
From Crosscutting Concerns to Product Lines: A Function Composition Approach

Roberto E. Lopez-Herrejon
Computing Laboratory

Oxford University
Oxford, England, OX1 3QD
rlopez@comlab.ox.ac.uk

Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

batory@cs.utexas.edu

AspectJ in the synthesis of a non-trivial product line previ-
Abstract
Aspects offer sophisticated mechanisms to modularize cross-
cutting concerns. Aspect Oriented Programming (AOP) has
been successfully applied to many domains; however, its
application to product line engineering has not been thor-
oughly explored. Features are increments in program func-
tionality and are building blocks of software product lines.
Work on Feature Oriented Programming (FOP) has shown
that a crucial factor to synthesize product lines is composing
features by function composition. In this paper we describe a
way to emulate function composition using AspectJ for the
synthesis of a non-trivial product line, present a general
mechanism to support it and highlight its potential reuse
benefits. Our study also profiles the role different aspect con-
structs play in the synthesis of product lines and offers ven-
ues of research on the use of aspects in product line
implementations.

1 Introduction
Aspects offer sophisticated mechanisms to modularize cross-
cutting concerns and have been successfully used in many
application domains [20]. Product lines are a natural testing
ground for Aspect Oriented Programming (AOP) as they
have unique modularization challenges stemming from com-
monality and variability management, composability, evolv-
ability, etc. [16]. There has been several studies of AOP for
product line implementation and design yet its potential has
not been fully explored [2][3][15][17][19][26][27][32] [37].

Features are increments in program functionality and are
building blocks of software product lines [18]. Feature Ori-
ented Programming (FOP) is a compositional paradigm that
raises features to first-class entities in the definition and
modularization of product lines. FOP is largely driven by
simple mathematics based on function composition, which
provides a clean conceptual model for the implementation
and formalization of product lines and program synthesis
[12][1]. The AHEAD tool suite, an implementation of FOP,
has been successfully used to implement non-trivial product
lines [10][12].

We are not aware of any product line implemented with
aspects that has as many features and LOC as those synthe-
sized by AHEAD (250K+ LOC and 50+ features) [4]. This
paper shows how function composition was emulated using

ously implemented with AHEAD. Furthermore, we present a
general mechanism to support function composition and
highlight its potential reuse benefits. Our study also profiles
the role different aspect constructs play in the synthesis of
product lines and offers venues of research on the use of
aspects in product line implementations.

2 Quadrilaterals Product Line
We develop a simple example, called the Quadrilaterals
Product Line (QPL), to illustrate in the coming sections how
product lines can be implemented in AHEAD and AspectJ.
This example describes the types of features, composition,
and mapping issues we encountered in translating an
AHEAD codebase to an AspectJ codebase.

The task at hand is to incrementally build two kinds of quad-
rilaterals: rectangles and trapezoids. Quadrilaterals have a
draw operation that displays the lines between the four points
that form a quadrilateral. However, rectangles and trapezoids
use different lines, styles, and colors. Our example consists
of three features.

Base feature. This feature defines: a) class Quadrilateral
that contains four points and a draw operation that draws the
lines between the points, b) class Rectangle that extends
Quadrilateral, and c) class Trapezoid that extends Quad-
rilateral and overrides method draw to add new instruc-
tions to make the lines thicker.

Feature Base can be implemented as follows:

class Quadrilateral {
Point p1, p2, p3, p4;
void draw() {... std lines ...}

}
class Rectangle extends Quadrilateral {}
class Trapezoid extends Quadrilateral {

void draw() {
super.draw(); ... thick lines ...

}
} (1)

For sake of simplicity we omit details that differentiate rect-
angles and trapezoids and focus only on the draw methods.

Style Feature. This feature adds a pattern to fill rectangles
and replaces operation draw in trapezoids to display dashed
lines only. The result of composing features Base and Style

is shown below, where the code that is added by the Style
feature is underlined:

class Quadrilateral {
Point p1, p2, p3, p4;
void draw() {... std lines ...}

}
class Rectangle extends Quadrilateral {

void draw() { super.draw();… fill pattern … }
}
class Trapezoid extends Quadrilateral {

void draw() { ... dashed lines ... }
} (2)

A class refinement is the modularization of changes made
by a feature to a class defined in another feature. Feature
Style consists of two class refinements, one for Rectangle
and one for Trapezoid. The class refinement of Rectangle
overrides method draw defined in Quadrilateral. We refer
to this type of refinement as a method override. The class
refinement of Trapezoid effectively replaces method draw
defined for this class in feature Base. We refer to this type
of refinement as a method replacement.

Color Feature. Color adds a color field and a setColor
method to Quadrilateral. It sets the color of rectangles to
green and the color or trapezoids to blue.

The result of composing features Base with Style and
Color, in that order, yields the following result where the
changes caused by Color to (2) are underlined:

class Quadrilateral {
Point p1, p2, p3, p4;
void draw() {... std lines ...}
int color;
void setColor(int c) { color = c; }

}
class Rectangle extends Quadrilateral {

void draw() { setColor(GREEN);
super.draw();… fill pattern …

}
}
class Trapezoid extends Quadrilateral {

void draw() { setColor(BLUE);
 ... dashed lines ...
}

} (3)

The Color feature is implemented by three class refine-
ments. The refinement of Quadrilateral adds color and
setColor. The refinement of Rectangle extends the func-
tionality of method draw by adding a call to setColor with
value GREEN. Similarly, the Trapezoid refinement extends
functionality of method draw with a call to setColor with
value BLUE. We refer to these last two refinements as a
method extension. We call the derived method body the part
of the method extension that it is the result of the composi-
tion of all previous class refinements. In (3) this corre-
sponds to the code of method draw that is not underlined.

Product Line Members. Based on the description of our
three features, QPL can synthesize the following three
products: 1) Base, 2) Base and Style, 3) Base, Style and
Color. Though completely reasonable, QPL does not con-
tain program with features Color and Base. Section 4.2
explains an interesting characteristic of this product in the
AspectJ implementation of QPL.

