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Abstract— Campus and enterprise wireless networks are in-
creasingly characterized by ubiquitous coverage and rising traffic
demands. Efficiently assigning channels to access points (APs)
in these networks can significantly affect the performance and
capacity of the wireless LAN. Several research studies have
tackled this issue. However, even the state-of-the-art approaches
assign channels without considering prevailing traffic demands.

The channel assignment problem has a parallel in the wire-
line world, where recent work has established the tremendous
effectiveness of using traffic demands in network engineering
decisions. Motivated by this, our paper explores whether the qual-
ity of a channel assignment can be improved by incorporating
observed traffic demands at APs and clients into the assignment
process. Using extensive simulations over publicly-available wire-
less traffic traces, as well as synthetic settings, we show that being
traffic-aware could substantially improve the overall quality of a
channel assignment. We develop and evaluate practical traffic-
aware assignment algorithms that predict future demands based
on historical information and use the predicted demands for
assigning channels. Finally we demonstrate the effectiveness of
traffic-aware assignment using testbed experiments.

I. I NTRODUCTION

In the past few years, wireless networks have made signifi-
cant in-roads into the common workplace. Today, most enter-
prises and campuses - large or small - offer near-ubiquitous
wireless coverage. There is also anecdotal evidence that the
traffic volumes in workplace WLANs have grown significantly
in the matter of just a few months [11].

Ensuring good wireless performance in these modern set-
tings is challenging. The broadcast nature of wireless commu-
nication implies that WLANs are plagued by severe interfer-
ence issues. Growing densities of deployment together with
increasing traffic volumes only exacerbate these problems.

Traditionally, carefulchannel assignmenthas provided some
respite from this problem. In the common case, network ad-
ministrators conduct detailed site surveys, and try out various
configurations to manually determine the right channel and
placement for each AP. The state-of-the-art research [15],[17]
also offers similar static solutions. However, the ever-changing
nature of the wireless frontier, with newer devices and user
applications contending for the wireless medium [11], will
soon render these manual, one-time approaches ineffective.

Researchers in the wireline world have faced similar issues
when static routing weights were deemed insufficient for
managing the resources of large ISP networks. As a solution,
researchers advocated adapting the routing weights to observed
traffic demands. In the past few years, several operational and
research papers have shown the tremendous effectiveness of
this approach. Motivated by the success of these approaches
in the IP world, our paper asks the following question:

Does the quality of a channel assignment improve
when dynamic traffic demands in the WLAN are
taken into account?

To answer this question, we develop and systematically
study the notion oftraffic-aware channel assignmentfor
WLANs. We espouse traditional objectives for optimizing the
channel assignment, and show how they can be modified
to incorporate the observed traffic demands of wireless APs
and clients, as well as their locations. We outline simple
approaches for collecting current demand information in prac-
tice. Obtaining optimal channel assignments that satisfy these
objectives is NP-Hard. Therefore, we develop a simple set of
techniques for efficiently obtaining channel assignments that
can track the prevailing network conditions very closely.

To evaluate the benefits of our traffic-aware approach, we
use extensive simulations over both real topologies and traffic
demands (available publicly at [10] and [12]), as well as
over several synthetic settings. We also conduct many small-
scale testbed experiments. In either case – simulations or
experiments – we first evaluate a setting whereperfect infor-
mation about current and future demands is available. These
baseline analyses help establish the potential benefits of traffic-
aware channel assignment algorithms. Our simulations and
experiments show that being traffic-aware could substantially
improve the quality of a channel assignment in terms of total
network throughput. We find that approaches that incorporate
the traffic demands of both clients and APs are often superior
than those that solely rely on AP traffic demands. The exact
level of improvement from traffic-awareness depends on the
deployment scenario – e.g. the density of wireless nodes, the
traffic volumes, and the number of “hot-spot” APs. We care-
fully evaluate the operating conditions where traffic-awareness
can offer the maximum benefit. We also observe that traffic-
aware channel assignment offers similar fairness as existing
traffic-agnostic approaches.

In practice, the assumption of perfect demand information
is unrealistic. To address this, we propose several approaches
for traffic demand prediction, and we extend our traffic-aware
channel assignment algorithms to use predicted demands.
We show that the performance from the resulting channel
assignments is very reasonably close to the ones obtained with
access to perfect information (within 5%).

The rest of the paper is organized as follows. In Section II,
we survey related work. We introduce traffic-agnostic and
traffic-aware performance metrics used for channel assign-
ment in Section III, and develop assignment algorithms in
Section IV. In Section V, we describe prediction algorithmsto
estimate traffic demands. We introduce our evaluation method-
ology and datasets in Section VI. We present simulation and
testbed results in Section VII and Section VIII, respectively.
We discuss practical issues in Section IX and conclude in
Section X.



II. RELATED WORK

We review past approaches to channel assignment applied to
two different settings: enterprise/campus WLANs, and multi-
hop mesh networks. We note our focus is on the first setting.

Campuses/Enterprises.Assigning channels across APs in
WLANs has traditionally been a static one-time approach [13]:
First, net-admins conduct an “RF site survey” of the campus
and determine the location and the number of APs required
for adequate coverage. Then, the admin manually configures
APs with 802.11’s non-overlapping channels to ensure that
close-by APs operate on different channels when possible. We
show in this paper that such static approaches result in poor
performance in the face of shifting traffic demands.

