHM 2 : optimal dispersal of disconnected chain sets

INPUT: a disconnected chain setCS
OUTPUT: a dispersalD of CS
STEPS:

1: for each nodeu in G, D:u := fg
2: for each certificate(u; v) in G do

3: G0=(V 0; E 0) whereV 0 = fg andE 0 = fg
4: for each chain from nodex to nodey that contains(u; v) do

5: add nodesx andy to V 0
6: add(x; y) to E 0
7: compute a minimal vertex cover of the bipartite graphG0
8: add (u; v) to each node in the vertex cover

Algorithm 2 computes an optimal dispersal of a disconnectedchain set. Consider certificate(a; b) in the example disconnected chain set in Fig. 5. Algorithm 2 constructs a bipartite

graphG0 for certificate(a; b), whereG0 = (V 0; E 0), V 0=fa; 
; eg, andE 0=f(a; 
); (a; e)g. The

vertex cover of minimum size ofG0 is fag. Thus,(a; b) is stored inD:a. After considering

all certificates in the chain set, the example disconnected chain set is optimally dispersed by

Algorithm 2 as follows:fD:a = f(a; b); (b; 
); (
; d)g, D:b = fg, D:
 = fg,D:d = f(a; 
); (d; a)g, D:e = f(d; e)gg
Theorem 5: Given a disconnected chain setCS, the dispersalD of CS computed by

Algorithm 2 is optimal.

Proof: The proof consists of two parts. First, we show that Algorithm 2 produces a

dispersal. Second, we show that the resulting dispersal is optimal.

Proof of First Part:
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Let D:u be the set of certificates assigned to a nodeu in CS by Algorithm 2. Consider

any certificate(u; v) in a chain from a source nodex to a destination nodey in CS. By

Algorithm 2, since there is a chain fromx to y that goes through(u; v), there is an edge(x; y) in G0 for (u; v). By the definition of vertex cover, for edge(x; y) in G0, nodex or

nodey is in the vertex cover. Therefore, for the chain fromx to y, (u; v) is stored inD:x
or D:y. This is true for all the certificates in the chain fromx to y, for any chain inCS.

Hence,D satisfies the dispersal condition in Section II, soD is a dispersal ofCS.

Proof of Second Part:

By Theorem 2, if we can find a dispersalD whereD(u; v) of every certificate(u; v)
in CS is optimal, thenD is an optimal dispersal ofCS. So we only need to prove that

a dispersal computed by Algorithm 2 produces an optimal location set of each certificate

in CS. The proof is by contradiction. Assume there is another dispersalD0 of CS, where
ost:D0 < 
ost:D. There must be at least one certificate(u; v) wherejD0(u; v)j < jD(u; v)j.
For every chain from a nodex to a nodey that contains(u; v), D0(u; v) should containx
or y. Therefore,D0(u; v) is a vertex cover of the bipartite graphG0 constructed for(u; v),
wherejD0(u; v)j < jD(u; v)j. This contradicts thatD(u; v) is the vertex cover of minimum

size ofG0 by line 7 in Algorithm 2. Therefore,D(u; v) is an optimal location set of(u; v)
for every certificate(u; v) in CS. By Theorem 2,D is optimal.

For each certificate(u; v), the graphG0 constructed for(u; v) is a bipartite graph. It is

because the set of source nodes of the chains that contain(u; v) and the set of the destination

nodes of the chains that contain(u; v) are disjoint by the definition of disconnected chain

set. Finding a vertex cover in a bipartite graph is a well known problem in graph theory,

which takesO(n0e0) steps wheren0 is the number on nodes inG0 and e0 is the number of

edges inG0. In the worst casen0 = n and e0 = p, wheren is the number of nodes inCS,

and p is the number of chains inCS. Therefore, the time complexity of Algorithm 2 isO(e� np)=O(enp), wheree is the number of certificates inCS.
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VI. OPTIMAL DISPERSAL OFCONCISEGRAPHS

In this section, we present an algorithm that computes optimal dispersal for chain sets

“derivable” from a class of certificate graphs called concise certificate graphs. A certificate

graphG is calledconciseif and only if it satisfies the following two conditions.

i) Short Cycles: Every simple directed cycle inG is of length 2.

ii) Non-redundancy: G has at most one chain from any node to any other node.

