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Abstract—Campus and enterprise wireless networks are in-  To answer this question, we develop and systematically
creasingly characterized by ubiquitous coverage and risig traffic study the notion oftraffic-aware channel assignmeror
demands. Efficiently assigning channels to access points R8) i S Lo
in these networks can significantly affect the performance ad ~ WWLANS. We espouse traditional objectives for optimizing th
capacity of the wireless LAN. Several research studies have channel assignment, and show how they can be modified
tackled this issue. However, even the state-of-the-art appaches to incorporate the observed traffic demands of wireless APs

assign channels without considering prevailing traffic derands. : : : : .
The channel assignment problem has a parallel in the wire- and clients, as well as their locations. We outline simple

line world, where recent work has established the tremendosi approaches for collecting current demand information acpr
effectiveness of using traffic demands in network engineery tice. Obtaining optimal channel assignments that satiségé

decisions. Motivated by this, our paper explores whether th qual- At ; _ ;
ity of a channel assignment can be improved by incorporating objectives is NP-Hard. Therefore, we develop a simple set of

observed traffic demands at APs and clients into the assignme  techniques for efficiently obtaining channel assignmehé t
process. Using extensive simulations over publicly-avaible wire-  can track the prevailing network conditions very closely.

less traffic traces, as well as synthetic settings, we showdtbeing 1o evaluate the benefits of our traffic-aware approach, we
traffic-aware could substantially improve the overall quality of a - . . . .
channel assignment. We develop and evaluate practical traé- US€ extensive simulations over both real topologies arffictra
aware assignment algorithms that predict future demands bsed demands (available publicly at [10] and [12]), as well as
on historical information and use the predicted demands for oyer several synthetic settings. We also conduct many small
32?;%1?,%%‘Zgg%ﬁh':e'gfuéixv; tgzsetrgggsg%tgritrngn(;:‘;f.ectlvess of scale_testbed expe_riments. In either_ case — simu_lations or
experiments — we first evaluate a setting wheeefect infor-
. INTRODUCTION mation about current and future demands is available. These
In the past few years, wireless networks have made signifiaseline analyses help establish the potential benefitaftitt
cant in-roads into the common workplace. Today, most enteiware channel assignment algorithms. Our simulations and
prises and campuses - large or small - offer near-ubiquitogigperiments show that being traffic-aware could substantia
wireless coverage. There is also anecdotal evidence tkat ithprove the quality of a channel assignment in terms of total
traffic volumes in workplace WLANSs have grown significantlynetwork throughput. We find that approaches that incorgorat
in the matter of just a few months [11]. the traffic demands of both clients and APs are often superior
Ensuring good wireless performance in these modern sgian those that solely rely on AP traffic demands. The exact
tings is challenging. The broadcast nature of wireless commlevel of improvement from traffic-awareness depends on the
nication implies that WLANSs are plagued by severe interfegeployment scenario — e.g. the density of wireless nodes, th
ence issues. Growing densities of deployment together witlffic volumes, and the number of “hot-spot” APs. We care-
increasing traffic volumes only exacerbate these problems.fully evaluate the operating conditions where traffic-asvarss
Traditionally, carefuthannel assignmeiias provided some can offer the maximum benefit. We also observe that traffic-
respite from this problem. In the common case, network agware channel assignment offers similar fairness as egisti
ministrators conduct detailed site surveys, and try ouibuar traffic-agnostic approaches.
configurations to manually determine the right channel andin practice, the assumption of perfect demand information
placement for each AP. The state-of-the-art research [18], is unrealistic. To address this, we propose several appesac
also offers similar static solutions. However, the eveawading for traffic demand predictionand we extend our traffic-aware
nature of the wireless frontier, with newer devices and usefiannel assignment algorithms to use predicted demands.
applications contending for the wireless medium [11], wiNVe show that the performance from the resulting channel
soon render these manual, one-time approaches ineffectiveissignments is very reasonably close to the ones obtairled wi
Researchers in the wireline world have faced similar issuggcess to perfect information (within 5%).
when static routing weights were deemed insufficient for The rest of the paper is organized as follows. In Section I,
managing the resources of large ISP networks. As a solutigie survey related work. We introduce traffic-agnostic and
researchers advocated adapting the routing weights toweube traffic-aware performance metrics used for channel assign-
traffic demands. In the past few years, several operatiordil anent in Section IIl, and develop assignment algorithms in
research papers have shown the tremendous effectivenessedtion IV. In Section V, we describe prediction algorithims
this approach. Motivated by the success of these approachegmate traffic demands. We introduce our evaluation ntetho
in the IP world, our paper asks the following question: ology and datasets in Section VI. We present simulation and
Does the quality of a channel assignment improve testbed results in Section VII and Section VI, respedyive
when dynamic traffic demands in the WLAN are We discuss practical issues in Section IX and conclude in
taken into account? Section X.



1. RELATED WORK mitted. In contrast, WLAN-settings require neighboringsAP

We review past approaches to channel assignment applie(lﬂdoe ?]s?gned tobd'?t'mt ﬁhanrr:els 0 m&t'ga‘i mtifr.fe!enc
two different settings: enterprise/campus WLANSs, and mulfNevertheless, we believe that the core idea of traffic-aware

hop mesh networks. We note our focus is on the first settirgiannel assignment can be applicable to these settingslias we
Next, we briefly review IP traffic engineering approaches

Campuses/Enterprises.Assigning channels across APs in, .4 discuss how they motivate our work.

