Razor: An Architecture for Dynamic Multiresolution Ray Tracing
Gordon Stoll*, William R. Mark**, Peter Djeu**, Rui Wang***, Ikrima Elhassan**

University of Texas at Austin Department of Computer Sciences
Technical Report #06-21
April 26, 2006

* = Intel Research, ** = University of Texas at Austin, *** = University of Virginia

Abstract

Rendering systems organized around the ray tracing visibility algorithm provide a powerful and
general tool for generating realistic images. These systems are being rapidly adopted for offline
rendering tasks, and there is increasing interest in utilizing ray tracing for interactive rendering as
well. Unfortunately, standard ray tracing systems suffer from several fundamental problems that
limit their flexibility and performance, and until these issues are addressed ray tracing will have
no hope of replacing Z-buffer systems for most interactive graphics applications.

To realize the full potential of ray tracing, it is necessary to use variants such as distribution ray
tracing and path tracing that can compute compelling visual effects: soft shadows, glossy
reflections, ambient occlusion, and many others. Unfortunately, current distribution ray tracing
systems are fundamentally inefficient. They have high overhead for rendering dynamic scenes,
use excessively detailed geometry for secondary rays, perform redundant computations for
shading and secondary rays, and have irregular data access and computation patterns that are a
poor match for cost-effective hardware.

We describe Razor, a new software architecture for a distribution ray tracer that addresses these
issues. Razor supports watertight multiresolution geometry using a novel interpolation technique
and a multiresolution kD-tree acceleration structure built on-demand each frame from a tightly
integrated application scene graph. This dramatically reduces the cost of supporting dynamic
scenes and improves data access and computation patterns for secondary rays. The architecture
also decouples shading computations from visibility computations using a two-phase shading
scheme. It uses existing best-practice techniques including bundling rays into SIMD packets for
efficient computation and memory access. We present an experimental system that implements
these techniques, although not in real time. We present results from this system demonstrating
the effectiveness of its software architecture and algorithms.

Outline of this document

Pages 4-15 of this document constitute the paper submitted to the SIGGRAPH 2006 conference
on January 25, 2006. We have not made any changes to the document since that date, other than
to de-anonymize the author list and change the page header to indicate that it is now a technical
report. The paper was not accepted to SIGGRAPH and so we expect to submit a future version of
the work for publication, but we wanted to make this snapshot description of our work available
to the research community now.

Pages 1-3 of this document provide some updated information that did not appear in the original
document, including some missing references to previous work, a list of concurrent work, and
acknowledgements.

Additional previous work

BENTHIN, C., WALD, |., AND SLUSALLEK, P. Interactive ray tracing of free-form surfaces, 2004,
Proceedings of Afrigraph 2004.

This paper describes a system for interactive ray tracing of cubic Bezier patches and
Loop subdivision surfaces. It uses a fixed subdivision depth in contrast to Razor which
subdivides adaptively. By using a fixed subdivision depth, Benthin et al.’s system avoids the
need to address many of the issues with surface cracking and tunneling that Razor must address.

Concurrent work on ray tracing dynamic scenes

WALD, |., IzE, T., KENSLER, A., KNOLL, A., AND PARKER, S. Ray tracing animated scenes using
coherent grid traversal. Technical Report, SCI Institute, University of Utah, No UUSCI-2005-
014, 2006. (conditionally accepted to ACM SIGGRAPH 2006).

This paper uses a grid acceleration structure for ray tracing arbitrary dynamic scenes of
moderate complexity. By adapting and extending packet-tracing and frustum culling techniques
originally developed for kd-trees, the system achieves performance for primary rays and shadow
rays that is reasonably close to that of a cost-optimized kd-tree. No results are reported for other
types of secondary rays.

WALD, I., BOULOS, S., SHIRLEY, P. Ray tracing deformable scenes using dynamic bounding
volume hierarchies. Technical Report, SCI Institute, University of Utah, No UUSCI-2005-014,
2006. (conditionally accepted to ACM Transactions on Graphics).

This paper uses a bounding-volume acceleration structure for ray tracing dynamic
scenes, and more specifically deformable objects. To achieve high performance, the acceleration
structure must be pre-built in a cost-optimized manner for the expected object deformations.

LAUTERBACH, C., YOON, S., TUFG, D., AND MANOCHA, D. RT-DEFORM: Interactive ray
tracing of dynamic scenes using BVHSs, 2006. Available online at
http://gamma.cs.unc.edu/BVH.

This paper also directly uses a bounding-volume hierarchy as a ray tracing acceleration
structure. The BVH is incrementally updated as objects deform. Since the quality of the BVH
degrades with time due to the incremental updates, the system rebuilds the BVH from scratch
once its efficiency drops below a pre-set threshold.

WALD, I. On building fast kd-trees for ray tracing, and on doing that in O(N log N). Technical
Report, SCI Institute, University of Utah, No UUSCI-2006-009, 2006.

This paper presents a nice overview of algorithms and implementation details for
constructing and traversing cost-optimized kd-tree acceleration structures. The paper also
describes an algorithmic change to improve the efficiency of building cost-optimized kd-trees.

Concurrent work on ray tracing with multiple levels of detail

YOON, S. LAUTERBACH, C., AND MANOCHA, D. R-LODs: Fast LOD-based ray tracing of large
models, University of North Carolina at Chapel Hill, Department of Computer Sciences
Technical Report #TR06-009, 2006.

This paper describes a simple mechanism for supporting LOD in a ray tracer for static
scenes. As in Razor, a single kd-tree is used to hold both original and simplified representations.
The simplification used for LOD does not preserve topology, and the LOD transitions are

discrete. This approach has the advantages that the implementation is fast and that drastic
simplification is possible, but the disadvantage that artifacts such as cracking and popping occur.
The system provides some control over LOD artifacts by suppressing the LOD transition for a
particular kd-tree node until the screen-space projection of the kd-node is smaller than a user-
specific threshold measured in pixels.

Acknowledgements

Don Fussell participated in much of our early thinking about the system design and in particular
about the importance of integrating the scene graph with the acceleration structure. Okan Arikan
provided several useful suggestions and helped us compare Razor’s approach to that of batch
rendering systems. Jim Hurley, Bob Liang, and Stephen Junkins at Intel have strongly supported
this research effort. This work was funded by Intel, Microsoft Research, and the University of
Texas.

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Razor: An Architecture for Dynamic Multiresolution Ray Tracing

William R. Mark"
UT Austin

Gordon Stoll*
Intel Corporation

Abstract

Rendering systems organized around the ray tracing visibility algo-
rithm provide a powerful and general tool for generating realistic
images. These systems are being rapidly adopted for offline render-
ing tasks, and there is increasing interest in utilizing ray tracing for
interactive rendering as well. Unfortunately, standard ray tracing
systems suffer from several fundamental problems that limit their
flexibility and performance, and until these issues are addressed ray
tracing will have no hope of replacing Z-buffer systems for most
interactive graphics applications.

To realize the full potential of ray tracing, it is necessary to use
variants such as distribution ray tracing and path tracing that can
compute compelling visual effects: soft shadows, glossy reflec-
tions, ambient occlusion, and many others. Unfortunately, current
distribution ray tracing systems are fundamentally inefficient. They
have high overhead for rendering dynamic scenes, use excessively
detailed geometry for secondary rays, perform redundant computa-
tions for shading and secondary rays, and have irregular data access
and computation patterns that are a poor match for cost-effective
hardware.

We describe Razor, a new software architecture for a distribution
ray tracer that addresses these issues. Razor supports watertight
multiresolution geometry using a novel interpolation technique and
a multiresolution kD-tree acceleration structure built on-demand
each frame from a tightly integrated application scene graph. This
dramatically reduces the cost of supporting dynamic scenes and im-
proves data access and computation patterns for secondary rays.
The architecture also decouples shading computations from visibil-
ity computations using a two-phase shading scheme. It uses ex-
isting best-practice techniques including bundling rays into SIMD
packets for efficient computation and memory access. We present
an experimental system that implements these techniques, although
not in real time. We present results from this system demonstrating
the effectiveness of its software architecture and algorithms.