Concise certificate graphs represent many useful certificate systems. For example, a hierarchi-

cal certificate system would typically generate a tree-shaped certificate graph. Any tree-shaped

certificate graph is a concise certificate graph.

Fig. 6(a) shows an example of a concise certificate graph. Note that in a concise graph

there can be two opposite direction certificates between twoadjacent nodes. We refer to any

such pair of certificates astwins, and we refer to each one of those certificates as thetwin

certificateof the other. In the concise graph in Fig. 6(a), the two certificates(b; 
) and(
; b)
are twins.

a

d

b c

(a)

f (a; b), (b; 
), (
; b), (b; d),(a; b)(b; 
),(a; b)(b; d),(
; b)(b; d) g
(b)

Fig. 6. An Example of Concise Certificate Graph and DerivableChain Set

A chain set isderivablefrom some certificate graphG if and only if the chain set consists

of all the certificate chains inG. For example, the chain set in Fig. 6(b) is derivable from

the certificate graph in Fig. 6(a).

Algorithm 3 computes an optimal dispersal of a concise certificate graph. Consider cer-

tificate (b; 
) in the example concise certificate graph in Fig. 6(a). Algorithm 3 computes the

set of nodes from which there is a chain tob, denotedR:b, as fa; bg. Also, Algorithm 3
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ALGORITHM 3 : optimal dispersal of concise certificate graphs

INPUT: a concise certificate graphG
OUTPUT: a dispersalD of the chain setCS derivable fromG
STEPS:

1: for each nodeu in G, D:u := fg
2: for each certificate(u; v) in G do

3: compute the setR:u that containsu and every nodex from which there is a chain

to u in G and this chain does not contain the twin certificate(v; u)
4: compute the setR:v that containsv and every nodex to which there is a chain

from v in G and this chain does not contain the twin certificate(v; u)
5: if jR:uj � jR:vj
6: then for every nodex in R:u, add(u; v) to D:x
7: elsefor every nodey in R:v, add(u; v) to D:y
computes the set of nodes to which there is a chain from
, denotedR:
 asf
g. jR:bj > jR:
j,
so (b; 
) is stored in
. After considering all the certificates in the graph, the example concise

certificate graph is optimally dispersed by Algorithm 3 as follows:f D:a = f(a; b)g, D:b = f(
; b)g,D:
 = f(b; 
)g, D:d = f(b; d)g g
Theorem 6: Given a concise certificate graphG, the dispersalD of the chain setCS

derivable fromG computed by Algorithm 3 is optimal.

Proof: We divide the proof into two parts. First, we show that Algorithm 3 computes

a dispersalD. Second, we show thatD is optimal.

Proof of First Part:

We show that the certificate subsetsD:x, computed by Algorithm 3 for every nodex inG, satisfy the condition of dispersal in Section II.
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Consider a pair of nodesv0 andvk, where there is a chain (v0, v1), (v1, v2), � � � , (vk�1, vk)
from v0 to vk in G. By the definition of the derivable chain set, the chain fromv0 to vk is inCS. For each certificate(vi; vi+1) in this chain, the two setsR:vi andR:vi+1 are computed

by Algorithm 3. Since there is a chain fromv0 to vi in G, R:vi containsv0. Similarly, since

there is a simple directed chain fromvi+1 to vk in G, R:vi+1 containsvk. By line 5-7 in

Algorithm 3, (vi; vi+1) is stored either in all nodes inR:vi or in all nodes inR:vi+1. BecauseR:vi containsv0 andR:vi+1 containsvk, certificate(vi; vi+1) is stored either inD:v0 or inD:vk. Thus, every certificate(vi; vi+1) in the chain fromv0 to vk is stored inD:v0 [D:vk.
Hence,D is a dispersal of the chain setCS derivable fromG.

