Buyer-Supplier Games: Core Characterization and Computation

Nedialko B. Dimitrov* C. Greg Plaxton'

April 2006

Abstract

In a buyer-supplier game, a distinguished player, called the buyer, wishes to purchase some com-
binatorial object. A set of players, called suppliers, offer pieces of the object for sale. In this paper,
we provide a transformation from most combinatorial minimization problems to buyer-supplier games;
a characterization of the core of buyer-supplier games in the transferable and non-transferable utility
cases; a polynomial time algorithm for optimization over the core of buyer-supplier games for which the
underlying minimization problem is solvable in polynomial time; and an impossibility result showing
that it is hard to distinguish core vectors if the base minimization problem is not solvable in polynomial
time. We also introduce and study the concept of focus point price, which answers the question: If we
are constrained to play in equilibrium, how much can we lose by playing the wrong equilibrium?

*Supported by an MCD Fellowship from the University of Texas at Austin.
"Supported by NSF Grants CCR-0310970 and ANI-0326001.

1 Introduction

A game is a strategic interaction between a group of players, where the aim of each player is to maximize
the player’s own payoff. In game theory, a solution concept predicts the outcome of a game; the predictions
made by the solution concept are called equilibria. Differing models of game play lead to different solution
concepts. For example, the famous Nash equilibrium solution concept was developed with the notion that
players make strategic decisions simultaneously, without any inter-player communication [10]. The corre-
lated equilibrium solution concept, on the other hand, was developed with the notion that players may use
some common randomness as the sole form of communication, and as a source of collaboration [2].

In contrast, the absence of restrictions on inter-player communication leads to the core solution concept.
We give a formal definition of the core of a game in Section 2.2. Informally, the core is a subset of the payoff
vectors possible from outcomes to the game. If no collusion were allowed, only some of the payoff vectors
would be rational, since an individual player would never accept a payoff that the player can unilaterally and
selfishly improve. Allowing some sets of players to collude further restricts the set of rational vectors, since
a set of players would never accept collective payoffs that they can unilaterally and selfishly improve. The
core is the set of payoff vectors that are still rational when we allow every subset of the players to collude.

In this paper, we study the core of a large set of games, which we term buyer-supplier games. We are
concerned both with the characterization of the core, as well as efficient computations over the set of vectors
belonging to the core. Before diving into an overview of buyer-supplier games, we present some connections
between our work and the existing literature.

1.1 Related Work

Though suggested by Edgeworth as early as 1881 [3], the notion of the core was formalized by Gillies
and Shapley [6, 20], extending von Neumann and Morgenstern’s work on coalitional game theory [22].
Recently, Goemans and Skutella studied the core of a cost sharing facility location game [7]. In their paper,
Goemans and Skutella are primarily interested in using core vectors as a cost sharing indicator, to decide
how much each customer should pay for opening the facility used by the customer. Goemans and Skutella
show that, in general, the core of the cost sharing facility location game they study is empty. In contrast, for
the buyer-supplier games we study, we show that the core is always nonempty. In another contrast, in our
work we do not view vectors in the core as an indication of cost shares but rather as rational outcomes of
negotiation amongst the players in the buyer-supplier game. Pal and Tardos extend the work of Goemans
and Skutella by developing a mechanism for the cost sharing facility location game which uses the concept
of an approximate core [13].

There has been a great interest in theoretical computer science on comparing the game’s best outcome to
the best equilibrium outcome, where the term best is based on some desired criterion. For example, one may
wish to compare the outcome maximizing the net utility for all players in the game against the best possible
Nash equilibrium, from the point of view of net utility. Papadimitriou termed one such comparative measure
as the price of anarchy [14]. Roughgarden and Tardos have studied the price of anarchy in the context of
routing [17, 18, 19].

In this paper, we introduce and study the focus point price, a quantity with a similar motivation to that
of the price of anarchy. Solution concepts often yield multiple predictions, or equilibria. In actual game
play, however, only one of the equilibria can be chosen by the game’s players. Experiments show that
conditions outside the game, such as societal pressures or undue attention to a specific player, focus the
players’ attention on the point of a single equilibrium. The focus point price measures the value of a good
focus point. In other words, the focus point price is the difference between the best and worst equilibrium
outcome, where the terms best and worst are based on some desired criterion. Stated succinctly, the focus
point price answers the question: If we are constrained to play in equilibrium, how much can we lose by

playing the wrong equilibrium?

One of the central concerns in the applications of game theory is the problem of private information. The
problem arises because players may be unwilling to share their private evaluations of the game’s outcomes
for strategic reasons. Since the utility functions of the players are private, making optimal strategic decisions
in the game becomes impossible. In the literature, there have been two main approaches to dealing with
private information.

One approach to dealing with private information is through the design of truthful mechanisms. We call
a game truthful if it is to every player’s advantage to reveal all private information. A truthful mechanism
is a truthful game in which the equilibrium outcomes have some desired property. In a truthful mechanism,
once all private information is revealed, choosing an outcome with the desired property is reduced to a
computational problem. There has been a great amount of work in theoretical computer science on truthful
mechanism design, starting with the work by Nisan and Ronen, which introduced algorithmic mechanism
design to the computer science theory community [12]. Feigenbaum, Papadimitriou, and Shenker have
used truthful mechanisms in the context of multicast transmissions [4]. Tardos and Archer have created
a general framework for designing truthful mechanisms where the private information of each player is a
single positive real number [1].

While numerous advances have been made in the area of truthful mechanisms, significant challenges still
remain. First, if the players are involved in just two consecutive, identical executions of a truthful mecha-
nism, in general, it is no longer the case that revealing all private information is the optimal strategy. The
brittleness of truthfulness under repetition holds even with the most widely known truthful mechanism, the
Vickrey auction [23]. A second challenge for truthful mechanisms is related to the difficulty of enforcing a
desirable property known as budget balance. To maintain truthfulness, many mechanisms make excessively
large payments to the players. The payments made by the mechanism are often larger than the total wealth
present at the beginning of the game, implying that the mechanism is not budget balanced. Thus, budget
balance often conflicts with truthfulness and the mechanisms’ desired property. For example, in general, it is
impossible to design truthful, budget balanced mechanisms that maximize the net utility to all players [16].

A second approach to dealing with the problem of private information is the method of types developed
by Harsanyi [8]. Informally, the method of types removes the problem of private information by introduc-
ing a mathematically meaningful notion of beliefs into the game. Thus, any particular player has beliefs,
represented by probability distributions, about the private information of the other players. With this model,
the player can make optimal decisions by pretending to play a random game with complete information,
where the game is drawn from a distribution determined by the player’s beliefs about the private values
of the other players. Thus, the key to the method’s application is the ability to deal with a wide range of
games of complete information. While mathematically elegant, Harsanyi’s method of types does have the
practical drawback that a player may be entirely unsure of their own beliefs. However, because of its ele-
gance and robust applicability, in this paper, we take Harsanyi’s approach to dealing with the problem of
private information. We present computational results for a wide range of buyer-supplier games of complete
information. Our results can be directly applied to obtain results in the private information setting.

1.2 Overview of Buyer-Supplier Games

The definition of a buyer-supplier game, given in Section 2.1, is self-contained and generic. However, it
is also possible to transform a combinatorial minimization problem into a buyer-supplier game. Consider
a combinatorial minimization problem of the following form. We have some finite set of elements C. We
designate some subsets of C as feasible. To capture feasibility, we use a predicate P : 2€ — {0, 1}, where the
predicate is one on all feasible subsets of C. With each feasible set A C C, we associate a nonnegative cost
f(A). The combinatorial minimization problem can then be captured by the function MinProb : 2¢ — R,

defined by
MinProb(B) = min f(A)
ACB
P(A) = 1

where R, denotes the nonnegative real numbers.

To transform the above minimization problem into a buyer-supplier game, we associate a player with
each element of C; we call such players suppliers. We also add another player whom we call the buyer. In
the game, the buyer wishes to purchase a feasible subset of C. The suppliers, on the other hand, are offering
their membership to the buyer’s set at a price.

To fully specify the game’s model of a realistic interaction, we let M designate the maximum investment
the buyer is willing to spend on a feasible set. We decompose f such that f(A) = Bcost(A) + },cq 7(a),
where 7(a) is the internal cost for supplier a to be present in the buyer’s set and Bcost(A) is the internal cost
to the buyer for purchasing this specific feasible set. In general, many such decompositions are possible, and
they produce different games. However, when specifically applying the core solution concept, Lemma 3.22
shows that all such decompositions are equivalent. Though it is not necessary, to remove special cases in
our statements, it is convenient to let Bcost(A) = M when A = 0 or A is not feasible.

Now that we have determined the internal costs for the buyer and the suppliers, we can specify the game.
The buyer-supplier game is specified by the tuple (C, 7, Bcost). The strategy set for the buyer is the power
set of C. By playing A C C, the buyer chooses to purchase the membership of the suppliers in A. The
strategy set for every supplier a € C is the nonnegative real numbers, indicating a bid or payment required
from the buyer for the supplier’s membership.

For any supplier a € C, we let S(a) denote the associated bid. Let A be the set of suppliers chosen by
the buyer. The payoft for the buyer is M — Bcost(A) — > ,caB(a). The payoff for a supplier not in A is 0.
The payoft for a supplier a in A is B(a) — 7(a).

Since we are applying the solution concept of the core, one may think of the game play as follows. All
the players in the game sit down around a negotiating table. All the players talk amongst themselves until
they reach an agreement which cannot be unilaterally and selfishly improved upon by any subset of the
players. Once such an agreement is reached, game play is concluded. Since no subset of the players can
unilaterally and selfishly improve upon the agreement, rationality binds the players to follow the agreement.