Keywords: ray tracing, level of detail, rendering

1 Introduction

It has been a longstanding goal in computer graphics to synthesize
images interactively that are indistinguishable from those we ob-
serve in the real world. Despite much progress over the past thirty

*e-mail: gordon.stoll@intel.com
Te-mail:billmark @cs.utexas.edu
fe-mail:djeu @cs.utexas.edu
$e-mail:rui.wang @ gmail.com
fe-mail:ikrima@mail.utexas.edu

Peter Djeu*
UT Austin

Ikrima Elhassan]
UT Austin

Rui Wang®
U Virginia

years, current interactive graphics systems are still far from that
goal.

It is becoming increasingly clear that the Z-buffer algorithm used
in today’s interactive graphics systems is likely to fundamentally
limit progress towards photorealism. Within the next 5-10 years,
we believe that the Z-buffer algorithm will need to be augmented or
replaced with algorithms such as ray tracing that efficiently support
a more general class of visibility queries. This transition to ray
tracing is already well under way in offline rendering [Tabellion
and Lamorlette 2004].

Recently developed interactive ray tracing systems [Parker et al.
1999; Woop et al. 2005; Reshetov et al. 2005] compellingly demon-
strate that it is no longer possible to dismiss interactive ray tracing
as computationally infeasible. Yet these existing systems have se-
rious limitations that make them impractical for most mainstream
interactive applications. In particular, these systems perform poorly
for large dynamic scenes, and especially for scenes containing de-
formable objects such as human characters. Furthermore, when
these systems are running at interactive rates on practical hardware
they typically implement classical Whitted ray tracing, which for
most applications does not provide a compelling improvement in
visual quality over state-of-the-art Z-buffer rendering.

The true advantages of ray tracing visibility algorithms only be-
come apparent with the addition of effects that are produced using
distribution ray tracing [Cook et al. 1984]. These effects include
soft shadows, glossy reflections, diffuse reflections, ambient occlu-
sion, subsurface scattering, final gathering from photon maps and
others. But current distribution ray tracing systems are fundamen-
tally inefficient, particularly for dynamic scenes. Until these ineffi-
ciencies are resolved, ray tracing will not be able to replace Z-buffer
rendering for most interactive applications.

In this paper, we explain why current distribution ray tracing sys-
tems are inefficient, and propose a new rendering-system architec-
ture that reduces or eliminates the various inefficiencies. Our ap-
proach is explicitly designed to be appropriate for future interactive
use. We also present an experimental system that implements our
approach in testbed form. Although this system is not parallelized
and performance-tuned as would be necessary to achieve interac-
tive performance, it demonstrates the viability of the core ideas in
our new rendering architecture.

It is important to understand that our motivation for this work is
to develop a better understanding of how to build future interactive
rendering systems that support the full set of functionality that one
would want in an interactive ray tracing system. This strategy con-
trasts with most other recent work on interactive ray tracing, which
takes the opposite approach of either restricting functionality (e.g.
dynamics) or image quality (e.g. resolution, visual effects, shading)
or simply running on impractical hardware (large clusters) so that
the system can run at interactive rates today.

The most important new ideas in this paper are:
e The system architecture as a whole.

e A novel algorithm for representing and intersecting continu-
ous level-of-detail surfaces in a ray tracer.

e A practical technique for lazily building a multiresolution kD-

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

tree each frame from a tightly-integrated scene graph holding
a dynamic scene. All major system data structures except the
original scene graph are rebuilt every frame.

e An approach to surface shading that partially decouples shad-
ing computations from visibility computations. This approach
extends the grid-based shading approach pioneered in the
REYES system [Cook et al. 1987] to a ray tracing framework.

2 The Challenges

There are several challenges to building an efficient distribution ray
tracing system:

Overall system performance:

Distribution ray tracing is computationally expensive, so systems
must use a variety of best-practice techniques to achieve high per-
formance at reasonable cost. First, geometry must be tessellated
into triangles before intersection testing (see e.g. [Christensen et al.
2003]). Second, the system must use an efficient acceleration struc-
ture such as a cost-optimized kD-tree [Havran and Bittner 2002]
1. Third, the system must support aggregation of rays into packets
[Wald et al. 2001]. By bundling rays into packets, cache hit rates
are improved, branch mis-predict penalties are reduced, and use of
register SIMD hardware such as SSE is improved. These practical
considerations constrain other aspects of the system design.

Dynamic scenes:

If objects are moving within the scene, it is not possible to treat
the construction of a spatial-acceleration structure as a “free” pre-
processing step — part or all of the work must be performed each
frame. Furthermore, if the objects undergo non-rigid motion such
as deformation (as is common in skinned characters used in com-
puter games), then it is not even possible to use the common opti-
mization of pre-building acceleration structures for individual ob-
jects.

If the scene is complex with many occlusions (such as an entire
building with occupants), then it is unacceptably expensive to build
the entire acceleration structure every frame. This problem is even
more acute if we want to represent each object at multiple levels
of detail; in this case the finer levels of detail will cause the sys-
tem to run out of memory if we store tessellated geometry in the
acceleration structure.

Distribution-sampled secondary rays:

Distribution ray tracing systems cast large numbers of secondary
rays. For example, many rays are cast to sample area light sources,
to sample incoming BRDF directions, and for ambient occlusion
computations. There are many more secondary rays than primary
rays, so the cost of tracing the secondary rays and tessellating the
geometry they hit dominates the ray tracing time.

Redundant shading computations:

Most ray tracers perform shading computations at each ray hit
point. At high screen-space super-sampling rates, most of these
shading computations are redundant. The situation is even worse
for shaders that require arbitrary differential computations, since
these shaders must be run three times at each hit point to compute
discrete differentials [Gritz and Hahn 1996]. Redundant shading
computations severely degrade overall system performance, since

I'This data structure is perhaps more accurately an axis-aligned BSP tree,
but we use the common ray tracing parlance here

it is common for a renderer’s surface shading costs to be greater
than than that of all other rendering costs combined.

3 High-level solutions

Once the challenges above are understood, a set of potential solu-
tions emerges. At the conceptual level these solution strategies are
simple, but they each uncover more detailed challenges. In this sec-
tion we explain these solution strategies and corresponding detailed
challenges.

Use multiresolution surfaces to reduce the cost of tracing sec-
ondary distribution rays:

As [Christensen et al. 2003] and [Tabellion and Lamorlette 2004]
have demonstrated, most secondary rays can be traced using a very
coarse geometric representation of the scene. Mathematically the
reason for this is that most secondary rays have large ray differen-
tials [Igehy 1999] —i.e. they diverge strongly from each other as
they progress away from their origins (Figure 1).

area light

diverging
secondary
rays

Figure 1: Distribution-sampled secondary rays diverge rapidly as
they leave a surface. As Christensen et al. demonstrated, the ray
tracing system must use a multiresolution surface representation to
minimize the cost of tracing these secondary rays.

Thus, efficient distribution ray tracing for large scenes requires a
multiresolution scene representation. Without this capability, the
cost of generating and accessing the geometry touched by the sec-
ondary rays becomes prohibitive, particularly if this geometry is
dynamic. In addition to improving memory performance, and re-
ducing the cost of tessellation and shading, these techniques poten-
tially improve SIMD packet tracing efficiency for the same reasons.

Multiresolution and level-of-detail techniques are well understood
for Z-buffer systems, but using them in a ray tracing system
presents additional challenges. Most importantly, there is no longer
a single reference point (the eye point) with which to set the reso-
lution of each surface in the scene. Instead, each ray — including
secondary rays — may request an LOD that is essentially unrelated
to that requested by any other ray. An important implication of this
situation is that any particular surface region may be accessed at
multiple levels of detail by different rays. Under these conditions,
the problem of guaranteeing that surfaces are watertight is much
harder than it is in a Z-buffer system. This guarantee is important
to insure that reflections, refractions, and shadows do not have crack

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

artifacts. It is unclear how or whether the multiresolution ray trac-
ing system described by [Christensen et al. 2003] solves this prob-
lem. In future interactive systems these guarantees must operate
automatically; it will be unacceptable to rely on manual per-shot
tuning of LOD parameters as is done in some offline ray tracing
systems [Tabellion and Lamorlette 2004].