Proof of Second Part:The proof is by contradiction. LetD0 be another dispersal ofCS
where 
ost:D0 < 
ost:D. Then there must be such a certificate(u; v) that jD0(u; v)j <jD(u; v)j. By the definition of dispersal,(u; v) needs to be stored inD0:x [D0:y for every

chain fromx to y that contains(u; v). By the definition of derivable chain set, certificate(u; v) is used in every directed chain from any nodex in R:u to any nodey in R:v, whereR:u andR:v are the two sets computed by Algorithm 3 for certificate(u; v). In other words,jD0(u; v)j � min(jR:uj; jR:vj). SincejD(u; v)j = min(jR:uj; jR:vj), jD0(u; v)j � jD(u; v)j.
This contradicts the assumption ofjD0(u; v)j < jD(u; v)j.

Therefore,D computed by Algorithm 3 is optimal.

The complexity of Algorithm 3 isO(en), wheree is the number of certificates in the input

concise certificate graph andn is the number of nodes in the concise certificate graph.

VII. O PTIMAL DISPERSAL OFk-LONG CHAIN SETS

In Section III, we showed that computing an optimal dispersal of any chain set, which

includes chains of length 3 or more, is NP-complete. If all the chains in a chain set are of

length at most 2, i.e. if the chain set is short, then we can useAlgorithm 1 in Section IV

to compute an optimal dispersal of the short chain set. In this section, we consider a more

general class of chain sets where there are a fixed numberk, k � 1, of chains of length greater

than 2. Consideration of such chain sets is motivated, for instance, by the following example.
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Consider a hierarchical network made of a number of autonomous systems. Certificate chains

within any single autonomous system are expected to be short, whereas certificate chains

that span multiple autonomous systems are expected to be long. The chain set of these

autonomous systems contain mostly shortintra-chains, but may contain a fixed number of

long inter-chains. Our main result here is a polynomial-time algorithm that computes an

optimal dispersal for such chain set for fixedk.

In this section, we present Algorithm 4 that computes an optimal dispersal of a chain set

where there arek chains of length greater than 2 for some constantk. We call such setsk-long chain sets. Roughly speaking, our general strategy is to consider all possible ways of

assigning certificates that appear in long chains to the relevant source and destination nodes,

and then handling the remaining short chains with the aid of Algorithm 1. To develop some

initial intuition, first we show how to compute an optimal dispersal of an example 1-long

chain set in Fig. 7(b), and then we show how to generalize for k-long chain sets.

a

b c

d

(a)

f (a; b)(b; 
),(b; 
)(
; a),(
; a)(a; b),(
; a)(a; b)(b; d) g
(b)

Fig. 7. An Example of 1-Long Chain Set

Let CS be the 1-long chain set in Fig. 7(b), which is a chain set of thecertificate graph

in Fig. 7(a). There is one long chain(
; a)(a; b)(b; d) and three other short chains. There are

three types of certificates in this chain set.

i) Certificates used only in long chains: for example,(b; d).
A certificate of this type can be dispersed either to the source or to the destination of

each long chain that contains this certificate. For example,certificate(b; d) in CS is

used only in the long chain and needs to be dispersed either to
 or to d. This certificate
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is not used in any other chains, so it does not change the cost of dispersal whether it

is dispersed to
 or d.

ii) Certificates used only in short chains: for example,(b; 
).
For certificates of the second type, we can use Algorithm 1 in Section IV to disperse

such certificates. For example, certificate(b; 
) is dispersed to nodea by Algorithm 1.

iii) Certificates used in both long and short chains: for example, (a; b), (
; a).
Dispersing a certificate of the third type needs to consider every possible assignment of

this certificate among sources and destinations of long chains. For example, certificate(a; b) is used in three chains,(a; b)(b; 
), (
; a)(a; b) and(
; a)(a; b)(b; d). If we choose

to disperse(a; b) to the source
 of long chain, then we do not need to disperse(a; b)
to any other node inCS, since
 happens to be source or destination of all the short

chains that contain(a; b). By contrast, if we choose to disperse(a; b) to the destinationd of long chain, then we need to disperse(a; b) to other nodes thand sinced is neither

source nor destination of two short chains(a; b)(b; 
) and (
; a)(a; b). In other words,D(a; b) could be eitherf
g or fa; b; dg, depending on whether(a; b) is assigned to

the source or the destination of the long chain. This shows that for each certificate of

the third type that is used in both long and short chains, in each assignment of this

certificate in sources and destinations of long chains, we need to check which short

chains still needs dispersal of this certificate.

