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Abstract

This paper describes a general methodology for simplifying the design and analysis of BAR proto-
cols. BAR protocols allow the participation of Byzantine, Altruistic, and Rational players. Because
BAR protocols tolerate both arbitrary behaviors by some nodes and selfish behavior by the rest,
they are appropriate for service and applications spanning multiple administrative domains. We
focus our attention on IC-BFT protocols that (a) guarantee a set of safety and liveness properties
to all non-Byzantine nodes and (b) insure that rational nodes follow the protocol faithfully. We
rely on existing techniques to show that safety and liveness are maintained when all non-Byzantine
nodes follow the protocol. In order to show that rational nodes follow the protocol faithfully, we
decomponse the BAR game corresponding to the problem specification into a combination of a
n-player benefit game and a collection of n 2-player cost games. We provide a set of sufficient
properties to show that the protocol is a CBE in the benefit game and that rational nodes will thus
follow the protocol faithfully. We present the first synchronous IC-BFT TRB protocol, basing our
protocol design on these properties.
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1 Introduction

This paper addresses the development of dis-
tributed protocols that target systems span-
ning multiple administrative domain (MADs).
In these systems, nodes collaborate to provide
some service that benefits each node, without
any central authority owning and controlling all
nodes: examples of these systems include the
growing number of cooperative services built
above the peer-to-peer paradigm [1,9,11,18,24,
35, 34]. MAD systems are attractive because
their diffused control structure may yield ser-
vices that are potentially less costly and more
democratic than their more centralized coun-
terparts.

A key challenge in building MAD cooper-
ative services is dependability. As in a tra-
ditional distributed systems, nodes in a MAD
system can deviate from their specification be-
cause they are broken, on account of bugs, er-
rors in software configuration, or even mali-
cious attacks. But MAD systems add a new
dimension: without a central administrator to
ensure that all unbroken nodes follow faith-
fully their assigned protocol, nodes may devi-
ate from their specification also because they
are selfish and are intent on maximizing their
own utility. In fact, since it is not obvious how
to bound the number of nodes that will opt to
deviate selfishly from the protocol (especially
if all is required of them to do so is simply to
download some software from a web site), de-
pendable MAD services must be designed un-
der the assumption that potentially all nodes
may deviate from their specification.

To make things worse, MAD services do not
fit nicely within any of the traditional models
used in distributed systems. It is theoretically
possible to model all deviant nodes as Byzan-
tine [7,8, 17,19,21,32,33,36,40], but not much
of interest can be said about a distributed sys-
tem in which one cannot reasonably assume a
fixed (and low!) threshold on the number of
Byzantine nodes. Traditional game theoretic
approaches [30] also fall short: they can suc-
cessfully model systems in which every node is

selfish, but they are not equipped to deal with
Byzantine nodes.

In [2], we propose a new model, called
BAR, that acknowledges the likely coexistence
of Byzantine and selfish behaviors in any MAD
service. The model owes its name to the initials
of the three classes of nodes (Byzantine, Altru-
istic, and Rational) that it explicitly considers.
Byzantine nodes behave arbitrarily: they may
deviate in any way for any reason, regardless
of the local or global consequences. Altruistic
nodes follow a given protocol faithfully with-
out consideration of their self interest. Rational
nodes behave selfishly and will deviate from a
given protocol if doing so improves their own
utility.

While the BAR model seems to capture
fairly naturally the characteristics of MAD ser-
vices, its value cannot be measured only in
terms of its expressiveness: ultimately we are
interested in building dependable MAD ser-
vices, not just in talking about them. It is con-
sequently crucial to determine how hard it is
design BAR tolerant protocols, i.e., protocols
that will provably maintain their safety and
liveness property under the BAR model. In this
sense, the coexistence of selfish and Byzantine
nodes appears fundamentally challenging: the
misdeeds of Byzantine nodes are typically toler-
ated by requiring extra work of non-Byzantine
nodes, and selfish nodes are unlikely to step up
as volunteers to do this extra work.

In this paper, we view the problem specifi-
cation in the BAR model as a game—a BAR
game—through which it is possible to analyze
the interactions of a set of n players corre-
sponding to the nodes in the system. Rea-
soning about BAR games is hard, since it re-
quires considering an exponential number of n-
player strategies. A BAR protocol provides
only a suggested strategy for each player to
follow. Rational players independently choose
the strategy that gives them maximal indi-
vidual net benefit, whether that strategy is
suggested by the protocol or derived indepen-
dently, and they participate in the game only
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if they expect to “win”, i.e., to receive a net
benefit from their participation. For a pro-
tocol designer, winning consists instead of or-
chestrating a distributed protocol that prov-
ably meets the problem’s specification in the
BAR model. A compelling correctness criterion
is Incentive-Compatible Byzantine Fault Toler-
ance (IC-BFT) [2]. IC-BFT protocols provably
meet the properties of the problem specifica-
tion by suggesting strategies that, informally,
are seen by Rational players as the most bene-
ficial to them.