WLANS has traditionally been a static one-time approach:[13 ) ) L .
First, net-admins conduct an “RF site survey” of the campJgaff'C Engineering in ISP Networks. Traffic demands have

and determine the location and the number of APs requirBﬁen shown to hav_e '_[rerr_1end_ous utility for network provision
for adequate coverage. Then, the admin manually configui@g f"md route optlmlgat|0n n ISP networks [3], [4], [24].
APs with 802.11's non-overlapping channels to ensure tH%tW'de range of traffic engineering approaches have been

close-by APs operate on different channels when possitte, #Fveloped to incorporate wraffic demands. At a high level,

show in this paper that such static approaches result in pddfS€ @Pproaches maintain a history of observed traffic déma

performance in the face of shifting traffic demands. matrices, and optimize routing for the representativefitraf

There are several research proposals for channel assign ands extracted from the observed traffic during a certain

in campus WLANS [15], [17]. However, unlike our paper,h'Story window. They differ in how representative demands
fe derived. Inspired by these results from the IP wireline

none of them consider the benefit of tailoring the chann@ i K whether bei i h imilar besefi
assignment to prevailing traffic demands. For example, L rid, we as w_et er being traffic-aware has similar besiefit
or managing wireless network spectrum. We also seek to

et. al [15] advocate identifying “expected high-demandpsi . )
in a given WLAN deployment, and assigning channels so ggvelopgpgrallgl set of approaches for deriving traffic aedn
iiformation in wireless LANs.

to maximize signal strength at the demand points. This
still a static, one-time approach. Mishra et. al [17] argfoet t I1l. PEREORMANCEMETRICS
clients have a better view of interference (since interfeee , . . L ) ,
directly impacts their performance), and therefore channe First: we discuss a traditional optimization metric used in
assignment must take client-side views of interference in‘t:han_nel as_3|gnment and the_n present_ m_od|f|cat|ons _to make th
account. However, this approach only takes client Iocaitiorqﬁ'e_t”C traffic-aware. A de.5|r_able optln_1|_zat|on metric shibu
into account and assumes that all wireless nodes exhibit ﬁ‘?é'Sfy two key cond|t|0n_s. (0) easy/efflcllent to computada
same level of activity at all times. In our work, we show théll) Strongly correlated with the network’s performance.
potential benefit of taking into account the instantaneeusls 1 1€ goal of channel assignment is to ensure that wireless
of activity of different wireless nodes. We also show how t§0des which belong to distinct Basic Service Sets (BSSs),
predict future trends in activity based on historical imhation. @nd areé within interference range, operate on distinct oéisn
Recently, several commercial “spectrum managemerWhenever possible. A BSS includes an AP and all clients
products have been developed to automate channel assignrigicciated with it. An entire BSS operates on a single channe
across WLANs. Some of these products perform dynan‘ﬁéso' only nodes belonging tp dlffer(_ant BSSs can interfere.
channel selection based on the current operating congition™ n?tural_way to capture this goal is to use a “channel sepa-
(e.g. AutoCell from Propagate Networks [2] and Alcatéidtion” metric. At a high level, the metric aims to maximibet

OmniAccess AirView Software [1]). A few of these also Oﬁepiﬁerence in_ the_ channels used by interfering.nodes. Intwha
interference mitigation via transmit power control, anddo Tollows, we first introduce two channel separation metri t

balancing across APs. Unfortunately, due to their proanjet ignore tral_ffic-demgn(_js, and then extend them to account for
nature, very little is known about the design of these pregjuctne Prevailing traffic in the network.

their potential benefits, the operating conditions theykmmst  Traffic-agnostic, client-agnosticchannel separation.Let C;
under, and reasons for their failings (if any). In our worle wdenote the channel assigned to AP d(i,j) denote the
provide a thorough analysis of these issues for traffic-awalistance between and j, I denote the interference range,
channel assignment. We believe that our observations will bnd A denote the set of all APs. Also, ifi(i,j) < I,
crucial to the design of future commercial offerings. define Separation(i,j) = min(|C; — Cjl|,5), otherwise
Separation(i,j) = 5. The channel separation metric or

Multihop mesh networks. Two classes of solutions have” =F“""
jective can then be expressed as:

been proposed to improve network capacity in multihop me&R
networks: The first class, proposed by Raniwataal. [20],

[21] advocates equipping mesh network nodes with multiple Magimize: Y Separation(i, ;)

network interface cards (NICs) operating on different cieds. $jEA

The second, proposed by Bahl et al. [5], advocates a newrhe interference rangk - which is key to the definition of
link-layer mechanism called SSCH, wherein neighboringtmesgeparation - is computed as follows: # is the strength in
nodes perform synchronized channel hops to better explgim of a transmitted signal, then the received signal streng

frequency diversity. In both cases the goal is to ensure thata distance meters away i — (40+3.5-10-log(d.)). [22]*
neighboring nodes are assigned the same channels, or over-

lapping hopping sequences, for data to be successfullg-tran *we use constants that correspond to measurements reporfed].i



Throughput (Mbps)

Then,I, is defined by the equatioR— (40+3.5-10-log(I)) = transmitters. In Section V, we discuss how send and receive
T, whereT is the carrier sense threshold in dBm. demand information can be collected in practice.