Adding multiresolution capability to a ray tracing system makes the
design of the acceleration structure more complicated. Standard
space-partitioning data structures represent each surface once at a
single level of detail. To store each surface at multiple resolutions,
the system must use multiple acceleration structures or be able to
represent the same surface more than once in a single acceleration
structure. Similarly, the ray traversal algorithm must be able to
select the appropriate representation of a surface for intersection
tests with the ray.

These challenges are more serious in a system that builds its accel-
eration structure on demand from dynamic geometry. In particular,
solutions that require extensive preprocessing of geometry or that
require global topological knowledge are unlikely to be acceptable.

Thus the challenges are: 1) How do we provide multiresolution
surfaces that are watertight for ray tracing? 2) How should an ac-
celeration structure store multiresolution surfaces so that the overall
design is efficient for dynamic geometry?

Support dynamic scenes by lazily building the acceleration
structure each frame:

The most straightforward approach to supporting arbitrary dynamic
scenes is to dispense with the idea of pre-building an acceleration
structure, and instead build the acceleration structure each frame.
To avoid unnecessary work, the acceleration structure is built lazily,
so that only the portions of it needed for a particular frame are built.
At the end of the frame, the acceleration structure is discarded.

This conceptually simple idea presents three major challenges:
First, how do we efficiently find the subset of the scene geome-
try that we need to insert into the acceleration structure in any par-
ticular frame? Second, how does a system like this interface with
the rest of an interactive graphics application? Third, how do we
keep the cost of lazy kD-tree construction low enough to do it ev-
ery frame?

Decouple shading from visibility to eliminate redundant shad-
ing computations:

In a system that uses super-sampling the desired rate for visibility
computations is usually higher than that for shading computations.
The obvious solution to this mismatch is to decouple the visibility
computations from the shading computations in some manner.

This is exactly the approach used by the REYES system [Cook
et al. 1987] and by the multi-sampling technique used in modern Z-
buffer graphics systems [Akenine-Moller and Haines 2002]. How-
ever, both of these systems are designed exclusively for eye rays.
A ray tracer cannot pre-shade for a single viewpoint as the REYES
system does. A ray tracer also cannot assume a regular pattern for
all rays as the multi-sampling technique does.

Worse yet, the goal of decoupling visibility from shading interacts
in difficult ways with the goal of using multiresolution surfaces.
We now have a situation where shading may need to be performed
at multiple resolutions for any particular surface. This is straight-
forward when visibility is coupled to shading, but less so once we
decouple them. How do we solve this problem?

4 System architecture

It is clear that these various individual strategies for building an
efficient distribution ray tracing system interact in complex ways.
We will show how to combine these strategies so that they are com-
patible with each other and form a single integrated system. While
some pieces of our system adapt well-known approaches, other por-
tions of the system are individually novel and require more detailed
explanation. Fortunately, the major components are familiar from
any standard ray tracer: the ray/surface intersection technique, the
acceleration structure, and the shading system.

4.1 Multiresolution ray/surface intersection

As summarized earlier, the problem of managing geometric level
of detail [Luebke et al. 2003] is considerably more challenging in a
ray tracer than it is in systems such as a Z-buffer that only use eye
rays or their equivalent. This difficulty is caused by the fact that it is
no longer possible to choose a single level of detail for each object
or surface region based on its distance from the eye point. We must
switch from thinking about level-of-detail in an geometry-centric
manner to thinking about it in a ray-centric manner. The level of
detail required by each individual ray is a unique function of the
location along that ray. Each surface region may be accessed at
multiple levels of detail by different rays [Christensen et al. 2003].
This raises the question of how to generate and manage surface
tessellations at different levels of detail such that each ray can be
intersected with the unique geometry that it requires in a robust and
efficient fashion.

Our solution to this problem applies to adaptive surface tessella-
tion, rather than more aggressive topology modifying LOD or non-
surface primitives (volumes, point clouds, etc.) In other words, the
question is reduced to one of how to robustly and efficiently inter-
sect every ray in the system with surfaces tessellated to an appro-
priate level of detail. There are three important requirements that
constrain the solution space. First, the technique should guarantee
that there will be no cracks or pinholes in the surface. Second, the
technique must be entirely local in nature. This second requirement
is important because our system computes everything on demand
in an unspecified order, and so we cannot rely on the availability of
information about a large local neighborhood or about global sur-
face topology. Third, the technique must allow the system to cache
and reuse tessellations and shading computations at tessellation ver-
tices.

In order to generate and cache tessellations, it seems necessary
to discretize the levels of detail in the system. Conventional
continuous-LOD tessellation would have to generate unique geom-
etry for every ray and thus would not allow reuse of tessellations or
associated shading computations.

Unfortunately, in a ray tracer, discrete level-of-detail approaches
suffer from what we call the funneling problem. Figure 2 illustrates
this problem, in which a ray with a series of discrete scales passes
through a surface without the intersection being detected, due to the
abrupt transition from one discrete scale to another at a point along
the ray. The result is cracking artifacts in the image. A key chal-
lenge in ray tracing multiresolution surfaces is to design a technique
that avoids tunneling while satisfying other system constraints.

Our solution is to use a hybrid scheme, in which tessellation and
shading are performed at discrete levels of detail, but the system
interpolates between adjacent discrete levels to produce a unique
continuous surface for intersection testing against each ray. Fig-
ure 3 illustrates this scheme. We refer to the adjacent discrete levels

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

fine LOD

scale 9
(coarse)
coarse LOD

ra
scale 8 Y

(fine)

Figure 2: With discrete LODs, a ray may miss a surface completely
if it changes the LOD that it is requesting at a point along the ray
that is in between the surfaces produced by two discrete LODs.

of detail as the fine mesh and the coarse mesh. The meshes in our
system are generated by subdivision, and each triangle in the fine
mesh maps to a portion of a single triangle in the coarse mesh. The
system is capable of corresponding each vertex of the finer triangle
with a point on the corresponding triangle in the coarse mesh.

coarse triangle

v3 scale for v3
o projected fine triangle vertex
© interpolated vertex
@ ray intersection point

Figure 3: For each ray/triangle intersection test, the system gen-
erates a customized triangle that is specific to that ray. This cus-
tomized triangle (shown in green) is generated by interpolating be-
tween triangles from two discrete levels of detail (shown in blue
and in red). There is a separate interpolation weight for each vertex
of the customized triangle. The weight for a vertex is determined
by projecting the corresponding fine-triangle vertex (e.g. V1) onto
the ray, and computing the weight from the scale value at that point
on the ray (shown in yellow).

The system produces the in-between surface by interpolating be-
tween vertex positions in the fine mesh, and the corresponding
points on the coarse surface. This interpolation is performed inde-
pendently for each vertex in the fine mesh, with a separate interpo-
lation weight used for each of the three vertices in a triangle. The
interpolation weight for each vertex in the fine mesh is found by
projecting the vertex onto the ray, and computing the weight from a
continuous scale function defined on the ray. This projection and in-
terpolation step reduces the problem to normal ray/triangle intersec-

tion, and is thus very efficient (various direct solution alternatives
involve multiple cubic equations). One minor alternative would be
to use distance from the origin of the ray to the vertex rather than
projection of the vertex onto the ray, which might have advantages
when multiple rays share an origin (such as within a SIMD packet).
The interpolation weights in this scheme are associated with ver-
tices, not triangles, so if both the fine and the coarse meshes are
watertight, the interpolated mesh is as well. Note that this guaran-
tee is for a single ray, and that we currently make no guarantees
about the relation between what geometry will be “seen” by one
ray versus another. We also cannot guarantee that a surface will not
“misbehave” under interpolation (e.g. folding on itself, etc.). There
is some commonality between this approach and eye-ray LOD tech-
niques for terrain [Luebke et al. 2003].