The fully formal definition of a buyer-supplier game is given in Section 2.1. The transformation pro-
cess described above can be used to create buyer-supplier games from most combinatorial minimization
problems. For example, minimum spanning tree, Steiner tree, shortest path, minimum set cover, minimum
cut, single- and multi-commodity flow can all be used to instantiate a buyer-supplier game. As a concrete
example and interpretation of a buyer-supplier game, consider the buyer-supplier minimum spanning tree
game. In this game, a company owns factories on every node of a graph. The company wishes to connect the
factories by purchasing edges in the graph. Each edge is owned by a unique supplier player. Each supplier
has an internal cost associated with the company’s usage of the edge. The company has a maximum amount
of money it is willing to spend on purchasing edges. Depending on the transportation conditions of a par-
ticular edge, the company may have some internal cost associated with choosing that particular edge. The
buyer-supplier game paradigm yields similarly natural games when applied to other minimization problems.

In this paper we will be concerned with efficient computation over the set of core vectors. For the rest
of the paper, when we say polynomial time, we mean time polynomial in the size of the parameter C, which
is also polynomial in the number of players of the buyer-supplier game.

1.3 Main Contributions

There has been increased interest from the theoretical computer science community in game theory. While
problem-specific solutions may give us insight, to leverage the full power of decades of study in both re-

search areas, we must find generic computational solutions to game theoretic problems. Indeed, others have
already realized this need [1, 15]. In this paper, we continue this line of work by deriving generic results for
computing with core solutions in a large class of games.

First, we provide a framework for constructing a natural game given a common minimization problem.
We call the constructed game a buyer-supplier game.

Second, we give a characterization of the core of buyer-supplier games. Surprisingly, we show that the
characterization of the core remains unchanged when the game allows side payments. Stated differently, the
core is the same in the transferable and non-transferable utility versions of the game.

Third, we provide a generic algorithm, based on the ellipsoid method, for optimizing over the core. If
the original minimization problem is solvable in polynomial time, we show that it is possible to optimize
linear functions of core vectors in polynomial time.

Fourth, we use a polynomial time reduction to show that if the original minimization problem is not
solvable in polynomial time, it is impossible, in polynomial time, to determine if an arbitrary vector is in the
core of the buyer-supplier game.

Fifth, we introduce the concept of focus point price. Our positive computational results give a polyno-
mial time algorithm for computing the focus point price when the original minimization problem is solvable
in polynomial time. When the original minimization problem is not solvable in polynomial time, we show
that it is impossible to approximate the focus point price to within any multiplicative factor.

We finally conclude the paper by giving a problem-specific combinatorial algorithm, complementing our
generic algorithm, for computing the focus point price of the buyer-supplier game based on the minimum
spanning tree problem. The combinatorial algorithm results from the favorable properties of minimum
spanning trees and is a minor extension of Kruskal’s algorithm.

1.4 Organization of the Paper

In Section 2, we define buyer-supplier games and the core of a game. In Section 3, we characterize the core
of buyer-supplier games. In Section 4, we give positive computational results, namely the generic algorithm
for optimizing over the set of core vectors. In Section 5, we give negative computational results by showing
polynomial time equivalence between several related problems. In Section 6, we give a small simplification
to a linear program arising from the focus point price problem. In Section 7, we give the problem-specific
combinatorial algorithm for the buyer-supplier game arising from the minimum spanning tree problem. In
Section 8, we show several applications of the results in this paper to a range of buyer-supplier games.

2 Definitions

2.1 Buyer-Supplier Games

Let C be a finite set and M be a nonnegative real number. Let 7 be a function from C to R,. Let Bcost
be a function from 2€ to R, such that Bcost(®) = M. The simplifying condition that Bcost(@) = M is
not required. We explain the condition’s purpose later in this section. For A C C, let Eval(A, t, Bcost) =
Bcost(A) + > eqa T(a). For A C C, let MinEval(A, 7, Bcost) = mingc # Eval(8, 7, Bcost). We will omit the
parameters T and Bcost from the functions Eval(A, 7, Bcost) and MinEval(A, T, Bcost) when the value of
the parameter is clear from context.

Given a tuple (C, 7, Bcost), we proceed to define a buyer-supplier game. Associate a player with each
element of C. Call the players in C suppliers. Let there also be another player, ¢, whom we call the buyer.
Let = C U {u} be the set of players for the buyer-supplier game.

The strategy for supplier a is a tuple (8(a), p,) with (a) € R, and p, : P — R,. The first element,
B(a), represents supplier a’s bid to the buyer, requiring the buyer to pay S(a) for using the supplier’s services.

The second element, p,, represents the nonnegative side payments supplier a chooses to make to the game’s
players. By p,(b) we denote the side payment a makes to player b.

The strategy for the buyer, y, is a tuple (A, p,) where A € 2€ and Pu:P— R ;. The first element, A,
represents the suppliers chosen by the buyer for a purchase. Similarly to a supplier, the second element, p,,,
represents the nonnegative side payments the buyer chooses to make to the game’s players.

For each player a € P we denote the player’s strategy set by S,. For a set of players A C $, we denote
the set of strategies ®ae 2Sa by Sa. We call elements of Sy strategy vectors. We index strategy vectors
from S# by the elements of A. Given a tuple (C, 7, Bcost), we proceed to define a buyer-supplier game.
Associate a player with each element of C. Call the players in C suppliers. Let there also be another player,
4, whom we call the buyer. Let = C U {u} be the set of players for the buyer-supplier game.

The strategy for supplier a is a tuple (8(a), p,) with B(a) € R, and p, : P — R, where R, represents
the nonnegative real numbers. The first element, 8(a), represents supplier a’s bid to the buyer, requiring the
buyer to pay B(a) for using the supplier’s services. The second element, p,, represents the nonnegative side
payments supplier a chooses to make to the game’s players. By p,(b) we denote the side payment a makes
to player b.

The strategy set for u is a tuple (A, p,) where A € 2€ and pu @ P — R,. The first element, A,
represents the suppliers chosen by the buyer for a purchase. Similarly to a supplier, the second element, p,,
represents the nonnegative side payments the buyer chooses to make to the game’s players.

For each player a € P we denote the player’s strategy set by S,. For a set of players A C $, we denote
the space of strategies (X)aE 2Sa by Sa. We call elements of S # strategy vectors. We index strategy vectors
from S by the elements of A.

We now define the utility function for each player. Suppose strategy s € Sp is played. Specifically,
suppose that s, = (A, p,) and s, = (B(a), p,) for each a € C. The utility functions for the game’s players
are

(s) = M — | Beost(A) + Zﬁ(a)} | P =) putb)
acA beP beP
ta(s) = (@) = 7(@) + | Y pp(@) = D, pa(b) fora € A
beP beP
Uua(s) = Z pr(a) — Z Pa(b) fora € C - A.
beP beP

Interpreting, the buyer begins with M utility and chooses to make a purchase from each supplier in
A. The buyer gives S(a) to each supplier a € A and loses an extra Bcost(A) from the initial M utility.
Each supplier a in A receives the bid payment from the buyer and loses 7(a) because the supplier must
perform services for the buyer. The distribution of side payments completes the utility functions. The
requirement that Bcost(0) = M lets the strategy (stand as a “don’t play” strategy for the buyer. To remove
the requirement, we could introduce a specific “don’t play” strategy to the buyer’s strategy set, however this
creates a special case in most of our proofs.

Let the side payment game we have defined be denoted SP. Let NOSP denote the same game with the
additional requirement that all side payments be fixed to zero. In other words, in NOSP we restrict the
strategy set for each a € P so that p, is identically zero.

2.2 Game Theoretic Definitions

All of the definitions in this section closely follow those of Shubik [21, Chapter 6].

We call a vector in R”l, indexed by a € P, a payoff vector. We say a payoff vector r is realized by a
strategy vector s € Sp if 7, = u,(s) for all a € P.

Let 7 be a payoft vector and s be a strategy vector in S# for A C P. Let ¢ be any strategy vector in Sp
such that the projection of ¢ onto the coordinates in (A is equal to s. If for all # and for all a € ‘A we have
ma < uy(t), we say that the players in A can guarantee themselves payoffs of at least by playing s.

We use Shubik’s alpha theory to define our characteristic sets [21, pp. 134-136]. Thus for a set of
players A C P, we define the characteristic set, V(A), to be the set of all payoff vectors 7 such that there is
a strategy vector s € S, possibly dependent on n, with which the players in A can guarantee themselves
payofts of at least .

We say that a payoff vector 7 dominates a payoff vector v through a set A € P if n, > v, for all a € A.
In other words, m dominates v through A when each player in A does better in 7 than in v.

For a set of players A C P, we define D(A) as the set of all payoff vectors which are dominated through
A by a payoff vector in V(A). Interpreting, the players in A would never settle for a payoff vector 1 € D(A)
since they can guarantee themselves higher payoffs than those offered in .

The core of a game consists of all 7 € V(%) such that 7 ¢ D(A) for all A C P.

3 Characterization of the Core

In this section we show a characterization of the core of buyer-supplier games in the transferable utility and
non-transferable utility settings. In Section 3.1, we give some preliminary lemmas for the games NOSP and
SP. In Section 3.2, we show that the core of SP is the same as the core of NOSP. In Section 3.3, we give a
characterization of the core of NOSP.

3.1 Lemmas True of Both NOSP and SP

This section contains some lemmas which are useful in characterizing the core of NOSP and SP.

Lemma 3.1. Let s € Say, be such that s, = (A, p,). If s guarantees the players in AU u payoffs of at least
n € RV then there is a t € Sauy such that

o ty=s,forallacC—-A

e 1, =(A0)

o All side payments from players in A U u to players in A U u fixed to zero
e { also guarantees payoffs of at least .

Proof. We show how to sequentially remove the specified side payments while maintaining the payoff guar-
antee.

Let a and b be suppliers in A. Let s, = (B(a), p,) and s, = (B(b), pp).

First, consider a supplier to supplier payment. Suppose that p,(b) = A, that is, supplier a pays 4 to
supplier b. Because both a and b are in A, we can achieve the same utility transfer as the side payment by
setting the side payment to zero and changing S(a) to S(a) — A and B(b) to B(b) + A. Thus, we can zero out
the side payment from a to b.

Now, consider a supplier to buyer payment. Suppose that p,(u) = A. In other words supplier a pays A to
the buyer. We can achieve the same utility transfer as the side payment by setting the side payment to zero
and changing (a) to S(a) — A. Thus, we can zero out the side payment from a to u.