Traffic-agnostic, client-awarehannel separation.The above 10 incorporate traffic demands, we modify the traffic-
metric only considers interference among APs. In real nétgnostic channel separation metrics so that interferirdeso
works, minimizing interference introduced by client trams- with high individual demands (specifically the BSSes cantai
sions is also important. Indeed, our analysis of real trafi@d such nodes) are first assigned to non-overlapping ctignne
traces shows that clients transmit a significant volume ¥fe use the following insight: Whenever two nodes A and B
traffic. It is equally important to reduce the interferenc@re in interference range of each other, the transmissibns o
experienced by clients due to transmissions from neighigori®n€ node will effect not only the transmissions at the other
APs or clients (e.g. might arise in hidden terminal situasjo node but also the receptions at the other node. The former
To do this, we extend the above client-agnostic chanrfdfect is a manifestation of 802.11’s carrier sense and back
separation to the one below, whef® denotes the set of off mechanisms. The latter occurs due to packet collisioms a
clients in the network. We assume that the client locatio§@llision drops that can arise in hidden-terminal settings
are known a-priori. In effect, the next metric factors in the Using this insight, we scale the channel separation between
channel separation between any two interfering APs, any tfloand B with the following “weight:
interfering clients that are associated with different Adpsl,
an interfe?ring AP-client pair. Wap =S54 x (S5 + Rp) + 55 x (4 + Ra)
Where S is the send demand, an@ is the receive demand.
L The first term in the sum reflects the effect of A's transmissio
Z Separation(, 7) on the transmission and reception of B. Intuitively, if waiad
L.j€AUB,BSS(1)#BSS(5) notation and letS, (R4) denote the fraction of time As
Nodesi, j in the sum above must belong to different BSSsransmissions (receptions) acquire the medium, the firat te

Extending channel separation to be traffic-aware.The reflects theprobability of A's transmissions interefering with
above two metrics do not take into account the actual traff@s transmissions or receptions. Similarly, the secondnter
volumes of individual clients and APs. Therefore, optimigi reflects the effect of B on A.
either of these metrics may force interfering but relagivel Using such weights, we can modify the first of the traffic-
inactive APs or clients to operate on non-overlapping cksn agnostic metrics above to the following traffic-aware cteinn
whereas, a smarter channel assignment would have re-usegaration metric. Note that this metric ignores interfeee
these channels to improve spatial reuse and mitigate @mterfffom clients, and hence isaffic-aware, but client-agnostic
ence at other active network locations.

To verify traffic varies across BSSs, we examine the time
series of traffic demands at APs from publicly-availabledsa
As Figure 1 shows, traffic volumes indeed vary substantially
across APs, and also across time. We observe similar \ariati Similarly, we can modify the second traffic-agnostic metric
among clients. Such variation prevents traffic-agnostitricee above to also account for traffic and interference from ¢ien
from fully exploiting the capacity of the wireless channel. This gives the followingraffic-aware, client-awareobjective:

Maximize :

Mazximize : Z W ; x Separation(s, j)
1,JEA,jFL

4 T

T T T T
Max loaded AP Max loaded AP

8 — . . . . ..

o1 Mot loaded AP 1 as | Modioaded AP < 1 Mazimize : Z W, ; x Separation(i, j)

sf 1 2 i,je AUB,BSS(j)#BSS(i)

sl | S 25}

at y : g lz'x IV. CHANNEL ASSIGNMENTALGORITHMS
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2y s ;X 1 S . Optimizing channel assignment is known to be NP-

NE SR LN PP w1 IS0 °'Z L hard [17]. The hardness properties also hold for the saparat
I e T g metrics above. Since finding an optimal assignment is arsluou

(a) Dartmouth: LibBIdg (Sent data) (b) IBM: MBIdg (Sent Dpta we use simulated annealing [23] to optimize each channel
Fig. 1. Time series of traffic for a heavily loaded and modsyaloaded AP assignment metric. Simulated annealing is appropriatéig t
from LibBldg in the Dartmouth Data (a) and MBIdg in the IBM dalb).  context since it can iteratively improve the solution while

Before outlining the traffic-aware metrics, we informallyavoiding being stuck in local optima. To achieve good perfor
define the term “demand”. The “sending” demand of a nodensance and speed up the convergence of simulated annealing,
the aggregate amount of data (excluding ACKs) that it wish@ge use an informed initialization algorithm that is insplrgy
to transmit to various recipients per unit time (in the cafa o the Chaitin’s approach to the register allocation probléin [
client, there is a single recipient — its AP; in the case of &) A o )
all of its clients could be recipients). Similarly, the “edeing” A INitialization Algorithms
demand is the aggregate amount of data (excluding ACKs)We first describe an initialization algorithm that does not
per unit time that the node wishes to receive from variow®nsider traffic demands and treats every node equally. Then