Modularization Issues. A straightforward implementation
of this simple product line is to use preprocessors, where
the code of each feature is surrounded by #if-#endif state-
ments. If a feature is included in a product, its code is
included. While the use of preprocessors is common, it is
not a first-class language modularization technique. (Pre-
processors, by definition, express concepts that are not sup-
ported by a host language). A common goal of AHEAD and
AspectJ is to define programming language constructs to
provide more robust support for crosscut modularity. In the
next two sections we evaluate their modularity concepts for
implementing QPL. We start on the next section by describ-
ing the concepts specific to AHEAD.

3 FOP and AHEAD
FOP aims at developing a structural theory of programs to
express program design, manipulation, and synthesis math-
ematically whereby program properties can be derived from
a program’s mathematical representation. In this context, a
program’s design is an expression (i.e. composition of oper-
ations from a domain-specific algebra), program manipula-
tion is expression manipulation (such as expression
optimization), and program synthesis is expression evalua-
tion. FOP is a generalization of Relational Query Optimiza-
tion (RQO), arguably the most significant result in
automated software engineering [9][12][24]. AHEAD
(Algebraic Hierarchical Equations for Application Design),
is a realization of FOP that is based on a unification of alge-
bras and step-wise development [1][12].

An AHEAD model of a domain is an algebra that offers a
set of operations, where each operation implements a fea-
ture. We write M = {f, h, i, j} to mean model M has opera-
tions (or features) f, h, i, and j. AHEAD categorizes
features as constants and functions. Constant features repre-
sents base programs, those implemented with standard
classes and interfaces. For example:

f // a program with feature f
h // a program with feature h

Function features represent program refinements or exten-
sions, programs that add a feature to the program received
as input. For instance:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

The design of a program is a named expression which we
refer as a program equation. For example:

prog1 = i(f) // prog1 has features f and i
prog2 = j(h) // prog2 has features h and j
prog3 = i(j(h)) // prog3 has features h,j,i

Thus, the features provided by a program can be deter-
mined and properties derived from the expression that
defines it. The family of programs that can be created from
a model is a product line. In general, not all features are
compatible. The use of one feature may preclude the use of
some features or may demand the use of others. AHEAD
provides mechanisms to expresses and validate such design
constraints [8][13].

AHEAD has been used to synthesize large systems (in
excess of 250K Java LOC) from program equations
[12][10]. A fundamental premise of AHEAD is step-wise
development: one begins with a simple program (e.g., con-
stant feature h) and builds a more complex program by pro-
gressively adding features (e.g., adding features j and i to h
in prog3) [35]. AHEAD expresses step-wise development
mathematically through function composition thus making
explicit the order of feature composition as well as the
scope to which a program extension applies (i.e., the pro-
gram that is received as input) [12][11]. AHEAD tools use a
language called Jak that is a superset of Java to express
classes and class refinements.

3.1 QPL Implementation
Base feature. Base is a constant feature that has three Jak
files (one for each class):

layer Base;
class Quadrilateral {

Point p1, p2, p3, p4;
void draw() {... std lines ...}

}

layer Base;
class Rectangle extends Quadrilateral {}

layer Base;
class Trapezoid extends Quadrilateral {

void draw() {
Super.draw(); ... thick lines ...

}
} (4)

There are only two differences with the code in (1): the
layer construct declares that these classes belong to feature
Base, and Jak’s keyword Super refers to the superclass of
Trapezoid.

Style Feature. Style is a function feature that modularizes
two class refinements (recognized by the keyword
refines). In the Rectangle refinement, modifier over-
rides denotes that method draw is overridden and the
superclass reference (super) in (2) is translated as Super.

In the Trapezoid refinement, modifier new means that the
draw method replaces the one defined for that class in fea-
ture Base.

layer Style;
refines class Rectangle {

overrides void draw() {
Super.draw(); … fill pattern …

}
}

layer Style;
refines class Trapezoid {

new void draw() { … dashed lines … }
} (5)

Color Feature. Color is a function feature that modularizes
three class refinements. Class refinement Quadrilateral
adds new members color and setColor(). Class refine-
ments Rectangle and Trapezoid extend their draw methods
by setting their corresponding colors and calling the draw
method using keyword Super, underlined in the code
below. One way to think about Super in method extensions
is as a placeholder for the derived method body mentioned
in (3).

layer Color;
refines class Quadrilateral {

int color;
void setColor(int c) { color = c; }

}

layer Color;
refines class Rectangle {

void draw(){ setColor(GREEN); Super.draw();}
}

layer Color;
refines class Trapezoid {

void draw() { setColor(BLUE); Super.draw();}
} (6)

Product Line Members. One of the tools of AHEAD is a
feature composer that receives as input an equation that
describes a set of the features and the order in which to
compose them. For instance the product member with fea-
tures Base, Style, and Color (that we can call All) is spec-
ified as:

composer -target=All Base Style Color

This composer can also verify that composition is valid
according to design rules. For further details consult [1]. In
Section 6 we elaborate on the advantages of function com-
position in product line designs.

4 AspectJ

AspectJ [6] is an extension of Java whose goal is to modu-
larize aspects, concerns that crosscut traditional module
boundaries such as classes and interfaces that would other-
wise be scattered and tangled with the implementation of

other concerns [7]. AspectJ has two types of crosscuts:
static and dynamic.

Static crosscuts affect the static structure of a program
[7][22]. Examples are introductions, also known as inter-
type declarations, that add fields, methods, and construc-
tors to existing classes and interfaces.

Dynamic crosscuts run additional code when certain events
occur during program execution. The semantics of dynamic
crosscuts are commonly understood and defined in terms of
an event-based model [23][36]. As a program executes, dif-
ferent events fire. These events are called join points.
Examples of join points are: variable reference, variable
assignment, execution of a method body, method call, etc.
A pointcut is a predicate that selects a set of join points.
Advice is code executed before, after, or around each join
point matched by a pointcut.

4.1 QPL Implementation
We now show how QPL is implemented by aspects. The
techniques we use are identical to those needed to translate
an AHEAD code base to an AspectJ code base in Section 5.

