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We present the first peer-to-peer data streaming ap-
plication that guarantees predictable throughput and
low latency in the BAR model, in which non-altruistic
nodes can behave in a self-serving (rational) or even
arbitrarily malicious (Byzantine) way. At the core of
our solution is a BAR-tolerant version of gossip, a
well-known technique for scalable and reliable data
dissemination. In traditional gossip, data dissemina-
tion is performed with randomly selected partners;
such non-determinism, we show, offers an excellent
opening to rational nodes bent on gaming the sys-
tem. BAR-tolerant gossip instead relies on a veri-
fiable pseudo-random partner selection mechanism
that eliminates non-determinism while maintaining
the unpredictability and rapid convergence of tradi-
tional gossip. Our initial experience indicates that
BAR Gossip is robust against up to 20% of nodes
exhibiting Byzantine behavior and even against up
to 40% of nodes colluding together against the re-
maining nodes. In either case, our BAR-tolerant
video streaming application provides over 95% con-
vergence for broadcast updates.

1 Introduction

Streaming media is an increasingly useful application at
several scales of deployment. For example, the 2006
NCAA tournament had peak participation of 150k+ users
for their live streaming services. At smaller scales, such
as academic conferences like OSDI or artistic events like
Austin’s SXSW, venues draw audiences of dozens to
hundreds of people.

At all these scales, a peer-to-peer (p2p) streaming so-
lution appears to be an intriguing alternative to tradi-
tional methods. One advantage of p2p systems is their
potential to be highly robust, scalable, and adaptive. For
example, a p2p architecture could, in principle, absorb
the impact of an unexpected flash crowd. Furthermore,
large-scale content providers may adopt p2p-based so-
lutions to shift costs (like bandwidth) to clients, and

small-scale providers might find it simpler to use a self-
organizing p2p network instead of maintaining a dedi-
cated server.

Realizing the promises of p2p in streaming services
is a non-trivial task. First, the service needs to guaran-
tee highly reliable, stable, and timely throughput of mes-
sages despite the presence of faulty, misconfigured, or
even malicious peers. Second, the service must be ro-
bust against selfish users, who try to catch afree ride
by receiving streams without contributing their fair share
to others [16]. The freerider phenomenon in p2p sys-
tems is indeed a symptom of a broader issue: any system
in which nodes are not under the control of a single ad-
ministrative domain must be designed for the possibility
that nodes will deviate from their specification if doing
so is to their advantage. File-sharing p2p applications,
like BitTorrent [10], have recognized this issue and in-
troduced a set of heuristics to induce rational nodes to
comply with the protocol—these heuristics, however, op-
timize for large file transfer, not the timely delivery of a
series of relatively small frames required by a streaming
service.

This paper presents the first p2p streaming media ap-
plication designed for a system model (BAR [1]) in
which altruistic nodes (who follow the protocol assigned
to them) coexist with both Byzantine and rational nodes.
Our BAR-tolerant solution is based on gossip proto-
cols [5, 12, 25, 41]. The protocol is simple to under-
stand and implement, and provides a scalable mechanism
for information dissemination that ensures predictable
throughput—even if most or all of the nodes act self-
ishly and the remainder act maliciously or malfunction
in arbitrary ways.

The defining characteristic of gossip protocols is that
each node exchanges data, or gossips, with randomly se-
lected peers: it is precisely this randomness that gives
gossip protocols their enviable robustness. From the
perspective of designing BAR-tolerant protocols, how-
ever, randomness can be a real headache: in fact,any
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source of non-determinism is hard to deal with in the
BAR model because it gives opportunities for rational
users to hide selfish actions in the guise of legitimate,
non-deterministic behavior.

We overcome this difficulty by building a BAR-
tolerant gossip protocol that usesverifiable pseudo-
randomnessas the means for peer selection: in particu-
lar, we exploit properties of pseudo-random number gen-
erators and unique signature schemes to build a verifi-
able pseudo-random partner selection algorithm. This
approach eliminates the main source of non-determinism
in traditional gossip—randomness in partner selection—
yet maintains the unpredictability and rapid convergence
of traditional gossip. Our novel peer selection technique
works in combination with a simple mechanism designed
to encourage the fair exchange [22] of one node’s up-
dates for another’s—its simplicity is achieved by doing
away with reputations [21, 29, 42] and by leveraging in-
stead the notion of credible threats [1, 13].

We build a prototype streaming application that uses
our BAR Gossip protocol to provide a stable throughput
multicast. We show that BAR gossip is robust to Byzan-
tine and selfish behavior, even when a significant number
of selfish nodes collude. Additionally, we demonstrate
that our protocol can reduce the bandwidth requirements
of a provider of live streaming content by 95% in an en-
vironment where 20% of nodes are Byzantine and the
remaining nodes are rational, while incurring only a 10
second end-to-end latency.

This paper makes the following contributions:
• We present the first p2p streaming application in the

BAR model.

• We design the first gossip protocol in the BAR model.
We introduce this paper in Section 1, which ends with

this paragraph outlining the rest of the paper. Section
2 frames our contributions in the context of previous
works. We define the system model in Section 3 . Sec-
tion 4 describes the BAR Gossip protocol. Section 5 sup-
ports our claim that BAR Gossip is a robust streaming
protocol through a combination of simulations and live
experiments.

2 Related Work

BAR Gossip targets streaming of live content among
Byzantine, altruistic, and rational nodes. It draws on a
broad literature of bulk file transfer systems designed to
tolerate node misbehavior as well as a large number of
efforts to use gossip for robust data dissemination.

Bulk file transfer. Several systems have addressed
selfish behavior in p2p content distribution. BitTor-
rent [9] implements a tit-for-tat incentive structure in
which nodes, when sharing the content of a particular

file, give preference to nodes who have reliably recipro-
cated in the past. Scrivener [34] generalizes BitTorrent
by supporting a distributed reputation scheme based on
credits that can be earned and redeemed across multiple
files: through this mechanism, a Scrivener node that has
been a good citizen can enlist the help of its peers even if
the file it wants to acquire is not popular.

FOX [24] guarantees optimal download time to all the
nodes interested in acquiring the same popular file under
the assumption that all nodes are selfish. This impressive
guarantee, however, is achieved at the expense of robust-
ness: the system’s incentive structure depends on the fear
of mutual assured destruction, and a single Byzantine or
simply malfunctioning node can cause the entire system
to collapse.