we extend the algorithm to account for differing traffic denew one. Otherwise, we update the current assignment with
mands at each node. In either case, initializatioes notake the new one with the probability/rew—fewr)/T whereT is
client locations into account, irrespective of whetherrietric current temperaturd,,.,, andf...... are the values of objective
in question is client-aware or client-agnostic. functions under the new and current channel assignmengs. Th
Figure 2 shows the algorithm for the traffic-agnostic caseemperature gradually decreases so that we are more likely t
The intuition of the algorithm is to defer channel assigntneaccept a worse solution initially and avoid being stuck atlo
for those APs that have many conflicts with other APsptimal. As the temperature approaches to 0, we progrégsive
This is because for such APs, the choice of the channelnmve in the direction of improving the objective functiorutO
very important, and more restrictive, as it depends on tlesaluation sets initial temperature to 10, and each itmati
channels assigned to neighboring APs. Also, when an A®duces temperatue to 0.999 of the current value. We use 1000
has few conflicts, we have a greater amount of flexibility iiterations and the output is the best solution (in terms ef th
assigning channels. For such APs, we can even assign ceangieken separation metric) over all iterations.
without knowing the channels chosen for the neighbors.ig1th We note that the execution time of this approach is sufficient
algorithm, K refers to the number of non-overlapping chasinefor practical WLAN settings (e.g., it takes less than 1 selcon
for SA to compute the optimized metric value in the traces we
1) Construct a conflict graph G for APs in the WLAN, where| thetady). Note that while SA is an effective search algorithm,
2 iéoz';lnaﬁ;i%% r%gtevgeiﬁnt r?g)::é\;]vflicr;ogdrzz rilfttrr]];yhigtsegggrﬁlee e ¢ it does not guarantee globally optimal solution within thes
K, choose the one with maximum degree and delete it and jferations. This is not surprising due to the NP-hard naaire

associated edges from the graph and push it onto a stack. the channel assignment problem.

Repeat until no vertices with degree less than K remain.
3) If the resulting graph is non-empty, choose the vertex wit V. TRAFFIC-AWARENESS INPRACTICE

?ui)ﬂr?tu$tgetghfitggg rgr(r)w?(\)/estlte;rozm the conflict graph and 1, i section, we address two issues: (1) how to collect
4) For all the vertices on the stack, pop one vertex at a timg, traffic demand information in practice and (2) how to estenat

add it back into the graph and color it with a color that is| traffic demands from historical information.
different from all its neighbors (up to this point).

If a vertex cannot be colored, mark it. A. On Obtaining Demand Information

5) For the marked vertices, assign them a color that results |i . . .
minimum interference, where interference is calculated as In practice, AP and client traffic demands can be gathered
# interfering APs assigned the same color. using SNMP [8]. Most commercial access points export an

SNMP management interface that can be polled at 5 minute
o i ] intervals to obtain: (1) total bytes sent by the ARD(tOCcY;

To extend the !n|t|al _asmgnment tp be traffic-aware cas@) pytes received at the ARIIOCH); and, (3) the number of

we do the following: First, we modify the degree used iRce clients currently associated with the ARumClients.

step #2 and #3 by weighting it with total traffic as follows: rogether these statistics provide estimates of the send and

degree(i) =3 ;cq inter fere(i, j), whereinter fere(i, j) = receive demands of both APs and clients at 5-minute time
0 if i andj are not in interference rang@ter fere(i,j) =  granularity, as follows:

sent(j) + recv(j) otherwise. Notesent(j) andrecv(j) are
sent and received traffic at nogl@ormalized by the link band-

Fig. 2. Initialization algorithm for channel assignment.

IfOutOct(t) — I fOutOct(t — 5)

Send_AP_Demand[t —5,t] =

width. Second, in step #5 we assign marked vertices with a A(t)
color that results in minimum interference, where the fi#er — reco_ap_Demandit —5,¢ = LImOcHD) *Aif)“‘ocm )

ence at nodé from nodej is defined asnter ference(i, j) = I InOct(t) — 1 InOct(t — 5)

0 if 4 andj are on separate channels or not in interferenc&nd-Client-Demand[t —5,t] = A(?) - NumClients(t)
range;inter ference(s, j) = sent(j)+recv(j) otherwise. We IfOutOct(t) — IfOutOct(t — 5)
then choose the color that results in the minimum value of A(t) - NumClients(t)
inter ference(i,j) summed over alj € A.

ecv_Client_Demand[t — 5,t] =

. . We assume uniform demands across all clients of an AP. We
B. Further Improvement via Simulated Annealing (SA) : . . ) .
ST ) note that finer grained per-client demand information can be
We apply the above initialization algorithm to get a googptained by collecting and correlatisgslog andtcpdump

initial channel assignment. We further improve the channglagistics (this approach was employed in [16]).
assignment through an iterative search; we compared severa

options for the search, including random walk, simulate@- Predictability of Traffic Demands
annealing (SA) with random walk and greedy search, andThe traffic-aware performance metrics require knowledge
found that SA offers faster convergence and better assignmef traffic demands. In practice, the future traffic demands ar
Therefore we use SA in our evaluation. not available, but have to be estimated based on historical
SA is inspired by the metal annealing process. In eademand information. The channel assignment is then based
iteration, we randomly assign one of the APs (and its cllentsn predicted demands. This gives rise to two practical ssue
to a different channel from the current assignment. If the ng1) How to use historical data to identify trends in demands
assignment is better, we update the current assignmenthveith and to predict future demands reasonably accurately? () Ho



to ensure that the resulting assignment is robust to mB92.11b and 11 Mbps medium bit rate with RTS/CTS enabled
predictions and to wild fluctuations in demands? and transmission range set to 60 meters (with corresponding
To answer these questions, we present a family of practicaterference range = 120 m). We generate constant bit rate
traffic-aware algorithms for channel assignment. These-aldCBR) traffic at a specified rate with data packet sizes of
rithms, each discussed below, offer varying degrees oktrad 024 bytes. The channel assignment algorithm described in
offs between the two issues discussed above. Section IV is applied to optimize the channel separation