The main contribution of this paper is a
general methodology for simplifing both the
design and the analysis of IC-BFT protocols.
The idea is a simple application of the divide
and conquer principle: we separate the problem
of designing an incentive compatible protocol
from the complementary task of showing that
the resulting protocol is Byzantine fault toler-
ant. The literature provides several examples
to help us with the latter problem—this paper
focuses on how to separate the two concerns
cleanly and on how to address the first.

We use Cooperative Byzantine Equilibria
(CBE) to show that rational players will not
deviate from their assigned protocol. A proto-
col is a CBE in a game if, informally, each ra-
tional player does not find benefit in deviating
unilaterally a specified the protocol. Finding
a CBE is equivalent to identifying a protocol
that corresponds to a local maximum in the in-
dividual benefit of each player. While this is
simpler that identifying a global maximum, it
is still challenging to achieve CBE protocols in
a model, like BAR, where rational nodes will
be tempted to shirk any extra work required to
prevent Byzantine nodes from causing harm.

To simplify the design of a CBE protocol in
the BAR model, we cast a BAR game as the
combination of a n-player benefit game and a
collection of n two-player cost games.

For a given protocol, the strategy employed
by the two nodes involved in a particular cost
game is defined by the set of messages that
the two nodes exchange. An ideal cost game

is a cost game that has only two viable strate-
gies, cooperate or defect, and therefore effec-
tively encapsulates in a binary choice much of
the complexity that arises from selfish behav-
ior. The n cost games determine the pairwise
strategies used by the n players in the benefit
game: nodes that play an ideal cost game need
only choose in the benefit game whether to co-
operate or defect with other players, including
those that are Byzantine. This simple choice
greatly reduces the number of strategies avail-
able to a benefit game player, simplifying the
task of proving that the protocol is a CBE.

We show that if it is in the interest of ratio-
nal players to maintain the safety and liveness
properties associated with a problem specifica-
tion, a protocol that meets the following condi-
tions is a CBE for the associated benefit game:
i) the protocol implies that cost games are ideal
and ii) the protocol is minimal, in the sense that
the loss of a single message between any pair of
non-Byzantine nodes may lead to the violation
of safety or liveness. Furthermore, we provide
a set of conditions that are sufficient to ensure
that a protocol will imply ideal cost games.

Finally, we demonstrate our methodology
by presenting the first incentive compatible
protocol for synchronous Terminating Reliable
Broadcast (TRB). We show how our guide-
lines for protocol design can lead to an in-
centive compatible version of the classic Dolev
and Strong TRB protocol [12] with the same
asymptotic message complexity as the original.

2 Related Work

Monderer [22] presented the first framework
for converting mechanisms defined in Game
Theory to protocols. Nianb introduced Algo-
rithmic Mechanism Design in [29] and Feigen-
baum extended these concepts to Distributed
Algorithmic Mechanism Design as a frame-
work for building distributed systems out of
rational participants [16]. Since then a va-
riety of authors have modeled and built dis-
tributed systems using the constructs of game
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theory [3,10,14,15,26,25,28,27,37,38,39]. Un-
fortunately, these solutions are brittle in the
face of Byzantine deviations.

Eliaz defined the first notion of equilibrium
to address Byzantine players in a rational con-
text [13]. He presents an ex ante equilibrium,
i.e. one that in retrospect is used to show that
the strategy profile is an equilibrium despite
the actions of faulty nodes. In Byzantine Nash
Equilibria no rational player has incentive to
deviate from its chosen strategy in the pres-
ence of Byzantine players. Aiyer et al. [2] intro-
duced Byzantine Nash Equilibrium (BNE) as a
way to analyze the behavior of players in BAR
games; Moscibroda et al. [23] formally defined
BNE. BNE provide information about a spe-
cific strategy profile, but do nothing to address
the question of how rational players coordinate
on that strategy profile. In this paper we make
explicit the fact that protocols provide an ex-
ternal assignment of strategies to players and
rely on correlated equilibrium [4,31], providing
some framework for the coordination of strate-
gies.