After considering all three types of certificates inCS, the resulting optimal dispersal ofCS in Fig. 7(b) becomes as follows:f D:a = f(b; 
)g, D:b = f(
; a)g,D:
 = f(
; a); (a; b)g, D:d = f(b; d)g g
To extend this solution for 1-long chain set tok-long chain set, we need to define a terminal

set of a chain set. Aterminal set of a chain setCS is a subset of nodes inCS that consists

of the source or destination of each chain inCS. For example, the four nodesa; b; 
; 
 are
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the sources of all four chains in the chain set in Fig. 7(b), sofa; b; 
g is a terminal set of

this chain set. Algorithm 4 computes an optimal dispersal ofk-long chain sets using this

terminal set.

ALGORITHM 4 : optimal dispersal ofk-long chain sets

INPUT: a k-long chain setCS
OUTPUT: a dispersalD of CS
STEPS:

1: for each nodeu in CS, D:u := fg
2: for each certificate(u; v) in CS do

3: compute the chain setLS of all long chains that contain(u; v) in CS
4: for each possible terminal setX of LS
5: for each nodew in CS, if w 2 X then DX :w := f(u; v)g elseDX :w := fg
6: compute the chain setS of all the chains that contain(u; v)

and their sources and destinations are not inX
7: run Algorithm 1 onS and add the resulting location set of(u; v) to DX
8: find DX with the minimal cost

9: for each nodeu in CS, addDX :u to D:u
Consider(
; a) in the example chain set in Fig. 7(b). The set of all long chains that

contain (
; a), denotedLS in Algorithm 4, is f(
; a)(a; b)(b; d)g. For a terminal setf
g,(
; a) is dispersed to node
 and the set of remaining short chains, denotedS in Algorithm 4,

becomesf(b; 
)(
; a)g. There is nodeb that is the source of every chain inS, so (
; a) is

dispersed to nodeb. The resulting dispersal of(
; a), fb; 
g, is an optimal location set of(
; a). After considering every certificate, the dispersal of the example chain set in Fig. 7(b)

computed by Algorithm 4 becomes the same with the dispersal above, and this dispersal is

optimal. Theorem 7 shows that Algorithm 4 computes an optimal dispersal of a givenk-long

chain sets.

Theorem 7: Given ak-long chain setCS, the dispersalD of the chain setCS computed
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by Algorithm 4 is optimal.

Proof: We divide the proof into two parts. First, we show that Algorithm 4 computes

a dispersalD. Second, we show thatD is optimal.

Proof of First Part:

We show that the certificate subsetsD:u, computed by Algorithm 4 for every nodeu inCS, satisfy the condition of dispersal in Section II.

Consider a certificate(u; v). Algorithm 4 computes the chain setLS of for all the long

chains that contain(u; v). Algorithm 4 stores(u; v) in every node in a terminal set ofLS.

By the definition of a terminal set,(u; v) is stored in either source or destination of each

long chain inLS. For all the remaining short chains that contain(u; v) in CS, by line

7-9 in Algorithm 4 (same as line 3-5 in Algorithm 1),(u; v) is stored either inD:w for

some nodew or in D:u andD:v. (The rest of proof is same with the optimality proof of

Algorithm 1.) For each remaining short chain, the chain thatcontains(u; v) starts atu or

ends atv. Hence if(u; v) is stored in bothD:u andD:v then certificate(u; v) is stored in the

source or destination node of every remaining chain that contains (u; v). If (u; v) is stored

in nodew, then by Algorithm 4, thenw is either the source node or the destination node of

every remaining chain. Therefore,(u; v) is stored in the source or the destination node of

every chain that contains(u; v). This is true for any certificate(u; v) in CS. Hence,D is a

dispersal of the chain setCS.

Proof of Second Part:

The proof is by contradiction. LetD be the dispersal of ak-long chain setCS computed

by Algorithm 4 andD0 be another dispersal ofCS. Assume that
ost:D0 < 
ost:D. There

must be at least one certificate(u; v) such thatjD0(u; v)j < jD(u; v)j.
There are three cases of(u; v):
i) (u; v) is a certificate used only in long chains.

ii) (u; v) is a certificate used only in short chains.

iii) (u; v) is a certificate used in both long and short chains.