A similar change works for a payment from the buyer to a supplier.

Lemma 3.2. Let strategy vector s € Sp realize payoff vector n. If s, = (A, p,) and there exists a € C — A
such that m, > 0, then 1 € D(A U u) in both SP and NOSP.

Proof. Since all side payments are zero in NOSP, it is impossible for 7, to be greater than zero. Thus, the
statement is trivial for NOSP.

Think of SP as a two stage distribution of wealth, where the strategy s € Sp determines the utility
transfers. Initially, the buyer has M utility and all suppliers have zero utility. In the first stage, the buyer
gives B(b) to each supplier b € A and loses an extra Bcost(A) from the initial M utility. Also in the first
stage, each supplier b € A loses 7(b) of utility. In the second stage, side payments are distributed.

Since there exists a € C — A such that 7, > 0, in s there is a net flow of side payments from A U u
to C — A in stage two of SP. Instead of following strategy s, the players in ‘A U u can set to zero all side
payments going from A U u to C — A. With this action, at least 7, more utility stays in A U u at the end
of stage two. The players in A U u can use side payments amongst themselves so that each player gets an
extra m,/(|A| + 1) utility at the end of stage two than what the player received from following strategy s.
Moreover, since the players in C — A only have control over the nonnegative side payments flowing from
C — Ato AU u, we have shown that the players in A U u can guarantee themselves payoffs greater than the
payofts that they received from following s. Thus, 7 € D(A U u) in SP.

O

Lemma 3.3. If 7w is in the core of SP or NOSP, then rr, > 0 for all a € P.

Proof. We prove the statement by contradiction. Suppose that 7, < 0 for some player a.

If a is a supplier, a can guarantee at least 0 utility with strategy (7(a),0) € S,. If a is the buyer, a can
guarantee 0 utility with strategy (0, 0). Thus, 7 € D({a}) in both SP and NOSP. Thus, 7 is not in the core of
either game.

O

Lemma 3.4. Let 7 be a payoff vector, and let s be a strategy vector in Sp. If the players in P can guarantee
themselves payoffs of at least by playing s, but s does not realize m, then n is not in the core of either SP
or NOSP.

Proof. Let s, = (A, pu).

We use a proof by contradiction. Assume r is in the core of either SP or NOSP. By Lemma 3.3, we
know that , > O for all @ € . By Lemma 3.2, we know that 7, = O for all a € C — A.

First, we derive a contradiction with the assumption that 7 is in the core of SP.

Think of SP as a two stage distribution of wealth, where the strategy s € Sp determines the utility
transfers. Initially, the buyer has M utility and all suppliers have zero utility. In the first stage, the buyer
gives (a) to each supplier a € A and loses an extra Bcost(A) from the initial M utility. Also in the first
stage, each supplier a € A loses 7(a) of utility. In the second stage, side payments are distributed.

Since s guarantees payoffs of at least but s does not realize x, we know that m, < u,(s) foralla € P
and there is some a € P such that 1, < u,(s). Thus by following s, the total wealth held by ‘A U y in SP at
the end of stage one is greater than } ,cp 7. In turn, we have ¥ ,ep 74 > 3 4c a0, Ta- Let A be the difference
between the total wealth held by A U y at the end of stage one and . ;e auy, -

Instead of following s, the players in A U u can set to zero all side payments from AU y to C — A. The
players in A U u can use side payments amongst themselves so that each player gets an extra A/(|A| + 1)
utility at the end of stage two than what the player received in 7. Moreover, since the players in C — A only
have control over the nonnegative side payments flowing from C — A to A U u, we have shown that the
players in (AU u can guarantee themselves payoffs greater than the payoffs that they received in . Thus, we
have constructed a new strategy t € Sy, in SP for the players in A U p which guarantees payoffs greater

than 7 for each player in A U u. Thus, 1 € D(A U w) in SP. This contradicts the assumption that 7 is in the
core of SP. Thus, 7 must be in the core of NOSP.

We now derive a contradiction with the assumption that 7 is in the core of NOSP. By Lemma 3.1 and
the fact that ¢ guarantees payoffs greater than & for each player in A U u, we also have 7 € D(A U w) in
NOSP. This contradicts the assumption that 7 is in the core of NOSP.

O

3.2 Core Equivalence between SP and NOSP

In this section, we prove that the core of NOSP is the same as the core of SP.
Lemma 3.5. Let w be a payoff vector. If m € D(A) in NOSP, then m € D(A) in SP.

Proof. The players in (A can follow exactly the same strategy in SP as they would in NOSP to guarantee
payoffs greater than the payoffs in 7; they simply fix all their side payments to zero.
m]

Lemma 3.6. Let w be a payoff vector. If 1 € V(P) in SP and r is in the core of SP, then © € V(P) in NOSP.

Proof. By Lemma 3.4, 7 is realized by some strategy vector s € Sp in SP. Let 5, = (A, p,).

Think of SP as a two stage distribution of wealth, where the strategy s determines the utility transfers.
Initially, the buyer has M utility and all suppliers have zero utility. In the first stage, the buyer gives 5(b)
to each supplier b € A and loses an extra Bcost(A) from the initial M utility. Also in the first stage, each
supplier b € A loses 7(b) of utility. In the second stage, side payments are distributed.

By Lemma 3.2, we have 7, = 0 for all @ € C — A. Thus, at the end of stage two of SP, there is no utility
in C — A. Thus, the players can achieve the same utility distribution by setting to zero all side payments
except side payments from AU to AUu. Thus 7 is realized by a strategy vector with all zero side payments
except the side payments from AUy to AU p.

By Lemma 3.1, there is a strategy vector with all side payments fixed to zero which guarantees payoffs
of at least for all the players in . Thus 7 € V(P).

O

Lemma 3.7. If payoff vector n is in the core of SP, then n is in the core of NOSP.

Proof. The statement follows from Lemmas 3.6 and 3.5.

Lemma 3.8. Let be a payoff vector. If m € V(P) in NOSP, then m € V(P) in SP.

Proof. By the definition of V(%), the players in can guarantee themselves payoffs of at least 7 by playing
some strategy s € Sp in NOSP. The players in ¥ can follow exactly the same strategy in SP to guarantee
payofts of at least .

]

Lemma 3.9. If payoff vector n is in the core of NOSP, then for all A C P we have n ¢ D(A) in SP.

Proof. We use a proof by contradiction. Suppose that 7 € D(A) in SP for some A C P. Thus, there is a
strategy vector s € S# in SP which guarantees each player in (A a greater payoff than the payoff given in 7.
Since r is in the core of NOSP, by Lemma 3.3 we know 7, > O for all a € A.
We split the proof into two cases. In the first case, suppose that u ¢ A. It is impossible for s to guarantee
a payoff greater than O for any player in A since the buyer can always play 0. Thus, we get a contradiction
with the assumption that 7 € D(A) in SP.

For the second case, suppose u € A. Let s, = (8B, p,). There can not be some supplier in 8 but not in
A since that supplier can always play the strategy (4, 0) where 4 > M to give the buyer a negative payoff.
Since 7, > 0, the existence of a supplier in 8 — A contradicts the assumption that 7 € D(A) in SP.

Thus, we have 8 C A — {u}.

If there is some supplier a in A but not in B, since 1, > 0, we know that s must guarantee a payoff
greater than O for a. Let v be the payoff vector realized when the players in A follow s and each of the
players in — A follow the strategy (0, 0). Thus, we have v, > 0 and v, > 7, for all b € A. By Lemma 3.2,
we have v € D(B U u) in SP. Since v € D(BU u) in SP, v, > m, for all b € A, and B C A — {u}, we have
me DB U in SP.

Thus, we have s, = (8,p,) and 7 € D(BU u) in SP. By Lemma 3.1, we also have 7 € D(B U u) in
NOSP, which contradicts the fact that r is in the core of NOSP.

m]
Lemma 3.10. If payoff vector r is in the core of NOSP, then rt is in the core of SP.
Proof. The statement follows from Lemmas 3.8 and 3.9.

m]
Theorem 3.11. The core of NOSP is equal to the core of SP.
Proof. Follows from Lemmas 3.7 and 3.10.

m]

3.3 The Core of NOSP

In this section, we prove the the following theorem, which gives a characterization of the core of NOSP.
In the theorem, the parameter 7 is made explicit, though its value is clear from the definition of the buyer-
supplier game, NOSP.

Theorem 3.12. A payoff vector r is in the core of NOSP iff it satisfies

m, >0 foralla e P e
Z 7, < MinEval(C — A, T) — MinEval(C, 1) forall A C cit 2)
acA

7y = M = MinEval(C, 7) = > 74 3)

acC

Proof. The statement follows from Lemmas 3.17 and 3.21.

Lemma 3.13. If a payoff vector n is in the core of NOSP, then nr, > 0 for all a € P.

Proof. The lemma is a restatement of Lemma 3.3.
m]

Lemma 3.14. If a payoff vector r is realized by some strategy vector s € Sp where s, = (A,0), then
ny = M — Eval(A) - X jec 7a-

Proof. For any a € C let s, = (B(a), p,). Since r is realized by s and all side payments are zero, we
have 7, = B(a) — 7(a) for all a € A. We also have that 1, = M — [Bcost(A) + Y ,c#B(a)]. Substituting
for B(a), we have m, = M — [Bcost(A) + Y 4eq T(a) + X 4esn Ta]. By the definition of Eval, we have 7, =
M — Eval(A) — Y jeqa Ta-
Since all side payments are fixed to zero, we have 7, = O for all a € C — A. Thus we can write
= M — Eval(A) — X jec 7
m]

Lemma 3.15. If a payoff vector r is in the core of NOSP, then n, = M — MinEval(C) - . ,ec 7a-

Proof. Let ¥ C C be such that Eval(¥) = MinEval(C). We first show that any v realized by a strategy
vector s with s, = (A, 0) and Eval(A) # Eval(¥) is not in the core.