The technique we have just described allows us to intersect a ray
with a blend of geometry from two adjacent discrete levels of de-
tail. The blend weights are computed from a continuous scale func-
tion along the ray. The remaining questions are how to compute
the continuous scale function and how to manage transitions from
using one pair of levels to using another. The continuous scale func-
tion is calculated using ray differentials [Igehy 1999], as described
below. We manipulate this scale function so that the abrupt switch
from using one pair of levels to using another pair occurs in a re-
gion of flat (constant) scale. These constant-scale regions are made
(provably) large enough that any individual vertex will always be
“seen” consistently by the ray. Space limitations prevent us from
discussing this mechanism in detail, but we hope to report on it in a
future publication that focuses on the LOD mechanism.

Scale 9
(logarithmic)
8

7

Distance along ray

Figure 4: The system manipulates the scale values along the ray to
insure that regions of varying scale are separated from each other
by regions of constant scale. These regions of constant scale corre-
spond exactly to one of the discrete levels of detail.

4.1.1 Computing scale values for rays

Each ray in our system has an associated scale that varies continu-
ously with position along the ray. As explained earlier, this scale is
used to decide which surface resolution to use for intersection test-
ing. In this section we explain briefly how this scale is computed.

Our approach builds on the concepts of ray differentials [Igehy
1999] and path differentials [Suykens and Willems 2001], which
we will summarize here. Each ray carries information with it suffi-
cient to compute the origin and direction of its immediate neighbor.
For example, the image-plane differentials provide the origin and
direction of ray that is one pixel to the right and one pixel down on
the image. These differentials are propagated through events such
as reflections so that they continue to indicate the behavior of the
neighbor ray at that point in the ray tree. Additional differentials
are introduced each time the ray tree forks; for example, the system
generates an additional pair of differentials for a ray when an area
light source is sampled.

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Each ray is best thought of as a beam with a finite cross-section.
At any point on the ray, the ray differentials specify the area and
geometry of the beam cross section. Most systems project this cross
section onto a hit surface to compute a texture footprint.

Our system uses the differentials in a different manner, to compute
a single, isotropic world-space scale value at each point on the ray.
The scale is computed such that it is proportional to the width of the
beam footprint. In the case of an anisotropic beam cross-section,
the minimum width is used. By choosing the minimum width we
guarantee that we tessellate and shade at a rate in each dimension
equal to or greater than the desired rate.

Our system currently simplifies the problem of computing foot-
prints from arbitrary path differentials by retaining just the most
important differential pair along with the scale value used at the
last intersection point. Area light rays provide an example of how
this simplification works: as they first leave the surface, their foot-
print is a constant determined by the spacing on the surface, but as
they move further away from the surface, the area-light differential
pair takes over, allowing the footprint to grow rapidly thereafter.
For some effects, it might be necessary to track more differentials.

Before tracing rays, the system must partition each ray into a series
of segments. Each segment represents the portion of the ray that can
be intersected with a single pair of our discrete geometry levels. To
determine each cut point between segments, the system must invert
the equation that computes the scale value from the differentials as a
function of position along the ray. In the general case this inversion
requires solving a quadratic equation, although in common cases
such as eye rays and area-light shadow rays the equation is linear.
Our system uses division to solve the linear equation and otherwise
uses the quadratic formula.

4.1.2 Subdivision implementation

The geometry for each discrete scale is generated by adaptive tes-
sellation of subdivision patches. We currently use a very simple
implementation of the Loop subdivision scheme for triangles [Loop
1987], with support for crease edges [Hoppe et al. 1994] and tex-
ture coordinates [DeRose et al. 1998]. Our implementation of sub-
division operates on vertex grids formed from triangles pairs [Pulli
and Segal 1996]. Vertex grids larger than a specified threshold are
broken up into smaller grids to allow for adaptivity and lazy evalua-
tion in both tessellation and shading. Currently, the target grid size
is 5x5 vertices (32 triangles). Once subdivision has been applied
twice to reach this 5x5 size, all further grids will be of this size (i.e.
the vast majority of the grids in the system). The system computes
bounds on the limit surface for each patch and sub-patch using the
technique described by Kobbelt [Kobbelt 1998]. These bounds are
used during the kD-tree construction.

As in any adaptive tessellation system, there is the possibility of
cracks forming between adjacent patches. In our system, it is eas-
iest to consider the patch cracking problem for the case of a single
discrete scale applied to every patch on a surface. It turns out that
solving the patch cracking problem for this single-scale case is suf-
ficient to solve the problem for the general case as well, since our
multiresolution geometry-interpolation scheme will work correctly
if the geometry for each discrete scale is watertight. We use a sim-
ple local crack fixing technique [Owens et al. 2002] to insure that
each discrete scale is watertight.

Our current subdivision system has serious shortcomings for our
application in that it cannot actively target a specific edge length
(our world space scale threshold) and it cannot actively control
patch aspect ratios. It simply subdivides each patch into four pieces,

roughly evenly in each parametric direction. We initially chose ex-
plicit Loop subdivision for its simplicity and to allow the system
to be tested with existing triangle-mesh content. Using Catmull-
Clark patches instead [Catmull and Clark 1978; DeRose et al. 1998]
would facilitate independent and variable subdivision in both para-
metric directions, be a better match for modern animated content,
and generally be a better long-term choice.

4.2 Dynamic Multiresolution Acceleration Structure

The system utilizes two primary data structures: a scene graph and
a multi-scale kD-tree acceleration structure. The upper levels of the
scene graph contain the original geometric primitives comprising
the scene (subdivision surface patches) and are relatively persistent,
updated from frame to frame according to animation or interaction
as with any typical scene graph system. All other data in the system
is rebuilt from scratch every frame. The lower levels of the scene
graph are built out during the course of rendering a frame using
the results of subdivision operations applied to the original patches.
Hierarchical bounding volumes are maintained throughout this ex-
tended scene graph.

The multi-scale kD-tree acceleration structure must support the in-
terpolating intersection technique described earlier. This technique
breaks individual rays into segments, each of which is intersected
against geometry generated from adjacent discrete levels of detail.
Conceptually, we could build a separate kD-tree for every pair of
adjacent discrete levels. The geometric primitive at the leaf nodes
in each such tree would be a triangle pair consisting of a finer-level
triangle paired with the corresponding portion of a coarser-level tri-
angle. We elaborate on this basic scheme in three ways: 1) the kD-
trees for all of the level pairs are merged into a single data structure,
2) this merged data structure is built lazily from the scene graph,
and 3) the merged data structure stores grids (small regular meshes)
of vertices at its leaf nodes rather than storing individual triangle
pairs.

4.2.1 Merged kD-trees

Figure 5 illustrates our kD-tree. The multiresolution capability is
provided by allowing each node to fill a dual role: when traversed
at a particular scale the node acts as a leaf node containing geometry
at that scale, but when traversed at a finer scale the node acts as an
interior node with a split plane and child nodes. This multi-scale
kD-tree is similar to that described by [Wiley et al. 1997] for a
multiresolution BSP tree, although our system uses a hierarchical
nesting of LODs whereas theirs used n-ary LOD-selection nodes.
Also, our approach does not restrict the location of cut planes with
respect to the geometry as theirs did.

The multi-scale kD-tree acceleration structure can be thought of as
numerous separate kD-trees, each built for a different discrete scale
pair, layered on top of each other. The leaves of a kD-tree built for
a single pair become a frontier of internal nodes in the combined
tree. If we set aside the laziness of the building process for now, the
algorithm for building the tree is as follows:

1) Create a root node for the kD-tree with the
scene bounding box and the scene graph root node.

2) Set the current node to be the root.

3) Set the current discrete LOD level to be the
coarsest supported level.

4) Subdivide the geometry at the current node until
it satisfies the current discrete LOD criteria.