Base Feature. This feature is implemented as (1). In
AspectJ, standard Java classes and interfaces are referred to
as base code. AspectJ does not provide a mechanism to
modularize multiple classes or aspect files into features
[27]. In our implementation, we use file directories to group
the classes and aspects that constitute features.

Style Feature. This feature is implemented with two
aspects. The first one uses an introduction to override
method draw inherited from Quadrilateral. The aspect is
declared privileged to have access to private members of
the classes involved and the name is formed with the fea-
ture and class names implemented by the aspect. The ratio-
nale behind these two decisions is explained shortly.

privileged aspect Style_Rectangle {
void Rectangle.draw() {

super.draw(); … fill pattern …
}

} (7)

The second aspect uses an around advice on the execution
of method draw on Trapezoid. For simplicity, we intro-
duced a new method style$draw to Trapezoid to hold the
body of the method replacement. Thus, any time draw is
executed, the call is intercepted and redirected to method
style$draw, effectively replacing the original draw method
for this class in Base feature. The pointcut descriptor of the
advice contains a target clause to obtain a reference, we
call it obj$Trapezoid, of the object whose method is exe-
cuted. This reference is used to access instance members on
that object thus the need for privileged aspects in case
members are private. In our example, we use this reference
to call method style$draw.

privileged aspect Style_Trapezoid {
void around(Trapezoid obj$Trapezoid) :

execution(void Trapezoid.draw()) &&
target(obj$Trapezoid){

obj$Trapezoid.style$draw();
}
void Trapezoid.style$draw(){… dashed lines … }

} (8)

Arguably, this feature could be implemented in a single
aspect that combines the contents of aspects (7) and (8). In
general, this approach can cause problems because of pre-
cedence rules. We explain why shortly.

Color Feature. This feature is implemented with three
aspects. The first one introduces color and setColor to
Quadrilateral.

privileged aspect Color_Quadrilateral {
int Quadrilateral.color;
void Quadrilateral.setColor(int c) {color=c;}

} (9)

The second aspect uses around advice on execution of
method draw. It also uses a target clause to get the object
being called and uses this reference to set the color to
GREEN. As opposed to the advice in feature Style, this
aspect uses AspectJ proceed statement to continue with the
execution of the method. Thus, any time that draw is called,
the call is intercepted, the color is set, and the execution is
resumed.

privileged aspect Color_Rectangle {
void around(Rectangle obj$Rectangle) :

execution(void Rectangle.draw()) &&
target(obj$Rectangle){
obj$Rectangle.setColor(GREEN);
proceed(obj$Rectangle);

} (10)

One way to think about proceed in method extensions is as
a placeholder of the derived method body we mentioned in
(3) because it indicates the execution of the rest of exten-
sions made to this method by other features.

The third aspect follows along the same lines of the previ-
ous one only applied to Trapezoid instead of Rectangle.

privileged aspect Color_Trapezoid {
void around(Trapezoid obj$Trapezoid) :

execution(void Trapezoid.draw()) &&
target(obj$Trapezoid){
obj$Trapezoid.setColor(BLUE);
proceed(obj$Trapezoid);

} (11)

Product Line Members. AspectJ compiler (weaver) ajc,
uses the file names of base code and aspects of the features
to create product members. Aspect precedence determines
the order aspect introductions and pieces of advice are
woven to base code.

In the case of introductions, the one with higher precedence
overrides (replaces) those with lower precedence. An intro-
duction cannot override a member already present in base
code. This is why class refinement Trapezoid in feature
Style is implemented with an around advice.

In the case of pieces of advice, when several of them apply
to the same join point, AspectJ follows ordering rules that
depend on where the conflicting pieces of advice are
defined [7][22]. However, these rules can lead to undefined
orders (programmers cannot easily infer the order by look-
ing at the code), circularity errors (compiler cannot not
infer a weaving order), and some composition orders can-
not be expressed [29].

To prevent problems with advice weaving order, we use
only around advice and a define an aspect with a declare
precedence clause to order pieces of advice by features.
For instance, the following aspect specifies the weaving
order required to obtain the composition of Base, Style,
and Color in (3):

aspect Ordering {
declare precedence: Color_*, Style_*;

} (12)

This aspect instructs the compiler to weave first the aspects
from the Style feature and then those from the Color fea-
ture, according to the ordering rules that apply to around
advice in different aspects [7][22]. This is the reason why
we followed the convention of including feature names as
part of the names of our aspects.

Finally, the ajc command for the composition in (3) is (we
omit feature directory names for simplicity)1:

ajc Quadrilateral.java Rectangle.java
Trapezoid.java
Style_Rectangle.java Style_Trapezoid.java
Color_Quadrilateral.java
Color_Rectangle.java Color_Trapezoid.java
Ordering.java (13)

The order of files in this command is immaterial. Composi-
tion validation according to design rules is not part of ajc.

4.2 Choice of Pointcuts
AspectJ provides a vast array of pointcuts that could be
used for feature implementation. We use execution point-
cuts because their semantics most closely resembles what
AHEAD uses for method extension and replacement in
QPL. However, there may be cases where other pointcut
combinations could be more appropriate.

For example, consider QPL product that contains Base and
Color features. From a design point of view, this program

seems completely reasonable and valid; however, its imple-
mentation is not possible using execution pointcuts. This
is because AspectJ semantics specifies that when a declar-
ing type is used in an execution pointcut this captures only
join points that match methods declared or overridden in
the declaring type [6][7]. In our example, this means that
pointcut execution(void Rectangle.draw()) of feature
Color in (10) matches join points only if Rectangle
declares or overrides method draw, which is not the case in
feature Base as Rectangle inherits the method from Quad-
rilateral (1). This problem can be solved replacing the
execution pointcut by a combination of call and target
pointcuts.

This example suggests the existence of patterns of method
extensions and replacements that could be better expressed
with different combinations of pointcuts, new pointcut con-
structs tailored for specific feature extensions, or semanti-
cally modified versions of existing pointcuts [14]. We
believe this is an interesting venue for future research.