Let 2 = (Eval(A) — Eval(¥))/(IF| + 1). Since Eval(A) # Eval(¥) and by the definition of 7, we have
A > 0. Construct a strategy vector t € Sgyy, where

t, = (F,0)
ty = (v, +71(a)+ 1,0) forall a € 7.

Since side payments are fixed to zero, the suppliers in C — ¥ have no strategies which can affect the payofts
of the players in 7 U u given that the players in ¥ U u follow ¢. Let u € Sp be any strategy vector with
projection onto ¥ U u equal to 7.

Straight forward calculations with the game’s utility functions show that u,(u) — v, = us(u) — us(s) = 1
for each supplier a € .

Consider

(1) — vy = (1) — 1y, ()

= [M - Beost(F) — Z(va +7(a) + D)] = [M — Beost(A) — Z(va + 17(a))]

acF aeA
— [~Eval(F) — Z(va +)] = [~Eval(A) - Z v
acF aceA
= Eval(A) — Eval(F) — Z A+ [Z Vg — Z val.
acF a€A acF

By the utility functions of NOSP and the definition of A and v, we have v, = 0 for all a € C — A. Thus, the
bracketed quantity in the above expression is at least zero. Thus, we have

u,(u) — v, > Eval(A) — Eval(F) — Z A=A
acF

where the equality comes from the definition of A.
Thus, we have v € D(¥ U p).
We have shown that any vector in the core is realized by a strategy vector s with s, = (A, 0) where
Eval(A) = Eval(¥). The lemma statement follows from Lemma 3.14 and the definition of ¥ .
O

Lemma 3.16. If payoff vector n is in the core of NOSP, then 3’ ,c 4 7, < MinEval(C — A) — MinEval(C) for
all ACC.

10

Proof. We use a proof by contradiction. Assume 7 is in the core and },cq 7, > MinEval(C - A) —
MinEval(C) for some A C C. We show that 7 € D(F U u) where ¥ C C — A is such that Eval(F) =
MinEval(C — A).

Since 7 is in the core, by Lemma 3.4 it is realized by some strategy vector s € Sp

Let A = (3 4eq q — Eval(F) + MinEval(C))/(|F | + 1). Since Y ,c4 71, > MinEval(C — A) — MinEval(C),
we have A > 0. Construct a strategy vector t € S¢y,, where

t, = (F,0)
tg = (g +1(a) + 1,0) foralla e ¥.

Since side payments are fixed to zero, the suppliers in C — ¥ have no strategies which can affect the payoffs
of the players in # U u given that the players in ¥ U u follow ¢. Let u € Sp be any strategy vector with
projection onto F U u equal to ¢.

Straight forward calculations with the game’s utility functions show that u, (1) — 1, = us(u) — us(s) = 1
for each supplier a € 7.

Let 5, = (8,0) and consider

(1) — 1y = uy (1) — uy(s)

= [M — Beost(F) — Z(nu +7(a) +)] — [M — Bcost(B) — Z(n,, + 17(a))]

acF aeB
= [Eval(F) — Z(na +)] - [Eval(B) — Z 7]
aceF aeB
= Eval(8) — Eval(¥) — Z A+ [Z T, — Z 7]
acF aeB aeF

By the utility functions of NOSP and the definitions of 8 and n, we have n, = 0 for all a € C — B. Thus,
Yue8 Ta = Daec Ta- Thus, we can write

1, (1) = t,(5) = Eval(B) - Eval(F) = > A+) 74— Y 7l

acF acC acf
= Eval(®) - Eval(F) = > A+ Y ma+[Y. ma= 7]
acF aeA aeC-A aeF

Since ¥ C C — A, we know that the bracketed quantity in the above expression is at least zero. Thus, we
have

1, (1) = w,(5) > Bval(B) — Bval(F) + > 7y = > A =2

acA acF

where the equality comes from the definition on A.
Thus, we have 7 € D(F U u), which contradicts the fact that r is in the core of NOSP.

Lemma 3.17. Payoff vectors in the core of NOSP satisfy Equations (1), (2), and (3).

Proof. The statement follows from Lemmas 3.13, 3.16, and 3.15.
O

Lemma 3.18. If payoff vector n satisfies Equations (1), (2), and (3) then 1 ¢ D(A) for A C P such that
ue¢A

11

Proof. We use a proof by contradiction. Suppose m € D(A). In other words, the players in A can guarantee
payoffs greater than the payoffs given in 7. But, we know that 7, > O for all @ € A and the players in A
can only guarantee 0 payoffs because the buyer can always play (0, 0). Thus, we have a contradiction with
m € D(A).

O

Lemma 3.19. If payoff vector n satisfies Equations (1), (2), and (3) then 1 ¢ D(A) for A C P such that
e A

Proof. We use a proof by contradiction. Suppose m € D(A) for A C P such that u € A. Thus, the players
in A can follow a strategy s € S# that guarantees payoffs greater than the payoffs they are given in x.

Let t € Sp be any strategy vector with projection onto A equal to s. Let z, = (8,0). Let the payoff
vector realized by ¢ be v.

Since satisfies Equation (1), we have 7, > 0. Suppose the players in A follow strategy s. If there is
some a € B — A, then the bid of supplier @ must be bounded so as to guarantee the buyer a payoff greater
than O when the players in A follow s. This contradicts contradicts the fact that 1 € D(A). Thus, we have
that there is no such a and 8 C A.

Since n satisfies Equation (3) we have 7, = M — MinEval(C) — },cc 4. By Lemma 3.14, we have
vy =M —Eval(B) - 3 cc Va-

Since following s guarantees a payoff greater than the payoff given in x for every player in A, we have
7y < vyu. Thus, we have

0<v,—m,
= M - Eval(8) - Z Vg — [M = MinEval(C) — Z 7]
aeC acC
= MinEval(C) — Eval(B) + Z Ta — Z Va
aeC aeC

Let ¥ C C be such that Eval(¥) = MinEval(C). From Equation (2) with the singleton sets, we have that
n, = 0forall a ¢ ¥. From the definition of v, we have that v, = O for all a ¢ 8. Let U = A — {u}. Thus,
we have

0 < MinEval(C) — Eval(8) + Z T, — Z vy

acf aeB
= MinEval(€) - EvalB) + Y. 7+ (Y. = D, V)= Y Va
acF-U acF U acFNB aeB-F

By the definition of v and the utility functions in NOSP, we have that v, for all a € C — 8. By Equation (1),
we have m, > 0 for all a € C. By the definition of v and the fact that v C &, we also have v, > 7, > 0 for all
a € B. Thus, the last term in the above expression at least zero. Thus, we have

0 < MinEval(©) —~Eval(®) + > ma+(> Zu= D Vo)
acF -U acF NU acF NU
By the definitions of v and U, we also have that v, > 7, for all a € U. Thus, the parenthesized term in the
above expression is at least zero. Thus, we have
0 < MinEval(C) — Eval(B) + Z o
acF -A

Eval(8) — MinEval(C) < Z .,
acF -U

12

Let K =% —U. Since B C A and B C C, we have B C U. Thus, we have B C C — K. By the definition of
MinEval, we have MinEval(C — K) < Eval(8). Thus, we have

MinEval(C — K) — MinEval(C) < Eval(8) — MinEval(C) < Z .
acK

This statement contradicts the fact that 7 satisfies Equation (2) for K.

Lemma 3.20. If payoff vector m satisfies Equations (1), (2), and (3), then © € V() in NOSP.
Proof. Let & C C be such that Eval(#) = MinEval(C). Define s € Sp such that

sp = (F,0)
Sq = (g + 1(a),0) foralla e ¥
sq = (0,0) forallae C—-F

Straight forward calculations with the game’s utility functions show that u,(s) = 7, for each supplier a € 7.
Consider

,(5) = M = [Beost(F) +) (4 + 7(@))]

acF
— M — [Eval(%) + Z 7]
aeF
= M - Eval(F) -)" m,
aeF

Since 7 satisfies Equation (2), we have 7, = 0 for all @ € C — . Thus, we have

,(s) = M = Eval(F) = > 7,
aeC
= M — MinEval(C) - Z T,
acC
=y

where the second equality comes from the definition of # and the last equality comes from the fact that «
satisfies Equation (3).

Finally, we have u,(s) = r, for each supplier a € C — F, since 7, = 0 for such a.

Thus, s realizes m and 7 € V(P).

Lemma 3.21. If payoff vector n satisfies Equations (1), (2), and (3) then it is in the core of NOSP.

Proof. The statement follows from Lemmas 3.18 and 3.19.
O

Lemma 3.22. Let Beost™(A) = Y ca7(a) + Beost(A). The core of the buyer-supplier games defined by
(C, 7, Bcost) and (C, 0, Bcost*) is the same.

Proof. By the definition of Eval and Bcost®, we have Eval(8, 7, Bcost) = Eval(8, 0, Bcost™) for all 8 C C.
Thus, we also have MinEval(A, 7, Bcost) = MinEval(A, 0, Bcost™) for all A C C. The result follows from
Theorem 3.12.

O

13

4 Polynomial Time Optimization Over the Core Vectors

We define the separation problem on a set of linear inequalities A as follows. Given a vector r, if 7 satisfies
all of the inequalities in A, then do nothing; otherwise, output a violated inequality a € A. It is well known
that the separation problem is polynomial time equivalent to linear function optimization over the same set
of inequalities [11, p. 161].

Let (C, 7, Bcost) define a buyer-supplier game. In this section, to simplify the notation, we will omit the
parameter Bcost from Eval and MinEval since it is fixed by the buyer-supplier game.

In this section, we will analyze an algorithm to solve the separation problem for Equations (1), (2), and
(3). We now give the algorithm, which we call the separation algorithm. Given the payoff vector x as input,

1 TIterate over Equations (1) and (3) to check that they hold. If some equation does not hold, output that
equation and halt.

2 Compute ¥ C C such that Eval(¥, 7) = MinEval(C, 7). If there is some a € C—F with 7, > 0, output
the inequality from Equation (2) corresponding to {a} and halt.

