
Rating Certificates
Eunjin (EJ) Jung and Mohamed G. Gouda

Department of Computer Sciences
The University of Texas at Austin

Email:fejung,goudag@cs.utexas.edu

Abstract— We consider a system where each user has a public
key and a private key. In this system, a certificate is a data item
that is issued by one useru and contains the public key of another
user v. A third user w that knows the public key of u can verify
that this certificate has not been corrupted (by an adversary)
since it was issued byu, and so can accept the public key in
the certificate as the correct public key ofv. User w can use
this accepted public key ofv in two ways. First, w can securely
communicate with v. Second,w can obtain more public keys of
other users, as it used the public key ofu to obtain the public
key of v. However, the safety of the second use is questionable ifu, the issuer of the certificate, has concluded that it cannot trustv enough to accept a public key merely becausev accepts it. To
solve this problem, we propose that each certificate should have a
“rating”. The rating of a certificate describes how much trust the
issuer puts on the subject concerning key acceptance. We present
two algorithms for computing the set of all users that can accept
the given public key where all certificates have ratings. Thefirst
algorithm is simple, but its time complexity is O(n3), where n
is the number of users in the system. The second algorithm is
more sophisticated, but its time complexity isO(e), where e is
the number of certificates in the system. This algorithm meets
the lower bound of the worst case complexity. We also discuss
how to find an input to these two algorithms, and present two
algorithms that compute an optimal set of certificates that are
necessary for a user to accept the public key of another users.

I. I NTRODUCTION

Many of the security problems in the Internet can be solved
by a collection of basic security building blocks such as
authentication, privacy, integrity, non-repudiation, and autho-
rization. For example, if we can authenticate the source of
packets, denial of service attacks can be diminished. Also,if
we can guarantee privacy and authentication in transactions
on the Internet, identity theft can be reduced. In the Internet,
certificate systems are extensively used to provide some of
those basic security building blocks.

There are two types of certificate systems: one with trusted
certificate authorities, and the other without trusted certificate
authorities. An example of certificate systems with trusted
certificate authorities is Secure Socket Layers (SSL) [1], and
an example of certificate systems without trusted certificate
authorities is Pretty Good Privacy (PGP) [2].

In a certificate system with trusted certificate authorities,
users can use any certificate issued by one of the trusted
certificate authorities to securely communicate with other
users. For example, in the current Internet, users trust any
certificate issued by VeriSign and use the public key in the
certificate for secure communication over SSL. The certificate
system in SSL can be represented as an hourglass certificate

graph. An example of an SSL certificate system is shown in
Fig. 1. Each node represents a user and each edge represents
a certificate.

CarolAlice

orbitz

Bob

VeriSign

. . .

. . .Amazon eBay

Fig. 1. An example of an SSL certificate system

This type of certificate systems has limitations. In most
certificate systems, there are much fewer trusted certificate
authorities than users. The overhead of issuing certificates is
on the few trusted certificate authorities, and also if a private
key of a certificate authority is revealed to an adversary,
the scope of the damage can be catastrophic. We can use
a hierarchical structure of certificate authorities to distribute
the load and the risk of a few certificate authorities, as in
Lotus Notes [3]. However, the construction and planning of
hierarchical structure of certificate authorities requires a single
point of control for the whole system.

A certificate system without trusted certificate authorities
is called self-organized. In a self-organized certificate system,
users issue certificates for other users. There may be a key
server which stores public keys of users and certificates issued
by users, but the key server does not guarantee that these
certificates are correct, i.e. that they contain the correctpublic
keys. Therefore, in such a system, it is not clear whether
users can trust the certificates issued by other users or not.
An example of a certificate system without trusted certificate
authorities is PGP.

PGP certificate systems are self-organized: any user can
issue a certificate for another user. Imagine a user Alice
creates her own public and private key pair and advertises the
public key to her friends, including Bob. In turn, Bob issues
a certificate for Alice’s public key, so that Carol, who does
not know Alice’s public key, can use the public key of Bob
and his certificate to obtain Alice’s public key. Later, David
issues a certificate for Carol. The certificate system between
four users, Alice, Bob, Carol, and David is shown in Fig. 2.