There are several research proposals for channel assignment
in campus WLANS [15], [17]. However, unlike our paper,
none of them consider the benefit of tailoring the channel
assignment to prevailing traffic demands. For example, Lee
et. al [15] advocate identifying “expected high-demand points”
in a given WLAN deployment, and assigning channels so as
to maximize signal strength at the demand points. This is
still a static, one-time approach. Mishra et. al [17] argue that
clients have a better view of interference (since interference
directly impacts their performance), and therefore channel
assignment must take client-side views of interference into
account. However, this approach only takes client locations
into account and assumes that all wireless nodes exhibit the
same level of activity at all times. In our work, we show the
potential benefit of taking into account the instantaneous levels
of activity of different wireless nodes. We also show how to
predict future trends in activity based on historical information.

Recently, several commercial “spectrum management”
products have been developed to automate channel assignment
across WLANs. Some of these products perform dynamic
channel selection based on the current operating conditions
(e.g. AutoCell from Propagate Networks [2] and Alcatel
OmniAccess AirView Software [1]). A few of these also offer
interference mitigation via transmit power control, and load
balancing across APs. Unfortunately, due to their proprietary
nature, very little is known about the design of these products,
their potential benefits, the operating conditions they work best
under, and reasons for their failings (if any). In our work, we
provide a thorough analysis of these issues for traffic-aware
channel assignment. We believe that our observations will be
crucial to the design of future commercial offerings.

Multihop mesh networks. Two classes of solutions have
been proposed to improve network capacity in multihop mesh
networks: The first class, proposed by Raniwalaet al. [20],
[21] advocates equipping mesh network nodes with multiple
network interface cards (NICs) operating on different channels.
The second, proposed by Bahl et al. [5], advocates a new
link-layer mechanism called SSCH, wherein neighboring mesh
nodes perform synchronized channel hops to better exploit
frequency diversity. In both cases the goal is to ensure that
neighboring nodes are assigned the same channels, or over-
lapping hopping sequences, for data to be successfully trans-

mitted. In contrast, WLAN-settings require neighboring APs
to be assigned to distinct channels to mitigate interference.
Nevertheless, we believe that the core idea of traffic-aware
channel assignment can be applicable to these settings as well.

Next, we briefly review IP traffic engineering approaches
and discuss how they motivate our work.

Traffic Engineering in ISP Networks. Traffic demands have
been shown to have tremendous utility for network provision-
ing and route optimization in ISP networks [3], [4], [24].
A wide range of traffic engineering approaches have been
developed to incorporate traffic demands. At a high level,
these approaches maintain a history of observed traffic demand
matrices, and optimize routing for the representative traffic
demands extracted from the observed traffic during a certain
history window. They differ in how representative demands
are derived. Inspired by these results from the IP wireline
world, we ask whether being traffic-aware has similar benefits
for managing wireless network spectrum. We also seek to
develop a parallel set of approaches for deriving traffic demand
information in wireless LANs.

III. PERFORMANCEMETRICS

First, we discuss a traditional optimization metric used in
channel assignment and then present modifications to make the
metric traffic-aware. A desirable optimization metric should
satisfy two key conditions: (i) easy/efficient to compute, and
(ii) strongly correlated with the network’s performance.

The goal of channel assignment is to ensure that wireless
nodes which belong to distinct Basic Service Sets (BSSs),
and are within interference range, operate on distinct channels
whenever possible. A BSS includes an AP and all clients
associated with it. An entire BSS operates on a single channel.
Also, only nodes belonging to different BSSs can interfere.

A natural way to capture this goal is to use a “channel sepa-
ration” metric. At a high level, the metric aims to maximize the
difference in the channels used by interfering nodes. In what
follows, we first introduce two channel separation metrics that
ignore traffic-demands, and then extend them to account for
the prevailing traffic in the network.

Traffic-agnostic, client-agnosticchannel separation.Let Ci
denote the channel assigned to APi, d(i; j) denote the
distance betweeni and j, I denote the interference range,
and A denote the set of all APs. Also, ifd(i; j) < I ,
define Separation(i; j) = min(jCi � Cj j; 5), otherwiseSeparation(i; j) = 5. The channel separation metric or
objective can then be expressed as:Maximize : Xi;j2ASeparation(i; j)

The interference rangeI - which is key to the definition of
separation - is computed as follows: IfP is the strength in
dBm of a transmitted signal, then the received signal strength
at a distanced meters away isP�(40+3:5�10�log(d:)). [22]1

1We use constants that correspond to measurements reported in [14].



Then,I , is defined by the equationP�(40+3:5�10�log(I)) =T , whereT is the carrier sense threshold in dBm.

Traffic-agnostic, client-awarechannel separation.The above
metric only considers interference among APs. In real net-
works, minimizing interference introduced by client transmis-
sions is also important. Indeed, our analysis of real traffic
traces shows that clients transmit a significant volume of
traffic. It is equally important to reduce the interference
experienced by clients due to transmissions from neighboring
APs or clients (e.g. might arise in hidden terminal situations).

To do this, we extend the above client-agnostic channel
separation to the one below, whereB denotes the set of
clients in the network. We assume that the client locations
are known a-priori. In effect, the next metric factors in the
channel separation between any two interfering APs, any two
interfering clients that are associated with different APsand,
an interfering AP-client pair.Maximize : Xi;j2A[B;BSS(i)6=BSS(j)Separation(i; j)

Nodesi, j in the sum above must belong to different BSSs.