3 Define 7(a) = 7(a) + n, for a € C. Now, compute F C C such that Eval(¥,%) = MinEval(C, %). If
Eval(¥,%) < Eval(F, %), output the inequality from Equation (2) corresponding to ¥ — F . Otherwise,
halt.

Theorem 4.1. If given an input ¥ : C — R, it is possible to compute both Eval(A,*) for any A C C
and ¥ C C such that Eval(¥,7) = MinEval(C, 7) in polynomial time, then the separation problem for
Equations (1), (2), and (3) is solvable in polynomial time. By the equivalence of separation and optimization,
optimizing any linear function of m over Equations (1), (2), and (3) is also possible in polynomial time.

Proof. The statement follows from Lemmas 4.2, 4.3, and 4.4.
O

Lemma 4.2. [If on input T : C — R it is possible to compute both Eval(A, 1) for any A C C and F C C
such that Eval(F,) = MinEval(C, 7) in polynomial time, the separation algorithm runs in polynomial time.

Proof. Tterating over Equations (1) and (3) takes polynomial time since there are O(|C|) equations to check.
Thus, step 1 of the algorithm completes in polynomial time.

By the lemma assumption, computing ¥ takes polynomial time. Checking that for eacha € C - 7, 7,
at most zero takes polynomial time since there are at most |C| such checks. Thus, step 2 of the algorithm
completes in polynomial time.

Deﬁmng 7() takes polynomial time since there are O(|C|) possible inputs to 7. By the lemma assumption,

computing ¥ takes polynomial time. By the lemma assumption, computing Eval(¥, #) and Eval(¥, %) takes
polynomial time. Finally, computing ¥ — ¥ takes polynomial time since each set has at most |C| elements.

Thus both the run time of step 3 and the overall run time is polynomial.
]

Lemma 4.3. If the separation algorithm returns an inequality on input w, then m violates the returned
inequality.

Proof. 1f the algorithm returns an inequality in step 1, then the inequality is violated since the algorithm
performed a direct check.

If the algorithm returns an inequality in step 2, then the inequality is violated since m, > 0, but
MinEval(C — a,7) = MinEval(C, 7) = Eval(F, 7).

14

Suppose the algorithm returns an inequality in step 3. Thus,
Eval(F, %) < Eval(F, %)
D #(@) + Beost(F) < > #(a) + Beost(F)

acF acf
Z T+ Z 7(a) + Beost(F) < Z Ty + Z T(a) + Beost(¥)
acF ac¥ acf acf
Z 7. + Bval(F, 1) < Z ng + Bval(F, 1)
acF acF

Since the algorithm reaches step 3, we know that 7, = O for all a € C — ¥ . Thus,

Z e + Eval(f, 1) < Z . + Eval(F, 1)

acFNF acF
Eval(¥, 1) — Eval(F, 1) < Z T,
acF-F

Let A = F — . From the algorithm, we know that the set ¥ satisfies Eval(#, 1) = MinEval(C, 7). Since
F C C — A, by definition of MinEval, we know that MinEval(C — A, 7) < Eval(¥, 7). Thus, we have

MinEval(C — A,) — MinEval(C, 7) < Eval(¥, 1) — Eval(F, 1) < Z T,
acA

Thus, we have shown that inequality output by the algorithm is violated.
m]

Lemma 4.4. If n violates some inequality in Equations (1), (2), and (3), then the separation algorithm run
on input 7 returns an inequality.

Proof. If the violation is in Equations (1) or (3), the violated inequality will be output by the direct check in
step 1.

If some inequality is output by step 2, we are done. Otherwise, since steps 1 and 2 output no inequality,
we know that 7, = 0 for all a € C — ¥, where ¥ is as computed in the algorithm.

Now, suppose the inequality from Equation (2) for set A C C is violated. In other words, we have,
Yauea Ta > MinEval(C — A, 7) — MinEval(C, 7). Let B be such that Eval($, 7) = MinEval(C — A, 7).

Thus, we have

Z 7, > MinEval(C — A,) — MinEval(C,) = Eval(8, 7) — Eval(¥, 1)
acA

Since r, =0 foralla e C - F.

Eval(F, 1) + Z n, > Eval(8, 1)
acsF NA

Adding Y ,c#_ 4 7, to both sides, we have

Eval(¥,7) + Z n, > Eval(B,1) + Z T,

acF acF —A
Bcost(F) + Z 7(a) + Z 7, > Beost(B) + Z (a) + Z 7,
acF acF acB acF —A

15

Since 7, = 0 foralla €e C—F and B C C — A, we have

Bcost(¥) + Z 7(a) + Z . > Beost(B) + Z 7(a) + Z Ty + Z T,

aeF aeF acB aeB acfF -A-B

By the definition of 7, we have

Beost(F) + Z #(a) > Beost(B) + Z #a) + Z T,

acF aceB acf -A-B

Eval(F, #) > Eval(8, %) + Z T
acfF - A-B

We know that 7, > 0O for all a € P since the algorithm does not output anything in step 1. Thus,
Eval(7,7) > Eval(8, 7)
Finally, we have

Eval(¥,%) > Eval(8,%) > MinEval(C, #) = Eval(¥, %)

where ¥ is as computed in the algorithm. Thus, step 3 will output an inequality.

5 Inapproximability of Optimization Over Core Solutions
Consider a buyer-supplier game defined by (C, 7, Bcost). We introduced the concept of the focus point price

in the introduction. The concept leads us to ask the natural question: What is the difference between the
best and worst core outcome for the buyer? In other words, the value of interest is the solution to the linear

program
max Z g

acC
S.t. Z 1, < MinEval(C — A, 1) — MinEval(C, 1) forall ACC
acA
n, = M — MinEval(C, 1) - Z g
aeC
n, >0 forall a € P.

This natural question leads us to define the focus point price (FFP) problem as follows: on input (C, 7, Bcost),
output the optimal value of the afore mentioned linear program.

Define the Necessary Element (NEL) problem as follows. On input (C, 7, Bcost) return TRUE if there
exist an element a € C such that for all ¥ C C satisfying Eval(¥, 7, Bcost) = MinEval(C, 7, Bcost) we have
a € F. Otherwise, return FALSE.

Define the OPT-SET problem as follows. On input (C, 7, Bcost), return ¥ such that Eval(7, 7, Bcost) =
MinEval(C, 7, Bcost).

We will prove a polynomial time equivalence between the NEL problem, the OPT-SET problem, and
the separation problem over Equations (1), (2), and (3). In Section 5.1, we show how to solve the OPT-SET
problem in polynomial time if the NEL problem is solvable in polynomial time. In Section 5.2, we show the
polynomial time equivalence of NEL, OPT-SET, and separation over Equations (1), (2), and (3).

16

5.1 Polynomial Time Reduction from OPT-SET to NEL

In this section, we show that given a polynomial time algorithm to solve the NEL problem, we can solve the
OPT-SET problem in polynomial time.

For a fixed tuple (C, 7, Bcost) we say we extend the tuple to contain a shadow element for an element
a C C by creating the extended tuple (C, %, Bcost*), where C = C U b with b ¢ C; 7 is the same as T
with the addition that 7(b) = 7(a); and for A C C,if b ¢ A, then Beost*(A) = Bcost(A), otherwise
Bcost*(A) = Beost((A — {b}) U {a}). We call b the shadow element corresponding to a.

The full shadow extension of (C, T, Bcost) is the tuple (C, #, Beost®) resulting from extending (C, 7, Bcost)
to contain a shadow element for each element in C.

First, we reduce OPT-SET to NEL. To show the result, we analyze the following algorithm, which we
call the shadow algorithm.

On input (C, 7, Bcost),

1 Let (C*, #, Bcost®) be the full shadow extension of (C, 7, Bcost). Let the program variable C equal C*.
2 ForeachaeC

e Remove a’s corresponding shadow element from C.

e Run NEL on (C, %, Bcost®).

e If the return value is TRUE, then add the shadow element back to C.
o If the return value is FALSE, then remove a from C.

3 Return CNC. In other words, we return all elements from C remaining in C, disregarding any shadow
elements.

Lemma 5.1. Let (C, 1, Bcost) be the input to the shadow algorithm. Let (é*, 7, Bcost™) be the full shadow
extension of (C, T, Beost). If for all A C C* the NEL problem on input (A, t, Bcost") is solvable in polynomial
time, then the shadow algorithm runs in polynomial time.

Proof. Constructing C* takes polynomial time since there are O(|C|) elements. Defining 7 takes polynomial
time since there are O(|C]) inputs. Queries to Bcost™ can be implemented with polynomial overhead on top
of queries to Bcost. Thus, the initialization step of the algorithm takes polynomial time.

Consider a single loop iteration. The first, third and forth lines of the loop each take O(|C|) time. The
second step takes polynomial time by the lemma assumption. Thus, a single loop iteration takes polynomial
time.

There are |C| loop iterations and computing the intersection in the algorithm’s final step takes O(|C|)
time. Thus the algorithm runs in polynomial time.

O

Lemma 5.2. The shadow algorithm maintains the invariant MinEval(C, 7, Bcost) = MinEval(é , T, Beost™).

Proof. Initially, MinEval(C, 7, Bcost) = MinEval(C, %, Bcost®) by the definitions of C, #, and Bcost*.

Consider the iteration of the loop associated with a € C. Let the corresponding shadow element be b.
When we remove or add b to C, we have MinEval(C, 7, Bcost) = MinEval(C, 7, Bcost*) by the definitions of
7, and Bcost® and the fact that a is still in C.

We only remove both a and b if NEL returned FALSE before the removal of a. Let C, and C/, be the
value of the variable C before and after the removal of a, respectively. Since NEL returned FALSE on
(Cq, 7, Beost®), there exists some & C C, such that a ¢ and Eval(¥, #, Bcost*) = MinEval(C,, %, Bcost*).
Thus, ¥ € €/, and MinEval(C,, , Bcost*) = MinEval(C,, 7, Bcost*).

Thus, throughout the algorithm the value of MinEval(C, 7, Bcost*) does not change, which concludes
the proof.

O

17

Lemma 5.3. Let C, be the value of the variable C at the end of iteration corresponding to a € C. If a € Cy,
then a is in all OPT-SET solutions on input (A, T, Bcost™) where A = C’a NC.