Aiyer et al. [2] introduced the BAR model
and presented a p2p backup system. One com-
ponent of their system is a replicated state ma-
chine based on three phase commit and the
TRB safety properties. In this paper we pro-
vide the first complete analysis of TRB under
the BAR model.

3 Model

We consider the problem of designing commu-
nication protocols for MAD services in the con-
text of the BAR model. In general, a problem
specification under the BAR model consists of
i) a set of desired properties that motivate ra-
tional players to participate and ii) a set of de-
sign properties that specify the solution to the
problem. Proposed solutions are analyzed in
the context of a BAR game consisting of a set of
BAR players, a collection of possible strategies,
and a payoff function mapping strategy profiles
to net benefit, or utility. A strategy is a com-

plete plan of action for a player, while a strategy
profile is a mapping of a strategy to each player
in the game. A payoff function maps strategy
profiles to utility for each player: the measure
of benefit minus the measure of costs. Benefit is
measured by the degree to which the outcome
of a strategy profile meets the desired proper-
ties specified by the problem with respect to a
player. Costs instead are incurred by a player
through the actions that constitute its strat-
egy. A BAR protocol is a distinguished strat-
egy profile. We consider a BAR protocol to
be correct if it is Incentive-Compatible Byzan-
tine Fault-Tolerant (IC-BFT) with respect to
the problem specification; that is, the strategy
profile is a Correlated Byzantine Equilibrium
(CBE) with respect to the BAR game, and the
design properties are met when the strategy
profile is followed by all non-Byzantine play-
ers. A strategy profile is a CBE with respect
to a BAR game if (a) the strategy profile is a
Byzantine Nash Equilibrium in the game and
(b) the strategy profile is specified by an exter-
nal source. A CBE provides a certain amount
of coordination between players in determining
which strategies should be played.

The problem of implementing typical com-
munication primitives such as Consensus and
Terminating Reliable Broadcast (TRB) in
MAD environments implies that the design
properties of the problem are the safety and
liveness properties of the communication prim-
itive. We assume that the desired property
for each non-Byzantine player is that the out-
come meets the design properties of the system,
a condition we call the safety benefit assump-
tion. A strategy in the resulting BAR game is
a mapping of messages received from all play-
ers to messages sent to each player. To mea-
sure benefit, we assume that benefit accrues to
players iff the desired properties are met. In
the context of communication protocols, costs
are measured by messages sent. While players
perform computational actions such as generat-
ing and verifying signatures and storage actions
such as queueing messages for later process-
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ing, we observe that these actions correspond to
communication and consequently roll the costs
of these actions into the costs of sending the
associated messages.

We assume synchronous networks with re-
liable links. Each pairwise link between play-
ers can support at most k messages per round.
We introduce some terminology to describe
message sequences exchanged as part of a com-
munication protocol. A message sequence be-
tween two players is valid with respect to a
strategy execution if the sequence would be
sent if all players were Altruistic; otherwise the
message sequence is invalid. All valid message
sequences are called acceptable; otherwise they
are unacceptable. A message sequence is possi-
ble if the sending node is capable of sending the
message sequence given the inputs to the strat-
egy. We assume that cryptographic signatures
are secure and cannot be forged. For exam-
ple, a message sequence containing a message
signed by player is not possible for a different
player if she has not previously received the
signed message.

4 BAR Games

In this section we focus on the IC portion of
showing that a BAR protocol is IC-BFT. Show-
ing that the protocol is a CBE for the relevant
BAR game is sufficient to show IC.

In Section 4.1 we examine the cost game
in more detail. We define a set four sufficient
conditions for a cost game to act as an ideal
cost game (ICG) that is easy to embed in a
benefit game. To simplify protocol construc-
tion, in that section we also define four proto-
col properties that are sufficient to meet these
conditions. In Section 4.2 we provide an addi-
tional property that, in conjuction with these
conditions on the underlying cost game and the
safety benefit assumption, is sufficient for the
benefit game to provide a CBE.

4.1 The Cost Game

The cost game is a two-player game that en-
capsulates the decision of how to communi-
cate with a specific other player. The pos-
sible strategies in the cost game are sending
any of the message sequences defined as accept-
able by the protocol or an arbitrary unaccept-
able message sequence. Players expect benefit
b > 0 when their partner cooperates by sending
a non-empty acceptable sequence. The precise
value of b is specified by the overarching bene-
fit game and corresponds to the share of global
benefit that is attributed to this player. Costs
incurred during the cost game are based on the
messages sent during the game, for simplicity
of presentation, we assume that any non-empty
sequence of messages sent during a game incurs
cost c where 0 < c < b.