Extending channel separation to be traffic-aware.The
above two metrics do not take into account the actual traffic
volumes of individual clients and APs. Therefore, optimizing
either of these metrics may force interfering but relatively
inactive APs or clients to operate on non-overlapping channels,
whereas, a smarter channel assignment would have re-used
these channels to improve spatial reuse and mitigate interfer-
ence at other active network locations.

To verify traffic varies across BSSs, we examine the time
series of traffic demands at APs from publicly-available traces.
As Figure 1 shows, traffic volumes indeed vary substantially
across APs, and also across time. We observe similar variation
among clients. Such variation prevents traffic-agnostic metrics
from fully exploiting the capacity of the wireless channel.
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(a) Dartmouth: LibBldg (Sent data) (b) IBM: MBldg (Sent Data)

Fig. 1. Time series of traffic for a heavily loaded and moderately loaded AP
from LibBldg in the Dartmouth Data (a) and MBldg in the IBM data (b).

Before outlining the traffic-aware metrics, we informally
define the term “demand”. The “sending” demand of a node is
the aggregate amount of data (excluding ACKs) that it wishes
to transmit to various recipients per unit time (in the case of a
client, there is a single recipient – its AP; in the case of an AP,
all of its clients could be recipients). Similarly, the “receiving”
demand is the aggregate amount of data (excluding ACKs)
per unit time that the node wishes to receive from various

transmitters. In Section V, we discuss how send and receive
demand information can be collected in practice.

To incorporate traffic demands, we modify the traffic-
agnostic channel separation metrics so that interfering nodes
with high individual demands (specifically the BSSes contain-
ing such nodes) are first assigned to non-overlapping channels.
We use the following insight: Whenever two nodes A and B
are in interference range of each other, the transmissions of
one node will effect not only the transmissions at the other
node but also the receptions at the other node. The former
effect is a manifestation of 802.11’s carrier sense and back
off mechanisms. The latter occurs due to packet collisions and
collision drops that can arise in hidden-terminal settings.

Using this insight, we scale the channel separation between
A and B with the following “weight”:WA;B = SA � (SB +RB) + SB � (SA +RA)
WhereS is the send demand, andR is the receive demand.
The first term in the sum reflects the effect of A’s transmissions
on the transmission and reception of B. Intuitively, if we abuse
notation and letSA (RA) denote the fraction of time A’s
transmissions (receptions) acquire the medium, the first term
reflects theprobability of A’s transmissions interefering with
B’s transmissions or receptions. Similarly, the second term
reflects the effect of B on A.

Using such weights, we can modify the first of the traffic-
agnostic metrics above to the following traffic-aware channel
separation metric. Note that this metric ignores interference
from clients, and hence istraffic-aware, but client-agnostic.Maximize : Xi;j2A;j 6=iWi;j � Separation(i; j)

Similarly, we can modify the second traffic-agnostic metric
above to also account for traffic and interference from clients.
This gives the followingtraffic-aware, client-awareobjective:Maximize : Xi;j2A[B;BSS(j)6=BSS(i)Wi;j � Separation(i; j)

IV. CHANNEL ASSIGNMENT ALGORITHMS

Optimizing channel assignment is known to be NP-
hard [17]. The hardness properties also hold for the separation
metrics above. Since finding an optimal assignment is arduous,
we use simulated annealing [23] to optimize each channel
assignment metric. Simulated annealing is appropriate in this
context since it can iteratively improve the solution while
avoiding being stuck in local optima. To achieve good perfor-
mance and speed up the convergence of simulated annealing,
we use an informed initialization algorithm that is inspired by
the Chaitin’s approach to the register allocation problem [9].

A. Initialization Algorithms

We first describe an initialization algorithm that does not
consider traffic demands and treats every node equally. Then



we extend the algorithm to account for differing traffic de-
mands at each node. In either case, initializationdoes nottake
client locations into account, irrespective of whether themetric
in question is client-aware or client-agnostic.

Figure 2 shows the algorithm for the traffic-agnostic case.
The intuition of the algorithm is to defer channel assignment
for those APs that have many conflicts with other APs.
This is because for such APs, the choice of the channel is
very important, and more restrictive, as it depends on the
channels assigned to neighboring APs. Also, when an AP
has few conflicts, we have a greater amount of flexibility in
assigning channels. For such APs, we can even assign channels
without knowing the channels chosen for the neighbors. In this
algorithm, K refers to the number of non-overlapping channels.

1) Construct a conflict graph G for APs in the WLAN, where there
is an edge between any two nodes if they interfere.

2) For any vertices in the conflict graph that has degree less than
K, choose the one with maximum degree and delete it and its
associated edges from the graph and push it onto a stack.
Repeat until no vertices with degree less than K remain.

3) If the resulting graph is non-empty, choose the vertex with
maximum degree and remove it from the conflict graph and
push it onto the stack. Go to step 2.

4) For all the vertices on the stack, pop one vertex at a time,
add it back into the graph and color it with a color that is
different from all its neighbors (up to this point).
If a vertex cannot be colored, mark it.

5) For the marked vertices, assign them a color that results in
minimum interference, where interference is calculated as
# interfering APs assigned the same color.

Fig. 2. Initialization algorithm for channel assignment.