Splitstream [7] is a tree-based multicast protocol that
achieves load balancing by dividing content into multiple
stripes, each of which is multicast using a separate tree.
Splitstream is vulnerable to freeloaders. Ngan et al. [37]
observe that if Splitstream’s multicast trees are period-
ically rebuilt and nodes remember the upstream nodes
that misbehaved, upstream nodes in a given tree have an
incentive to provide good service to nodes downstream
to avoid future retaliation.

Habib and Chuang [20] study p2p streaming of non-
live media. They assume a set of supplier nodes that
know the entire stream: their goal is to help a receiver
select, among the suppliers, those most likely to provide
a high quality stream.

BAR Gossip differs from these systems in three key
ways. First, these systems work to optimize average
download bandwidth over long periods of time and do
not attempt to maintain stable throughput over shorter in-
tervals. In contrast, our protocol is designed to dissemi-
nate live streams and therefore values the highly reliable,
stable, and timely throughput that comes with gossip-
style data dissemination. Second, several of these sys-
tems are designed to be robust to Byzantine [7] or ratio-
nal [20, 24, 34] players but not both. Third, all of these
systems transfer a large collection of file blocks. In con-
trast, BAR Gossip distributes live streams and must cope
with having a relatively small window of “useful” data
in flight at any given time; ensuring timely delivery of
a small set of data is one of the key challenges in our
protocol. Fourth, most of these systems make use of lo-
cal [9, 37] or distributed [20, 34] node reputations in their
incentive structure. But given our desire to provide sta-
ble throughput over short periods of time, it is problem-
atic for us to rely on a node’s long-term reputation to pre-
dict its short-term behavior. Furthermore, because gossip
partners are likely to change in every round, in our pro-
tocol it is virtually impossible for a node to build enough
good will with specific partners to support a purely local
reputation schemèa la BitTorrent. We concern ourselves
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with both rational and Byzantine players—an environ-
ment where designing and implementing a strategy-proof
reputation system appears complex.

Gossip. Gossip algorithms were first introduced by
Demers et al. [12] to manage replica consistency in the
Xerox Clearinghouse Service [38]. Following Birman
et al.’s highly influential paper on Bimodal Multicast [5]
gossip algorithms have established themselves as one of
the leading approaches to achieve reliable and scalable
application-level multicast [3, 6, 8, 15, 18, 25, 31, 43, 46].
Gossip protocols are also at the core of a new genera-
tion of scalable distributed protocols for failure detec-
tion [41], group communication [17, 45], and the moni-
toring and management of large distributed systems [44].

Experience with the CoolStream implementation of
the DONet p2p overlay network [47] makes a strong
case for the scalability of gossip-based dissemination of
live data streams and for its potential to deliver high qual-
ity end-to-end user experience in the presence of purely
altruistic nodes.

Secure gossiping aims at preventing Byzantine nodes
from spreading false gossips. While digital signatures
are not necessary to accomplish this goal [26–28, 32],
they considerably simplify protocol design and are as-
sumed in most practical gossip-based systems [6, 44, 45],
including BAR Gossip.

DRUM [2] assumes secure gossip and focuses on
fighting denial of service (DoS) attacks through two main
techniques: bounding the amount of resources allocated
to each gossip operation and directing these operations
to random ports. While in this paper we do not explicitly
address DoS attacks, we believe that BAR Gossip would
be able to leverage ideas from DRUM to reduce its vul-
nerability to this threat.

BAR replication. Aiyer et al. [1] define a replicated
state machine protocol under the BAR model. Although
the replication overheads of that approach are too high
for our target application, we draw on many of the same
design principles that were useful there:predictable
communication patternsmanifests in our partner selec-
tion algorithm (Section 4.1.1),cost balancingmanifests
in our optimistic push algorithm (4.1.6),credible threats
manifest in our key exchange (4.1.4), andensuring long
term benefitmanifests in our deferred gratification proto-
col structure (4.1).

3 Model

We consider the problem of streaming a live event across
the Internet where, to reduce the source’s broadcast costs,
the audience helps disseminate the stream by forming a
peer-to-peer network. We assume the broadcaster isal-
truistic (i.e., always follows the specified protocol [1])

and multicastsbcastcnt updates every round to a con-
stant fractionbcasthr of the audience, which consists of
any fraction of altruistic, rational, and Byzantine nodes.
We assume that non-Byzantine nodes are interested in
receiving an update only within the firstupddl seconds
since the update was multicast. After this time, the non-
Byzantine nodes who have received the update desist
from trying to disseminate it further and deliver it to their
media player; we say that the update hasexpired.

Eachrational node follows a strategy that maximizes
its utility. The utility function describes the costs and
benefits and relative weights as viewed by a rational
node; in this paper, the benefit consists in the ability to
play the live stream and the costs are incurred by send-
ing and receiving packets. Rational nodes participate
in the stream dissemination protocol if their end-to-end
benefit in playing the stream exceeds the communication
costs—in particular, we assume that for rational nodes
the benefit received by acquiring each update exceeds the
communication costs incurred in doing so.

Altruistic nodes follow the protocol as given regard-
less of costs, similar to correct nodes in the traditional
fault-tolerance literature, whileByzantinenodes behave
arbitrarily.

Nodes maintain clocks synchronized withinδ seconds
of each other and communicate over point-to-point, syn-
chronous, and unreliable links using both TCP and UDP.
When messages are exchanged using UDP, a node that
does not receive an expected message assumes that the
link dropped it.

To mitigate the threat of Sybil attacks [14], it must be
hard for malicious (or greedy) participants to collect mul-
tiple identities. In our prototype, this is accomplished
by limiting each IP address to at most one identity; we
model scenarios in which a participant is able to ob-
tain multiple IP addresses as an instance of collusion
between nodes—we discuss collusion and its effects in
Sections 5.5 and 5.6.

We assume that nodes subscribe to the live broadcast
prior to its start and that non-Byzantine nodes remain in
the system for the duration of the broadcast—in other
words, we assume a static membership system.

Before the broadcast begins, the broadcaster assigns
public/private keys to each node (including itself) and
creates a membership list that contains the identity of
each participant node as well as its public key. Each
node obtains from the broadcaster the membership list,
together with its own private key, prior to the event’s
start. Nodes sign protocol messages using these asym-
metric keys to provide authentication and guarantee mes-
sage integrity; likewise, the broadcaster signs stream up-
dates to prevent forgeries. We make the standard as-
sumption that the cryptographic primitives used in our
protocol (which also include one-way hash functions)
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Figure 1: Balanced Exchange and Optimistic Push Protocols for nodeA contacting nodeB. We denote hash(M ) by
#M, encrypt(M ) with keyK by {M}K , and sign(M ) by A using〈M〉A.

cannot be subverted.
An important property of our protocol is that it re-

quires signatures to be unique: for a givenm, there must
exist exactly one valid signature ofm by i. Although a
number of standard signature algorithms fail to provide
this property [36], there exist algorithms that do [4]. We
denote a messagem signed byi as〈m〉i.