Exponentially-Weighted Average of Demand (EWMA). metrics. In order to evaluate the effectiveness of an assigm,
This approach predicts AP demands at timdy using a We compute theotal throughputover all connections.
simple weighted moving average of demands observed g0 Synthetic Scenarios

previous intervals. More recent demands are given greate

weight: Dem_Pred(t) = w - Dem_Actual(t —1) + (1 — w) - hrst, we use synthetic scenarios to understand when traffic

. . aware channel assignment is beneficial. We generate simthet
Dem _Pred(t —1). We set the weighty = 0.9. We use this E’ﬁ ologies and traffic traces using the evaluation methagol

to first estimate the AP demand estimates. We also estimIn 17], [18]. Specifically, we generate topologies that sish
the number of active clients using EWMA. We then combine ’ - 9P Y. g polog

. i . ; of 50 APs and 200 clients in a given area. Like [17], [18],
the two estimates to derive the predicted client demands. we generate 15 random topologies, where each client has on

Optimal for the Previous Interval (PREV). Here, the average 4 APs in its communication range. Different from
channel assignment for timeis simply the optimal channel [17], [18], we generate two types of constant-bit-rate (§BR
assignment for the traffic demands in tinle- 1 (or the UDP traffic to shed light on how traffic distribution affects
most recently sampled time interval, if there are no samplgfe benefits of traffic-aware assignments. The two types of
available for¢ — 1). In other words, PREV is simply EWMA demands are (i) uniform random traffic demands and (ii)
with w = 1. We note that compared to EWMA, PREV is morg\otspot traffic demands. In uniform random traffic, each node
sensitive to short term traffic fluctuations. is randomly assigned a demand from O to the maximum CBR
Optimal Over a Time Window (PREV _N). There are several throughput on a wireless link (3.6 Mbps for our NS-2 sett)ngs
traffic patterns where PREV could be ineffective, e.g.,quid In hotspot traffic demands, a specified number of “hotspots”
bursty traffic. Our next approach, PREV, tries to address this are created; each of the hotspots is formed by randomly
drawback by simultaneously optimizing the assignment féelecting an AP and all the other APs within its communicatio
all traffic demands observed over a sizeable history windot@nge. All APs in the hotspots have traffic demands uniformly
In other words, given an optimization metric, PREWVwill ~ distributed between 0 and 3.6 Mbps, and all other APs have
derive a channel assignment that maximizesttial value of traffic demands uniformly distributed between 0 and 10 Kbps.
the metric for the traffic demands from the paétintervals:
Mazimize : ), , y Metric(Demands(t — N)), where

Metric(Demands(t)) denotes the value of the optimization !N addition to synthetic scenarios, we also conduct trace-
metric under the traffic demands @t driven simulations over two publicly available data selee t

) i . i first was collected at Dartmouth College [10], [11] in 2004
Peak Demand in a Window (PEAKN). This is a variant

S . and the second dataset was collected at the IBM T.J. Watson
of PREV.N: Instead of optimizing for all sets of demands IMResearch Center [12] in August 2002

a time window, PEAKN obtains the optimal channel assign- ,
ment for theworst-casedemand-set within the history window,Partmouth Traces. We analyze two weeks’ worth of Dart-
This allows the channel assignment to be more responsive”ﬂS’u'[h SNMF,) data, collected between Feb 1st and Feb 15th,
sudden increases in aggregate network utilization. 2004. Our S|mulat|ons start on day 10 of t_hese traces and,
We evaluate the effectiveness of these algorithms undePD.jlleSS otherwise noted, cover 2 full days. Wh".e the Dartiiou
variety of settings in Section VII. (_Zollege traces _covered several campus _bu_|Id|ngs, our avalu
tion and analysis focus on two specific buildings: “ResB#lg9
VI. EVALUATION METHODOLOGY and “LibBldg2”. These buildings contain 12 and 20 access

To understand the benefits of traffic-awareness in differef@iNts respectively. Other buildings of similar type (eother
operating conditions, we evaluate the effectiveness dficra ResBldg's) had fewer access points. o
awareness using simulations based on both real and synthegi’ '€ Dartmouth traces includsNMP statisticsand number
topologies and traffic. In Section VIII, we further evaluie Of active clients per APsampled 5 minutes at all APs. In
performance using testbed experiments. Below we desdribe £ddition, the data contaimgographic x-y-z coordinates for the

simulation methodology and datasets we use in our evahiati6\P'S AS described in Section V-A, we use the SNMP statistics
and client-AP association information to derive AP andrdlie