For case i), Algorithm 4 considers every possible terminal set X of the long chains that
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contain(u; v). Therefore, the resultingjD(u; v)j = minX jDX(u; v)j. By the definition of the

terminal set,D0(u; v) has to be a terminal set of the long chains that contain(u; v). In other

words, jD0(u; v)j � minX jDX(u; v)j = jD(u; v)j. Therefore,jD(u; v)j � jD0(u; v)j
For case ii), Algorithm 4 computes an optimal dispersal of the short chains containing(u; v). The proof is same as the optimality proof of Algorithm 1 for short chain sets.

Therefore,jD(u; v)j � jD0(u; v)j.
For case iii), find a terminal setX of the long chains that contain(u; v), such thatX �D0(u; v). Since Algorithm 4 considers every possible terminal set ofthe long chains that

contain(u; v), it also computesDX(u; v) for the found terminal setX, whereX � DX(u; v).
For the remaining short chains inS, since the sources and destinations of the short chains

in S are not inX, soD0(u; v) nX should contain source or destination of each chain inS.

Also, Algorithm 1 computes an optimal location set of(u; v) in S. Therefore,jDX(u; v) nXj � jD0(u; v) n Xj. SinceX � D0(u; v) and X � DX(u; v), jDX(u; v)j � jD0(u; v)j.jD(u; v)j = minX jDX(u; v)j, so jD(u; v)j � jD0(u; v)j.
In all three cases,jD(u; v)j � jD0(u; v)j, which contradicts the assumption ofjD(u; v)j >jD0(u; v)j. Therefore, dispersalD computed by Algorithm 4 is optimal.

The time complexity of this algorithm isO(2k�ep), wherek is the number of long chains

in CS, e is the number of certificates inCS, and p is the number of chains inCS. This

complexity is computed as follows: the number of terminal sets for k long chains isO(2k),
and for each terminal set, the number of short chains to consider isO(p). We repeat this

procedure fore certificates. Sincek is a constant, the time complexity becomesO(ep).
VIII. O PTIMAL DISPERSAL OFk-CONNECTEDCHAIN SETS

In Section V, we presented Algorithm 2 that computes an optimal dispersal of a dis-

connected chain set. In this section, we investigate more general class of chain sets where

there are at mostk nodes in the intersection of the source set and the destination set of

each certificate in a chain set. We call such chain setsk-connectedchain sets. This class

of chain sets models a client-server system that uses two different authentication methods.
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As discussed in Section V, in some client-server systems, clients authenticate servers via

certificates, whereas servers authenticate clients via other means, e.g. passwords. However,

there may be a few mutual authentications via certificates between servers. These certificates

used by servers may have non-empty intersection of the source and destination sets. Such

client-server systems can be represented ask-connected chain sets.

Fig. 8(b) shows an example of1-connected chain set, which is a chain set of the certificate

graph in Fig. 8(a). For certificate(a; b), the sources of the chains that contain(a; b) arefa; 
g
and the destinations of such chains arefb; 
; dg. The intersection of two sets isf
g. Similarly,

the cardinality of the intersection set is at most 1 for everycertificate in this chain set, so

the chain set in Fig. 8(b) is1-connected.

b

cd

a

(a)

f (a; b)(b; 
),(a; b)(b; 
)(
; d),(b; 
)(
; d)(d; a),(
; d)(d; a)(a; b) g
(b)

Fig. 8. An Example of1-Connected Chain Set

Assume that(a; b) is stored inD:
 in some dispersalD of this chain set. The remaining

chain to be dispersed is(a; b)(b; 
)(
; d). Certificate(a; b) can be stored either inD:a or inD:d, either of which makes no difference in the dispersal cost. Or, assume that(a; b) is not

stored inD0:
 in some dispersalD0 of this chain set. Certificate(a; b) needs to be stored inD0:a andD0:b. We can repeat this process for each certificate to find the dispersal as follows:fD:a = f(a; b); (b; 
)g, D:b = f(
; d); (d; a)g,D:
 = f(a; b)g, D:d = f(
; d)g g
This is also an optimal dispersal of this 1-connected chain set.