In the example PGP system in Fig. 2, Carol already issued a
certificate for Bob, which indicates that Carol knows the public
key of Bob. However, Carol does not trust the certificates

DavidCarolBobAlice

Fig. 2. An example of a PGP certificate system

issued by Bob. Hence, she does not accept the key in the
certificate issued by Bob for Alice as the public key of
Alice. The problem is, when another user David needs to
securely communicate with Alice, he needs to know whether
the certificate issued by Bob is trustworthy or not, before using
the key in the certificate as the public key of Alice. To solve
this problem, Carol needs to share her trust information about
Bob with David.

This is not a problem in a certificate system with trusted
certificate authorities, such as SSL, since any certificate issued
by trusted certificate authorities should contain correct public
keys. However, in a self-organized certificate system such as
PGP, each user needs additional information to decide whether
to accept the public key in each certificate as the correct public
key or not.

In the following sections, we define our system model more
formally, and discuss the problems in using certificates to
obtain public keys of other users. We show what information
can be added to certificates so that users can share their trust
information about other users. We discuss the semantics of the
added information. We present two algorithms that compute,
for a given public key and a given set of certificates, the set of
all users that can accept this public key as the correct one. We
continue to discuss how to obtain the input set of certificates
for these algorithm, and present two algorithms that compute
an optimal set of certificates that are necessary for a user to
accept the public key of another user.

II. CERTIFICATE SYSTEMS

We consider a system where each useru has a private keyR:u and a public keyB:u. In this system, in order for a useru
to securely send a messagem to another userv, useru needs
to encrypt the messagem using the public keyB:v, before
sending the encrypted message, denotedB:vfmg, to userv.
(This message may be a session encryption/decryption key for
further secure communication.) This necessitates that user u
know the public keyB:v of userv.

If a useru knows the public keyB:v of another userv in this
system, then useru can issue a certificate, called a certificate
from u to v, that identifies the public keyB:v of userv. This
certificate can be used by any user in the system that knows
the public key of useru to further acquire the public key
of userv. Note that this model encompasses both certificate
systems with and without trusted certificate authorities. A
certificate system with trusted certificate authorities will have
only certificates issued by those certificate authorities, whereas
a certificate system without trusted certificate authorities may
have certificates issued by any user in the system.

A certificate from useru to userv is of the following form:hu; v;B:v;info;sigi

This certificate is signed using the private keyR:u of useru,
and it includes five items:u is the identity of the certificate issuer,v is the identity of the certificate subject,B:v is the public key of the subjectv,

info is other relevant information regarding this certi-
ficate such as expiration date, and

sig is an encrypted message digest of this certificate.
It is constructed by computing a message digest
of all other four items in this certificate and en-
crypting the message digest with the private keyR:u of issueru.

For simplicity, a certificatehu; v;B:v;info;sigi is de-
noted (u; v). Any userx that knows the public keyB:u of
useru can useB:u to decryptsig in (u; v). Userx continues
to compute the message digest of all other four items in
the certificate. If the decrypted message matches the message
digest computed by userx, then userx can accept the keyB:v in certificate(u; v) as the public key of userv.

The certificates issued by different users in a system can
be represented by a directed graph, called thecertificate
graph of the system. Each nodeu in the certificate graph
represents a useru and its corresponding public and private
key pairB:u andR:u. Each directed edge(u; v) from nodeu to nodev in the certificate graph represents a certificatehu; v;B:v;info;sigi.

d

c e

a

b

Fig. 3. A certificate graph example

Fig. 3 shows a certificate graph for a system with five users:a, b,
, d, ande. According to this graph,

usera issued two certificates(a; b) and (a; d)
userb issued one certificate(b;
)
user
 issued one certificate(
; e)
userd issued one certificate(d;
)
usere issued no certificates.