To extend the initial assignment to be traffic-aware case,
we do the following: First, we modify the degree used in
step #2 and #3 by weighting it with total traffic as follows:degree(i) =Pj2G interfere(i; j), whereinterfere(i; j) =0 if i and j are not in interference range;interfere(i; j) =sent(j) + re
v(j) otherwise. Notesent(j) and re
v(j) are
sent and received traffic at nodej normalized by the link band-
width. Second, in step #5 we assign marked vertices with a
color that results in minimum interference, where the interfer-
ence at nodei from nodej is defined asinterferen
e(i; j) =0 if i and j are on separate channels or not in interference
range;interferen
e(i; j) = sent(j)+re
v(j) otherwise. We
then choose the color that results in the minimum value ofinterferen
e(i; j) summed over allj 2 A.

B. Further Improvement via Simulated Annealing (SA)

We apply the above initialization algorithm to get a good
initial channel assignment. We further improve the channel
assignment through an iterative search; we compared several
options for the search, including random walk, simulated
annealing (SA) with random walk and greedy search, and
found that SA offers faster convergence and better assignment.
Therefore we use SA in our evaluation.

SA is inspired by the metal annealing process. In each
iteration, we randomly assign one of the APs (and its clients)
to a different channel from the current assignment. If the new
assignment is better, we update the current assignment withthe

new one. Otherwise, we update the current assignment with
the new one with the probabilitye(fnew�f
urr)=T , whereT is
current temperature,fnew andf
urr are the values of objective
functions under the new and current channel assignments. The
temperature gradually decreases so that we are more likely to
accept a worse solution initially and avoid being stuck at local
optimal. As the temperature approaches to 0, we progressively
move in the direction of improving the objective function. Our
evaluation sets initial temperature to 10, and each iteration
reduces temperatue to 0.999 of the current value. We use 1000
iterations and the output is the best solution (in terms of the
given separation metric) over all iterations.

We note that the execution time of this approach is sufficient
for practical WLAN settings (e.g., it takes less than 1 second
for SA to compute the optimized metric value in the traces we
study). Note that while SA is an effective search algorithm,
it does not guarantee globally optimal solution within these
iterations. This is not surprising due to the NP-hard natureof
the channel assignment problem.

V. TRAFFIC-AWARENESS INPRACTICE

In this section, we address two issues: (1) how to collect
traffic demand information in practice and (2) how to estimate
traffic demands from historical information.

A. On Obtaining Demand Information

In practice, AP and client traffic demands can be gathered
using SNMP [8]. Most commercial access points export an
SNMP management interface that can be polled at 5 minute
intervals to obtain: (1) total bytes sent by the AP (IfOutOct);
(2) bytes received at the AP (IfInOct); and, (3) the number of
active clients currently associated with the AP (NumClients).

Together these statistics provide estimates of the send and
receive demands of both APs and clients at 5-minute time
granularity, as follows:Send AP Demand[t� 5; t℄ = IfOutO
t(t)� IfOutO
t(t � 5)�(t)Re
v AP Demand[t� 5; t℄ = IfInO
t(t)� IfInO
t(t� 5)�(t)Send Client Demand[t� 5; t℄ = IfInO
t(t)� IfInO
t(t� 5)�(t) �NumClients(t)Re
v Client Demand[t� 5; t℄ = IfOutO
t(t)� IfOutO
t(t � 5)�(t) �NumClients(t)

We assume uniform demands across all clients of an AP. We
note that finer grained per-client demand information can be
obtained by collecting and correlatingsyslog andtcpdump
statistics (this approach was employed in [16]).

B. Predictability of Traffic Demands

The traffic-aware performance metrics require knowledge
of traffic demands. In practice, the future traffic demands are
not available, but have to be estimated based on historical
demand information. The channel assignment is then based
on predicted demands. This gives rise to two practical issues:
(1) How to use historical data to identify trends in demands
and to predict future demands reasonably accurately? (2) How



to ensure that the resulting assignment is robust to mis-
predictions and to wild fluctuations in demands?

To answer these questions, we present a family of practical
traffic-aware algorithms for channel assignment. These algo-
rithms, each discussed below, offer varying degrees of trade-
offs between the two issues discussed above.

Exponentially-Weighted Average of Demand (EWMA).
This approach predicts AP demands at timet by using a
simple weighted moving average of demands observed in
previous intervals. More recent demands are given greater
weight:Dem Pred(t) = w �Dem A
tual(t� 1) + (1�w) �Dem Pred(t � 1). We set the weightw = 0:9. We use this
to first estimate the AP demand estimates. We also estimate
the number of active clients using EWMA. We then combine
the two estimates to derive the predicted client demands.

Optimal for the Previous Interval (PREV). Here, the
channel assignment for timet is simply the optimal channel
assignment for the traffic demands in timet � 1 (or the
most recently sampled time interval, if there are no samples
available fort� 1). In other words, PREV is simply EWMA
with w = 1. We note that compared to EWMA, PREV is more
sensitive to short term traffic fluctuations.

Optimal Over a Time Window (PREV N). There are several
traffic patterns where PREV could be ineffective, e.g., periodic
bursty traffic. Our next approach, PREVN, tries to address this
drawback by simultaneously optimizing the assignment for
all traffic demands observed over a sizeable history window.
In other words, given an optimization metric, PREVN will
derive a channel assignment that maximizes thetotal value of
the metric for the traffic demands from the pastN intervals:Maximize : Pi=1::N Metri
(Demands(t � N)), whereMetri
(Demands(t)) denotes the value of the optimization
metric under the traffic demands att.
Peak Demand in a Window (PEAK N). This is a variant
of PREV N: Instead of optimizing for all sets of demands in
a time window, PEAKN obtains the optimal channel assign-
ment for theworst-casedemand-set within the history window.
This allows the channel assignment to be more responsive to
sudden increases in aggregate network utilization.