5) Build out the kD-tree from this node until the

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

KD-tree Root

G BJZ]

P

GXE s
LA J&Z]

SG

9 j SG SG SG SG

G EN

SG SG

\
Tree for
scale 10
Tree for
scale 9
Tree for
SG scale 8
J
Tree for
scale 7
SG SG
Scale Child Leaf
for node node = _ — i
children | data || data kD-node A igrid

Figure 5: Multi-scale dynamic kD-tree. *SG’ designates a pointer into the scene graph.

tree termination criteria are satisfied.
6) Retain the current geometry
(these nodes are effectively leaves for
the current discrete LOD level).
7) Set the current discrete LOD level to the next
finer level.
8) Goto 4.

As mentioned, we perform traversal for a single ray segment (and
thus a single discrete level pair) at a time. Traversal is very nearly
identical to normal kD-tree traversal, and thus is similarly effi-
cient. Our kD-tree data structure is specifically designed to utilize
known best practices for high-performance kD-tree traversal [Wald
et al. 2001; Reshetov et al. 2005], including nearly identical SIMD
packet traversal code and an eight-byte internal node record. Rays
simply descend through the merged tree treating all nodes as in-
ternal (split) nodes until they reach either an empty leaf or a node
which is a leaf for the segment’s discrete level pair (i.e. from step
6 above). Note that we have not yet attempted to merge the traver-
sal of the individual segments of the rays into a single continuous
traversal operation. We simply break rays up into segments and
then process each segment against the merged data structure in or-
der along the rays. This is a significant inefficiency which we intend
to address in the future.

Split planes in our tree are chosen using a simple surface area cost
metric [Havran and Bittner 2002], using bounding boxes for split
candidate determination (as opposed to more exact geometry).

4.2.2 Lazy Construction

The basic idea of lazily tessellating and storing geometry has been
used for a long time. Arvo and Kirk lazily build a 5D acceleration
structure for a ray tracer [Arvo and Kirk 1987]. The RenderMan in-
terface [Pixar 2000] supports a callback to user code for on-demand
generation of geometry within a bounding box at the needed reso-
lution, and there are now several ray-tracing implementations of the
RenderMan interface (e.g. [Gritz and Hahn 1996]). [Pharr and Han-
rahan 1996] builds displacement maps on demand in a ray tracer.

But in addition to being desirable for efficiency in large or highly
occluded scenes, laziness is required in order to support multires-
olution geometry. Building out the entire data structure across the
entire range of interesting levels of detail would be prohibitive.

Thus, our system builds its kD-tree lazily. A node encountered
in our tree during traversal may have been previously marked as
“lazy”. Such a node has no children or geometry. Instead, it
has a pointer to a linked list of as-yet unprocessed nodes in the
scene graph. Conceptually these scene-graph nodes can be any
node in the scene graph: an original interior node; an original leaf
node (base patch); or a per-frame temporary node consisting of a
sub-patch produced by earlier subdivision and patch-splitting steps.
However, our current implementation only uses the last two cases.
The information in the lazy kD node’s linked list is sufficient to
build the missing portion of the kD-tree if it is needed. This mech-
anism is similar to one used by Ar et al to build BSP trees for colli-
sion detection [Ar et al. 2002].

At the beginning of every frame, kD-tree construction is initialized
with a single root kD-tree node containing the bounding box of the
entire scene and a single pointer to the root of the scene graph. All
further kD-tree building is triggered by traversal operations during
ray tracing.

4.2.3 Low-Level Grid Intersection Structures

The geometry in the system is managed in grids (small regular
meshes) rather than individual triangles, and the system also per-
forms lazy evaluation at the granularity of a grid. A kD-tree node
that serves as a leaf node at a particular scale may have the associ-
ated geometry marked as “lazy”. Such a node has a linked list of ge-
ometry (patches and sub-patches), but the final grid data structures
have not been constructed yet. When such a node is intersected, the
final vertex data is computed. In addition, a simple bounding vol-
ume hierarchy is constructed based on the internal structure of the
tessellation. This low-level acceleration structure (the “igrid” in fig-
ures 8 and 9) avoids computation of several levels of kD-tree splits

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

at the bottom of the tree and likely has better computational regular-
ity and coherence properties as well. This data structure is traversed
with a non-recursive fixed order (“flattened”) traversal scheme as
per [Smits 1998]. As described above in Section 4.1.2, the target
grid size (and in fact the size of the vast majority of grids in the
system)is 5x5 vertices or 32 triangles.

4.2.4 A note on efficiency

This lazy kD-tree-building mechanism is extremely effective. As
mentioned above, laziness is required in order to efficiently support
multiresolution geometry. What is less obvious is the fact that mul-
tiresolution geometry, or some other form of hierarchical clustering,
makes lazy evaluation much more effective.

Standard kD-tree build algorithms build top-down starting from the
full geometry description of the scene and the scene’s bounding
box. Unfortunately this leads to a situation analogous to sifting
through individual grains of sand to figure out where to split a beach
in half. The time to compute the single split at the root node is linear
in the amount of geometry in the scene. This is the case even for
an “optimal” n log n build algorithm. The kD-tree is heavily “top-
loaded” in computational cost, greatly impairing the benefits of lazy
evaluation (you always touch the root, obviously).

Building a merged multiresolution tree as described above makes
the cost of the root node split proportional to the amount of geom-
etry at the coarsest supported level of detail, and similarly removes
the top-loading of computational cost from the entire build process.
Our results for tree building performance clearly demonstrate the
advantages of this technique. We currently only utilize the natu-
ral “clustering” provided by repeatedly subdividing and breaking
up patches. Further efficiency could be achieved by utilizing the
clustering information inherent in a well-structured scene graph.
We expect that the observed performance of kD-tree building for a
well-structured scene graph using these techniques (including lazy
evaluation) will be linear in the amount of geometry actually inter-
sected by rays.

4.3 Split-phase shading

The design of our shading system was driven by the desire to decou-
ple shading from visibility. The REYES system [Cook et al. 1987]
accomplishes this goal, but in a system that only supports eye rays.
Our goal was to extend the REYES approach to a ray tracing frame-
work. Like REYES, our goal is to perform shading computations at
the vertices of a finely tessellated polygon mesh and then interpo-
late to specific hit points, rather than shading at the hit points them-
selves. The REYES algorithm has amply demonstrated the benefits
of this technique: shading calculations can be performed in highly
regular and coherent batches in their natural coordinate space on
the surface, and a variety of otherwise tricky operations (arbitrary
differential calculations, displacement shading) are simplified.

Another critical performance characteristic is that this technique
creates a separation between functions which can be band-limited
a priori from functions which cannot. In REYES, this means that
procedural shaders (expected to band-limit themselves) are sepa-
rated from visibility calculations. The extremely expensive proce-
dural shading operations can be performed less frequently, at the
vertices of the grid, while the cheaper-to-evaluate but ill-behaved
visibility function is super-sampled.

Our system uses this concept by leveraging the system’s multires-
olution representation of geometry. Shading is explicitly factored
into two phases. Operations in the first phase are performed at the

vertices of grids. The functions calculated in phase one are expected
to be band-limited to the frequency of the sampling implied by the
tessellation of the grid. Additionally, as the results are cached and
reused by the system, these values must be independent of viewing
direction. The first phase of shading is calculated lazily the first
time that a ray strikes the given grid and requires the results.

The second phase of shading is more typical of a ray tracer. When a
ray strikes a grid, the results of the first phase are fetched (following
lazy evaluation of the first phase if necessary) and interpolated to
the hit point. These values are available as parameters to phase two.
Shading in this phase is as flexible as shading in any typical ray
tracer. In typical use a BRDF function would be generated from the
results available from phase one, and distribution sampling of the
BRDF would be performed by casting secondary rays as necessary.