We define four properties of an ideal cost
game (ICG) that can be embedded in the ben-
efit game.

CG-1 Acceptable Implies Valid. Sending
the valid sequence dominates sending any
other possible acceptable sequence.

A receiver cannot distinguish between a valid or
acceptable-but-invalid message sequence. CG-
1 ensures that the most beneficial acceptable
sequence is always the valid sequence and that
a rational node will consequently never send
acceptable-but-invalid message sequences.

CG-2 Cooperate-Defect Game. The cost
game is a two-player binary cooperate-
defect game, and the def

In a binary cooperate-defect game, a node will
choose either to cooperate by sending an accept-
able message sequence or to detectably defect
by sending an unacceptable message sequence.
This property simplifies the strategy space of
the benefit game.

CG-3 Cooperative Equilibrium. The cost
game has a cooperative equilibrium and
if the game is non-degenerate the defect
strategy has zero cost.
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Note that the ideal cost game might require re-
peated instances of an underlying cost game to
reach the cooperative equilibrium—for exam-
ple, when using punishment for previous defec-
tion to incentivize future cooperation. In this
case, each assignment of benefit in the benefit
game is associated with one play of the ideal
cost game but with repeated plays of the un-
derlying cost game corresponding to the proto-
col. Utility of an ICG is reported as the aver-
age utility over the collection of iterated cost
games. The zero cost defect strategy implies
that a defecting Rational player will always
send the empty sequence in the non-degenerate
cost game.

In the rest of this section we consider proto-
col properties that are sufficient to insure CG-1
through CG-3 in turn.

4.1.1 Acceptable Implies Valid

The acceptable implies valid property of the
ideal cost game requires that any acceptable
message sequence sent by a Rational player be
valid. The following protocol property is suffi-
cient to ensure CG-1:

P-1 Cheap Validity. The valid sequence
specified by the protocol is the cheapest
acceptable sequence that can be sent for
a given input.

Theorem 1. Suppose a protocol has prop-
erty P-1. Then, CG-1 holds for the correspond-
ing cost game.

Proof. P-1 states that for any input, the pro-
tocol specifies the optimal cooperate strategy,
that is, to send the cheapest acceptable se-
quence.

Typically, nondeterminism and incomplete
knowledge of global state prevent nodes
from differentiating between received valid
and acceptable-but-invalid message sequences.
Consequently, a Rational player may choose to
exploit her partner by sending acceptable-but-
invalid sequences that are less expensive than
the valid sequence. Such deviations may have

disastrous effects for the design properties of
the protocol. Protocols designed to have prop-
erty P-1 prevent Rational players from deviat-
ing in this undetectable fashion through careful
construction of their message sequences. For
example, in our IC-BFT TRB protocol pre-
sented in Section 5, to prevent Rational players
from hiding behind the excuse that they have
not heard from the leader, we require nodes
to send “junk” messages that artificially inflate
the cost of professing ignorance.

4.1.2 Cooperate-Defect Game

The cooperate-defect game property of the
ideal cost game requires that there be a single
viable cooperate strategy and a single viable
defect strategy available to Rational players.

Theorem 1 implies that sending the valid
message sequence is a dominant cooperate
strategy. We rely on the following property to
identify a dominant defect strategy:

P-2 Zero-Cost Defect. There exists a valid
non-empty sequence that player A sends
to a player B that defects by sending no
messages to A.

P-1 makes the cheapest acceptable message se-
quence the valid one and P-2 makes the most
beneficial unacceptable message sequence the
empty sequence. In particular, this condition
states that a player can obtain a benefit out-
come in a given instance by defecting at no
cost, reducing the choice of defect strategies to
this cheapest message sequence. This condi-
tion does not imply that the defection is unde-
tectable, but rather that the complete accept-
able sequence will be sent before the detection
can be detected.

Theorem 2. Suppose a protocol has proper-
ties P-1 and P-2. Then, the corresponding cost
game is a binary cooperate-defect game as spec-
ified by CG-2.

Proof. Given a single benefit, a strategy dom-
inates by having a lower cost than all other
strategies. P-1 implies that the valid messages
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specified by the protocol have the lowest cost
of all cooperate strategies that send acceptable
messages. By P-2 the benefit received by ra-
tional player A can be obtained by sending no
messages if the player is willing to detectably
defect. Sending no messages minimizes costs,
resulting in a dominant defect strategy.