Proof. Let the arguments of the NEL problem which is solved during the iteration corresponding to a be
(8B, 7, Bcost™).

Since a € C,, NEL returns TRUE during the iteration corresponding to a.

Suppose there is a solution ¥ C C to the OPT-SET problem on input (A, 7, Bcost™) which does not
contain a. Consider ¥ and ¥ where ¥ contains all the shadow elements of the elements of . The sets
and ¥ are disjoint and both subsets of B. Also, by the definition of ¥, # and Bcost*, Eval(¥, %, Bcost*) =
Eval(79 ,7,Bcost™) = MinEval(8, 7, Bcost™). Thus, the NEL problem run during the iteration corresponding
to a should return FALSE, which is a contradiction.

O

Lemma 5.4. Let C, be the value of the variable C at the end of iteration corresponding to a € C. We have
MinEval(C, 7, Bcost) = MinEval(C‘a N C, 7, Bcost).

Proof. Let F be such that Eval(F, 7, Bcost™) = MinEval(C,, , Bcost®). If Eval(F, £, Bcost*) = M, then let
F = 0; otherwise, let ¥ be F with each shadow element replaced by the corresponding element in C. By
the definitions of ¥ and Bcost*, we have Eval(¥, ¥, Bcost®) = Eval(‘7f' , 7, Bcost™). But, by the construction
off,wehavefgéa NC.

Thus, MinEval(C,, #, Bcost*) = Eval(F, #, Bcost®) = Eval(¥, 7, Beost*) > MinEval(C, N C, 7, Beost®).
Also, by the definition of MinEval, we have MinEval(éa, 7, Bcost™) < MinEval(éa N C, %, Bcost®). So, we
have MinEval(C,, #, Bcost*) = MinEval(C, N C, %, Bcost*).

Combining Lemma 5.2 with the result from the last paragraph, we have

MinEval(C, 7, Bcost) = MinEval(C,, %, Bcost*) = MinEval(C, N C, T, Bcost™).

Finally, by the definition of # and Bcost*, we have MinEval(C, N C, %, Bcost*) = MinEval(C, N C, 7, Bcost).
|

Lemma 5.5. Let (C, T, Bcost) be the input to the shadow algorithm. Let (C*, %, Beost®) be the Sfull shadow
extension of (C, T, Beost). If for all A C C* the NEL problem on input (A, ©, Bcost®) is solvable in polynomial
time, then the OPT-SET problem on input (C, T, Bcost) is solvable in polynomial time.

Proof. By Lemma 5.1, the shadow algorithm runs in polynomial time.

Let ¢’ be the value of the variable C at the end of the algorithm. By Lemma 5.4, ¢’ N C is a superset of a
solution to the OPT-SET problem. By Lemma 5.3, C’ N C is a subset of a solution to the OPT-SET problem.
Thus, value returned by the shadow algorithm, ¢’ N C, is a solution to the OPT-SET problem.

O

5.2 Polynomial Time Equivalence of NEL, OPT-SET, and Separation

In this section we show a polynomial time equivalence between the NEL problem, the OPT-SET problem
and the separation problem over Equations (1), (2), and (3).

Lemma 5.6. The solution to the focus point price problem on input (C, T, Bcost) is 0 iff the solution to the
NEL problem on input (C, T, Bcost) is FALSE.

Proof. First, we prove that if the solution to the NEL problem is FALSE, then the solution to the FPP
problem is zero. Consider all of the inequality pairs 7, < MinEval(C — {a}, T, Bcost) — MinEval(C, 7, Bcost)
and 7, > 0. Since the solution to the NEL problem is FALSE, for each a € C there is a ¥, C C such that

18

Eval(C, ¥4, Bcost) = MinEval(C, 7, Bcost) and a ¢ F,. Thus the first inequality in the pair reduces to 7, < 0,
and the pair of inequalities imply 7, = 0. This is true for all @ € C. Thus, optimal value of the FPP linear
program is zero.

Second, we prove that if the solution to the NEL problem is TRUE, then the solution to the FPP problem
is greater than zero. If the solution to NEL is TRUE, then there is some a € C such that if Eval(¥, 7, Bcost) =
MinEval(C, 7, Bcost) then @ € F. In other words, « is in all solutions to the OPT-SET problem on input
(C, T, Bcost).

Thus, for all A C C with a € A, we have MinEval(C — A, 7, Bcost) — MinEval(C, 7, Bcost) > 0. Let
A = mingcc[MinEval(C — A, 7, Bcost) — MinEval(C, 7, Bcost)]. Consider the vector & with 7, = 0 for all

acA

beC-{a}and n, = A and m, = M — MinEval(C, 7, Bcost) — A. Since 4 < M — MinEval(C, 7, Bcost), this
vector is feasible in the focus point price linear program and achieves a objective function value greater than
Zero.

O

Lemma 5.7. If it is possible to approximate the solution to the FPP problem on input (C, T, Bcost) within
any multiplicative factor, then the NEL problem on input (C, T, Bcost) is solvable in polynomial time.

Proof. Follows from Lemma 5.6.

A set of (C, T, Bcost) instances is proper if the following conditions hold:

e Given that (C, 7,Bcost) is in the set, then so is (C, T, Bcost), where T(a) = 7(a) + 7, for a vector
ICI
me R

e Given that (C, 7, Bcost) is in the set, then so is (A, ¥, Bcost™), where (C‘ , T, Bcost™) is the full shadow
extension of (C, 7, Bcost) and A is a subset of C.

The definition of proper has a natural interpretation when applied to the transformations of combinato-
rial minimization problems to buyer-supplier games. For example, for the shortest path problem, the first
condition implies that the set of instances is closed with respect to lengthening the edges of the graph. On
the other hand, the second condition implies that the set of instances is closed with respect to adding parallel
edges or removing a subset of the edges.

Theorem 5.8. On a proper set of instances, the separation problem over Equations (1), (2), and (3), the
NEL problem and the OPT-SET problem are polynomial time equivalent.

Proof. 1If we can solve the NEL problem on a proper set of instances in polynomial time, then, by Lemma 5.5,
we can solve the OPT-SET problem in polynomial time.

If we can solve the OPT-SET problem on a proper set of instances in polynomial time, then, by Theo-
rem 4.1, we can solve the separation problem over Equations (1), (2), and (3) in polynomial time.

If we can solve the separation problem over Equations (1), (2), and (3) on a proper set of instances in
polynomial time, then, by the polynomial time equivalence of separation and optimization, we can optimize
linear objective functions over Equations (1), (2), and (3) in polynomial time. If we can optimize linear
objective functions in polynomial time, by Lemma 5.7 we can solve the NEL problem in polynomial time.

O

Lemma 5.9. On a proper set of instances, if it is not possible to solve the OPT-SET problem in polynomial
time, it is not possible to approximate the solution to the FPP problem to within any multiplicative factor in
polynomial time.

Proof. Follows from Theorem 5.8 and Lemma 5.7.

19

6 A Simplification of the FPP Problem

In this section, we give a simplified linear program that may be used to solve the FPP problem.

For this section, fix a buyer-supplier game defined by (C, 7, Bcost). Let the buyer-supplier game be
derived from the combinatorial minimization problem MinProb as described in Section 1. We omit the
parameters T and Bcost from MinEval since they are fixed by the game.

Lemma 6.1. For all A C C, we have MinEval(A) = min(M, MinProb(A)).

Proof. By the definition of MinEval and Eval, we have
MinEval(A) = min[Eval($B)]
BCA

= ggig{ [Beost(B) + l;BT (@]

We explicitly instantiate the case when B = (). Since Bcost()) = M, we have

MinEval(A) = min(M, min [Bcost(B) + Z 7(@)])
BcA aceB

Since P(B) = 0 implies Bcost(B) = M and since 7(a) > 0 for all a € C, we have

MinEval(A) = min(M, min [Bcost(B) + Z 7(a)])
BCA -
PB) = 1 aeB
By the definition of Bcost, we have

MinEval(A) = min(M, min [Beost*(8) + Z (a@)])
p(%)”i] aeB
= min(M, MinProb(A))

O

Consider the linear program from the FPP problem for the given game. In particular, consider the
variable 7. The variable can be viewed as a slack variable for the constraint arising from Equation (3). In
specific, we can write 0 < 7, = M — MinEval(C) — } ¢ 75, Where the inequality comes from the constraint
my, > 0 and the equality comes from the constraint arising from Equation (3). Thus, the following linear
program is equivalent to the linear program from the FPP problem

max Z T

beC
s.t. Z 7, < MinEval(C — A) — MinEval(C) forall A C C
beA
Z 1, < M — MinEval(C)
beC
>0 for all b € C.

20

Which, in turn, by Lemma 6.1 is equivalent to

max Z T

beC
s.t. Z 7, < min(M, MinProb(C — A)) — min(M, MinProb(C))
beA
Z 1 < M — min(M, MinProb(C))
beC
a1, >0

Call the above linear program LP1 and let its optimal value be O;.
Consider the following linear program

max Z Ty
beC
S.t. Z 7, < MinProb(C — A) — MinProb(C)
beA
m, >0
Call the above linear program LP2 and let its optimal value be O;.

Lemma 6.2. [f MinProb(C) > M, then O = 0.

foral ACC

forall b € C.

forall ACC

forall b € C.

Proof. Consider the inequality Y cc 7 < min(M, MinProb(C — C)) — min(M, MinProb(C)), which must be
satisfied by all vectors feasible in LP1. The right hand side of this inequality is equal to O, since M <
MinProb(C) and MinProb(f)) = co. Thus, we know that O; < 0. We also have O; > 0 since the all zero

vector is feasible for LP1.

Lemma 6.3. [f MinProb(C) < M and O, < M — MinProb(C), then O; = O».