A similar split-phase shading model has been applied previously in
physically-based rendering systems [Pharr and Humpreys 2004] in
order to enforce properties such as BRDF reciprocity. The sepa-
ration in our system is more pragmatic and performance-oriented.
Shading operations should be factored into phase one as much as
possible, with the remainder in phase two, without necessarily con-
sidering physical interpretations. Creative abuse of the shading sys-
tem is certainly an option, such as using various mapping tricks in
either of the phases, or casting various physical-or-otherwise sec-
ondary rays in phase one. Variants on irradiance caching based on
casting rays in phase one are certainly possible.

Altogether, there are four sources of performance improvement in
this shading system. First, redundant shading computations caused
by visibility super-sampling are reduced. Second, phase one is
performed on a grid, so that shading “derivative” computations
may be computed by discrete differences with neighbors, rather
than by executing the shader three times for each hit point as is
standard in ray tracers [Gritz and Hahn 1996]. Third, the grid
structure of phase one shading makes it amenable to acceleration
by SIMD mechanisms like x86 SSE. Grid-based shading also im-
proves memory-access locality. Fourth, the scheme improves the
efficiency of SIMD ray packets because there are fewer distinct
kinds of phase two shaders than kinds of combined shaders.

Our experimental system uses simple phase one shaders that read
and filter surface colors from a texture map and compute normal
vectors from a bump map. Our phase two shading currently in-
cludes area light source sampling, mirror reflection, hemisphere
sampling of ambient occlusion, and simple diffuse and Schlick
[Schlick] BRDF evaluation. It remains to be seen how well pro-
grammable shading can be adapted to this shading scheme.

5 Results

We have evaluated our prototype implementation using a courtyard
scene with several animated skinned characters and two area lights,
as shown in the accompanying video. Our rendering and timings
were performed using single-threaded code running on a single
3.2GHz Intel Pentium 4 Processor with 2GBytes of memory.

The courtyard scene contains over 31,000 Loop subdivision
patches, with 2,150 patches in each of the characters. Figure 6
shows a single frame from the animation, rendered at 512x512 res-
olution with 4x image-space super-sampling and 4x sampling of
each area light from each of the four image-space samples. Fig-
ure 7 shows the elapsed time for rendering this frame with a range
of tessellation rate settings. At the coarsest setting, the maximum
on-screen area of a triangle is 37.5 pixels, and roughly 9,500 32-
triangle grids are actually hit by rays and shaded. At the finest

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

Figure 6: Courtyard Scene

100 [
L]
80
L]
) .
g 60 — [® Total Run Time
3 @ kD-Tree Building
2z © Traversal
E [@ Intersection
E 404 e
.
20
L] [
888 g8 8 : e 2
e ©
0 00 ©
T T T
0 100000 200000 300000

Micropolygon Grids Hit and Shaded

Figure 7: Performance on the Courtyard Scene. The scene was
rendered at a range of tessellation rate settings, resulting in 9,500 to
300,000 visible micropolygon grids (each containing 32 triangles).

setting the maximum triangle area is one pixel, and over 300,000
grids are hit and shaded.

As can be seen in the figure, traversal and intersection consume
from 10-15 seconds each, and are fairly insensitive to the amount of
geometry. The time spent on calculating kD-tree splits is roughly
linear with respect to the amount of geometry and is remarkably
small, at roughly 10 seconds for over 300,000 grids (containing
over nine million triangles). Because of the merged kD-tree and
build algorithm, the maximum number of candidates considered for
any single split (the split at the root) is only proportional to the num-
ber of grids at the coarsest scale, rather than the finest. Lazy build-
ing provides additional efficiency. As a result, on-the-fly conversion
from the scene graph into a kD-tree is clearly not a bottleneck.

A large fraction of the run time is not being spent in any of these
three fundamental ray tracing operations. The bulk of the rest of
the time is being consumed by subdivision surface calculations,
ray differential calculations, and MIPmap filtering, all of which are
completely unoptimized in the prototype. The subdivision calcula-

tion and MIPmapping costs in particular are exacerbated by over-
tessellation, addressed below.

The ambient occlusion sequence in the accompanying video was
rendered with 6x image-space super-sampling and 26x hemisphere
occlusion sampling at each image-space sample for a total of 162
rays cast per pixel. On a similar machine, these frames are roughly
three times as expensive as the multiple-area-light frames, averag-
ing 292 seconds each.

5.1 Over-Tessellation

The prototype implementation suffers from severe over-tessellation,
producing approximately thirty times the number of micropolygons
that would be expected in the ideal case (i.e. simply the screen
area divided by the requested micropolygon area). There are four
primary factors that cause this over-tessellation:

Non-Uniform Edge Lengths in a Single Grid Our simple Loop
subdivision system cannot adapt to varying edge lengths
within a single grid. Large variation in edge lengths can be
caused by highly elongated triangles in the initial mesh, or by
pairing a small triangle with a large triangle in the base grid.
As aresult, a single grid may have many edges that are much
shorter than the maximum length edge which drives tessella-
tion.

Subdivision Occurs in Discrete Steps Each iteration of our sub-
division scheme reduces edge lengths by about a factor of two
and triangle area by about a factor of four. This discretiza-
tion is too coarse to precisely target a desired maximum edge
length.

Shading-Grid Scales are Discrete For the two-level intersection
scheme, a ray requires geometry grids for the two discrete
scales that bracket the continuous scale that the ray actually
wants. One of these geometry grids is tessellated at a finer
scale than is strictly necessary for the continuous scale wanted
by the ray.

Viewing Angle We use an isotropic world-space scale metric to
control tessellation. Rays that strike surfaces at shallow angles
may request geometry that is over-tessellated with respect to
projected area.

The first two causes could be largely eliminated with a more sophis-
ticated subdivision surface system capable of tessellating at varying
rates in each parametric direction. Such a system could also ame-
liorate the third cause. If the subdivision system can consistently
generate discrete scale levels which differ by a factor of two in
area rather than four, then the system’s discrete scale values can
be set correspondingly, and the finer-level geometry needed by the
ray will similarly be off by a factor between one and two rather
than between one and four. We believe that this third cause can also
be ameliorated by adjustments to the mechanism for breaking rays
into segments. The fourth and final cause (viewing angle) is signif-
icantly more difficult to address, as the isotropic world-space scale
metric is a basic component of the architecture.

We have measured the separate impact of each of these causes for
the courtyard scene at a requested tessellation rate of one pixel
per triangle. The breakdown is as follows: non-uniform edges =
3.47x, subdivision discretization = 2.26x, grid-scale discretization
= 2.19x, and off-axis viewing = 1.84x. Combining these four mea-
surements yields 31.6x over-tessellation, which closely matches our
observed total deviation from the ideal. For this scene, at least, the
breakdown of the various causes of over-tessellation indicates that

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

we can eliminate much of the tessellation problem with more im-
plementation work — the first three causes combined account for
17.2x over-tessellation and can be largely eliminated.

5.2 Memory Consumption

Because of the over-tessellation the prototype implementation suf-
fers from high memory consumption at the desired shading rates.
As an interim measure, we use a workaround that takes advantage
of the fact that the system computes most data structures on de-
mand. We set a maximum memory consumption level and when
that level is hit all data structures other than the persistent top-
level scene graph are simply discarded. Rendering continues, with
needed portions of the data structure being built or re-built on de-
mand. This scheme is a primitive version of a caching scheme that
we plan to implement later; the discard operation is equivalent to a
complete cache flush.

For the courtyard scene rendering described above, at the finest tes-
sellation setting, this memory flush operation occurs 11 times dur-
ing the course of the frame. This cost is included in the times shown
in figure 7; i.e. the total rendering time at the finest setting was ap-
proximately 100 seconds, and the aggregate kD-tree build time was
approximately 10 seconds, even though the kD-tree and all tessel-
lated and/or shaded geometry was simply thrown away eleven times
during the course of the frame. It is difficult to precisely measure
the impact of this flushing, but our best estimate is that the impact
on total run time is less than 10%. This estimate is based on ex-
periments where we varied both the tessellation settings and the
memory flush thresholds.