P-1 subtly impacts the acceptability of the
empty sequence:

Lemma 1. Suppose P-1 holds for a protocol.
The empty sequence is a degenerate specifica-
tion that is either the only valid sequence or is
unacceptable.

Proof. Suppose the empty sequence and se-
quence S with cost c > 0 are both acceptable.
Since the empty sequence has cost 0, Rational
players will never send S, even when it is valid,
contradicting P-1.

Lemma 1 splits the set of cooperative
strategies into two classes based on the ac-
ceptability of the empty sequence: in degen-
erate strategies the empty sequence is the dom-
inant (and only) cooperate strategy and in
non-degenerate strategies the empty sequence
is unacceptable and thus considered defection.
These two classes of strategies result in three
exemplar cooperate-defect games: degenerate
games in which both players have degener-
ate strategies, semi-degenerate games in which
only one player has a degenerate strategy, and
non-degenerate games in which both players
have non-degenerate strategies. Figure 1 shows
the base payoff matrices for these three game
forms.

4.1.3 Cooperative Equilibria

In this section we show that degenerate and
non-degenerate cooperate-defect games have
cooperative equilibria and thus fulfill CG-3. We
also provide a protocol property sufficient to
ensure that there are no semi-degenerate cost
games.

Degenerate cost games are the easiest case

to consider as cooperation strictly dominates
defection, and thus the cooperative equilibrium
is trivial identify.

Lemma 2. Degenerate cost games fulfill CG-3.

Proof. In degenerate cost games the coopera-
tive strategy and defect strategy do not have
identical costs, but neither provides benefit by
definition. Since the cooperate strategy spec-
ifies sending no messages, defection requires
sending a message, incurring non-zero costs.
Hence, degenerate cost games have a cooper-
ative equilibrium.

We eliminate semi-degenerate games from
consideration by introducing the following pro-
tocol property guaranteeing that all cost games
are either degenerate or non-degenerate:

P-3 Mutual Communication. If there
is an acceptable non-empty message se-
quence sent from A to B, then there is an
acceptable non-empty message sequence
that contains at least one non-padding
message sent from B to A.

A non-padding message is fundamentally re-
lated to the protocol design properties. A
padding message does not impact design prop-
erties and exists for the purpose of regulating
selfish behavior. In our TRB protocol in Sec-
tion 5, the ⊥ messages are padding messages.

Lemma 3. If P-1 through P-3 hold, then there
are no semi-degenerate cost games in the pro-
tocol.

Proof. By Theorem 2 the cost game is a
cooperate-defect game. Lemma 1 implies
that strategies are either degenerate or non-
degenerate. P-3 requires that if one strategy
in the communication game is non-degenerate,
then the other is also non-degenerate. Hence a
cost game cannot be semi-degenerate.

We now address non-degenerate cost games.
As a side effect of P-2 and Theorem 2, the
non-degenerate game is an instance of the well
known Prisoner’s Dilemma [5, 6]. Tit-for-tat
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Coop Def
Coop 0, 0 0, −c
Def −c, 0 −c, −c

Coop Def
Coop b, −c 0, 0
Def b− c, −c −c, 0

Coop Def
Coop b− c, b− c −c, b
Def b, −c 0, 0

(a) degenerate game (b) semi-degenerate game (c) non-degenerate game

Figure 1: (a) Degenerate game where both players have a degenerate strategy. (b) Semi-degenerate game where the row player
has a degenerate strategy and the column player has a non-degenerate strategy. (c) Non-degenerate game in which both players
have a non-degenerate strategy. The quadrants in bold are the equilibrium solutions for the games.

strategies may provide a cooperative equilib-
rium in the indefinitely repeated Prisoner’s
Dilemma [30]. The following property is true
of protocols that implement tit-for-tat:

P-4 Shunning. If player B sends player A
an unacceptable sequence, A will shun B
by sending no messages to B during an
indefinite number of future exchanges.

Note that a rational node will begin shunning
in a game as soon as she detects a defecting
partner in order to reduce costs. The ideal
cost game consists of an indeterminate length
sequence of cost games, and implements infi-
nite tits-for-tat. The minimum number of tits-
per-tat can be found efficiently [20], allowing
a fixed-length shunning mechanism within the
ideal cost game that avoids the so-called dis-
mal valley, although the details are beyond the
scope of this paper.

Lemma 4. If P-1 through P-4 hold, then non-
degenerate cost games fulfill CG-3.