Signed messages that are internally inconsistent with
the protocol amount to proofs of misbehavior (POM).
For example, a POM could be a signed message claim-
ing the encrypted content of a message is one thing,
whereas the actual content is garbage data. The broad-
casterevictsevery node for which the broadcaster has a
POM by including in the stream signed eviction notices.
Non-Byzantine nodes have no interest in communicating
with evicted nodes.

4 BAR Gossip Design

We begin by giving a high-level description of BAR Gos-
sip from the perspective of an altruistic node that follows
the given protocol. In the interest of clarity we ignore,
for the moment, that some of the nodes in our system
may also be rational or Byzantine and therefore do not
necessarily follow the protocol—in fact, our system may
include no altruistic nodes at all! We discuss how the
protocol tolerates rational and Byzantine behavior later
in this section.

BAR-Gossip is structured as a sequence ofT + δ-long
rounds, whereT is a time interval sufficient to complete
the message exchanges required by the “Balanced Ex-
change Protocol” and “Optimistic Push Protocol” out-

lined in Figure 1 (in our prototype, each round lasts one
second).

At the beginning of roundr, each node delivers to its
media player the updates that expired in roundr − 1.
Then, a node concurrently executes three tasks:i) it waits
for the possible receipt of new updates from the broad-
caster;ii) it participates in the balanced exchange of non-
expired updates with other nodes in the audience—each
node initiates one such exchange with one randomly se-
lected audience node;iii) it participates in optimistic
pushes of non-expired updates with other nodes in the
audience—again, each node initiates one such exchange
with one randomly selected audience node.

Figure 1 shows that the two exchange protocols have
the same structure. First the senderS selects a partner
(the receiverR); S andR then engage each other in three
trades: thehistory exchange, in which the two parties
learn about the updates the other party holds; theupdate
exchange, in which each party copies a subset of these
updates into abriefcasethat is sent, encrypted, to the
other party; and thekey exchange, where the parties swap
the keys needed to access the updates in the briefcases.
For both exchange protocols, the keys used to encrypt the
briefcases are symmetric and generated by hashing the
sender’s private key, a unique seed value, and the proto-
col variation (Balanced vs. Optimistic).

The Balanced Exchange and Optimistic Push Proto-
cols differ, however, in what the parties disclose to each
other during thehistory exchangeand in how they deter-
mine the content of their respective briefcases during the
update exchange.
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In a balanced exchange, each party determines the
largest number of new updates it can receive while keep-
ing the exchange fair—each party forwards an update to
its partner only if it receives in return an update it had not
seen before. Each party therefore sends to the other ahis-
tory setH containing the identifiers of all the updates it
currently holds, compares the history it has received with
its own, and determines the largest numberk of updates
that can be exchanged on a one-for-one basis. It then puts
in its briefcase thek most recent updates unknown to its
partner and encrypts them as described above.

Optimistic Push helps nodes that have fallen behind in
the broadcast and that may not have any updates to trade
in a Balanced Exchange. We call this exchange protocol
Optimistic because in itS, who initiates the protocol, is
willing to forward useful updates toR without first as-
certaining whetherR can return the favor. In particular
for the history exchange,S forwards toR two lists: a
young list, which contains the identifiers of some of the
most recent updatesS knows, and anold list, which con-
tains the identifiers of updates thatS is missing and that
are about to expire.R replies with awant list, which
contains the identifiers of the updates in theyoung list
that the Receiver is actually missing.S andR then ex-
change briefcases: the sender’s contains thek updates in
thewant list. Optimistic Push leaves more flexibility to
the receiver in determining the content of the briefcase
it sends: a receiver who has fewer thank of the updates
listed in the sender’sold list has the option of sending
back up to an equivalent number ofjunk updates. It is
this flexibility that allows a receiver that has fallen be-
hind and has nothing to trade in balanced exchanges to
catch up.

We regulate Optimistic Push with two parameters,
pushage andpushsize: theyoung listconsists only of up-
dates that have been broadcast within the lastpushage

rounds andpushsize is an upper limit on the number
of updates that the Receiver can place in itswant list.
Larger values ofpushsize help lagging nodes to catch
up faster; however, they also increase the likelihood that
such nodes will waste bandwidth by sending junk and
make the protocol more vulnerable to denial of service
attacks launched by Byzantine nodes.

We now explain how BAR Gossip addresses both ra-
tional and Byzantine behaviors. We discuss robustness
against rational behavior within the framework of Nash
equilibria. In a Nash equilibrium [35], no node has an
incentive tounilaterally deviate from the equilibrium,
assuming every other node follows the protocol. One
weakness of this approach is that it ignores the possibility
that a node may have such an incentive if it can convince
some other node to also deviate with it. We investigate
the effects of such collusions in Section 5.

4.1 Designing for Rational Behavior

Our approach to making BAR Gossip robust to rational
behavior follows two principles. First, werestrict choice
within balanced exchanges and optimistic pushes. Re-
stricted choice provides safety properties: if a rational
node decides to participate in an exchange, then it sends
only messages as prescribed by the protocol. Second, be-
cause a rational node only participates in protocol steps
to obtain benefit, wedelay gratificationin both protocols
until the key exchange. Delayed gratification provides
the liveness properties: a rational node will participate
in all steps of the Balanced Exchange protocol because
doing so eventually yields a net benefit.

The design of the Balanced Exchange protocol exem-
plifies these principles. As discussed in the previous sec-
tion, the protocol consists of four phases: partner se-
lection, history exchange, update exchange, and key ex-
change. The first three of these phases use TCP as the
underlying send/receive primitive. In contrast, the fourth
phase uses UDP. We explain this choice when we discuss
the key exchange.

It is easy to see that the protocol does implement de-
layed gratification: a node only gains access to the up-
dates contained in its partner’s briefcase during the last
phase of the protocol; furthermore, a node that goes
faithfully through the protocol’s four phases does indeed
contribute to the dissemination of updates.

We now examine each phase of the Balanced Ex-
change Protocol in detail. The lemmas at the end of
the following subsections summarize our informal argu-
ments of how we restrict choice in each phase. Together,
the lemmas prove that a rational node participating in a
balanced exchange faithfully follows each step.