A. Simulation Methodology side demands (in Mbps) for every 5 minute interval. Also,
We use the publicly available version 2.29 of NS-2 wit§/e assume that clients associated with an AP are randomly

real traces or synthetic data to determine AP and clielBM Traces. Similar to the Dartmouth data, the IBM traces

locations and their data rate. Unless otherwise stated,sge gontainedSNMP statisticeandnumber of active clients per AP

C. Trace-driven Simulation
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Fig. 3. Comparison of traffic-aware schemes against thafficragnostic counterparts in synthetic topologies.

for three different buildings: “SBIdg”, “MBIdg” and “LBIdY network has high load and hence high channel utilization.
Of the three, our study focuses on “MBIdg”, which has 38levertheless we still observe up to 48% improvement in
APs. Unlike the Dartmouth data, we did not have the locatio@shotspot case. These results suggest that the trafficcawar
of the APs. Instead, we constructed synthetic coordinates fissignment is most useful for hotspots-style scenarios. Th
the APs by placing them at hand-picked locations in a 5-trilarger benefit of traffic-awareness under hotspots is re@liz
building spanning a 235x100m lot. We analyze two weelzecause traffic-aware assignment aims to assign APs with hig
worth of SNMP data collected between Aug 1, 2002 and Adgad to non-overlapping channels as much as possible; this
14, 2002. Our simulations start on day 11 of these traces arjnificantly increases the throughput. Moreover, we oleser
unless otherwise noted, cover 2 full days. the throughput (in absolute values) is highest when theratlan
Our trace-driven simulations progress in rounds, whereaasignment is both traffic-aware and client-aware.
single round covers a given SNMP measurement interval.Note that in Figure 3 there are a small number of cases
Within a round, we apply the channel assignment algorithwhere we observe negative throughput improvement. This
as described in Section 1V, to optimize the channel separatiis because the current channel separation metric (even afte
metrics. We quantify the effectiveness of an assignment ycorporating traffic and client awareness) is not perfeot.
computing the aggregate throughput over all connections. example, when two APs do not interfere but some of their
To study the importance of traffic-awareness, in our simulalients interfere, the current metric only takes into actou
tions, we focus on intervals with 50% simultaneously active the interference between these clients but does not incatgo
APs. We consider an AP to be active if the total volume ahe additional effect of head-of-line blocking at APs calise
traffic it sends and receives exceeds 10Kbps. Also, in ordgy the interference experienced by their clients. We plan to
to increase net utilization, we scale up the traffic demandsfurther improve the metric, and we expect the benefit of taffi
these intervals (on average, we scale 60X across all bggjlin awareness will be even larger under a metric that correlates

more strongly with network performance.
VII. SIMULATION RESULTS gl P

We now present our evaluation from NS-2 simulations. Wg Trace-Driven Simulation Results
first use synthetic topologies and traffic to understand when ) ) . )
traffic-aware channel assignment is most beneficial. We quanNext we compare different channel assignments using sim-
tify the effectiveness of a channel assignment by computitéfition based on real traffic traces, as described in Sewfion
the total throughput achieved by all network flows under the 1) Performance Benefits of Traffic-awarenessirst we
assignment. As we will show, the benefit of traffic-awaren@sscompare four channel separation metrics when assuming we
larger when the load is imbalanced. Then we further compdtave perfect knowledge of traffic-demands. Figure 4 shows
different channel assignments using trace-driven sirmuiat cumulative distribution function (CDF) of performance im-
under accurate and inaccurate traffic demands. provement of various channel assignments against a traffic-
agnostic/client-agnostic baseline. Although not showrehe
we note that the average throughput improvement is 4.0%-

To understand the benefit of traffic-aware assignment, \Ber% after incorporating client-side information alortegises
create two types of traffic demands: (i) uniform, and (ijo 5.3%-11.1% by incorporating traffic-demands alone; and
hotspots, as described in Section VI-B. Figure 3 shows tharther to 8.3-12.4% by incorporating both traffic-demaadd
CDF of improvement of traffic-aware channel schemes ovelient-side information. As in the synthetic case, the antou
their traffic-agnostic counterparts under each demand #pe of improvementis very traffic-dependent. When traffic is enor
we can see, the improvement of traffic-awareness is mostlyenly distributed, we see little improvement from traffic-
within 10% under uniform demands, whereas the improvemeware assignment. When traffic is more heterogeneous, the
under hotspots traffic is significantly higher, up to 93%mprovement is larger, as much as 40%. Indeed, the classic
Moreover, the improvement in 1-hotspot case is higher thdain fairness metric computed for the demands correspgndin
2-hotspot case because the topologies are dense and witlo the maximum improvement of 40% in Figure 4(a) is almost
hotspots (based on our generation) a large fraction of tAX inferior compare to the fairness for median-case demands

A. Simulations on Synthetic Settings
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. . Figure (a) plots the average improvement in throughputoperdnce. Figure
Figure 5 further compares the performance |mproveme(B? plots the CDF of the throughput improvement at differdansities.

of the two traffic-aware metrics against their traffic-agios

; . . EWMAJPreviouRPeaks|Peaks
counter-parts. The average improvement of client-agoosti ResBIdg 0.50 | 051 [ 0.73 | 1.12
traffic-aware metric over client-agnostic traffic-agnossi be- LibBIdgl 0.48 | 0.49 | 0.63] 0.88
: . MBIdg | 0.75 | 0.93 | 1.05] 1.21
tween 4.6-10.1%, whereas the average improvement of €lient
aware/traffic-aware over client-aware/traffic-agnossicli2 - TABLE Il