We evaluate the effectiveness of these algorithms under a
variety of settings in Section VII.

VI. EVALUATION METHODOLOGY

To understand the benefits of traffic-awareness in different
operating conditions, we evaluate the effectiveness of traffic-
awareness using simulations based on both real and synthetic
topologies and traffic. In Section VIII, we further evaluateits
performance using testbed experiments. Below we describe the
simulation methodology and datasets we use in our evaluation.

A. Simulation Methodology

We use the publicly available version 2.29 of NS-2 with
support for multiple non-overlapping channels. We use either
real traces or synthetic data to determine AP and client
locations and their data rate. Unless otherwise stated, we use

802.11b and 11 Mbps medium bit rate with RTS/CTS enabled
and transmission range set to 60 meters (with corresponding
interference range = 120 m). We generate constant bit rate
(CBR) traffic at a specified rate with data packet sizes of
1024 bytes. The channel assignment algorithm described in
Section IV is applied to optimize the channel separation
metrics. In order to evaluate the effectiveness of an assignment,
we compute thetotal throughputover all connections.

B. Synthetic Scenarios

First, we use synthetic scenarios to understand when traffic-
aware channel assignment is beneficial. We generate synthetic
topologies and traffic traces using the evaluation methodology
in [17], [18]. Specifically, we generate topologies that consist
of 50 APs and 200 clients in a given area. Like [17], [18],
we generate 15 random topologies, where each client has on
average 4 APs in its communication range. Different from
[17], [18], we generate two types of constant-bit-rate (CBR)
UDP traffic to shed light on how traffic distribution affects
the benefits of traffic-aware assignments. The two types of
demands are (i) uniform random traffic demands and (ii)
hotspot traffic demands. In uniform random traffic, each node
is randomly assigned a demand from 0 to the maximum CBR
throughput on a wireless link (3.6 Mbps for our NS-2 settings).
In hotspot traffic demands, a specified number of “hotspots”
are created; each of the hotspots is formed by randomly
selecting an AP and all the other APs within its communication
range. All APs in the hotspots have traffic demands uniformly
distributed between 0 and 3.6 Mbps, and all other APs have
traffic demands uniformly distributed between 0 and 10 Kbps.

C. Trace-driven Simulation

In addition to synthetic scenarios, we also conduct trace-
driven simulations over two publicly available data sets: the
first was collected at Dartmouth College [10], [11] in 2004
and the second dataset was collected at the IBM T.J. Watson
Research Center [12] in August 2002.

Dartmouth Traces. We analyze two weeks’ worth of Dart-
mouth SNMP data, collected between Feb 1st and Feb 15th,
2004. Our simulations start on day 10 of these traces and,
unless otherwise noted, cover 2 full days. While the Dartmouth
College traces covered several campus buildings, our evalua-
tion and analysis focus on two specific buildings: “ResBldg94”
and “LibBldg2”. These buildings contain 12 and 20 access
points respectively. Other buildings of similar type (e.g.other
ResBldg’s) had fewer access points.

The Dartmouth traces includeSNMP statisticsandnumber
of active clients per APsampled 5 minutes at all APs. In
addition, the data containsgeographic x-y-z coordinates for the
APs. As described in Section V-A, we use the SNMP statistics
and client-AP association information to derive AP and client-
side demands (in Mbps) for every 5 minute interval. Also,
we assume that clients associated with an AP are randomly
distributed around the AP within a circle of radius 20m.

IBM Traces. Similar to the Dartmouth data, the IBM traces
containedSNMP statisticsandnumber of active clients per AP
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Fig. 3. Comparison of traffic-aware schemes against their traffic-agnostic counterparts in synthetic topologies.

for three different buildings: “SBldg”, “MBldg” and “LBldg”.
Of the three, our study focuses on “MBldg”, which has 33
APs. Unlike the Dartmouth data, we did not have the locations
of the APs. Instead, we constructed synthetic coordinates for
the APs by placing them at hand-picked locations in a 5-storied
building spanning a 235x100m lot. We analyze two weeks
worth of SNMP data collected between Aug 1, 2002 and Aug
14, 2002. Our simulations start on day 11 of these traces and,
unless otherwise noted, cover 2 full days.

Our trace-driven simulations progress in rounds, where a
single round covers a given SNMP measurement interval.
Within a round, we apply the channel assignment algorithm,
as described in Section IV, to optimize the channel separation
metrics. We quantify the effectiveness of an assignment by
computing the aggregate throughput over all connections.

To study the importance of traffic-awareness, in our simula-
tions, we focus on intervals with� 50% simultaneously active
APs. We consider an AP to be active if the total volume of
traffic it sends and receives exceeds 10Kbps. Also, in order
to increase net utilization, we scale up the traffic demands in
these intervals (on average, we scale 60X across all buidlings).

VII. S IMULATION RESULTS

We now present our evaluation from NS-2 simulations. We
first use synthetic topologies and traffic to understand when
traffic-aware channel assignment is most beneficial. We quan-
tify the effectiveness of a channel assignment by computing
the total throughput achieved by all network flows under the
assignment. As we will show, the benefit of traffic-awarenessis
larger when the load is imbalanced. Then we further compare
different channel assignments using trace-driven simulations
under accurate and inaccurate traffic demands.