Then, in Section 4.1.6, we briefly reprise our analy-
sis for the Optimistic Push Protocol. Although restricted
choice still limits the messages that a rational node will
send, the extra flexibility of the Optimitic Push Proto-
col makes faithful participation less certain. Note that
although our analysis cannot prove that initiating and
faithfully responding to optimistic pushes is the rational
choice, our experimental evidence in Section 5 strongly
suggests it is.

4.1.1 Partner Selection

Problem: What if a rational node selects more partners
per round than prescribed or biases its selections instead
of choosing partners uniformly at random?

Partner selection highlights a fundamental difference
between traditional gossip and BAR Gossip. In a tra-
ditional gossip, each node periodically selects a partner
using a pseudo-random number generator (PNRG) and
contacts that partner to request an exchange of informa-
tion. Each node also generally accepts every gossip re-
quest it receives up to some per round maximum.
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Random partner selection lies at the core of gossip’s
robustness—it is what yields its rapid convergence, fault-
tolerance, and stable throughput. However, when we
consider rational behavior, this strength can become a
weakness. Rational nodes may have little incentive to ad-
here to a traditional partner selection algorithm, thereby
dissolving gossip’s robustness guarantees.

We address this challenge by focusing on the proper-
ties of the value used to seed the PRNG. We want this
value to be unpredictable to limit the effectiveness of tar-
geted attacks. In traditional gossip, this is achieved by
simply using a non-deterministic value as the seed; BAR
Gossip manages to keep the value unpredictable while
making it deterministic and therefore verifiable.

We now look in detail at the Balanced Exchange Pro-
tocol (similar arguments hold for the Optimistic Push
Protocol). In BAR Gossip, the senderS selects its bal-
anced exchange partner for roundr by seeding a PRNG
with the signature〈r, BAL〉S . S then deterministically
maps the first number generated by the PNRG into the
identity of its gossip partnerR.

S supplies the seed value,〈r, BAL〉S , when initiat-
ing contact withR. R then verifies that i) the seed is
a valid signature, ii)r is the current round, and iii) the
first number generated by the PRNG when seeded with
〈r, BAL〉S , maps toR. If all three tests pass, thenR ac-
cepts the gossip request fromS.

Note that the selection ofR asS′s balanced exchange
partner in roundr is also unpredictable. No other node
can predict whomS will contact for a balanced exchange
in roundr because no node can produce the appropriate
digital signature to seed the PRNG.

Using the standard Nash Equilibria analysis, ifS as-
sumes all non-Byzantine nodes follow the protocol, then
S will clearly not contact a node without the appropriate
seed. Likewise,S will not accept an invalid seed from
a nodeQ becauseQ is by assumption not following the
protocol and is therefore Byzantine.S has no incentive
for communicating with Byzantine nodes.

Lemma 1. In every round, a rational node only commu-
nicates with nodes as prescribed by the partner selection
algorithm.

4.1.2 History Exchanges

Problem: What if a rational node lies about its history?
Each balanced exchange protocol begins with a his-

tory exchange phase comprised of three messages. The
senderS initially provides a hash of its history to the
receiverR, providing a verifiable promise to send the
corresponding history before learningR’s history. After
verifying thatS should communicate withR by check-
ing the PRNG,R returns its current history. In the final
message,S divulges its actual history toR who checks

that the previously sent hash is consistent with the actual
history.

Rational nodes might lie about the updates actually
in their possession in order to increase their utility. In
this paper, we consider rational strategies that seek to
increase utility by maximizing the benefit received in
each exchange. More sophisticated strategies that max-
imize benefit across several exchanges—e.g., accepting
less benefit in one exchange for increased overall net
benefit—are outside the scope of this paper.

Rational nodes lie about their histories by under-
reporting or over-reporting. A rational node under-
reports its history by disingenuously claiming not to have
an update so that it will not have to send it. A rational
node will not under-report in a balanced exchange be-
cause doing so decreases the expected utility of the ex-
change in two ways. First, it may limit the exchange to
fewer updates than otherwise traded because the partner
may not have the unreported update. Second, the under-
reporting also decreases utility by introducing the risk
that the partner will send an update that the node already
holds but did not report instead of sending a new update.

A rational node over-reports its history by claiming to
possess updates that it does not have. A rational node
would do this to gain more utility in an exchange—for
example, when its partner has more to offer than would
actually be exchanged if the rational node followed the
protocol. Note that in order for a rational node to take
advantage of its partner, the rational node would have to
send abriefcasemessage in which the encrypted contents
contain a message that the rational node does not hold.
We show in Section 4.1.3 that a a briefcase containing
fake messages constitutes a proof of misbehavior (POM),
which a rational node will never send.

Lemma 2. A rational node will not over-report its his-
tory in either balanced exchanges or optimistic pushes.

Lemma 3. A rational node will not under-report its his-
tory in balanced exchanges.

4.1.3 Briefcase Exchange

Problem: What if a rational node places fake or garbage
data in briefcase messages?

After the history exchange commitsS andR to send-
ing k updates that they possess but their partner lacks,
each node sends a briefcase message to the other. Each
briefcasemessage contains the ids of the two parties, the
seed uniquely identifying this exchange, the encrypted
updates, and an update list stating what the encrypted
contents should be. Furthermore, the sender signs the
briefcasethereby promising that the encrypted contents
are genuine and match the update list.

A rational node might choose to include inappropri-
ate data in briefcase messages to gain benefit without
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offering anything of value to its partner. We structure
briefcasemessages so that a rational node only sends the
expected plaintext fields and encrypted updates. For the
plaintext, the receiver knows what to expect in each field
and refuses to send the key to its briefcase until it has
received a briefcase with a valid label from the partner.

We now explain why encrypted updates are also sent
as expected. The key idea is that including updates that
do not match the update list in the signed briefcase rep-
resent a POM that will lead to a node’s eviction. This
eviction happens in 3 steps:i) if no key is provided or
the briefcase contains invalid data, the receiving node
will forward the briefcase to the broadcaster, whoii) will
decrypt the data by generating the appropriate key from
its collection of all nodes’ private keys and the provided
seed, andiii) after checking that the briefcase is invalid,
issues an eviction notice with the next round of updates.

If a node generates a partner from the PRNG for which
it has an eviction notice, the node uses the PRNG to gen-
erate the first number that maps to a non-evicted partner.
When initiating an exchange, a node provides the evic-
tion notices proving the node’s right to avoid its original
selected partner.

To provide incentive for reporting invalidbriefcases,
the broadcaster offers small bounties for the first invalid
briefcaseproving a node’s guilt. We suggest that the
bounty be the inclusion of the reporting node in the set
receiving the next update from the broadcaster thereby
guaranteeing that the node receives all updates for the
next round.