Proof. If the protocol corresponds to a non-
degenerate cost game, Theorems 1 and 2 im-
plied by P-1 through P-2 hold that the game
is a two-player cooperate-defect game, and P-2
implies that this game has the form of the Pris-
oner’s Dilemma. The Prisoner’s Dilemma with
an indefinite horizon has a cooperative equilib-
rium in the presence of the punishment mecha-
nism specified by P-4 [30], guaranteeing the co-
operative equilibrium. P-2 guarantees that the
zero cost defect strategy exists and is dominant,
fulfilling CG-3.

Finally, we prove that a protocol meeting
the previous set of conditions corresponds to
a cost game with a cooperative equilibrium as

specified by CG-3.

Theorem 3. Suppose P-1 through P-3 hold for
a protocol. A repeated cost game with an indef-
inite horizon corresponding to the protocol has
a cooperative equilibrium.

Proof. Lemma 1 implies the cost game has
three forms. By Lemma 3 there are no semi-
degenerate cost games, leaving two cases to
consider. By Lemma 2, degenerate cost games
fulfill CG-3 and by Lemma 4 non-degenerate
cost games fulfill CG-3.

4.2 The Benefit Game

The benefit game is an n-player game where
the strategies require choosing the strategies to
play in the n 2 player cost games. If the

To play the benefit game, each player as-
sociates a share of the expected global benefit
with the cost game associated with each other
participant, distributing the benefit across a
collection of two-player games. Players assign
a share equal to the average expected benefit
for reaching the cooperative equilibrium where
rational players expect both players to coop-
erate. If the share of expected benefit is suf-
ficient, then the player cooperates in the cost
game; otherwise the player defects.

Utility is assigned based on the total
amount and configuration of cooperation by
players during the game. The benefit game
is analyzed in expectation: for a given strat-
egy profile, the expected utility for a player
is the utility that would be received by that
player in the BAR game when all cooperat-
ing non-Byzantine players send valid message
sequences. Within this construction, Rational
players seek to cooperate with the minimum
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number of other players to insure an optimal
benefit, as follows:

BG-1 Correlated Byzantine Equilibrium.
The strategies implied by the protocol
are a correlated Byzantine equilibrium for
the benefit game.

We now consider how the ideal cost game—
a cost game that meets CG-2, CG-1, and CG-
3—is used in the benefit game and pro-
vide guidelines for designing protocols such
that BG-1 holds. We say that a non-Byzantine
player participates in an ideal cost game by
playing a the cooperative strategy. First, we
show that rational players participate in ideal
cost games if they choose to play the game:

Lemma 5. In the benefit game, non-Byzantine
players will behave as Altruistic players if they
participate in a non-degenerative pairwise ideal
cost game.

Proof. Altruistic nodes trivially behave Altru-
istically. If a rational node participates in a
pairwise ideal cost game, then it plays the coop-
erative equilibrium strategy that holds by CG-
3. By CG-1 the cooperative strategy sends
valid sequences, matching the behavior of Al-
truistic nodes.

To show that BG-1 holds for the benefit
game, it remains to be shown that rational
players participate in enough ideal cost games
to obtain the protocol-specific benefit and that
any unilateral deviation results in less utility.
We show both by restricting protocols with the
following condition:

P-5 Minimal Communication. If non-
Byzantine player A shuns non-Byzantine
player B by sending an unacceptable
empty sequence, then the design proper-
ties of the protocol are violated.

In the presence of the safety benefit as-
sumption, P-5 ensures that the protocol is frag-
ile with respect to faulty behavior. Recall that
the ideal cost game forces non-Byzantine play-
ers to choose between behaving Altruistic by

cooperating or defecting by sending an unac-
ceptable sequence, resulting in indefinite shun-
ning between the players. Since the defect
strategy is dominant, there is only one ratio-
nal non-cooperative strategy, implying the de-
fect strategy is the sole form of deviation open
to a rational player. The defect strategy sends
an unacceptable empty sequence. When P-5
holds, the protocol is designed to tolerate de-
fection by the f Byzantine players, but with
the addition of a defection by a rational player,
the cost game might have f + 1 faults in the
system when the shunned node cannot com-
municate with his partner so that design prop-
erties of the protocol is violated. When design
properties are violated, all nodes do not receive
benefit, motivating rational behavior as follows:

Theorem 4. Suppose the cost games are ideal
and the protocol has the property P-5. The ben-
efit game has a CBE as specified by BG-1.

Proof. The protocol specifies the ideal cost
games a Rational player should participate in.
If a Rational player’s cooperate strategy is de-
generate for an ideal cost game, then defection
results in increased cost without an increase in
benefit. Rational players will consequently not
defect in those games.