A simple path (v0, v1), (v1, v2), � � � , (vk�1, vk) in a
certificate graphG, where the usersv0, v1, � � � , vk are all
distinct, is called acertificate chainfrom v0 to vk in G of
lengthk. v0 is thesourceof the chain andvk is thedestination
of the chain. Sourcev0 of the certificate chain fromv0 to vk
can accept all the keysB:v1 � � �B:vk in these certificates as
public keys of the usersv1 � � � vk in this chain, respectively.
For example, usera in Fig. 3 may use the certificate chain(a; b)(b; d) to accept the public keysB:b andB:d of userb
and userd.

III. T HE PROBLEM OF TRUST IN CERTIFICATE SYSTEMS

The use of certificate chains to accept public keys of other
users is based on the assumption that all the certificates in

the chain are correct, i.e. all the keys in the certificates are
indeed the correct public keys of the subjects. However, this
may not be the case all the time. Some users may not take
enough precautions before issuing certificates and as a result
issue a certificate with a wrong public key for the subject.
Some user may intentionally issue incorrect certificates to
impersonate other users. When a user knows that some user is
not trustworthy or is suspected of issuing incorrect certificates,
this trust information needs to be shared with other users.

PGP manages this trust information for each user, but does
not support sharing. In PGP, a user puts the public keys of
other users that it believes to be correct in its localpublic key
ring. Each entry in the key ring contains an ID of another user,
its public key and other information.

For each public key in the key ring, users can choose from
four levels of trust,completely trusted, marginally
trusted, untrusted, and unknown to assign to. (The
default level of trust isunknown.) Note that this level of
trust isnot trust on whether the public key is the correct one
for that user or not. Rather, the level of trust is trust on the
public key as a signing key. In the default setting of PGP, for
a user to accept a keyB:x as the public key of a userx, it
needs to find either onecompletely trusted public key
or two marginally trusted public keys in its own key
ring, that sign certificates which has the same keyB:x as the
public key of userx. Fig. 4 shows the example system with
level of trust in each user’s key ring. For example, David in
the system in Fig. 4completely trusted Carol’s public
key in his key ring, so David accepts Bob’s public key in the
certificate(Carol; Bob).

PGP users can tune their own security settings by chang-
ing COMPLETESNEEDED, MARGINALS NEEDED, and
CERT DEPTH. The first two parameters indicate how many
trusted keys are needed to accept a public key. CERTDEPTH
indicates how long a certificate chain can be to accept the
public key in the last certificate in the chain.

However, there are two problems with the current level
of trust scheme in PGP. First, the trust information is
not shared with other users. In the example in Fig. 4,
David completely trusted Carol’s public key, and
Carol hasuntrusted Bob’s public key. There is a certifi-
cate chain from Carol to Alice,(Carol; Bob)(Bob;Ali
e).
However, Carol will not accept this public key of Al-
ice because Carol has no trust on Bob’s public key to
introduce a new key. When David wants to obtain Al-
ice’s public key, David may want to use the certifi-
cate chain(David; Carol)(Carol; Bob)(Bob;Ali
e). Even
though David is relying on Carol’s public key in the certificate
chain (David; Carol)(Carol; Bob)(Bob;Ali
e), David may
make a different, in fact more vulnerable decision from Carol’s
and accept the public key in this chain as the public key of
Alice.

Second, it is not clear how users can decide which level of
trust they should assign to public keys. When a useru assigns
completely trusted to a public key of userv, B:v, does
it mean thatu will accept any public keys in certificates signed

Bob Carol DavidAlice Ali
e: unknown Bob: untrusted Carol:
ompletely trusted
Fig. 4. An example of a PGP certificate system with level of trust

by the matchingR:v, or u will accept any public keys in
certificate chains starting with(u; v)? The current specification
of PGP does not specify the semantics clearly.

This example shows that users need to share their trust
information with other users regarding which certificates are
trustworthy. Moreover, this trust information needs to be
signed so that other users can verify that this information
is not tampered by an adversary. One way to share this
trust information in a tamper-resistant manner is to add this
trust information to certificates. In the following section, we
propose a solution to this problem by adding “ratings” (trust
information) to certificates.