Lemma 4. Rational nodes never place fake or garbage
data inbriefcasemessages.

Lemma 5. Rational nodes report malformedbriefcases
to the broadcaster.

4.1.4 Key Exchange

Problem: What if a rational node chooses not to send the
key or sends an invalid key?

After a node is satisfied with the plaintext content of
the valid signed briefcase it received, the node should
send via UDP the key to decrypt the contents of the brief-
case it sent.

The problem of exchanging symmetric keys brings to
light a hard problem. If we look to the fair exchange im-
possibility result [39], we see that, in general, there is no
deterministic solution to fair exchange without a trusted
third party. Surprisingly, we show that in the setting of
BAR Gossip, altruistic and rational nodes can exchange
keysfairly enoughwithout a trusted third party.

Consider the two ways in which a rational node can
deviate from the prescribed key exchange phase. First, a
rational node may send a key response message contain-
ing an invalid key. However, such a signed key response

message along with the corresponding briefcase would
constitute a POM.

Second, a rational node might ignore its partner’s key
request messages to save the cost of sending the sym-
metric key. However, if this rational node believes that
its partner will continue resending the key request mes-
sages, then the small savings of initially not sending the
symmetric key will quickly erode. Therefore, the linch-
pin in deterring this rational deviation is whether a ratio-
nal node believes other nodes will resend their key re-
quests.

We use acredible threatmechanism to root this belief.
A rational node, under the Nash Equilibria assumption,
will indeed resend the key request because it believes that
its partner is following the protocol, and will thus, faith-
fully respond.

The key exchange phase therefore provides the follow-
ing safety and liveness properties.

Lemma 6. A rational node does not send invalid key re-
sponse messages.

Lemma 7. A rational node eventually responds with a
valid key to key request messages.

4.1.5 Balanced Exchange Discussion

We see that rational nodes faithfully complete each phase
of balanced exchanges. Consequenctly, based on Lem-
mas 1 through 7:

Theorem 1. Rational nodes participating in a balanced
exchange faithfully follow the steps of the Balanced Ex-
change Protocol.

4.1.6 Optimistic Push Discussion

The Optimistic Push Protocol follows nearly the same
steps as the Balanced Exchange Protocol. As a result,
Lemmas 1, 2, 4, 5, 6, and 7 follow directly. However,
the extra flexibility to include junk prevents Lemma 3
from applying because a rational node may under-report
its young list to minimize the chance of receiving junk.

Additionally, rational nodes may employ a strategy to
always send junk instead of useful updates. The intu-
ition behind such a strategy is to maintain the scarcity of
updates in that rational node’s possession. Although we
cannot prove that a rational node would not choose such
a strategy, our experiments indicate that the effect of al-
ways sending junk actually has a negative impact on a
rational node because i) it has no discernible impact on
benefit and ii) junk is more expensive to send than legit-
imate updates.

4.2 Designing for Altruism

We originally intended the Optimistic Push Protocol to
provide a way to leverage altruism. In order for a proto-
col to leverage altruism, a node faithfully executing some
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part of the protocol should expect a decrease in utility. In
the end, we failed to take advantage of altruism and in-
stead designed a better protocol.

At first, we allowed altruistic nodes to offer young up-
dates for free, thus helping the initial dissemination of
updates. However, we observed that this was dangerous
because rational nodes then would under-report histories
in balanced exchanges; rational nodes would gamble on
getting an update for free via altruism instead of trading
for the same update in a balanced exchange.

To deter this behavior, we introduced the junk updates
so that there was nofree ride. At this point, the optimistic
push leveraged altruism because any node executing it
received negative utility. By introducing the optimization
of replacing the junk updates with something useful—
i.e., responding to optimistic pushes with updates from
the old list—we changed the expected utility of many
optimistic pushes from negative to positive. Indeed, our
experiments show that 88% of optimistic pushes never
return any junk updates, thus making it desirable for ra-
tional nodes to initiate optimistic pushes.

4.3 Designing for Byzantine behavior

Byzantine behavior is an unfortunate reality of dis-
tributed systems. In addition to enticing rational nodes
to behave correctly, we must also take measures to limit
the negative impact that Byzantine participants may have
on good users of the system. We limit our attention to at-
tacks within the scope of the protocol; DoS attacks based
on network flooding are beyond the scope of this paper.

In traditional Gossip protocols, Byzantine nodes can
initiate an arbitrary number of connections and impose
arbitrary load on non-Byzantine nodes. Our partner se-
lection criteria limits the number of connections any
node can make to a small constant, preventing Byzan-
tine nodes from abusing the system through the creation
of arbitrarily many legitimate connections.

Each seed contains only the round and type of ex-
change. A node can thus generate only two seeds per
round, resulting in two communication partners gener-
ated from the deterministic PRNG. The inherent lim-
itation on communication prevents a Byzantine node
from initiating legimitate connections with more than
two nodes in a round. Further, we assume that a node
keeps track of the other nodes that have contacted it in
the current round to prevent a Byzantine node from le-
gitimately contacting its partners multiple times within a
round.

The signatures used during the history, briefcase, and
key exchange portions of the protocol prevent rational
nodes from sending fake or garbage data. They also pro-
vide mechanisms for detecting and verifiably identifying
Byzantine nodes that attempt to break the system.

5 Evaluation

In this section, we show that BAR Gossip is a robust p2p
streaming protocol capable of providing stable and reli-
able throughput. We evaluate BAR Gossip through ex-
periments and simulations,1 and demonstrate that BAR
Gossip:
1. Performs better than traditional gossip in the presence

of rational nodes (Section 5.3).
2. Prevents unilateral deviation by rational nodes (Sec-

tion 5.4).
3. Is stable in the presence of significant collusion (Sec-

tion 5.5).
4. Tolerates up to20% Byzantine deviation (Section 5.6).

5.1 Methodology

Several parameters characterize the BAR Gossip proto-
col with regards to the broadcast stream and both Bal-
anced Exchange and Optimistic Push. The broadcaster
sendsbcastcnt updates per round tobcasthr percent of
the audience. The size of an update is, on average,
updsize bytes. Members of the audience then exchange
the updates until they expireupddl rounds later. Each
round lastsrlen seconds. We adopt the Round Retrans-
mission Limit optimization [5], to limit the maximum the
number of updates, denotedbalsize, that a node is willing
to disseminate in a round through Balanced Exchange.
The number of updates that a node is willing to dissem-
inate in a given balanced exchange decreases exponen-
tially with the number of balanced exchanges the node
has performed so far in that round: the node allocates up
to half of balsize updates to its first balanced exchange,
half of what’s left to the second, and so on. For Opti-
mistic Push,pushage denotes the maximum age of up-
dates sent in the young list of the sender, whilepushsize

is the maximum length of the receiver’s want list. The
relative cost of junk,cjunk, is the cost of sending a junk
update divided by the cost of sending the largest update
in the stream. Table 1 provides the values for these pa-
rameters for our simulation and prototype experiments.
Note that our simulation and prototype experiemnts use
a different value ofpushsize in order to maintain the ratio
betweenbcastcnt andpushsize approximately the same
in the two settings.