To extend this solution for 1-connected chain set tok-connected chain set, we need to



27

define anintersectionset of a certificate. An intersection set of a certificate(u; v) in a chain

setCS is a set of nodes that appear both in the set of sources and the set of destinations of

the chains that contain(u; v). For certificate(a; b) in Fig. 8(b), the sources of the chains that

contain (a; b) are fa; 
g and the destinations of such chains arefb; 
; dg. The intersection

of two sets isf
g, sof
g is the intersection set of(a; b). Algorithm 5 computes an optimal

dispersal ofk-connected chain sets using this intersection set.

ALGORITHM 5 : optimal dispersal ofk-connected chain sets

INPUT: a k-connected chain setCS
OUTPUT: a dispersalD of CS
STEPS:

1: for each nodeu in CS, D:u := fg
2: for each certificate(u; v) in CS do

3: compute the intersection setIS of (u; v)
4: for each subsetX of IS
5: for each nodew in CS, if w 2 X then DX :w := f(u; v)g elseDX :w := fg
6: compute the chain setS of all the chains that contain(u; v)

and their sources and destinations are not inX
7: for each chain fromy to z in S
8: if y 2 IS nX then add (u; v) to DX :z and remove the chain fromS
9: if z 2 IS nX then add (u; v) to DX :y and remove the chain fromS
10: run Algorithm 2 onS and add the resulting location set of(u; v) to DX
11: find DX with the minimal cost

12: for each nodeu in CS, addDX :u to D:u
The proof of the optimality of this algorithm is straightforward. Since this algorithm

considers every possible subset of the intersection set, itis guaranteed to find the optimal

location set of each certificate. By Theorem 2, the dispersalcomputed by this algorithm is

optimal.
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The time complexity of this algorithm isO(2k � enp), wherek is the tight upper bound

of the number of nodes in intersection sets of all the certificates inCS, n is the number of

nodes inCS, e is the number of certificates inCS, andp is the number of chains inCS.

Since there are at mostk nodes in the intersection set of each certificate, there are at most2k subsets of the intersection set. For each subset, we run Algorithm 2, whose complexity

is O(enp). Therefore, the total time complexity becomesO(2kenp). Sincek is a constant,

the time complexity becomesO(enp).
IX. RELATED WORK

Several papers have investigated the use of certificates forconfidentiality, authentication,

and authorization. We summarize the results of these papersin the following paragraphs.

Architectures for issuing, storing, discovery, and validating certificates in networks are

presented in [2], [3], [4], [5], [6], [7], [8], [9], [10]. In alarge scale network such as

today’s Internet, one cannot expect to have a central authority to issue, store, and validate

all the certificates. A distributed system, where each user participates in issuing, storing, and

validating certificates is desirable in such a network.

In [11] and [12], distributed architectures for issuing certificates, particularly in mobile

networks, are presented.

In [11], Zhou and Haas present an architecture for issuing certificates in an ad-hoc network.

According to this architecture, the network hask servers. Each server has a different share

of some private keyrk. To generate a certificate, each server uses its own share ofrk to

sign the certificate. If no more thant servers have suffered from Byzantine failures, wherek � 3t+ 1, then the resulting certificate is correctly signed using the private keyrk, thanks

to threshold cryptography. The resulting certificate can beverified using the corresponding

public key which is known to every node in the ad-hoc network.

In [12], Kong, Perfos, Luo, Lu and Zhang presented another distributed architecture for

issuing certificates. Instead of employingk servers in the ad-hoc network, no special nodes

such as servers are in the network and every node in the network is provided with a different



29

share of the private keyrk. For a nodeu to issue a certificate, the nodeu forwards the

certificate to its neighbors and each of them sign the certificate using its share ofrk. If nodeu has at leastt+1 correct neighbors (i.e. they have not suffered from any failures), then the

resulting certificate is correctly signed using the privatekey rk.

Both work assume that a certificate is signed by a special private key of an authority,

and distribute the private key among many servers or nodes. By contrast, in [13] and this

paper, we propose a distributed architecture where every node has both a public key and a

private key so it can issue certificates for any other node in the network. This architecture

is very efficient in issuing and validating certificates but cannot tolerate Byzantine failures.