The minimal performance impact of this crude mechanism indi-
cates that a more sophisticated software caching scheme is likely to
be very effective. A variant of this mechanism would also provide
a simple but efficient coarse-grained parallelism technique. Rather
than dealing with the synchronization issues inherent in the lazy
construction of the data structures, each thread would simply build
its own data structures.

6 Related work

Our work builds on five major foundations: 1) The basic principles
of ray tracing and distribution ray tracing [Appel ; Whitted 1980;
Cook et al. 1984; Igehy 1999], summarized nicely in [Pharr and
Humpreys 2004]; 2) The REYES system for efficient, high-quality
rendering of eye rays [Cook et al. 1987]; 3) Work on multiresolu-
tion ray tracing [Christensen et al. 2003] and related data structures
[Wiley et al. 1997]; 4) Work on efficient ray tracing acceleration
structures [Havran and Bittner 2002; Reshetov et al. 2005; Wald
et al. 2001]; 5) Work on subdivision surface representations [Loop
1987; Hoppe et al. 1994; DeRose et al. 1998].

In this section we compare various aspects of our system design to
alternative approaches.

6.1 Caching schemes for shading, irradiance, and
radiance

Razor’s mechanism for partially decoupling shading from visibility
has two characteristics: First, it interpolates values computed at
nearby points on the surface. Second, these values computed at
nearby points are computed on demand and reused; that is, they
are cached. Razor currently caches and interpolates just material

properties (i.e. the BRDF), although the architecture would easily
support caching of irradiance [Ward et al. 1988; Ward and Heckbert
1992] or a compact representation of radiance [Arikan et al. 2005],
and we plan to implement this capability in the near future.

Our caching and interpolation mechanism was inspired by REYES
[Cook et al. 1987]. REYES assumes a single viewing-ray direc-
tion, and thus can evaluate, cache, and interpolate the entire shad-
ing computation rather than just the BRDF. Both Razor and REYES
cache samples on a grid associated with the surface and use regu-
lar data interpolation. This explicit association of samples with a
surface neighborhood has the potential to facilitate a large class of
interesting optimizations. REYES explicitly generates and caches
results for just a single resolution of each surface, whereas Razor
can cache results for several several different resolutions of a single
surface. In both systems, each cached sample is associated with a
particular resolution and may thus be pre-filtered.

Irradiance caching [Ward et al. 1988; Ward and Heckbert 1992;
Tabellion and Lamorlette 2004] and radiance caching [Arikan et al.
2005] systems cache just irradiance or radiance, rather than caching
the results of the full shading computation. Photon mapping sys-
tems [Wann Jensen 2001] behave similarly. All of these systems
typically cache data as individual points in a global 3-D data struc-
ture such as an octree or kD-tree, and thus do not explicitly asso-
ciate cached points with a particular 2-D surface. This has both
the advantage and disadvantage that points from nearby surfaces or
from nearby patches on the same surface may be accessed during
retrieval, which is not done in our system. These systems also use
scattered data interpolation rather than regular interpolation, and
treat each sample as a true point rather than as a filtered sample
associated with a particular surface resolution as Razor does.

6.2 Ray tracing dynamic scenes

A variety of techniques have been proposed for ray tracing dynamic
scenes. We discuss these techniques in turn and compare them to
our approach.

For the special case of rigid objects, it is possible to pre-build an ac-
celeration structure for each object and transform rays into the ob-
ject coordinate system during ray tracing [Lext and Akenine-Moller
2001; Wald et al. 2003]. A top-level acceleration structure is still
required; some systems use a bounding volume hierarchy, and oth-
ers rebuild a complete top-level kD-tree every frame [Wald et al.
2003].

It is more difficult to efficiently support unstructured motion (also
referred to as non-rigid motion). Several systems rely on building
a complete kD-tree for these objects [Wald et al. 2003], but this
approach performs unnecessary work for occluded objects. It is
also possible to directly trace rays through the scene graph since
it is a bounding volume hierarchy, which may be used directly as
an acceleration structure [Rubin and Whitted 1980]. However, this
approach is less efficient than using a kD-tree for ray tracing accel-
eration.

Several systems [Torres 1990; Chrysanthou and Slater 1992; Rein-
hard et al. 2000; Luque et al. 2005] dynamically update an acceler-
ation structure rather than lazily rebuilding it each frame as we do.
However, we believe that it is simpler and more efficient to lazily
re-build the tree, especially since it appears to be difficult to guar-
antee that a kD-tree remains optimized for traversal cost [Havran
and Bittner 2002] when it is incrementally modified.

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

6.3 Interface between scene graph and ray tracer

Our system closely couples the scene graph to the ray tracing ac-
celeration structure, as proposed by [Mark and Fussell 2005]. This
system organization enables the system to lazily build the accel-
eration structure every frame. This organization is very different
from the classical one in which the two data structures are sepa-
rated by an API layer such as OpenGL [OpenGL Architectural Re-
view Board 2003] (for Z-buffers) or OpenRT [Dietrich et al. 2003]
(for ray tracers), and has implications for the design of ray tracing
hardware which are discussed in [Mark and Fussell 2005].

7 Discussion and Future Work

Razor’s high-level system architecture and algorithms are explicitly
designed for future interactive use, even though the performance of
our current implementation is multiple orders of magnitude away
from interactive performance for our target imagery. As with any
complex new system design, we expect a rapid ramp in performance
as we address issues that we have identified in the first working im-
plementation. As our performance results show, most of our exe-
cution time is spent in parts of our system that are unoptimized and
whose execution time grows linearly with micropolygon count. By
addressing issues with over-tessellation and by aggressively tuning
all aspects of system performance, we believe that we can improve
performance by 10-20x. An additional 5x or more in performance
should be possible by parallelizing our system for multi-threaded,
multi-core processors, even using the simple scheme mentioned
above. Thus, we believe that our system will soon be 50-100x
faster on commonplace desktop hardware without any fundamen-
tal changes to the system architecture.

Our experimental implementation current lacks several features that
the overall system architecture would easily support. Displacement
mapping and depth-of-field would be easy to add and virtually free,
just as they are in REYES. For diffuse surfaces, it would be simple
to cast hemisphere-sampling secondary rays in phase one of shad-
ing, yielding a capability similar to irradiance caching.

Our experimental system also lacks some useful features that would
require more effort to support, including motion blur and more ag-
gressive topology-modifying LOD.

Working within our system feels qualitatively different from work-
ing within any other ray tracing framework we’ve used. In particu-
lar, the notion that almost all operations are performed with respect
to a specific spatial scale is very powerful. For example, most “ep-
silon” values within our system are set relative to the current scale,
rather than to fixed global values.

8 Conclusion

We have presented a new software architecture for a dynamic-scene
ray tracer. The architecture represents surfaces at multiple resolu-
tions, integrates scene management with ray tracing, builds most of
its per-frame data structures lazily, and partially decouples shading
computations from visibility computations. The architecture is de-
signed to efficiently support the needs of distribution ray tracing,
including future interactive systems.

We believe that the goal of building an efficient distribution ray
tracer for dynamic scenes leads almost inevitably to a design using
principles similar to ours. Efficient support for distribution-sampled

10

secondary rays requires multiresolution surfaces, and efficient sup-
port for multiresolution surfaces requires a lazily-built acceleration
structure. Allowing shading operations to be performed on surface
neighborhoods is in many respects more natural than performing
them at intersection points and will likely prove to be more effi-
cient in an optimized implementation.

The experimental system that we have built is not a product-quality
system, and in its current form leaves some important questions
unanswered. However, our implementation clearly illustrates the
potential of our system architecture by successfully integrating a
complex set of ideas into a working system with powerful new ca-
pabilities.

We believe that many of the principles used in our system will be
important to the design of future interactive rendering systems, and
we hope that others in the graphics community can benefit from
learning about our ideas and the results from our experimental sys-
tem.

9 Acknowledgments

Removed for review.

References

AKENINE-MOLLER, T., AND HAINES, E. 2002. Real-Time Ren-
dering, 2nd ed. AK Peters.