For our prototype evaluations, we implement the
BAR Gossip protocol in Python to stream an MPEG-4
video [40]. We recorded a 220 Kbps UDP video stream
at 30 frames per second using Quicktime Broadcaster
with one key frame every 60 seconds. Quicktime Broad-
caster generates UDP datagrams for the broadcast with
an average size of 764 bytes (σ = 234), resulting in 25–
51 datagrams per second.

Our broadcaster and audience are all 2.5 GHz Pentium
4 machines sharing a 100 Mbit/s Ethernet subnet. The

1Figures denoted with [sim] are derived from simulation data.
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Protocol
Parameter Simulation Prototype
bcastcnt(upd.) 10 25–51
bcasthr(%) 5 5
upddl(rounds) 10 10
rlen(sec.) 1 1
balsize(upd.) unlimited 65
pushsize(upd.) 2 8
pushage(upd.) 3 3
cjunk 2 1.27

Experimental
Parameter Simulation Prototype
# nodes 250 102
updsize(bytes) 1024 530–998

Table 1: Protocol parameter settings and experimental
settings used in simulations and prototype experiments
unless otherwise noted.

broadcaster reads the recorded video from disk, encap-
sulates each UDP datagram in an update, and unicasts
each update using UDP to a random 5% of nodes. Nodes
then exchange updates as in Figure 1. A client delivers
an update by extracting the datagram it contains and by
sending it to the local Quicktime client that displays the
video content. Nodes generate cryptographic hashes us-
ing SHA1, and signatures are created using RSA with
full domain hashing [4]. The Mersenne Twister algo-
rithm provides a suitable PRNG [30]. During experi-
ments, client machines were underutilized at 30% CPU
and 8 MB memory usage. Overall send and receive band-
width used for exchanges was typically 600 Kbps per
client. In the following sections we measure the relia-
bility (expressed as the percentage of updates received
by the deadline) jitter (measured as the percentage of
rounds in which an update misses its deadline), and band-
width characteristics of BAR Gossip. Unless otherwise
noted, measurements in simulations are averaged over
1000 rounds and using the prototype are averaged over
30 trials. Error bars are small in experimental data and
as such are elided from graphs for clarity.

5.2 Traditional Gossip

In the next subsection, we compare BAR Gossip against
a traditional push-pull gossip protocol [5], where each
node following the protocol selects one partner per round
uniformly at random, exchanges histories, and then ex-
changes missing updates.

In traditional gossip, a rational node will never send
an update because there is no benefit gained in the act.
Therefore, altruistic nodes do all the work of disseminat-
ing updates in the system. Our comparison does not con-
sider rational nodes that initiate more gossip exchanges
than prescribed nor does it consider Byzantine behavior
because traditional gossip was not designed for such en-
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Figure 2: [sim] Reliability experienced by an altruistic
node using traditional gossip versus BAR Gossip.
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Figure 3: [sim] A closeup of Figure 2 differentiating ex-
pected and worst case BAR Gossip.

vironments.

5.3 BAR Gossip vs. Traditional Gossip

We first show through simulation that while the perfor-
mance of traditional gossip degrades noticeably as we in-
crease the percentage of rational nodes, the performance
of BAR Gossip remains relatively constant. Further, the
additional overhead incurred by BAR Gossip is small—a
single altruistic node using BAR Gossip among a group
of rational nodes incurs only 1% overhead more than an
altruistic node using traditional gossip among a group of
altruistic nodes with a single rational node.

Figures 2 through 4, plot the reliability and the band-
width used by an altruistic node as a function of the num-
ber of rational nodes.

In traditional gossip, there are no mechanisms to de-
tect which nodes initiated exchanges or how many up-
dates a node (should have) sent. Consequently, rational
nodes in a traditional gossip protocol can freeload with-
out directly impacting the quality of service they receive.
As Figures 2 through 4 show, however, as more nodes
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Figure 4: [sim] Send bandwidth used by an altruistic
node using traditional gossip versus BAR Gossip.

freeload the overall system performance degrades.
The figures contain two lines for BAR Gossip corre-

sponding to the best-case and worst-case strategy that
rational nodes can follow from the perspective of an
altruistic node. The “BAR Gossip, expected” line is
obtained by assuming the best case, in which rational
nodes choose to follow the BAR Gossip protocol as spec-
ified: they initiate balanced trade and optimistic push
exchanges and respond to some other node’s optimistic
push with useful updates whenever possible. We mark
this line “BAR Gossip, expected” because our experi-
mental data, presented in Section 5.4 suggests that the
expected behavior of rational nodes in BAR Gossip is
indeed to follow the protocol faithfully in its entirety.
However, while we have proved in Section 4.1 that ratio-
nal node will execute the Balanced Exchange protocol,
we do not have have a similar proof for Optimistic Push.
We thus also show aworst caseline to bound the range
of possible rational behaviors—in the worst case, ratio-
nal nodes initate no optimistic exchange and respond to
optimistic pushes with junk.

Figure 2 demonstrates that an altruistic node in BAR
Gossip receives almost all stream updates even when all
nodes are rational. In contrast, nodes following the pro-
tocol in traditional gossip experience significantly lower
reliability once the number of rational nodes exceeds
50%. When all but one node are rational, traditional gos-
sip degenerates to the reliability that can be guaranteed
by the broadcaster alone, as rational nodes have no incen-
tive to communicate. Figure 3 highlights an important
difference between the expected and worst case behavior
for the BAR Gossip protocol. Although the reliability in
the worst case is still above 95%, the 2–3% difference
between the best and worst case has significant implica-
tions for jitter as we will see in the next section.

Figure 4 shows the bandwidth consumed by nodes
following the protocol as the fraction of rational nodes

varies. The bandwidth performance of the BAR Gos-
sip algorithm is nearly constant, and, in spite of the ex-
tra messages required to negotiate the fair and optimistic
exchanges, is very close to the bandwidth required by al-
truistic nodes in the absence of rational node. BAR Gos-
sip succeeds in discouraging free riders, while with tradi-
tional gossip altruistic node must bear more of the burden
of spreading updates, with bandwidth spiking sharply at
70% of rational nodes, before tumbling down to almost
nothing. The dramatic fall off coincides with the sharp
decline in reliability in Figure 2. In this area of the
graphs, the majority of updates being broadcast are re-
ceived directly by rational nodes that do not spread them,
reducing both reliability and bandwidth devoted to gos-
sipped data.