Proof. Since MinProb(C) < M, for any A C C we have

O

min(M, MinProb(C — A)) — min(M, MinProb(C)) = min(M, MinProb(C — A)) — MinProb(C)
< MinProb(C — A) — MinProb(C)

Thus, if a vector « is feasible in LP1, then x is also feasible in LP2. Thus, we have O; < O;.
Let 7* be an optimal vector for LP2. Let A be any subset of C. Since 7* is feasible in LP2, we have

D" 7 < MinProb(C — A) ~ MinProb(C).
beA

Since O, £ M — MinProb(C) we also have
D 7 < > m = 0, < M~ MinProb(C).
beA beC

Thus, we have

Z m, < min(M, MinProb(C — A)) — MinProb(C) = min(M, MinProb(C — A)) — min(M, MinProb(C))

beA
Thus, 7" is feasible in LP1. Thus, we have O; > O,.
Thus, 01 = 02.

21

Lemma 6.4. [f MinProb(C) < M and O, > M — MinProb(C), then O; = M — MinProb(C).

Proof. Let n* be an optimal vector for LP2. Thus, we have

> 7, = 02> M - MinProb(C)
aeC

Let v* € RIC be any vector such that

0

IA
IA

V foralla € C

*
a
k

,
M — MinProb(C)

Ya

o)

aecl

We know that such a v* exists since we can decrease each of the coordinates of n* in turn, not decreasing
any coordinate past zero, until we have) ,cc v, = M — MinProb(C).

Thus, we have that v* is feasible in the constraint)., v* < M — min(M, MinProb(C)) of LP1.

Let A be any subset of C. We have

Z v, < Z v, = M — MinProb(C).

acA acC

Since 7* is feasible in LP2, we also have

Z v, < Z m, < MinProb(C — A) — MinProb(C).
aeA aeA

Thus,

Z v, < min(M, MinProb(C — A)) — MinProb(C) = min(M, MinProb(C — A)) — min(M, MinProb(C))
aceA

and v* is feasible in LP1.

The value of LP1 for vector v* is M —MinProb(C). But, the constraint) ,cc v < M —min(M, MinProb(C))
of LP1, which must be satisfied by all feasible vectors v, tells us that the value of LP1 can be at most
M — MinProb(C). Thus, we have O; = M — MinProb(C).

O

By Lemmas 6.2, 6.3, and 6.4 finding the solution to LP2 is sufficient to solve the FPP problem for given
buyer-supplier game.

7 A Complementary Combinatorial Algorithm

In this section, we present an efficient combinatorial algorithm for solving the FPP problem for the buyer-
supplier minimum spanning tree (MST) game. The combinatorial algorithm complements the theoretically
efficient algorithm based on the ellipsoid method arising from Theorem 4.1.

Let a graph G = (V, &) and edge weights w : & — R be given. Let MSTVal : 26 — R, be a function
that takes as input a set of the edges A C & and returns the weight of the minimum spanning tree of the
graph induced by the edges of A. If no spanning tree exists, MSTVal returns oo.

We use the transformation in Section 1 on the minimum spanning tree problem. By Lemma 3.22, any
internal cost decomposition is equivalent in terms of core solutions. Thus, we have the definition of the
buyer-supplier minimum spanning tree game. It is a buyer-supplier game where C = &, t(a) = w(a), and
Bcost(A) = M if A does not connect all nodes in V, or 0 otherwise.

22

Lemma 7.1. Let H = (V1,&1) be any graph. Let T = (V1,8E)) be a minimum spanning tree of the graph
H. For e € &| let the cut created in T by the removal of e be (A,, B,) for some A, €V, and B, C V.

o The edge e is a minimum weight edge spanning the cut (A, Be).

o The tree T restricted to vertices in A, is a minimum spanning tree of the graph induced by the vertices
A.. A symmetric statement is true for B,

o Let U be the set of edges spanning the cut and let a = arg minyeq;_4w(b). We have w(a) — w(e) =
MSTVal(E; — {e}) — MSTVal(&).

Proof. We use a proof by contradiction. Suppose there is some other edge ¢’ which spans the cut such that
w(e’) < w(e). Then, we could get a new spanning tree 7’ of the graph H by replacing the edge e in &) with
the edge ¢’. The tree T’ has a strictly smaller weight than the tree T since w(e’) < w(e), contradicting the
fact that 7' is a minimum spanning tree of H.

Similarly, if T restricted to the vertices in (A, is not a minimum spanning tree of the graph induced by
the vertices in A,, we can construct a spanning tree of H with weight strictly smaller than 7 by connecting
e, the tree T restricted to B,, the minimum spanning tree induced by the vertices in A.

By first second result of this lemma, a minimum spanning tree of the graph induced by &; — {e} can be
obtained by keeping the portions of T which lie wholly in exactly one of A, or B, and attaching the smallest
weight edge which spans the cut. Thus, we get w(a) — w(e) = MSTVal(&; — {e}) — MSTVal(&)).

O

Lemma 7.2. For A C & and e € & — A, if the removal of the edges in A does not disconnect the graph G,
we have MSTVal(E — A — {e}) — MSTVal(& — A) > MSTVal(E — {e}) - MSTVal(E).

Proof. LetT = (V,&’) be a minimum spanning tree of the graph G.

Ife ¢ &, we have 0 = MSTVal(E — {e}) —-MSTVal(E) < MSTVal(E — A — {e}) —-MSTVal(& — A), since
MSTVal(B) > MSTVal(U) for any B C U.

If e € &, let the cut created in T by the removal of e be (K, B,) for some K C V and B C V. Let U
be the set of edges spanning the cut. Let a be arg minyeq,_(,,w(b). By Lemma 7.1, we have w(a) — w(e) =
MSTVal(E — {e}) — MSTVal(&).

An application of Lemma 7.1 on the graph induced by the edges &—A yields the result that w(a’)—w(e) =
MSTVal(E — A - {e}) — MSTVal(E — A) where a’ = arg min,cq,_ A-{eyW(D).

By the definitions of a and @’ and the fact that U — A — {E} C U — {E}, we have

MSTVal(E — {e}) - MSTVal(&) = w(a) — w(e) < w(d’) — w(e) = MSTVal(& — A — {e}) - MSTVal(E — A).
O

Lemma 7.3. Suppose the graph G is connected and thus MSTVal(E) is finite. For A C &, we have
MSTVal(E — A) — MSTVal(E) = 3 .ca[MSTVal(E — {e}) — MSTVal(&E)]

Proof. We prove the statement by induction on the size of A.
For A = 0, both the left hand side and the right hand side of the statement are equal to zero.
Assume the statement holds for 8. We show that it holds for 8 U {e} where ¢ € & — B. We must show

MSTVal(& — 8 — {e}) — MSTVal(&E)
> [MSTVal(& — {e}) - MSTVal(&)] + Z[MSTVal(S —{a}) - MSTVal(&)] 4)

aeB

23

If removing the edges B U {e} disconnects the graph, the left hand side of the statement is infinite, and
thus the statement holds.
If removing B U {e} does not disconnect the graph, we have

MSTVal(E — B — {e}) — MSTVal(&)
= [MSTVal(& — 8 — {e}) - MSTVal(€ — B)] + [MSTVal(€ — B) - MSTVal(E)]
< [MSTVal(& - {e}) - MSTVal(&)] + [MSTVal(& — B) — MSTVal(&)]

< [MSTVal(&E — {e}) — MSTVal(&)] + Z[MSTVal(S —{a}) - MSTVal(&)]
aeB

where the first inequality comes from Lemma 7.2 and the second inequality comes from the induction
hypothesis.
O

Let LP2 be as in Section 6 with MinProb equal to MST Val.

Lemma 7.4. The inequalities corresponding to singleton sets {e} for e € & form an optimal basis for LP2.
In particular, setting m, = MSTVal(& — {e}) — MSTVal(&) for all e € & gives an optimal vector for LP2.

Proof. For A C &, by Lemma 7.3, we have

Z T, = Z[MSTVal(S —{e}) — MSTVal(E)] < MSTVal(E€ — A) — MSTVal(E).
ecA ecA

Thus, r is feasible in LP2. Since each inequality of the form 7, < MSTVal(& — {e}) — MSTVal(&) is tight,
it is not possible to increase any coordinate of 7. Thus 7 is an optimal vector and the singleton inequalities
form an optimal basis.

O

We give a modified Kruskal Algorithm which can be used to compute the optimal value of LP2.
Run Kruskal Algorithm with the following modifications.

e Throughout the algorithm’s execution we will keep an auxiliary set of edges, A, which is initially
empty.

e When edge e is added to the minimum spanning forest, also add e to the set A.

e Suppose edge e is rejected from addition to the minimum spanning Forest because it creates a cycle.
Let the cycle created be H = (V’,&’). For each edge a € & — {e}, if a € A, label a with w(e) — w(a)
and remove a from A.

Lemma 7.5. Let G be connected and T = (V1,E1) be the minimum spanning tree computed by the mod-
ified Kruskal Algorithm when it is run on G = (V,E). If e € &, has been labeled, the label is equal to
MSTVal(E — {e}) — MSTVal(&). Otherwise, MSTVal(&E — {e}) — MSTVal(&E) = co.

Proof. Let U be the set of edges spanning the cut created in T by the removal of e. Also, let @’ be any
arg minyeq,_(,,w(b). By Lemma 7.1 we have w(a") — w(e) = MSTVal(E — {e}) — MSTVal(E).

Let e be labeled by the modified Kruskal Algorithm when the edge a creates a cycle. For the first part
of the lemma, all we must show isa = a’.

Let K be the set of edges which create a cycle involving e during the algorithm. If » € & — U, then B
does not span the cut created in 7 by the removal of e. Thus, both vertices of b lie on the same side of the

24

cut. Thus, b cannot create a cycle involving e, since all edges in the cycle except b must be in the tree 7.
Also, the edge e cannot form a cycle with itself. Thus, we have K C U — {e}.

Consider any b € U — {e}. The edge b must be rejected by the modified Kruskal algorithm, otherwise
the edge would be in 7 and wouldn’t span the cut created in 7' by the removal of e. Thus, b must create a
cycle during the algorithm. Since all edges except b which make up the cycle must be in 7 and b spans the
cut created by e, the cycle created by b includes e. Thus, we have U — {e} C K, and U — {e} = K.