4.3 Emulating Function Composition
Function composition makes explicit the order of composi-
tion and binds the scope to which program extensions are
applied. Consider for instance, the program described in
Section 4.1. It can be denoted as function composition
Color(Style(Base)) because:

• Composition order: Aspect Ordering in (12) tells the
weaver to first apply to Base the pieces of advice and
introductions in Style followed by those of Color.

• Bounded scope: Feature Style applies its extensions
only to Base, and feature Color applies its extensions
only to its input program Style(Base).

Elaborating more on the second bullet, feature Style over-
rides method draw in class Rectangle (7), and replaces
method draw in class Trapezoid using advice (8). In the
first case, the introduction overrides an inherited method in
Rectangle of feature Base. In the second case, the advice
captures join points triggered by the execution of method
draw of Trapezoid also in feature Base. Thus feature Style
applies its extensions only to elements in feature Base.

Similarly, feature Color applies its extensions only to the
program it receives as input Style(Base). Its three refine-
ments ((9),(10), and (11)) add and extend elements
present in feature Base and thus are present in
Style(Base). Figure 1 illustrates this program. The scop-
ing arrows depict the code that class refinements affect. For
example, the two refinements in feature Style, affect their
corresponding base code classes in feature Base. Note that
all scoping arrows point upwards, which means that fea-
tures apply their changes to the programs they receive as
input.1. It should be Base/Quadrilateral.java, Base/Rectan-

gle.java, Base/Trapezoid.java, etc.

For the implementation of QPL, precedence and simple
pointcuts (capture join points of Base) were enough to emu-
late function composition. However, these two conditions
are not enough in general. In Section 6 we discuss why is
that the case, illustrate the benefits of function composition
of aspects and present a way to achieve it.

5 AHEAD Case Study
The last two sections suggest a mapping between AHEAD
and AspectJ constructs, thus opening the possibility of
implementing in AspectJ product lines previously built with
AHEAD. To the best of our knowledge, we are not aware of
any product line in AspectJ of scale comparable to those
generated with AHEAD [4]. Thus, the driving goal of our
case study is to assess and compare how AspectJ tackles
product lines of such scale.

One of the largest product lines synthesized with AHEAD
is the AHEAD tool suite itself. It consists of several stand
alone and language-extensible tools [1]. We translated into

aspects the code base of the five key tools of AHEAD: a)
mixin performs mixin composition on features, b) jampack
composes features by collapsing their refinement chains, c)
unmixin propagates changes from composed files back to
their constituent features, d) jak2java translates Jak pro-
grams into Java, and e) mmatrix supports AHEAD feature
browser.

5.1 Mapping Jak to AspectJ
QPL illustrates the kinds of features found in our case
study. It also indicates a straightforward mapping between
Jak and AspectJ constructs that we implemented in a trans-
lator called jak2aj. This mapping is summarized in
Figure 2. Though not shown in the figure, the translation of
interfaces is similar to that of classes.

There are four special cases in this mapping:

1. Translation of static methods does not have target
clauses because their execution is associated to a class
not to an object.

2. Methods with arguments and (&&) an extra args
pointcut for the method parameters which are bound to
the around advice parameters.

3. AspectJ does not permit introduction of protected
members [6]. We translated those as public members.

4. Interfaces in implements clauses of class refinements
are mapped to declare parent clauses in their
corresponding aspect.

AspectJ has an asymmetrical approach to overriding [6][7];
precedence can override introductions but not base code
members. Because of this, we had to distinguish between
method override and method replacement.

Figure 1. Function Composition in QPL

Base

Style

Color

inheritance refinement scoping

Color (Style (Base))

Quadrilateral TrapezoidRectangle

Figure 2. jak2aj Translation Summary

privileged aspect L_C {
type around(C obj$C) : execution(mods type C.f())

&& target(obj$C) { return obj$C.L$f(); }
type C.L$f() { … }

}

layer L;
refines class C { new mods type f() { ... } }

Method replacement

privileged aspect L_C {
mods type C.f(args) { ... super.f(args); ... }
}

layer L;
refines class C {
overrides mods type f(args) { ... Super.f(args); ... }
}

Method override

privileged aspect L_C {
type around(C obj$C) : execution(mods type C.f())

&& target(obj$C) { …proceed(obj$C); … }
}

layer L;
refines class C { mods type f() { ...Super.f(); … } }

Method extension

AspectJJak

privileged aspect L_C { mods type C.f(args) {...} }layer L;
refines class C { mods type f(args) {...} }

New method

privileged aspect L_C { mods type C.f; }layer L;
refines class C { mods type f; }

New field

class C { …}layer L;
class C { … }

Standard Class

privileged aspect L_C {
type around(C obj$C) : execution(mods type C.f())

&& target(obj$C) { return obj$C.L$f(); }
type C.L$f() { … }

}

layer L;
refines class C { new mods type f() { ... } }

Method replacement

privileged aspect L_C {
mods type C.f(args) { ... super.f(args); ... }
}

layer L;
refines class C {
overrides mods type f(args) { ... Super.f(args); ... }
}

Method override

privileged aspect L_C {
type around(C obj$C) : execution(mods type C.f())

&& target(obj$C) { …proceed(obj$C); … }
}

layer L;
refines class C { mods type f() { ...Super.f(); … } }

Method extension

AspectJJak

privileged aspect L_C { mods type C.f(args) {...} }layer L;
refines class C { mods type f(args) {...} }

New method

privileged aspect L_C { mods type C.f; }layer L;
refines class C { mods type f; }

New field

class C { …}layer L;
class C { … }

Standard Class

5.2 Results
The five tools studied are built from combinations of 48 dif-
ferent features. The code generated for all of them is
slightly more than 205K+ LOC (Figure 2a). The 48 features
surveyed are implemented in 524 standard Java files (base
code) and 503 aspect files. In terms of LOC, Java code is
38K+ and AspectJ code 18K+. Thus, we found a 68%-32%
ratio between Java code and AspectJ code as illustrated in
Figure 2b. The Java code has 1006 fields, 40 constructors
and 2200+ methods. AspectJ code introduces 58 new fields
and 610 new methods, with 164 method overrides, 8
method replacements, and 8 method extensions (Figure 2c).
These numbers and their corresponding LOC indicate that
AHEAD tool suite relies heavily on introductions, and only
uses a tiny number of pieces of advice. Of the 56700+ LOC
in the 48 features of the synthesized tools, only 119 lines
(.2% — 2 tenths of one percent) is due to method extension,
and 440 lines (.7% — seven tenths of one percent) is due to
method overriding.