IV. RATINGS IN CERTIFICATES

To solve the two problems discussed in the previous section,
one could imagine adding the trust level assigned by each
user to a certificate. For example, Carol in Fig. 4 could add
the leveluntrusted to the certificate(Carol; Bob) so that
David could decide not to use the certificate(Bob;Ali
e).
However, this only solves the first problem of sharing trust
information, not even completely. The levelmarginally
trusted needs a parameterMARGINALS NEEDED to be
effective. One can add this parameter as part of the certificate
as well. Still, the second problem of how to choose the
appropriate level is not solved. This is because PGP treats
a public key as a ”signing key”. For David to accept a key in
a certificate chain, David needs to trust each public key in this
chain as a signing key. David could use the trust informationin
the certificate, if added, but this trust information is assigned
by a stranger, so David may not feel comfortable trusting that
information.

We add a new field called “rating” to a certificate: a rating of
a certificate is trust information that the issuer has on the key
acceptance decision made by the subject. Now a certificate
from useru to user v with a rating contains six items as
follows: hu; v;B:v;rating;info;sigi
. u, v, B:v, info, and sig are the same as explained in
Section II.rating is a rating which can be any one of the
following that will be explained shortly:

accepted
independentk-accepted

For simplicity, a certificate of a formhu; v;B:v;rating;info;sigi
is denoted(u; v;rating) whererating is

A for acceptedI for independentA(k) for k-accepted
A certificate(u; v;rating) with rating provides two pieces

of important information: the public key of userv and the
rating of userv by useru. Any userw that knows the public
key of useru can accept the public key of userv as long as
they could verify the certificate. Moreover, userw can use the
rating information in this certificate to decide whether to
accept the public keys accepted by userv or not.

1) accepted: A certificate of the formhu; v;B:v;accepted;info;sigi
indicates thatu acceptsB:v as the public key of userv
and thatu also accepts any public keyB:x of a userx,
if v accepts the same keyB:x as the public key of userx.
In Fig. 5, user u issues a certificate(u; v; A) and
user v issues two certificates(v; w;rating) and(v; x;rating). Clearly v accepts both keysB:w andB:x as the public keys of usersw and x, and the
rating of the certificate(u; v; A) is accepted, so useru accepts the same keysB:w and B:x in certificates(v; w;rating) and (v; x;rating) as the public keys
of userw and userx, respectively.

w

x
u v

accepted

Fig. 5. An example ofaccepted certificates

Note thatu will accept the public keys of usersw andx in the certificate chains(u; v; A)(v; w;rating) and(u; v; A)(v; x;rating) regardless of the ratings in the
certificates(v; w;rating) and (v; x;rating).

2) independent: A certificate of the formhu; v;B:v;independent;info;sigi
indicates thatu acceptsB:v as the public key of userv.
It also indicates that whetheru accepts a keyB:x as the
public key of a userx or not is independent of whetherv accepts the same keyB:x as the public key of userx
or not. In other words, useru does not accept any keyB:x as the public key of a userx just becausev accepts
the same keyB:x as the public key of userx.
In Fig. 6, useru issues two certificates(u; v; I) and(u;w;A), user v issues a certificate(v; x;rating),
and userw issues a certificate(w; x;rating). Since
useru issues a certificate to userv, u clearly accepts
the public keyB:v of userv. However, useru would
not acceptB:x as the public key of userx if there
were only one certificate chain fromu to x throughv

(u; v; I)(v; x;rating) in Fig. 6, because the rating of
certificate(u; v; I) is independent. In the example
certificate system in Fig. 6, there is another certificate
chain from u to x (u;w;A)(w; x;rating), and the
rating of (u;w;A) is accepted. Sincew acceptsB:x
as the public key of userx, u acceptsB:x as well.