In particular, if one node suffers from Byzantine failure, then this node can successfully

impersonate any other node that is reachable from this node in the certificate graph of the

network. This vulnerability to Byzantine failures is not unique to our certificate work. In fact,

many proposed certificate architectures, e.g. [2], [3], while [12], [4], [10], [9] yield similar

vulnerabilities. Recently, we have identified a metric to evaluate the damage from this type

of attacks. We call it “vulnerability” of the certificate system and discuss it in more details

in [14].

In [10], Li, Winsborough, and Mitchell presented a role-based trust management languageRT0 and suggested the use of strongly typed distributed certificate storage to solve the

problem of certificate chain discovery in distributed storage. However, they do not discuss

how to efficiently assign certificates among the distributedstorages. By contrast, our work

focuses on minimizing storage overhead in certificate dispersal among the users while they

have enough certificates so that there is no need for certificate chain discovery.

In [15], Ajmani, Clarke, Moh, and Richman presented a distributed certificate storage

using peer-to-peer distributed hash table. This work assumes dedicated servers host a SDSI

certificate directory and focuses on fast look-up service and load balancing among the servers.

By contrast, our work assigns certificates to users such thatthere is no need for look-up and

there are no dedicated certificate storage servers. Our workalso focuses on efficient use of

storages in all users in network.
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In [16], Reiter and Stubblebine investigated how to increase assurance on authentication

with multiple independent certificate chains. They introduce two types of independent chains,

disjoint paths (no edge is shared by any two chains) and k-connective paths (k certificates

need to be compromised to disconnect all these paths). This paper shows that there are no

polynomial-time algorithms for locating maximum sets of paths with these properties and

presents approximation algorithms.

Perhaps the closest work to ours is [17] where the authors, Hubaux, Buttýan, and Capkun,

investigated how to disperse certificates in a certificate graph among the network nodes

under two conditions. First, each node stores the same number of certificates. Second, with

high probability, if two nodes meet then they have enough certificates for each of them to

obtain the public key of the other. By contrast, our work in [13] and here are based on two

different conditions. First, different nodes may store different number of certificates, but the

average number of certificates stored in nodes is minimized.Second, it is guaranteed (i.e.

with probability 1) that if two nodes meet then they have enough certificates for each of

them to obtain the public key of the other (if there exists a chain between them in the chain

set).

Later, the same authors have showed in [18] that a lower boundon the number of

certificates to be stored in a node is
pn�1 wheren is the number of nodes in the system. By

contrast, we showed in [13] that the tight lower bound on the average number of certificates

to be stored in a node ise=n, where e is the number of certificates in the system. Our

work here shows that finding an optimal dispersal of a given chain set is NP-complete, and

presents three polynomial-time algorithms which compute optimal dispersal of chain sets in

three classes of practical interests and two extensions of these algorithms for more general

classes of chain sets.

Zheng, Omura, Uchida, and Wada presented algorithms that compute optimal dispersals

for strongly-connected graphs and directed graphs in [19].The same authors also showed

the tight upper bounds in these two classes of certificate graphs.
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X. CONCLUSION

We have shown that, in general, finding an optimal dispersal of a given chain set is NP-

complete. We have also discussed three polynomial-time algorithms, each of which computes

an optimal dispersal for a rich class of chain sets and two extensions of these algorithms for

two more general classes of chain sets. In [20], we have presented more polynomial-time

algorithms which compute an optimal dispersal for more classes of chain sets. This result

can be used in any network setting. However, these algorithms are particularly useful when

the network is large. In a large scale network such as today’sInternet, one cannot expect

to have a central authority for storing and distributing certificates among all users in the

network. Instead, users can store a subset of certificates inthe network so that any user can

obtain the public key of the other whom the user wants to securely communicate with (if

there was a chain in the chain set of the network). Moreover, in a large scale network, not

all certificate chains in a certificate graph are in use. Computing an optimal dispersal of a

chain set instead of the chain set derivable from the certificate graph of the network reduces

the cost of dispersal.

This result can be also used as a metric to evaluate certificate graphs. The optimal dispersal

cost is an important property of a certificate graph, since itaffects the storage requirement

of each node in the network. This is especially important in ad-hoc networks, where mobile

nodes may be more restricted in terms of storage than stable nodes can be.
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