A strength of AOP is without doubt the sophisticated mech-
anisms to specify complex pointcuts yet in the case of
AHEAD tool suite they were not fully exploited. This is not
surprising, as AHEAD itself offers very limited advising
capabilities (method and constructor extensions). This
explains why less than 1% of the synthesized code is due to
advice. An open research question is: if AHEAD had more
powerful forms of pointcuts and advice, how much larger
would this percentage be?

A bound on this number is the recognition that features in
product lines generally implement collaborations [5][34],
which in the AOP literature corresponds to heterogeneous
crosscuts. Such crosscuts deal with field and method intro-
ductions and advice whose pointcuts qualify a single join
point. AspectJ excels in realizing homogenous crosscuts
(advice whose pointcuts qualify multiple join points). The
important role of heterogeneous crosscuts is not surprising:
large programs are not synthesized by adding the same
piece of code in different places, but rather, adding different
pieces of code in different places. Never-the-less, an open
question remains: How can AOP mechanisms be harnessed

more fully in the implementation of product lines? We
address this question in next section.

6 Function Composition in AspectJ

We have seen that in the context of AspectJ programs func-
tion composition implies:

• Making explicit the composition order of base code,
introductions and advice at the feature level.

• Scoping features to apply their introductions and advice
only to the programs they receive as input.

At first glance these two conditions seem to restrict rather
than to benefit AspectJ program development. Our previous
work has shown that not to be the case [29]. We illustrate
why next.

6.1 Extending QPL
Let us assume that feature Style, (7) and (8), also contains
font type information implemented with a field introduction
and a method introduction to class Quadrilateral:

privileged aspect Style_Quadrilateral {
int Quadrilateral.font;
void Quadrilateral.setFont(int f){ font=f;}

} (14)

Furthermore, let us add a new feature to QPL that performs
one of the quintessential AOP operations, Logging. In our
example we want to log the execution of set methods. A
straightforward way to implement this feature is as follows:

privileged aspect Logging {
void around():

execution(* void Quadrilateral.set*()) {
Log(MESSAGE);
proceed();

}
} (15)

Consider what happens when we compose these two exten-
sions of QPL, (14) and (15), with the original one (13).
The resulting Quadrilateral class with the woven advice
(underlined) is:

Figure 3. AHEAD Case Study Summary

3971212mmatrix

4423420jampack

207053Total

4390717jak2java
3879811unmixin

4040216mixin

LOCFeaturesTool

3971212mmatrix

4423420jampack

207053Total

4390717jak2java
3879811unmixin

4040216mixin

LOCFeaturesTool

1842738300LOC
503524Num Files

AspectJJava

1842738300LOC
503524Num Files

AspectJJava

LOC

68%

32% Java
AspectJ

LOC

68%

32% Java
AspectJ

(a) (b) (c)

8 – 119Extension
8 – 440Replace

164 – 1574Override
610 – 92952238Method

0 – 040Const
58 – 581006Field

AspectJ – LOCJava

8 – 119Extension
8 – 440Replace

164 – 1574Override
610 – 92952238Method

0 – 040Const
58 – 581006Field

AspectJ – LOCJava

class Quadrilateral {
Point p1, p2, p3, p4;
void draw() {... std lines ...}
int font;
void setFont(int f){ Log(MESSAGE); font=f;}
int color;
void setColor(int c){ Log(MESSAGE); color=c;}

} (16)

The logging advice is woven to both set methods, even if
the declare precedence clause in Ordering (12) is modi-
fied to include aspect Logging. Thus, the scope of advice in
Logging is global to the composition. We call this phenom-
enon unbounded quantification [28][29], and it stems from
the adherence of AspectJ to global reasoning [21]. A conse-
quence of unbounded quantification is that AspectJ can
only express with these features (without modifications) the
composition illustrated in Figure 4, where Logging is at the
bottom because it affects Quadrilateral refinements in
Style and Color that both add set methods.

This example shows that precedence clauses do not provide
a general mechanism to enforce function composition.
Most importantly, it raises the questions: How can aspects
such as Logging be composed in an order different from the
default? Are there any benefits w.r.t product lines in doing
that?

6.2 Bounded Quantification and Feature
Reuse
Function composition in AspectJ can be achieved by pro-
gram equations and bounded quantification [28][29]. The
first specifies a composition order2. The second scopes
pieces of advice such that they capture only join points that
result from the execution of the program they receive as
input according to a program equation.

Suppose we want to compose Logging between Style and
Color (15) as in the following program equation:

Color (Logging (Style (Base)))

Figure 5 illustrates this composition. There are a couple of
differences compared to Figure 4. Obviously, Logging does
not appear at the bottom of the figure. But most impor-
tantly, the scoping arrow of Logging points only to the class
refinement of Rectangle, in other words method setColor
of Quadrilateral is outside its quantification scope.
Notice also that the rest of the scoping arrows point
upwards. What this means is that the scope of the advice
and introductions present in the features is bounded to the
programs they receive as inputs.

The benefit of function composition is that it allows to build
another member of QPL (the program that has the four fea-
tures and logs only the execution of method setFont) that
AspectJ composition model cannot build without changing
the code of Logging. Why? Because AspectJ always applies
Logging globally (to all base code and aspect code of a
composition) so the only program synthesizable without
intrusive changes is the one depicted in Figure 4. Put it in
another way, if we want to build our new program that logs
setFont executions we need another version of Logging:

privileged aspect Logging {
void around():

execution(* void Quadrilateral.setFont()) {
Log(MESSAGE);
proceed();

}
} (17)

Unbounded quantification is a special case of bounded
quantification. Bounded quantification enables program-
mers to make finer distinctions in program design which is
important in product line development. Bounded quantifi-
cation also promotes aspect reuse. Even though the above
QPL example is small — the programs in Figure 4 and2. The algebraic model and equation details are outside the scope of this

paper, interested readers are encouraged to consult [29].