A. Simulations on Synthetic Settings

To understand the benefit of traffic-aware assignment, we
create two types of traffic demands: (i) uniform, and (ii)
hotspots, as described in Section VI-B. Figure 3 shows the
CDF of improvement of traffic-aware channel schemes over
their traffic-agnostic counterparts under each demand type. As
we can see, the improvement of traffic-awareness is mostly
within 10% under uniform demands, whereas the improvement
under hotspots traffic is significantly higher, up to 93%.
Moreover, the improvement in 1-hotspot case is higher than
2-hotspot case because the topologies are dense and with 2
hotspots (based on our generation) a large fraction of the

network has high load and hence high channel utilization.
Nevertheless we still observe up to 48% improvement in
2-hotspot case. These results suggest that the traffic-aware
assignment is most useful for hotspots-style scenarios. The
larger benefit of traffic-awareness under hotspots is realized
because traffic-aware assignment aims to assign APs with high
load to non-overlapping channels as much as possible; this
significantly increases the throughput. Moreover, we observe
the throughput (in absolute values) is highest when the channel
assignment is both traffic-aware and client-aware.

Note that in Figure 3 there are a small number of cases
where we observe negative throughput improvement. This
is because the current channel separation metric (even after
incorporating traffic and client awareness) is not perfect.For
example, when two APs do not interfere but some of their
clients interfere, the current metric only takes into account
the interference between these clients but does not incorporate
the additional effect of head-of-line blocking at APs caused
by the interference experienced by their clients. We plan to
further improve the metric, and we expect the benefit of traffic-
awareness will be even larger under a metric that correlates
more strongly with network performance.

B. Trace-Driven Simulation Results

Next we compare different channel assignments using sim-
ulation based on real traffic traces, as described in SectionVI.

1) Performance Benefits of Traffic-awareness:First we
compare four channel separation metrics when assuming we
have perfect knowledge of traffic-demands. Figure 4 shows
cumulative distribution function (CDF) of performance im-
provement of various channel assignments against a traffic-
agnostic/client-agnostic baseline. Although not shown here,
we note that the average throughput improvement is 4.0%-
5.7% after incorporating client-side information alone; it raises
to 5.3%-11.1% by incorporating traffic-demands alone; and
further to 8.3-12.4% by incorporating both traffic-demandsand
client-side information. As in the synthetic case, the amount
of improvement is very traffic-dependent. When traffic is more
evenly distributed, we see little improvement from traffic-
aware assignment. When traffic is more heterogeneous, the
improvement is larger, as much as 40%. Indeed, the classic
Jain fairness metric computed for the demands corresponding
to the maximum improvement of 40% in Figure 4(a) is almost
2X inferior compare to the fairness for median-case demands.
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Fig. 4. Comparison of various channel assignment schemes against a traffic-agnostic, client-agnostic channel assignment approach as the baseline.
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Fig. 5. Comparison of various traffic-aware schemes againsttheir traffic-agnostic counterparts.

Approach Fairness
ResBldg LibBldg MBldg

Traffic-agnostic 0.89 0.88 0.86
Traffic-unaware 0.90 0.90 0.87
client-aware
Traffic-aware 0.92 0.89 0.88
client-agnostic
Traffic-aware 0.92 0.91 0.87
client-aware

TABLE I
IMPACT OF TRAFFIC-AWARENESS ON FAIRNESS

Figure 5 further compares the performance improvement
of the two traffic-aware metrics against their traffic-agnostic
counter-parts. The average improvement of client-agnostic
traffic-aware metric over client-agnostic traffic-agnostic is be-
tween 4.6-10.1%, whereas the average improvement of client-
aware/traffic-aware over client-aware/traffic-agnostic is 1.2 -
6.6%. The former improvement is larger because the baseline
performance is worse. The largest improvement of traffic-
awareness is over 35%, across either metric (Figure 5(a)).

2) Impact on Fairness:Next we compare different assign-
ments in terms of their fairness, which is quantified using
classic Jain’s fairness index. As summarized in Table I, all
the algorithms result in very similar fairness. This indicates
that throughput improvement from traffic-aware assignmentis
not at the expense of fairness.

3) Impact of Network Density:Now we evaluate the impact
of network density on channel assignments. Figure 7 shows the
performance improvement when we vary transmission range,
and consequently, the average number of interfering AP pairs.
The improvement tends to first increase with density and
then decrease. This is because when the network density is
low, very few APs interfere with each other and all channel
assignments yield similar throughput. When network density
is high, a better channel assignment can allow more nodes to
simultaneously transmit, thereby increasing total throughput.
As network density increases further, all the channels are fully
utilized everywhere regardless of channel assignments.
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Fig. 7. Improvement in performance as a function of density for ResBldg.
Figure (a) plots the average improvement in throughput performance. Figure
(b) plots the CDF of the throughput improvement at differentdensities.