Note that the rise in bandwidth experienced by altruis-
tic nodes in traditional gossip represents dangerous neg-
ative reinforcement: as nodes defect to rational behav-
ior, the remaining altruistic nodes are punished with in-
creased bandwidth load, encouraging them also to defect
until reliability collapses. BAR Gossip exhibits robust-
ness to rational behavior with steady reliability and band-
width measurements.

5.4 Unilateral Rational Deviation

We use now our prototype to examine which strategy an
individual rational user would choose if it were to deviate
unilaterally from the specified protocol.

In this subsection all nodes but one follow the proto-
col, while the remaining node explores different strate-
gies. We assume that a rational node will prefer a strat-
egy that improves the quality of the delivered stream
by maximizing reliability and minimizing jitter and that
minimizing bandwidth is of secondary concern. We
make two further observations. First, since we do not
consider multi-round strategies, we only examine strate-
gies that provably improve a node’s per-round utility.
Second, a rational node that is missing one or more up-
dates always has a positive expected benefit from partic-
ipating in a balanced exchange and, according to Theo-
rem 1, will execute the Balance Exchange protocol faith-
fully. We then focus our attention on the choices avail-
able to a rational node with respct to Optimistic Push.
We measure the reliability, bandwidth, and jitter seen by
the one adventurous node for each strategy in Table 2.

The proactivestrategy identifies a rational node that
initiates optimistic push exchanges; otherwise, the node
is passive. The Data, Junk, and None strategies cor-
respond to rational nodes responding to an optimistic
push exchange with useful updates (if possible), junk, or
by declining the exchange, respectively. Note that the
proactive/data combination corresponds to a node that
follows faithfully the Optimistic Push protocol.

Figure 5 shows the probability that the adventurous
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Strategy Accepts OP Initiates OP Returns
Proactive/Data Yes Yes Data
Proactive/Junk Yes Yes Junk
Proactive/Decline No Yes None
Passive/Data Yes No Data
Passive/Junk Yes No Junk
Passive/Decline No No None

Table 2: The six different strategies that a rational node
may follow regarding Optimistic Push Exchanges (OP).
The BAR Gossip protocol specifies the proactive/data
strategy.
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Figure 5: Probability of missing an update experienced
by a rational node when all other nodes are following the
protocol.

node will miss an update by following each of the six
strategies, where lower lines correspond to better relia-
bility. Table 3 provides the corresponding average jit-
ter. When taken together, Figure 5 and Table 3 allow us
to conclude that rational nodes will prefer either proac-
tive/data or proactive/junk. This is perhaps not surpris-
ing, given that proactive strategies perform additional ex-
changes which are likely to result in more deliverable up-
dates than passive strategies.

The tie breaker between the top two strategies comes
from Figure 6, which shows proactive/data to be more

Strategy Avg. Jitter Std. Deviation
Proactive/Data 0.48% 0.75%
Proactive/Junk 0.52% 1.35%

Proactive/Decline 18.94% 11.50%
Passive/Data 16.61% 6.86%
Passive/Junk 16.39% 4.70%

Passive/Decline 54.55% 6.02%

Table 3: Jitter experienced by a rational node when the
remaining nodes are all altruistic.
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Figure 6: Average send bandwidth used by a rational
node when the remaining nodes are all altruistic. Band-
width is smoothed across the trial using a 4 second slid-
ing average.

bandwith thrifty than proactive/junk. This is not an acci-
dent: as Table 1 shows, we havedesignedBAR Gossip
with cjunk> 1 so that rational nodes will prefer filling
their briefcases, whenever possible, with valuable up-
dates rather than junk.

The conclusion we draw from this set of experiments
is that a rational node, when surrounded by other nodes
that follow BAR Gossip, appears to have no obvious
incentive to deviate from the protocol—in fact, quite
the contrary. While our experiments clearly fall short
of proving that BAR Gossip as a whole (Balanced Ex-
change plus Optimistic Push) constitutes a Nash equilib-
rium, it does suggest that a Nash equilibrium is likely to
be found at or near the strategy that corresponds to BAR
Gossip. For instance, while we are unable to prove that
there are no beneficial hybrid strategies that, depending
on the environment, switch between two or more of the
the six strategies we have considered, it appears that the
benefit of a proactive strategy derives from consistently
participating in more exchanges, making it unlikely that
switching occasionally to a passive strategy would pro-
vide a net gain. As for switching among proactive strate-
gies, it yields no change in benefit while changing band-
width costs, also providing little room for improvement.

Overall, we believe that the best (expected) and worst
case lines in Figures 2 through 4 provide a reasonable
bound on the actual behavior of rational nodes in BAR
Gossip.

5.5 Rational Collusion

One of the limitations of Nash equilibria is that they do
not model rational behaviors that involve collusion, in
which multiple nodes coordinate their actions to maxi-
mize their collective utility. We perform a series of sim-
ulations to assess the impact that a group of colluding
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rational nodes may have on the remaining nodes that fol-
low the BAR Gossip protocol.

We simulate aperfect collusionscenario in which all
colluding nodes broadcast new updates within the group
immediately upon receiving an update. Figure 7 shows
how the size of a perfect collusion group affects the qual-
ity of the stream seen by a node that follows BAR Gossip.
In this simulation, the colluding nodes use a passive/de-
cline strategy when gossiping with non-colluding ones.

Note that convergnce is worse than in traditional gos-
sip with rational nodes (see Fig. 2) because updates
spread faster among the collusion group than among tra-
ditional gossip protocols. Further, while altruistic nodes
within traditional gossip perform full exchanges and can
thus somehow counterbalance the uncooperative rational
nodes, in BAR Gossip the rational nodes outside of the
“in-crowd” are limited to perform balanced exchanges.

In small perfect collusion groups, colluding nodes get
most of their updates for free from other colluding nodes,
reducing their contributions to the rest of the system ac-
cordingly. With 1.2% of the nodes in a collusion group (3
of 250), colluding nodes achieve 100% convergence re-
gardless of the strategy used to communicate outside the
group. We thus assume that colluding nodes will follow
the least-expensive passive/decline strategy. Figure 7 il-
lustrates this strategy’s effect on altruistic nodes as the
size of the collusion group grows.