Figure 4. Unbounded Quantification

Base

Style

Color

inheritance refinement

LoggingLogging

scoping

Quadrilateral TrapezoidRectangle

Figure 5. Bounded Quantification

Base

Style

Color

inheritance refinement

LoggingLogging

scoping
Color (Logging (Style (Base)))

Quadrilateral TrapezoidRectangle

Figure 5 can be produced by composing QPL features as is
in different orders; AspectJ requires an aspect to be modi-
fied to produce both programs, thus showing that as is fea-
ture reuse is more difficult when unbounded quantification
is used. We conjecture that our finding will become more
relevant when extrapolating to larger product lines with
larger sets of features that rely on advice with more elabo-
rate pointcuts, where fine design distinctions and feature
reuse are important. This is a research venue we are cur-
rently exploring.

7 Related Work
The use of AOP as an implementation technology for prod-
uct lines have been analyzed and evaluated in several case
studies: embedded systems [15][26], graph algorithms [27],
extensibility problem [27], mobile phones applications
[3][2], middleware software [17][37], and e-commerce
[32]. We elaborate on those closest to our work.

Anastasopoulus and Muthig propose criteria to evaluate
AOP as a product line implementation technology [3].
Their criteria encompasses the main activities of both
framework and application engineering. They regard AOP
as a program transformation technique. From that perspec-
tive, their evaluation on Reuse Over Time concludes that
aspect reuse is hindered because it is hard to predict the
effects of AOP transformations. The foundations of our
function composition model is an algebra that also regards
aspects as transformations [29]. This perspective allowed
us to analyze AspectJ composition and propose an alterna-
tive model with simpler and more predictable composition
semantics. Another evaluation criterion is Variation Type
where authors mention precedence as a mechanism to
address variation order. In this paper we showed that in
some cases precedence clauses are not enough to express
some variation orders.

Alves et al. propose a methodology that combines reactive
and extractive approaches to product line development [2].
It is an iterative process that starts by identifying concerns
in a set of related products, builds a concern graph [33], and
extracts the commonality and variability present in the
graph to build a product line design. At each iteration the
product line is reactively adapted through code transforma-
tions based on a set of template-oriented AOP refactorings.
This contrasts with our work as we use aspects as building
blocks of an existing product line. However, we believe that
a function composition model can also increase reuse in the
aspects extracted following their methodology.

Coyler and Clement implemented members a middleware
product line using aspects [17]. They developed three fea-
tures that are typical AOP applications: tracing, monitoring
and failure data capture. They also refactored into a feature
the support for EJB in a server application. Their imple-

mentation of this latter feature shows a 3-1 ratio between
the number of introductions and pieces of advices. More
surprisingly, the pieces of advice of this feature capture
only a single join point as we did in our case study.

A similar study was performed by Zhang and Jacobsen
[37]. They refactored aspects from a CORBA implementa-
tion using an iterative process they called Horizontal
Decomposition (HD). They achieved a 40% reduction on
code size and good performance improvement. Liu and
Batory have proposed an algebraic theory of feature com-
position and decomposition that generalizes and provides a
mathematical foundation in which to understand HD [25].
This theory also relies on function composition.

There are several approaches to improve variability and
feature reuse. Framed aspects merge frame technology and
AOP [30]. AOP is used to modularize crosscutting con-
cerns while frame technology is utilized for configuration,
validation and variability via parameterization, conditional
compilation and code generation. Mezini and Ostermann
developed CaesarJ to improve variability in FOP and AOP
[31]. CaesarJ provides Aspect Collaboration Interfaces
(ACI), interface definitions for aspects whose purpose is to
separate an aspect implementation from its binding. In this
way, many aspects can implement the same interface. Both
approaches are built upon the unbounded quantification
model of AspectJ.

Aspectual Mixin Layers (AML) capitalizes on the strengths
of FOP and AOP [5]. In this context, features are mixin lay-
ers that contain mixin classes and aspects that can also
refine pointcuts and pieces of advice. AML follows a func-
tion composition based on bounded quantification. A proto-
type tool is under development.

8 Conclusions and Future Work
Using aspects to build product lines is an interesting
research topic still in its infancy. We translated an AHEAD
code base of a tool product line (i.e., the tools that imple-
ment the AHEAD tool suite) into an AspectJ code base. To
our knowledge, this is one of the largest case studies in
product lines and program synthesis to use aspects.

A crucial concept in synthesizing programs in AHEAD
product lines is composing features by function composi-
tion. We emulated function composition in AspectJ by a
combination of a disciplined use of precedence and a care-
ful selection of a small subset of advice. Even so, these two
conditions are insufficient to support function composition
in a general case. We proposed bounded quantification and
algebraic specification (program equations) as a model
more suited for product lines and aspects, and described the
potential benefits of this approach for feature reuse in prod-
uct line development.

An interesting statistic from our study was an enormous
emphasis on introductions and a very small use of advice
(i.e., less than 1 percent) in our tool code base. While the
explanation is obvious — the AHEAD tools provide and
use only a limited form of advice — it would be very inter-
esting to know how much larger this percentage would be if
more sophisticated advice were available, in order to more
fully understand the importance of aspects in product lines.
We and others [5] conjecture that the predominant use of
aspects in product lines will be to implement heterogeneous
crosscuts — collaborations whose implementations rely on
introductions and advice whose pointcuts qualify single
join points — rather than homogenous crosscuts (advice
whose pointcuts qualify many join points). Further work is
needed to verify this conjecture.

Acknowledgements. We thank Oege de Moor for his help
in clarifying subtle issues of pointcut semantics. This
research is sponsored in part by NSF's Science of Design
Project #CCF-0438786.

9 References
[1] AHEAD Tool Suite (ATS).www.cs.utexas.edu/users/schwartz
[2] V. Alves, P. Matos, L. Cole, P. Borba, and G. Ramalho,

“Extracting and Evolving Game Product Lines”, SPLC 2005.
[3] M. Anastasopoulus, and D. Muthig, “An Evaluation of

Aspect-Oriented Programming as a Product Line Implemen-
tation Technology”, ICSR 2004.