6.6%. The former improvement is larger because the baseline PREDICTION ERROR

performance is worse. The largest improvement of traffic- 4) Evaluation of Practical Traffic-aware Algorithmstn
awareness is over 35%, across either metric (Figure 5(a)).the previous evaluation, we assume that traffic-aware @ann
2) Impact on FairnessNext we compare different assign-assignments have perfect knowledge of traffic-demands. In
ments in terms of their fairness, which is quantified usingractice, such information is not known a priori, but has
classic Jain’s fairness index. As summarized in Table |, & be estimated based on historical information. A natural
the algorithms result in very similar fairness. This indésa question arises: can the prediction error offset the piatent
that throughput improvement from traffic-aware assignnientgain of traffic-aware channel assignment? To answer this
not at the expense of fairness. question, we first compute the error in predicting traffic

3) Impact of Network DensityNow we evaluate the impact d8mands using various prediction algorithms. We quartiéy t
of network density on channel assignments. Figure 7 shosvs %e‘d'iggg —egztoz{alu-?mg mean apsolute error (MAE), def!ngd as
performance improvement when we vary transmission range pzi ctuar, - As shown in Table II, the best prediction
and consequently, the average number of interfering ARspails EWMA, which results in MAE ranging from 0.48 to 0.75.
The improvement tends to first increase with density anidhis prediction error is still quite significant. Large prettbn
then decrease. This is because when the network densitelidrs are not surprising since wireless traffic at each A® ha
low, very few APs interfere with each other and all channé®w aggregatiorand is much harder to predict than traffic in an
assignments yield similar throughput. When network dgnsitSP backbone. Such high variability in traffic poses chajemn
is high, a better channel assignment can allow more nodedadraffic-aware assignment schemes.
simultaneously transmit, thereby increasing total thigug. Next we evaluate the performance of channel assignment
As network density increases further, all the channelsdhg f using predicted demands, and compare it with the case where
utilized everywhere regardless of channel assignments.  the true demands are known (the “oracle”). Channel assign-
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Fig. 6. Comparison of channel assignments using varioudigtien algorithms.

ment uses the traffic-aware, client-aware metric. As shovimdex computed over the traffic demands. A lower index
in Figure 6, the performance of the prediction algorithmisdicates more imbalance in traffic distribution, and resul
closely tracks that of the oracle. Compared with the oradie larger improvement from traffic-aware channel assignimen
algorithm, the degradation of predictive algorithms is thyos These results are consistent with our simulation. Moreaver
within 5% (e.g. see EWMA algorithm); compared with thebserve that traffic-aware channel assignment not onlyfhene
traffic-agnostic algorithm, the improvement is still swgtal, UDP traffic (e.g. streaming media or delay sensitive traffic)
as high as 25-35%. This suggests that even though wireless also significantly improves TCP throughput (e.g. etasti
traffic is hard to predict accurately, it is still possibleapply large file downloads). Therefore traffic-awareness coutebie
traffic-aware channel assignments, since they are reagonabwide variety of applications running over wireless links.
robust against prediction errors. The robustness arisesn fr

the fact that traffic-aware channel assignment does not need IX. OTHER PRACTICAL ISSUES

accurate demands but rough spatial demand distributiomego t

it can allocate more channels to areas that need them modhfrastructure Support. To effectively incorporate traffic
aware channel assignments, WLANs must deploy additional

VIIl. TESTBEDRESULTS infrastructure to collect demand information, estimatert!

In thi i q i testbed . ¢ locations and mobility patterns, and to disseminate chlanne
n this section, we describe our testbed experiments a signment decisions to APs in a timely manner. Common

rDe_suIts. _We Sfi(l;(? SC\:Mre_I!re]sstte?lt)bedd_thlat C?”S'Sts of 12f| DE nagement tools, such as SNMP, coupled with recent infras-
|m(:rn5|ol;1s_ld_ S: the estbed 1S tO?ate ton_ (?:? _G;)mt cture proposals for WLAN monitoring and management [6]
an office building (we run the experiments late at night ta VOcould be employed for the first and third issues. For client

L?terferzeggeé/vlj'th Ithe Ir eéu'iient wgellaess neMoglnggc:rénlrg: lgcations, approaches such as RADAR can be employed [7].
asac. Z Intef Celeron rocessor Wit leave the actual implementation of a network monitoring

of memory, and runs Fedora Core 4 Linux. Each is equipp . :
with 802.11 a/blg NetGear WAG511 using MadWiFi. In ou?‘ifd channel assignment infrastructure for future work.
experiment, we use 802.11g. Half of the PCs act as APs dntient-side Behavior. An important issue left unaddressed
the other half act as clients, each AP has one client. We &t our work is how clients respond to changes in channel
the AP drivers in “Master” mode to emulate AP behavior. assignment. Whenever an AP changes its channel, its clients
As in the default configuration, the cards have RTS/cTwill have to re-associate on the new channel. However, the
disabled and are set to the maximum transmission power. T#2:11 standard does not precisely define the re-assatiatio
data rate is fixed to 1 Mbps (autorate disabled). All the nodgglicy for clients. One approach is for the client to probe fo
are within interference range of each other. APs using probe request packets. The APs can respond using a
We generate either constant-bit-rate UDP or TCP traffRifObe response packet (this is similar to AP’s beacon packet
from APs to clients with packet size of 1024 bytes. For boffilternatively, wireless stations can simply listen pasiiv

forms of traffic, we measure the throughput using nuttcp.[lgPr beacons, which are transmitted every 100ms. The client