We find that when the collusion group size reaches
50% of the participants, altruistic nodes see an average
convergence of 93% for an update, resulting in an un-
usable stream. The perfect collusion group may be fea-
sible for small groups. However, large groups require
more bandwidth and latency (to broadcast to all mem-
bers), eventually degenerating to a broadcast protocol.
Ironically, as a colluding group grows in size, it might
require BAR Gossip to distribute updates internally as
trust begins to break down among members.

Still, collusion amounts toa relatively benign behav-
ior: after all, colluding nodes are not actively disrupting
the protocol, but simply are not enthusistically partici-
pating in it. It would not be hard to modify BAR Gos-
sip to accommodate groups of nodes that elect to use
among themselves their own private dissemination pro-
tocol. The broadcaster could provide a skewed PRNG
that biases nodes outside the collusion group to gossip
with each other andii) skew the initial multicast to re-
duce redundant messages to the colluding group, increas-
ing the distribution among non-colluding nodes. The col-
luding group would benefit by receiving fewer unwanted
exchange requests and redundant updates and outside
nodes would avoid wasting rounds being ignored by col-
luding members.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y 

of
 r

ec
ei

vi
ng

 a
n 

up
da

te

Proportion of colluding nodes

Figure 7: [sim] Effect of collusion on an altruistic node’s
reliability when colluding nodes are following the pas-
sive/decline strategy.

5.6 Byzantine Deviation

Rational players behave according to a well-known util-
ity function and represent most of the nodes in a p2p
system across multiple administrative domains. A few
Byzantine nodes may possess arbitrary unknown utility
functions due to malfunction or maliciousness, possibly
affecting rational behavior [1, 33]. Note that Byzantine
nodes do not require benefit from their deviations, al-
lowing them to pursue strategies with negative benefit
including Denial-of-Service (DoS) attacks.

To assess the robustness of BAR Gossip to Byzan-
tine participation, we assume that the goal of Byzantine
nodes is the inverse of any rational player’s: to increase
the cost and decrease the benefit of all rational nodes.
A Byzantine node can, for example, mount a denial of
service attack through TCP SYN flooding [23], but such
attacks are independent of the details of our specific pro-
tocol and are beyond the scope of this paper. We consider
Byzantine behavior within the limits of the BAR Gossip
protocol. Note that Byzantine nodes cannot compromise
safety: all data generated by the broadcaster is signed by
the source, and a node is only evicted from the system if
there is a signed proof of misbehavior (POM).

We consider worst case Byzantine behavior with re-
spect to a rational node. In the following experiments
using our prototype, a Byzantine node always provides
a history during a balanced exchange that is the com-
plement of its partner’s to induce the other node to ex-
change the maximum number of updates. During an op-
timistic exchange, a Byzantine node always announces
a complete young list and empty old list if initiating,
and requests the entire young list if receiving. A Byzan-
tine node never sends a briefcase or the corresponding
key. In either exchange, the Byzantine behavior does not
generate a POM that could evict the node, but the non-
Byzantine partner devotes significant bandwidth to the
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Figure 8: Reliability seen by a rational node employing
different strategies while the remaining non-Byzantine
nodes follow the BAR Gossip protocol.
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Figure 9: Bandwidth used by a rational node employing
different strategies while the remaining non-Byzantine
nodes follow the BAR Gossip protocol. Bandwidth is
smoothed across the trial using a 4 second sliding aver-
age.

exchange without receiving any benefit. The presence
of Byzantine nodes can be viewed as an increase in the
overhead associated with the environment as the costs as-
sociated with Byzantine nodes depends upon the proba-
bility of entering an exchange with a Byzantine node. To
mitigate the effects of this Byzantine behavior, rational
nodes could skew the likelihood of participating in an ex-
change with a Byzantine node by maintaining a list of un-
cooperative nodes, refusing some proportion of connec-
tions to such nodes. To show worst case behavior, non-
Byzantine nodes in our experiments ignore previous un-
productive exchanges. We ignore proactive/decline and
passive/decline strategies in which rational nodes decline
to participate in optimistic push exchanges.

Figures 8 and 9 show the reliability seen and band-
width used, respectively, by a rational node pursuing
each strategy in the presence of different proportions of

Byzantine nodes. The remaining non-Byzantine nodes
are altruistic. The choice of strategies remain similar
to Section 5.4 where we considered unilateral devia-
tion with no Byzantine nodes. When the proportion of
Byzantine nodes grows to 10% passive strategies do not
generate a viewable video stream while proactive strate-
gies fall apart at 30% Byzantine nodes. In either strategy,
sending valid updates is cheaper than sending junk in op-
timistic push exchanges.

We conclude that among the strategies available, a ra-
tional node should follow the protocol (proactive/data)
regardless of the presence of Byzantine nodes. If all non-
Byzantine nodes are altruistic, with a system comprised
of 20% Byzantine nodes, the bandwidth costs increase by
less than 10% while the convergence suffers by only 3%.
However, when the proportion of Byzantine nodes grows
to 30%, the video stream becomes unusable at 92% con-
vergence.

5.7 Topology Awareness

One obvious way in which our prototype can be im-
proved is by considering network proximity in partner
selections. Several studies have demostrated the advan-
tages of proximity-aware gossip protocols [12, 19, 25].

The challenge in applying these techniques to BAR
Gossip is in limiting the non-determinism. BAR Gos-
sip’s partner selection algorithm uniformly maps pseudo-
random numbers to partners. To consider network prox-
imity, we need to bias this mapping, yet retain the verifi-
able and unpredictable qualities that BAR Gossip’s part-
ner selection algorithm currently guarantees. One pos-
sible approach would be to globally assign Vivaldi [11]
coordinates to every node and use the Vivaldi distance
between the nodes as an estimate of their actual distance.
Each node can then cluster its neighbors into groups, as
in [19] and use the PRNG to bias peer selection towards
nodes in closeby groups.

6 Conclusion

We present the first peer-to-peer data streaming applica-
tion with predictable throughput and low latency in the
presence of correct, selfish, and malicious nodes. At the
core of our application is BAR Gossip, the first gossip
protocol defined under the BAR model. We leverage a
unique signature scheme to generate verifiable pseudo-
random numbers, allowing us to eliminate the opportu-
nity for rational nodes to hide behind nondeterminism
without sacrificing the benefits of the random communi-
cation pattern of gossip. Our experiments and simula-
tions show that our protocol provides good convergence
properties as long as no more than 20% of the nodes are
Byzantine or no more than 40% of the nodes collude.
In both cases, nodes following the protocol receive more
than 95% of the relevant updates in less than 10 seconds.
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