If a Rational player’s cooperative strategy
is non-degenerate in an ideal cost game, then
defection through sending no messages results
in decreased cost with no decrease in benefit.
However, if the strategy is non-degenerate then
by P-5 it may result in the design properties be-
ing violated. By the safety benefit assumption
violation of the design properties prevents Ra-
tional players from receiving benefit, thus de-
creasing the utility of the rational player.

5 TRB in the BAR model

The Terminating Reliable Broadcast (TRB)
problem states, informally, that a message
broadcast by a distinguished sender must even-
tually be delivered by all non-Byzantine nodes.
If the sender is faulty, nodes may deliver
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1 Pre-Initialization for process p:
2 shun := ∅

4 Initialization for process p:
5 extracted := relay := ∅
6 if p = sender and wishes to broadcast m then
7 extracted := relay := {m}
8 count := 1
9 else
10 extracted := relay := ∅
11 count := 0

12 for a /∈ shun do
13 r[a] := ∅

15 In round i, 1 ≤ i ≤ f for process p:
16 for each s ∈ relay do
17 if count < 2 then

18 send s : p to all processes not in shun

19 count := count + 1
20 relay := ∅
21 receive round i messages from all processes
22 for each well-formed message s = m : . . . : q do
23 extracted := extracted ∪ {m}

24 r[q]
∪
= {m}

25 if |extracted| ≤ 2 then

26 relay
∪
= {s}

27 for each malformed message s from q do

28 shun
∪
= {q}

30 In round 1 ≤ i = f + 1 for process p:
31 for s ∈ relay do
32 if count < 2 then

33 send s : p to all processes not in shun

34 count := count + 1

35 if count = 0 then

36 send ⊥BAD : pi to all processes not in shun
37 count := count + 1
38 if count = 1 then

39 send ⊥OK : pi to all processes not in shun
40 count := count + 1

41 receive round i messages from all processes
42 for each well-formed message s = m : . . . : q do

43 if m 6= ⊥OK and m 6= ⊥BAD then

44 extracted
∪
= {m}

45 r[q]
∪
= {m}

46 for each malformed message s do

47 shun
∪
= {q}

48 for a /∈ shun do
49 if |r[a]| 6= 2 then

50 shun
∪
= {a}

51 if ⊥OK /∈ r[sender] then

52 shun
∪
= {sender}

53 if ∃m s.t. extracted = {m} then
54 deliver m
55 else
56 deliver SF

Figure 2: Incentive Compatible TRB with authenticated messages. The Pre-Initialization phase occurs once at the beginning

of the benefit game. The rest of the protocol represents an instance of the cost game. The notation
∪
= indicates assignment to

the variable on the left-hand side, the variable’s value (before assignment) unioned with the right-hand side, the notation x : pi

indicates x signed i times by process p. The boxed portions are the additions to Dolev-Strong to meet P-1 through P-3.

sender-faulty (SF ) to guarantee termination.
TRB is a classic problem in distributed systems
and we believe it represents an interesting case
study for the construction of BAR protocols.

Dolev and Strong present a variation of
Lamport’s TRB protocol for Byzantine fail-
ures with message authentication [19] that is
optimal with respect to the number of mes-
sages sent [12]. Figure 2 presents the Dolev-
Strong algorithm—the boxes contain the addi-
tional code to create an IC-BFT version.

Players maintain two sets of messages: re-
lay, containing messages that should be sent to
other players and extracted, containing deliv-
erable messages. To reach agreement, a mes-
sage m ∈ M is delivered only when extracted
= {m}; otherwise, SF is delivered. The f + 1
rounds of the protocol are designed to ensure
all correct players have similar extracted sets.
Byzantine players are thwarted if they attempt
to inject new values by requiring each player to
sign a received message (including previous sig-
natures) before sending it to another player. A

well-formed message then has enough distinct
signatures to prove that it has passed through
distinct players every round. The protocol lasts
f +1 rounds to guarantee that every chain con-
tains at least one correct player.

Initially, only the sender possesses the mes-
sage m in the relay and extracted sets. Each
player proceeds to execute f+1 rounds in which
she i) removes, signs, and sends all values in re-
lay, ii) receives messages from all players, and
iii) adds well-formed, newly received messages
to extracted and relay. Since SF will be deliv-
ered if extracted does not contain a single value,
it is sufficient to send only two well-formed mes-
sages to every other non-Byzantine process, re-
gardless of the number of distinct values re-
ceived. The protocol obtains optimal message
complexity taking steps (see lines 17, 19, 25,
32, and 34) to send only two distinct values. In
the final f + 1 round, each player then decides
a value based on extracted as described above.