EWMAPreviousPeak2Peak4
ResBldg 0.50 0.51 0.73 1.12
LibBldg 0.48 0.49 0.63 0.88
MBldg 0.75 0.93 1.05 1.21

TABLE II
PREDICTION ERROR

4) Evaluation of Practical Traffic-aware Algorithms:In
the previous evaluation, we assume that traffic-aware channel
assignments have perfect knowledge of traffic-demands. In
practice, such information is not known a priori, but has
to be estimated based on historical information. A natural
question arises: can the prediction error offset the potential
gain of traffic-aware channel assignment? To answer this
question, we first compute the error in predicting traffic
demands using various prediction algorithms. We quantify the
prediction error using mean absolute error (MAE), defined asPi jpredi
ti�a
tualijPi a
tuali . As shown in Table II, the best prediction
is EWMA, which results in MAE ranging from 0.48 to 0.75.
This prediction error is still quite significant. Large prediction
errors are not surprising since wireless traffic at each AP has
low aggregationand is much harder to predict than traffic in an
ISP backbone. Such high variability in traffic poses challenges
to traffic-aware assignment schemes.

Next we evaluate the performance of channel assignment
using predicted demands, and compare it with the case where
the true demands are known (the “oracle”). Channel assign-
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Fig. 6. Comparison of channel assignments using various prediction algorithms.

ment uses the traffic-aware, client-aware metric. As shown
in Figure 6, the performance of the prediction algorithms
closely tracks that of the oracle. Compared with the oracle
algorithm, the degradation of predictive algorithms is mostly
within 5% (e.g. see EWMA algorithm); compared with the
traffic-agnostic algorithm, the improvement is still substantial,
as high as 25-35%. This suggests that even though wireless
traffic is hard to predict accurately, it is still possible toapply
traffic-aware channel assignments, since they are reasonably
robust against prediction errors. The robustness arises from
the fact that traffic-aware channel assignment does not need
accurate demands but rough spatial demand distribution so that
it can allocate more channels to areas that need them most.

VIII. T ESTBEDRESULTS

In this section, we describe our testbed experiments and
results. We set up a wireless testbed that consists of 12 DELL
Dimensions 1100 PCs. The testbed is located on one floor of
an office building (we run the experiments late at night to avoid
interference with the resident wireless network). Each machine
has a 2.66 GHz Intel Celeron D Processor 330 with 512 MB
of memory, and runs Fedora Core 4 Linux. Each is equipped
with 802.11 a/b/g NetGear WAG511 using MadWiFi. In our
experiment, we use 802.11g. Half of the PCs act as APs and
the other half act as clients, each AP has one client. We set
the AP drivers in “Master” mode to emulate AP behavior.

As in the default configuration, the cards have RTS/CTS
disabled and are set to the maximum transmission power. The
data rate is fixed to 1 Mbps (autorate disabled). All the nodes
are within interference range of each other.

We generate either constant-bit-rate UDP or TCP traffic
from APs to clients with packet size of 1024 bytes. For both
forms of traffic, we measure the throughput using nuttcp [19].
We enforce a specified demand in TCP traffic by utilizing
the rate limiting function in nuttcp, which essentially places
an appropriate upper-bound on TCP’s congestion window. We
use the same set of traffic demands for TCP and UDP and
assume these demands are known a priori. For each scenario,
we report the average throughput over 3 runs, where each run
lasts 2 minutes and all flows start simultenously.

Table III compares throughput under traffic-unaware and
traffic-aware channel assignments. We make the following
observations. First, the throughput improvement is significant
in many cases, with a maximum of 96.56% for UDP and up to
102.04% for TCP. Second, the throughput improvement has a
strong correlation with “fairness index”; this is the Jain fairness

index computed over the traffic demands. A lower index
indicates more imbalance in traffic distribution, and results
in larger improvement from traffic-aware channel assignment.
These results are consistent with our simulation. Moreover, we
observe that traffic-aware channel assignment not only benefits
UDP traffic (e.g. streaming media or delay sensitive traffic),
but also significantly improves TCP throughput (e.g. elastic
large file downloads). Therefore traffic-awareness could benefit
a wide variety of applications running over wireless links.

IX. OTHER PRACTICAL ISSUES

Infrastructure Support. To effectively incorporate traffic
aware channel assignments, WLANs must deploy additional
infrastructure to collect demand information, estimate client
locations and mobility patterns, and to disseminate channel
assignment decisions to APs in a timely manner. Common
management tools, such as SNMP, coupled with recent infras-
tructure proposals for WLAN monitoring and management [6]
could be employed for the first and third issues. For client
locations, approaches such as RADAR can be employed [7].
We leave the actual implementation of a network monitoring
and channel assignment infrastructure for future work.

Client-side Behavior. An important issue left unaddressed
by our work is how clients respond to changes in channel
assignment. Whenever an AP changes its channel, its clients
will have to re-associate on the new channel. However, the
802.11 standard does not precisely define the re-association
policy for clients. One approach is for the client to probe for
APs using probe request packets. The APs can respond using a
probe response packet (this is similar to AP’s beacon packet).
Alternatively, wireless stations can simply listen passively
for beacons, which are transmitted every 100ms. The client
associates with the AP and channel offering the highest RSSI.
Although we do not quantify the impact of re-association on
ongoing client transfers, we do expect that reducing the beacon
interval size on APs (e.g., to 50ms) is a simple way to contain
the impact on client performance, if any.

802.11a.Our analysis has focused on 802.11b and g networks
which support fewer operating frequencies than technologies
like 802.11a. It is conceivable that traffic aware channel assign-
ment is less critical in 802.11a networks. However, as WLAN
deployment densities grow, and as multiple independently-
administered WLANs operate in close proximity of each other,
we believe that static allocation of non-overlapping channels—
no matter how many—is unlikely to offer good performance.