[4] AOSD Europe Network of Excellence. http://www.aosd-
europe.net

[5] S. Apel, T. Leich, and G. Saake, “Aspectual Mixin Layers:
Aspects and Features in Concert”, ICSE 2006.

[6] AspectJ, version 1.2.1, http://eclipse.org/aspectj/.
[7] AspectJ Manual, http://www.eclipse.org/aspectj/doc/prog-

guide/language.html.
[8] D. Batory, and B.J. Geraci. “Composition Validation and

Subjectivity in GenVoca Generators”, IEEE Transactions on
Software Engineering, Feb. 1997.

[9] D. Batory, G. Chen, E. Robertson, T. Wang, “Design Wizards
and Visual Programming Environments for GenVoca Genera-
tors”, IEEE TSE, May 2000.

[10] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder,
“Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study”, ACM TOSEM,
April 2002.

[11] D. Batory, R.E. Lopez-Herrejon, and J.P. Martin, “Generating
Product-Lines of Product-Families”, ASE 2002.

[12] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement”, IEEE TSE, June 2004.

[13] D. Batory, “Feature Models, Grammars, and Propositional
Formulas”, SPLC 2005.

[14] O. Barzilay, S. Tyszberowicz, Y. A. Feldman, and A. Yehu-
dai,“ Call and Execution Semantics in AspectJ”, FOAL
Workshop AOSD, 2004.

[15] D. Beuche, and O. Spinczyk, “Aspect-Oriented Product Line
Development in Constrained Environments”, Workshop on
Reuse in Constrained Environments OOPSLA 2003.

[16] P. Clements, and L. Northrop, Software product lines : prac-
tices and patterns, Addison-Wesley, 2002.

[17] A. Coyler, and A. Clement, “Large-scale AOSD for Middle-
are”, AOSD 2004.

[18] K. Czarnecki, and U.W. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications, Addison-Wesley,
2000.

[19] Early Aspects website. http://www.early-aspects.net/
[20] R.E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented

Software Development., Addison-Wesley, 2004.
[21] G. Kiczales, and M. Mezini. “Aspect-Oriented Programming

and Modular Reasoning”, ICSE 2005.
[22] R. Laddad, AspectJ in Action. Practical Aspect-Oriented

Programming, Manning, 2003.
[23] R. Lämmel, “Declarative Aspect-Oriented Programming”,

PEPM 1999.
[24] J. Liu, and D. Batory, “Automatic Remodularization and

Optimized Synthesis of Product-Families”, GPCE 2004.
[25] J. Liu, and D. Batory, “Feature Oriented Refactoring of Leg-

acy Applications”, ICSE 2006.
[26] D. Lohmann, and O. Spinczyk, and W. Schröder-Preikschat,

“On the Configuration of Non-Functional properties in Oper-
ating System Product Lines”, ACP4IS Workshop AOSD
2005.

[27] R.E. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating
Support for Features in Advanced Modularization Tech-
niques”, ECOOP 2005.

[28] R.E. Lopez-Herrejon, and D. Batory. “Improving Incremental
Development in AspectJ by Bounding Quantification”,
SPLAT Workshop AOSD, March 2005.

[29] R. E. Lopez-Herrejon, D. Batory, and C. Lengauer, “A disci-
plined approach to aspect composition”, PEPM 2006.

[30] N. Loughran, and A. Rashid,“Framed Aspects: Supporting
Variability and Configurability for AOP”, ICSR 2004.

[31] M. Mezini, and K. Ostermann, “Variability Management with
Feature-Oriented Programming and Aspects”, FSE-12 ACM
SIGSOFT, 2004.

[32] A. Nyßen, S. Tyszberowicz, and T. Weiler, “Are Aspects
Useful for Managing Variability in Software Product Lines?
A Case Study”, Aspects and Product Lines Workshop SPLC,
2005.

[33] M. Robillard, and G. Murphy, “Concern graphs: Finding and
describing concerns using structural program dependencies”,
ICSE 2002.

[34] Y. Smaragdakis, and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs”, ACM TOSEM, April 2002.

[35] N. Wirth, “Program Development by Stepwise Refinement”,
CACM 14 #4, 221-227, 1971.

[36] M. Wand, G. Kiczales, and C. Dutchyn, “A Semantics for
Advice and Dynamic Join Points in Aspect Oriented Pro-
gramming”, TOPLAS 2004.

[37] C. Zhang, and H. Jacobsen, “Resolving Feature Convolution
in Middleware Systems”, OOPSLA 2004.

	From Crosscutting Concerns to Product Lines: A Function Composition Approach
	Roberto E. Lopez-Herrejon Computing Laboratory
	Oxford University
	Oxford, England, OX1 3QD rlopez@comlab.ox.ac.uk
	Don Batory Department of Computer Sciences University of Texas at Austin Austin, Texas, 78712 U.S...

	Abstract
	1 Introduction
	2 Quadrilaterals Product Line
	class Quadrilateral { ���Point p1, p2, p3, p4; ���void draw() {... std lines ...} } class Rectang...
	class Quadrilateral { ���Point p1, p2, p3, p4; ���void draw() {... std lines ...} } class Rectang...
	class Quadrilateral { ���Point p1, p2, p3, p4; ���void draw() {... std lines ...} ���int color; �...

	3 FOP and AHEAD
	3.1 QPL Implementation
	layer Base; class Quadrilateral { ���Point p1, p2, p3, p4; ���void draw() {... std lines ...} } l...
	layer Style; refines class Rectangle { ��overrides void draw() { ������Super.draw(); … fill patte...
	layer Color; refines class Quadrilateral { ���int color; ���void setColor(int c) { color = c; } }...