We enforce a specified demand in TCP traffic by utilizingSSociates with the AP and channel offering the highest RSSI
the rate limiting function in nuttcp, which essentially gis AIthough we do not quantify the impact of re-association on
an appropriate upper-bound on TCP’s congestion window. \§890ing client transfers, we do expect that reducing thedrea
use the same set of traffic demands for TCP and UDP af{erval size on APs (e.g., to 50ms) is a simple way to contain
assume these demands are known a priori. For each scend®,impact on client performance, if any.
we report the average throughput over 3 runs, where each 802.11a.Our analysis has focused on 802.11b and g networks
lasts 2 minutes and all flows start simultenously. which support fewer operating frequencies than techne®gi
Table Il compares throughput under traffic-unaware aritke 802.11a. It is conceivable that traffic aware channgipas
traffic-aware channel assignments. We make the followimgent is less critical in 802.11a networks. However, as WLAN
observations. First, the throughput improvement is sigaift deployment densities grow, and as multiple independently-
in many cases, with a maximum of 96.56% for UDP and up edministered WLANSs operate in close proximity of each ather
102.04% for TCP. Second, the throughput improvement hasva believe that static allocation of non-overlapping cledssn-
strong correlation with “fairness index”; this is the Ja@irhess no matter how many—is unlikely to offer good performance.



Traffic demands Throughput for traffic-aware Throughput for ftraffic-unaware Improvement over| Fairness
(AP1, AP2, AP3, AP4, AP5, AP6 assignment (Mbps) assignment (Mbps) traffic-unaware index
Distribution | Total Distribution | Total
UDP Results
(1.0, 0.33,0.33, 0.5, 0.5, 0.33) | (0.78, 0.33, 0.33, 0.49, 0.48, 0.33) 2.75 | (0.57,0.33, 0.33, 0.50, 0.50, 0.33) 2.57 7.00% 0.82
(0.6,0.2,0.9,0.6,0.2,0.9) (0.54, 0.20, 0.67, 0.60, 0.20, 0.81) 3.01 | (0.58, 0.20, 0.41, 0.60, 0.20, 0.56) 2.55 18.25% 0.80
(0.0,0.0,1.0,1.0, 1.0, 1.0) (0.0, 0.0, 0.83, 0.56, 0.83, 0.53)] 2.75 (0.0, 0.0, 0.33,0.47,0.47,0.53)] 1.82 51.1% 0.67
(0.2,0.0,0.5,0.2,0.2, 1.0) (0.20, 0.0, 0.5,0.2,0.2,0.80) | 1.90 | (0.20, 0.0, 0.41, 0.20, 0.20, 0.42) 1.43 32.23% 0.54
(0.0,0.0,1.0,0.0, 1.0, 1.0) (0.0, 0.0, 0.81, 0.0, 0.80, 0.83)| 2.44 (0.0, 0.0, 0.49, 0.0, 0.78,0.36) | 1.63 50.19% 0.50
(0.0, 0.0, 1.0, 0.0, 0.0, 1.0) (0.0,0.0,0.81,0.0,0.0,0.85) | 1.66 (0.0, 0.0, 0.51, 0.0, 0.0, 0.3353)] 0.84 96.56% 0.33
CP Results
(1,0.33,0.33,0.5, 0.5, 0.3) (0.76,0.33,0.12, 0.48,0.38, 0.33) 2.41 | (0.55, 0.33,0.33, 0.5, 0.48, 0.33) 2.53 -4.4% 0.82
(0.6,0.2,0.9,0.6,0.2,0.9) (0.48,0.2,0.59, 0.60, 0.2, 0.74)] 2.81 (0.48,0.2,0.08, 0.6, 0.2,0.69) | 2.25 24.43% 0.80
(0.0,0.0,1.0,1.0,1.0, 1.0) (0.0, 0.0, 0.78, 0.62, 0.77, 0.31)] 2.48 (0.0, 0.0, 0.08, 0.54, 0.29, 0.68)] 1.58 56.53% 0.67
(0.2,0.0,0.5,0.2,0.2, 1.0) (0.2,0.0,0.5,0.2,0.2, 0.77) 1.87 (0.2,0.0,0.38,0.2,0.2,0.38) | 1.36 37.61% 0.54
(0.0,0.0,1.0,0.0, 1.0, 1.0) (0.0, 0.0, 0.78, 0.0, 0.78, 0.77) | 2.33 (0.0, 0.0, 0.06, 0.0, 0.78,0.70) | 1.54 50.93% 0.50
(0.0, 0.0, 1.0, 0.0, 0.0, 1.0) (0.0,0.0,0.78,0.0, 0.0, 0.77) | 1.55 (0.0, 0.0, 0.07, 0.0, 0.0, 0.7) 0.76 102.04% 0.33
TABLE Il
SUMMARY OF TESTBED EXPERIMENT RESULTS
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