Traffic demands Throughput for traffic-aware Throughput for traffic-unaware Improvement over Fairness
(AP1, AP2, AP3, AP4, AP5, AP6) assignment (Mbps) assignment (Mbps) traffic-unaware index

Distribution Total Distribution Total
UDP Results

(1.0, 0.33, 0.33, 0.5, 0.5, 0.33) (0.78, 0.33, 0.33, 0.49, 0.48, 0.33) 2.75 (0.57, 0.33, 0.33, 0.50, 0.50, 0.33) 2.57 7.00% 0.82
(0.6, 0.2, 0.9, 0.6, 0.2, 0.9) (0.54, 0.20, 0.67, 0.60, 0.20, 0.81) 3.01 (0.58, 0.20, 0.41, 0.60, 0.20, 0.56) 2.55 18.25% 0.80
(0.0, 0.0, 1.0, 1.0, 1.0, 1.0) (0.0, 0.0, 0.83, 0.56, 0.83, 0.53) 2.75 (0.0, 0.0, 0.33, 0.47, 0.47, 0.53) 1.82 51.1% 0.67
(0.2, 0.0, 0.5, 0.2, 0.2, 1.0) (0.20, 0.0, 0.5, 0.2, 0.2, 0.80) 1.90 (0.20, 0.0, 0.41, 0.20, 0.20, 0.42) 1.43 32.23% 0.54
(0.0, 0.0, 1.0, 0.0, 1.0, 1.0) (0.0, 0.0, 0.81, 0.0, 0.80, 0.83) 2.44 (0.0, 0.0, 0.49, 0.0, 0.78, 0.36) 1.63 50.19% 0.50
(0.0, 0.0, 1.0, 0.0, 0.0, 1.0) (0.0, 0.0, 0.81, 0.0, 0.0, 0.85) 1.66 (0.0, 0.0, 0.51, 0.0, 0.0, 0.3353) 0.84 96.56% 0.33

TCP Results
(1, 0.33, 0.33, 0.5, 0.5, 0.3) (0.76, 0.33, 0.12, 0.48, 0.38, 0.33) 2.41 (0.55, 0.33, 0.33, 0.5, 0.48, 0.33) 2.53 -4.4% 0.82
(0.6, 0.2, 0.9, 0.6, 0.2, 0.9) (0.48, 0.2, 0.59, 0.60, 0.2, 0.74) 2.81 (0.48, 0.2, 0.08, 0.6, 0.2, 0.69) 2.25 24.43% 0.80
(0.0, 0.0, 1.0, 1.0, 1.0, 1.0) (0.0, 0.0, 0.78, 0.62, 0.77, 0.31) 2.48 (0.0, 0.0, 0.08, 0.54, 0.29, 0.68) 1.58 56.53% 0.67
(0.2, 0.0, 0.5, 0.2, 0.2, 1.0) (0.2, 0.0, 0.5, 0.2, 0.2, 0.77) 1.87 (0.2, 0.0, 0.38, 0.2, 0.2, 0.38) 1.36 37.61% 0.54
(0.0, 0.0, 1.0, 0.0, 1.0, 1.0) (0.0, 0.0, 0.78, 0.0, 0.78, 0.77) 2.33 (0.0, 0.0, 0.06, 0.0, 0.78, 0.70) 1.54 50.93% 0.50
(0.0, 0.0, 1.0, 0.0, 0.0, 1.0) (0.0, 0.0, 0.78, 0.0, 0.0, 0.77) 1.55 (0.0, 0.0, 0.07, 0.0, 0.0, 0.7) 0.76 102.04% 0.33

TABLE III
SUMMARY OF TESTBED EXPERIMENT RESULTS.

X. SUMMARY OF RESULTS AND CONCLUDING REMARKS

The centrality of channel assignment to improving the effi-
ciency of spectrum usage in WLANs has been long recognized
and well-studied. Several proposals have been made over
the years, but they have all focused predominantly on static
channel assignments that ignore traffic demands.

Our work explores the affect of dynamically adapting the
channel assignment to prevailing traffic conditions. Usingex-
tensive simulations and live experiments, we show thattraffic-
awarechannel assignment approaches could significantly im-
prove the quality of the channel assignment in practice. We
show that approaches that track both AP and client demands
are clearly superior to those that ignore clients.

We perform a detailed study of the operating conditions
under which traffic-awareness offers maximum benefit. We
show that the benefits of the approach are tightly coupled to
the deployment environment. For example, traffic-awareness
is most helpful when traffic demands are concentrated at a
small number of heavily-loaded APs located close to each
other. The approach is of little use when traffic demands are
uniform across the WLAN, or when most APs are located
close to each other, or when the WLAN deployment is too
sparse. Our testbed experiments shows that the benefits of
traffic-awareness extend both to TCP as well as UDP traffic.

While a large portion of our study establishes the potential
of traffic-awareness, we also consider several practical issues
that might arise in real deployments. One such issue is
that of predicting traffic demands. We discuss a variety of
approaches to predict future traffic demands based on historical
information, and use the predicted demands in channel assign-
ment. One approach, EWMA, seems particularly promising,
yielding performance that is within 5% of the best possible.
While EWMA does not predicted demands with too great an
accuracy, it can predict trends in the demands reasonably well.

Our paper establishes the importance of traffic-awareness
to the management of wireless LANs. Although our focus
has been on campus and enterprise networks, we believe that
the central idea of this paper – traffic-awareness – is widely
applicable to other scenarios such as multi-hop mesh networks
and uncoordinated deployments.
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