Since the modified Kruskal Algorithm process edges of G in ascending order of weight and e is labeled
by the element from K which is processed first, we know a = arg min,4-w(b). Since K = U, we also have
a = a’ and we have shown the first part of the lemma.

If e is not labeled, then K must be empty. Since K = U, the set U must also be empty. And thus, the
removal of e must disconnect the graph G. Thus we have, MSTVal(E — {e}) — MSTVal(&) = co.

O

By Lemmas 7.4 and 7.5, we can find the optimal value to LP2 using the modified Kruskal algorithm. By
Lemmas 6.2, 6.3, and 6.4, the minimum spanning tree weight of G and the optimal value of LP2 give us the
optimal value of LP1 which is the focus point price of the buyer-supplier minimum spanning tree game on
graph G.

8 Applications

In this section we present a sampling of the natural games which fit the buyer-supplier game paradigm. We
use these games to illustrate the power of the results in this paper. We place each game into one of two
categories.

Category A games are those for which on input 7 : C — R, it is possible to compute both Eval(A, 7)
for any A C C and an ¥ C C such that Eval(¥,7) = MinEval(C, 7) in polynomial time. For such games,
by Theorems 3.12 and 4.1, one can optimize any linear function over the core vectors of the game. For
example, for any given player it is possible to determine the difference between the best and worst possible
core outcome for the player.

Category B games those for which on input ¥ : C — R, it is impossible, in polynomial time, to compute
¥ C C such that Eval(¥,7) = MinEval(C, 7). In other words, the corresponding OPT-SET problem is not
solvable in polynomial time on proper sets of instances. By Theorem 5.8, in general, given some payoft
vector 7 it is not possible to determine in polynomial time whether 7 is in the core. Moreover, by Lemma 5.9
it is impossible to find the difference between the best and worst possible core outcome for the buyer in
polynomial time.

Facility Location In the buyer-supplier facility location game a company has customers on some of the
nodes of a graph. The company must build facilities on the graph to supply its customers with a product.
The company pays to both build the facilities, and run trucks from each customer to the customer’s assigned
facility. Each possible facility location is owned by a unique supplier. The supplier has some internal cost
associated with hosting a facility. Specifically, given a graph G = (V,E), a set of customers 8 C V, a
set of possible facility locations U C “V, an opening cost function f : U — R, and a service function
h:2Y — R, which captures the cost of providing the product to the customers given facilities on U, let

C=U
7(a) = f(a)
Bcost(A) = {M ifA = ,0
h(A) otherwise.

25

For this game, on input 7, computing ¥ € C such that Eval(¥, 7) = MinEval(C, 7) is the facility location
problem. Unless NP = P, computing the optimal facility locations is not possible in polynomial time since
the facility location problem is NP-complete. Thus, unless NP = P, the buyer-supplier facility location game
is in category B.

Minimum Cut In the buyer-supplier minimum cut game a company wishes to control all the paths
between two nodes of a graph. Each edge of the graph is initially owned by a unique supplier. The company
wishes to purchase the edges of a cut which separates the two specified nodes. Each supplier has a cost
associated with the company’s usage of the supplier’s edge. Specifically, given a graph G = (V, E), edge
weightsw : & - R, and twonodes s € Vand ¢ € V, let

c=6&
7(a) = w(a)
Beost(A) = M ifAis .not a cut separating s and ¢
0 otherwise.

For this game, on input 7, computing ¥ C C such that Eval(¥, T) = MinEval(C, 7) is simply the mininum
cut problem. Computing Eval(A, 7) for A C C can be done using depth first search and a simple summation.
Thus, the buyer-supplier minimum cut game is in category A.

Mininum Set Cover In the buyer-supplier minimum set cover game a company has a set of services it
wishes to outsource to a set of subcontractors. Each subcontractor provides only some subset of the com-
pany’s required services. Each subcontractor as a cost associated with providing services to the company.
Specifically, given a set of services B, a set of subcontractors U, the services provided by each subcontractor
h: U — 28, and a cost function for each subcontractor f:U—> R, et

c=U
T(a) = f(a)
M ifu
Beost(A) = if Vaeh(a) # B
0 otherwise.

For this game, even if we restrict 7 to be identically zero, computing & C C such that Eval(¥,7) =
MinEval(C, 7) is the minimum set cover problem. Unless NP = P, computing the minimum set cover is
not possible in polynomial time [5, p. 222]. Thus, unless NP = P, the buyer-supplier minimum set cover
game is in category B.

Minimum Spanning Tree We have already introduced this game. The buyer supplier minimum span-
ning tree game is in category A.

Shortest Path In the buyer-supplier shortest path game a company wishes to transport goods between
two nodes on a graph. The company wishes to purchase a path connecting the two nodes for the transporta-
tion use. Each edge of the graph is owned by a unique supplier. Each supplier has a cost associated with the
company’s traffic passing through the supplier’s edge. Specifically, given a graph G = (V, &), edge weights
w:E—> R,,andtwonodes s € Vandt eV, let

c=¢&
T(a) = w(a)
M if A does not connect s and ¢
Bcost(A) = .
0 otherwise.

26

For this game, on input 7, computing ¥ C C such that Eval(¥, 7) = MinEval(C, 7) is simply the shortest path
problem. Computing Eval(A, 7) for A C C can be done using depth first search and a simple summation.
Thus, the buyer-supplier shortest path game is in category A.

Single Commodity Flow In the buyer-supplier single commodity flow game a company wishes to move
a commodity from from a set of source vertices of a graph to a set of destination vertices of the graph. Each
edge is owned by a unique supplier, and each supplier has a cost associated with the company’s usage of
the supplier’s edge. Moreover, each edge has an associated capacity constraint, limiting the company from
over-burdening the edge. Time is a factor in the company’s movement of the commodity. The latency of
using a particular edge increases linearly with the amount of commodity flowing through the edge. The
company wishes to buy edges to use in moving the commodity, while at the same time minimizing the
latency of delivery. Specifically, given a graph G = (V, &), edge weights representing each supplier’s costs
w: & — R, asetof source vertices B C &, a set of destination vertices U C &, fixed amount of commodity
A € R, and a function & : 2 — R, which captures the latency of routing A flow of the commodity from B
to U subject to the capacity constraints of the chosen edges, let

cC=6&
7(a) = w(a)
M i =
Bceost(A) = itA ,0
h(A) otherwise.

For this game, on input 7, computing & C C such that Eval(¥,7) = MinEval(C, 7) is the fixed charge
network flow problem.. Unless NP = P, solving the fixed charge network flow problem is not possible in
polynomial time [9]. Thus, unless NP = P, the buyer-supplier single commodity flow game is in category
B.

Steiner Tree This game is very similar to the buyer-supplier minimum spanning tree game. However, in
the buyer-supplier Steiner tree game, the company owns factories on a subset of the graph’s nodes. Specifi-
cally, given a graph G = (V, &), edge weights w : & > R, and B C V let

C=6&
7(a) = w(a)
M if A does not connect all nodes in B
Beost(A) = .
0 otherwise.

For this game, on input 7, computing ¥ C C such that Eval(¥, 7) = MinEval(C, 7) is minimum cost Steiner
tree problem. Unless NP = P, computing the minimum cost Steiner tree is not possible in polynomial
time [5, p. 208]. Thus, unless NP = P, the buyer-supplier Steiner tree game is in category B.

References

[1] A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science, pages 482491, Oct. 2001.

[2] R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical Eco-
nomics, 1:67-96, 1974.

[3] E. Y. Edgeworth. Mathematical psychics, an essay on the application of mathematics to the moral
sciences. A. M. Kelley, New York, NY, 1961.

27

[4] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 218-227, May 2000.

[5S] M. Garey and D. Johnson. Computers and Intractability: A guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York, NY, 1979.

[6] D. B. Gillies. Some Theorems on n-Person Games. PhD thesis, Princeton University, 1953.

[7] M. X. Goemans and M. Skutella. Cooperative facility location games. Journal of Algorithms, 50:194—
214, 2004.

[8] J. C. Harsanyi. Games with incomplete information played by “Bayesian” players. Management
Science, 14:159-182,320-334,486-502, 1968.

[9] D.S. Hochbaum and A. Segev. Analysis of a flow problem with fixed charges. Networks, 19:291-312,
1989.

[10] J. E. Nash. Equilibrium points in n-person games. In Proceedings of the National Academy of Sciences,
pages 48-49, 1950.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley and Sons,
New York, NY, 1988.

[12] N. Nisan and A. Ronen. Algorithmic mechanism design. In Proceedings of the 31st Annual ACM
Symposium on Theory of Computing, pages 129-140, May 1999.

[13] M. Pal and E. Tardos. Group strategy proof mechanisms via primal-dual algorithms. In Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science, pages 584-593, Oct. 2003.

[14] C. H. Papadimitriou. Algorithms, games, and the internet. In Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, pages 749-753, July 2001.

[15] C. H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player games. In Proceedings
of the 16th Annual ACM-SIAM symposium on Discrete algorithms, pages 82-91, January 2005.

[16] K. Roberts. The characterization of implementable choice rules. In Aggregation and Revelation of
Preferences, pages 321-348. North-Holland, Amsterdam, 1979.

[17] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, Cambridge, MA, 2005.
[18] T. Roughgarden and E. Tardos. How bad is selfish routing? J. ACM, 49:236-259, 2002.

[19] T.Roughgarden and E. Tardos. Bounding the inefficiency of equilibria in nonatomic congestion games.
Games and Economic Behaviour, 47:389—403, 2004.

[20] L. S. Shapley. Notes on the n-person game IIl: Some variants of the von Neumann-Morgenstern
definition of solution. Research memorandum, RAND Corporation, Santa Monica, CA, 1952.

[21] M. Shubik. Game Theory In The Social Sciences. MIT Press, Cambridge, Massachussetts, 1984.

[22] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University
Press, Princeton, NJ, 1953.

[23] R. Weber. Multiple-object auctions. In Auctions, bidding, and contracting: Uses and theory, pages
165-191. New York University Press, New York, NY, 1983.

28