	4 AspectJ
	4.1 QPL Implementation
	privileged aspect Style_Rectangle { ��void Rectangle.draw() { ����super.draw(); … fill pattern … ...
	privileged aspect Style_Trapezoid { �void around(Trapezoid obj$Trapezoid) : ����execution(void Tr...
	privileged aspect Color_Quadrilateral { ��int Quadrilateral.color; ��void Quadrilateral.setColor(...
	privileged aspect Color_Rectangle { �void around(Rectangle obj$Rectangle) : ����execution(void Re...
	privileged aspect Color_Trapezoid { �void around(Trapezoid obj$Trapezoid) : ����execution(void Tr...
	aspect Ordering { ��declare precedence: Color_*, Style_*; } (12)
	ajc Quadrilateral.java Rectangle.java ��Trapezoid.java ��Style_Rectangle.java Style_Trapezoid.jav...

	4.2 Choice of Pointcuts
	4.3 Emulating Function Composition
	Figure 1. Function Composition in QPL

	5 AHEAD Case Study
	5.1 Mapping Jak to AspectJ
	Figure 2. jak2aj Translation Summary
	1. Translation of static methods does not have target clauses because their execution is associat...
	2. Methods with arguments and (&&) an extra args pointcut for the method parameters which are bou...
	3. AspectJ does not permit introduction of protected members [6]. We translated those as public m...
	4. Interfaces in implements clauses of class refinements are mapped to declare parent clauses in ...

	5.2 Results

	6 Function Composition in AspectJ
	Figure 3. AHEAD Case Study Summary
	6.1 Extending QPL
	privileged aspect Style_Quadrilateral { ��int Quadrilateral.font; ��void Quadrilateral.setFont(in...
	privileged aspect Logging { void around(): ���execution(* void Quadrilateral.set*()) { �����Log(M...
	class Quadrilateral { ��Point p1, p2, p3, p4; ��void draw() {... std lines ...} ��int font; ��voi...
	Figure 4. Unbounded Quantification

	6.2 Bounded Quantification and Feature Reuse
	Figure 5. Bounded Quantification
	privileged aspect Logging { void around(): ���execution(* void Quadrilateral.setFont()) { �����Lo...

	7 Related Work
	8 Conclusions and Future Work
	9 References
	[1] AHEAD Tool Suite (ATS).www.cs.utexas.edu/users/schwartz
	[2] V. Alves, P. Matos, L. Cole, P. Borba, and G. Ramalho, “Extracting and Evolving Game Product ...
	[3] M. Anastasopoulus, and D. Muthig, “An Evaluation of Aspect-Oriented Programming as a Product ...
	[4] AOSD Europe Network of Excellence. http://www.aosd- europe.net
	[5] S. Apel, T. Leich, and G. Saake, “Aspectual Mixin Layers: Aspects and Features in Concert”, I...
	[6] AspectJ, version 1.2.1, http://eclipse.org/aspectj/.
	[7] AspectJ Manual, http://www.eclipse.org/aspectj/doc/progguide/language.html.
	[8] D. Batory, and B.J. Geraci. “Composition Validation and Subjectivity in GenVoca Generators”, ...
	[9] D. Batory, G. Chen, E. Robertson, T. Wang, “Design Wizards and Visual Programming Environment...
	[10] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder, “Achieving Extensibility Through Pro...
	[11] D. Batory, R.E. Lopez-Herrejon, and J.P. Martin, “Generating Product-Lines of Product-Famili...
	[12] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step- Wise Refinement”, IEEE TSE, June...
	[13] D. Batory, “Feature Models, Grammars, and Propositional Formulas”, SPLC 2005.
	[14] O. Barzilay, S. Tyszberowicz, Y. A. Feldman, and A. Yehudai,“ Call and Execution Semantics i...
	[15] D. Beuche, and O. Spinczyk, “Aspect-Oriented Product Line Development in Constrained Environ...
	[16] P. Clements, and L. Northrop, Software product lines : practices and patterns, Addison-Wesle...
	[17] A. Coyler, and A. Clement, “Large-scale AOSD for Middleare”, AOSD 2004.
	[18] K. Czarnecki, and U.W. Eisenecker, Generative Programming: Methods, Tools, and Applications,...
	[19] Early Aspects website. http://www.early-aspects.net/
	[20] R.E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented Software Development., Addison-W...
	[21] G. Kiczales, and M. Mezini. “Aspect-Oriented Programming and Modular Reasoning”, ICSE 2005.
	[22] R. Laddad, AspectJ in Action. Practical Aspect-Oriented Programming, Manning, 2003.
	[23] R. Lämmel, “Declarative Aspect-Oriented Programming”, PEPM 1999.
	[24] J. Liu, and D. Batory, “Automatic Remodularization and Optimized Synthesis of Product-Famili...
	[25] J. Liu, and D. Batory, “Feature Oriented Refactoring of Legacy Applications”, ICSE 2006.
	[26] D. Lohmann, and O. Spinczyk, and W. Schröder-Preikschat, “On the Configuration of Non-Functi...
	[27] R.E. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating Support for Features in Advanced Mo...
	[28] R.E. Lopez-Herrejon, and D. Batory. “Improving Incremental Development in AspectJ by Boundin...
	[29] R. E. Lopez-Herrejon, D. Batory, and C. Lengauer, “A disciplined approach to aspect composit...
	[30] N. Loughran, and A. Rashid,“Framed Aspects: Supporting Variability and Configurability for A...
	[31] M. Mezini, and K. Ostermann, “Variability Management with Feature-Oriented Programming and A...
	[32] A. Nyßen, S. Tyszberowicz, and T. Weiler, “Are Aspects Useful for Managing Variability in So...
	[33] M. Robillard, and G. Murphy, “Concern graphs: Finding and describing concerns using structur...
	[34] Y. Smaragdakis, and D. Batory, “Mixin Layers: An Object- Oriented Implementation Technique f...
	[35] N. Wirth, “Program Development by Stepwise Refinement”, CACM 14 #4, 221-227, 1971.
	[36] M. Wand, G. Kiczales, and C. Dutchyn, “A Semantics for Advice and Dynamic Join Points in Asp...
	[37] C. Zhang, and H. Jacobsen, “Resolving Feature Convolution in Middleware Systems”, OOPSLA 2004.