In the rest of this section, we show that the
modified protocol meets properties P-1 through
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P-5. Theorem 4 then implies that the modi-
fied protocol is a Correlated Byzantine Equi-
librium. Finally, we show that the modified
protocol maintains the aka safety and liveness
conditions of TRB as specified in [12].

Cheap Validity. In the original proto-
col, values are repeated only when received;
a player might receive no values and correctly
send nothing during the protocol. Thus, a ra-
tional player could always remain silent and
rely on other players to do the work of dissem-
inating the sender’s message. To eliminate this
acceptable silence, we first augment the proto-
col with ⊥ messages that can only be sent in
round f + 1. Adding these messages requires
modifying the definition of well-formed to in-
clude ⊥OK and ⊥BAD received in round f + 1
and signed by the same node f +1 times. Once
these modifications have been made, the ac-
ceptable sequences containing only well-formed
messages are:

S-1 Two distinct non-⊥ values

S-2 ⊥OK and a non-⊥ value

S-3 ⊥OK and ⊥BAD

Since these are the only 3 acceptable sequences,
rational players will choose to send the cheap-
est possible sequence during each cost game.
We restrict the messages m ∈ M that may be
sent by the sender to have size at most log |M|
and construct ⊥OK and ⊥BAD to have size
1+log |M|. As a result of this construction, ra-
tional players will send S-1 in preference to S-2
and S-2 in preference to S-3, fulfilling P-1.

Zero-Cost Defect. S-3 allows for a zero-
cost defect, fulfilling P-2. Since both ⊥OK and
⊥BAD are sent in round f + 1, a cooperating
player will send an acceptable sequence before
detecting the deviation.

Shunning. Unacceptable sequences in the
modified TRB protocol do not contain two
valid messages as described by S-1 through S-
3. The modified protocol shuns other players
that either send malformed messages or other-
wise do not send two valid messages by round
f+1. Players in the former set are added in any

round (lines 27–28 and 46–47 in Fig. 2), while
the latter are added at the end of round f + 1
(lines 48–50). Messages are never sent to play-
ers in the shun set, effecting the punishment
specified by P-4.

Mutual Communication. The commu-
nication between players is symmetric in the
modified TRB protocol—any sequence that can
be sent by A to B can also be sent by B to A,
implying P-3.

Minimal Communication. We show by
counterexample that if a non-Byzantine player
shuns another player, the agreement property
of TRB is violated—that is, two non-Byzantine
players may deliver different values. Suppose
f = 1, n = 3, the sender pB is Byzantine, and
non-Byzantine player pnB is shunning the other
non-Byzantine player ps. Further, pB sends
v : pB only to pnB in the first round and then
halts. In the second and final round, pnB will
not send any messages to the shunned player ps.
According to the modified protocol, player pnB

delivers v in round 2, while player ps must de-
liver SF because he has not received any mes-
sages. This violation of the agreement property
fulfills property P-5.

Safety and Liveness. Suppose all non-
Byzantine players follow the modified TRB
protocol, implying no player will send a defect
message sequence or consequently, be shunned
by a rational player. We argue that using
the modified protocol, all non-Byzantine play-
ers will deliver the same value as if all non-
Byzantine players were following the Dolev-
Strong protocol [12]. The message delivered in
both Dolev-Strong and the modified protocol
depends upon the makeup of the extracted set.
We note that the guard at line 43 is the sole line
in the boxed portions of Figure 2—the modifi-
cations to Dolev-Strong—that affects the sets
relay or extracted containing values sent or re-
ceived. The additional guard prohibits ⊥ mes-
sages in the extracted set representing values re-
ceived, while the guard is unnecessary at line 23
because a well-formed message in rounds 1–f
cannot consist of a ⊥ message. Hence, the val-
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ues sent and received in the modified protocol
are identical to a correct execution of the orig-
inal Dolev-Strong protocol, implying the deliv-
ered value will also be identical.

6 Conclusion

We believe that expressing a BAR game into a
combination of an n player benefit game and n
pairwise cost games can simplify significantly
the difficult task of designing IC-BFT proto-
cols. We have identified a set of sufficient con-
ditions that can help designing a CBE protocol
for the benefit game, ensuring that the protocol
will be followed by all rational nodes. Finally,
we have shown the practicality of our approach
by deriving through it the first IC-BFT syn-
chronous TRB protocol.
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