APPEL, A. Some techniques for shading machine renderings of
solids. In AFIPS 1968 spring joint computer conf., vol. 32, 37—
45.

AR, S., MONTAG, G., AND TAL, A. 2002. Deferred, self-
organizing bsp trees. In Eurographics 2002.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Fast
and detailed approximate global illumination by irradiance de-
composition. ACM Trans. Graph. 24, 3, 1108-1114.

ARVO, J., AND KIRK, D. 1987. Fast raytracing by ray classifica-
tion. SIGGRAPH 87 21, 4 (July), 55-64.

CATMULL, E., AND CLARK, J., 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes.

CHRISTENSEN, P. H., LAUR, D. M., FONG, J., WOOTEN, W. L.,
AND BATALI, D. 2003. Ray differentials and multiresolution
geometry caching for distribution ray tracing in complex scenes.
In Eurographics 2003.

CHRYSANTHOU, Y., AND SLATER, M. 1992. Computing dynamic
changes to BSP trees. In Proc. of Eurographics 1992.

CoOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 137-145.

CoOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
REYES image rendering architecture. SIGGRAPH 87 21, 4
(July), 95-102.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision sur-
faces in character animation. In SIGGRAPH ’98: Proceedings
of the 25th annual conference on Computer graphics and inter-
active techniques, ACM Press, New York, NY, USA, 85-94.

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

DIETRICH, A., WALD, 1., BENTHIN, C., AND SLUSALLEK, P.
2003. The OpenRT application programming interface — towards
a common API for interactive ray tracing.

GRITZ, L., AND HAHN, J. K. 1996. BMRT: A global illumination
implementation of the RenderMan standard. Journal of Graphics
Tools 1, 3,29-417.

HAVRAN, V., AND BITTNER, J. 2002. On improving KD-trees for
ray shooting. In Proc. of WSCG 2002 Conference.

HorpPE, H., DEROSE, T., DucHAMP, T., HALSTEAD, M., JIN,
H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W.
1994. Piecewise smooth surface reconstruction. In SIGGRAPH
'94: Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 295-302.

IGEHY, H. 1999. Tracing ray differentials. In Proceedings of
SIGGRAPH 99, Computer Graphics Proceedings, Annual Con-
ference Series, 179-186.

KOBBELT, L. 1998. Tight bounding volumes for subdivision sur-
faces. In PG "98: Proceedings of the 6th Pacific Conference on
Computer Graphics and Applications, IEEE Computer Society,
Washington, DC, USA, 17.

LEXT, J., AND AKENINE-MOLLER, T. 2001. Towards rapid re-
construction for animated ray tracing. In Eurographics 2001.

Loop, C. T., 1987. Smooth subdivision surfaces based on triangles.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON,
B., AND HUEBNER, R. 2003. Level of Detail for 3D Graphics.
Morgan Kaufmann.

LUQUE, R. G., CoOMBA, J. L. D., AND FREITAS, C. M. D. S.
2005. Broad-phase collision detection using semi-adjusting
BSP-trees. In Proc. of 2005 Conf. on Interactive 3D graphics.

MARK, W. R., AND FUSSELL, D. 2005. Real-time rendering
systems in 2010. UT-Austin Computer Sciences Technical Report
TR-05-18 (May).

OPENGL ARCHITECTURAL REVIEW BOARD. 2003. OpenGL 1.5
specification.

OWENS, J. D., KHAILANY, B., TOWLES, B., AND DALLY, W. J.
2002. Comparing Reyes and OpenGL on a stream architec-
ture. In 2002 SIGGRAPH / Eurographics Workshop on Graphics
Hardware, 47-56.

PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS,
B., AND HANSEN, C. 1999. Interactive ray tracing. In Sympo-
sium on interactive 3D graphics.

PHARR, M., AND HANRAHAN, P. 1996. Geometry caching for
ray-tracing displacement maps. In 1996 Eurographics workshop
on rendering.

PHARR, M., AND HUMPREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann.

P1XAR. 2000. The RenderMan interface version 3.2, July.

PuLLIL, K., AND SEGAL, M. 1996. Fast rendering of subdivision
surfaces. In Proc. of Eurographics Rendering Workshop.

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic
acceleration structures for interactive ray tracing. In Proceedings
of the 11th Eurographics Workshop on Rendering, Eurographics
Association, 299-306.

11

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
level ray tracing algorithm. In SIGGRAPH ’05: Proceedings of
the 32nd annual conference on Computer graphics and interac-
tive techniques, ACM Press, New York, NY, USA.

RUBIN, S. M., AND WHITTED, T. 1980. A 3-dimensional repre-
sentation for fast rendering of complex scenes. In SIGGRAPH
’80: Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 110-116.

SCHLICK, C. An inexpensive BRDF model for physically-based
rendering. Computer graphics forum 13, 3, 233-246.

SMITS, B. 1998. Efficiency issues for ray tracing. J. Graph. Tools
3,2, 1-14.

SUYKENS, F., AND WILLEMS, Y. 2001. Path differentials and
applications. In Rendering Techniques 2001: 12th Eurographics
Workshop on Rendering, 257-268.

TABELLION, E., AND LAMORLETTE, A. 2004. An approximate
global illumination system for computer generated films. ACM
Transactions on Graphics 23, 3, 469-476.

TORRES, E. 1990. Optimization of the binary space partition algo-
rithm (BSP) for the visualization of dynamic scenes. In Proc. of
Eurographics 1990.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M.
2001. Interactive rendering with coherent ray tracing. In Proc.
of Eurographics 2001 .

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed
interactive ray tracing of dynamic scenes. In Proc. IEEE symp.
on parallel and large-data visualization and graphics.

WANN JENSEN, H. 2001. Realistic image synthesis using photon
mapping. AK Peters.

WARD, G. J., AND HECKBERT, P. 1992. irradiance gradients. In
Proc. 3rd Eurographics Workshop on Rendering, 85-98.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988.
A ray tracing solution for diffuse interreflection. In SIGGRAPH
'88: Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 85-92.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June), 343-349.

WILEY, C., A. T. CAMPBELL, 1., SZYGENDA, S., FUSSELL, D.,
AND HUDSON, F. 1997. Multiresolution bsp trees applied to
terrain, transparency, and general objects. In Proceedings of
the conference on Graphics interface 97, Canadian Information
Processing Society, Toronto, Ont., Canada, Canada, 88-96.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a
programmable ray processing engine. In SIGGRAPH ’05: Pro-
ceedings of the 32nd annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA.

University of Texas at Austin, Dept. of Computer Sciences Technical Report #TR-06-21

scene graph multi-scale kd-tree

root root

|

Permanent
=
N

N
N
/N
|

[1]

'-. .-')
i— = El 1 3
! i ©
_ ' 4 S
71, [| =2
— | | — <
. . A= l i)
= Q
v —
scale 9-8 a

leaf node
/ geometry 3
0]

---- % B
— scale 9-8
Zl base patch (4474 A47 T =a — scale 8-7 igrid

BE | — e 76

Temporary - per frame

Figure 8: The key data structures in our system. The multi-scale kD-tree is closely coupled to the scene graph by “lazy” pointers. Regular
(non-lazy) leaf nodes of the kD-tree point to a grid of geometry called an igrid.

ray

scale 7 i
scale 8 A — -— / \
H\/ - y . R -®

scale 8-7 scale 9-8 .’
finer mesh i e ray intersection point
scale 8 /" Y P
coarser mesh e scale 8 shade vertex
scale 9 //' \/ ® -scale 9 shade vertex
scale 9-8

interpolated triangle

igrid

Figure 9: An igrid holds vertices for a pair of discrete scales. One set of vertices comes from a finer scale of geometry and the other set of
vertices comes from a coarser scale of geometry. The igrid contains information associating each fine-scale vertex with a point on a coarse-
scale triangle. The information in the igrid is used to generate interpolated triangles (shown in green) that are customized for particular rays.
The igrid also contains (not pictured) a simple bounding volume acceleration structure based on the structure of the tessellation.

12