w

v

xu
independent

accepted

Fig. 6. An example ofindependent certificates

3) k-accepted: A certificate of the formhu; v;B:v; k-accepted;info;sigi
indicates thatu acceptsB:v as the public key of userv.
It also indicates thatu accepts a keyB:x as the public
key of userx, if u has also issued certificates for usersv1 � � � vk�1,(u; v; A(k)); (u; v1; A(j1)); � � � ; (u; vk�1; A(jk�1));
where eachji � k, and eachvi accepts the sameB:x
as the public key of userx. (Intuitively, the issuer has1k of the full trust on the subject.)
In Fig. 7, useru issues three certificates(u; v; A(2)),(u;w;A(3)), and (u; y; A(3)). User v issues a cer-
tificate (v; x;rating), user w issues a certifi-
cate (w; x;rating), and usery issues a certificate(y; x;rating). Clearly usersv, w, and y accept
the keyB:x in (v; x;rating), (w; x;rating), and(y; x;rating) as the public key of userx. Useru issued three certificates(u; v; A(2)), (u;w;A(3)),
and (u; y; A(3)), so it also accepts the keyB:x in
the certificates(v; x;rating), (w;x;rating), and(y; x;rating) as the public key of a userx. Note that
the certificates(v; x), (w; x), (y; x) must include the
same keyB:x as the public key of userx for useru to
accept it.

w

v

y

u x

2-accepted

3-accepted

3-accepted

Fig. 7. An example ofk-accepted certificates

Note that the semantics of these ratings are for key accep-
tance, not for key signing. This enables simpler use of ratings.
An issuer of a certificate can assign the rating for the subject
depending on whether to accept a key just because this subject
accepts the key or not. Even though this trust information will
be shared with all other users, the decision itself is a local
decision of the issuer.

V. K EY ACCEPTANCEEXAMPLES

In the previous section, we defined three ratings for certifi-
cates, and showed their semantics. Consider the example cer-
tificate graphG in Fig. 8. Each edge(u; v) in G is labeled with
the rating of the corresponding certificate(u; v;rating).
Based on these ratings, we can compute the setC of all users
that can acceptB:dst as the public key of userdst.

A

A(2) A

II

u I

y

v

w

x

dstIA(2)

I

A

Fig. 8. An example of a certificate graph with ratings

The setC can be computed in three steps.

1) First, observe that each of the usersx andy can acceptB:dst as the public key of userdst, since each of them
has already issued a certificate declaring that the public
key ofdst isB:dst. Note that the rating in the certificate(x; dst; I) is independent. No matter what the rating
is in the certificate(x; dst), x declared that the public
key ofdst isB:dst in this certificate, sox acceptsB:dst
as the public key of userdst.

2) Second, userv can acceptB:dst as the public key
of user dst since v has issued two certificates with a
rating A(2) each, for usersx and y (and x and y can
acceptB:dst as the public key of userdst from the
first step of our discussion). Note that userw cannot
acceptB:dst as the public key of userdst even thoughw has issued a certificate for userx (andx can acceptB:dst as the public key of userdst, as discussed above),
since the rating of the issued certificate(w; x; I) is
independent.

3) Third, useru can acceptB:dst as the public key ofdst
sinceu has issued a certificate tov with ratingA (andv can acceptB:dst as the public key of userdst from
the second step of our discussion).

The setC is therefore:fdst; x; y; v; ug
In the following section, we present two algorithms that

useru can use to decide whether to accept a public key or not
based on a certificate graph. Note that this input certificate
graph does not have to be the full certificate graph of the
system. For example, useru does not need the certificate chain(u;w)(w; x)(x; dst), since the ratings in(u;w) and(w; x) are
independent. In Section VII, we discuss how to compute
the input certificate graphs for the following two algorithms.

VI. K EY ACCEPTANCEALGORITHMS

The example discussed in the previous section is in fact how
Algorithm 1 below, given a certificate graphG and a userdst

ALGORITHM 1 computes the set of accepting users

INPUT: a certificate graphG and a userdst in G
OUTPUT: a setC of users that can acceptB:dst

as the public key of userdst
STEPS:
1: C := fdstg;
2: for each certificate(u; dst;rating) in G do
3: C := C [fug
4: endfor;
5: while users can be added toC do
6: for each useru not in C do
7: if there is a userx in C such that(u; x;A) 2 G
8: then C := C [fug
9: else if there arek usersv0 � � � vk�1 in C such

that for eachvi, (u; vi; A(ki)) 2 G andki � k
10: then C := C [fug
11: endfor;
12: endwhile;
13: return C
in G, computes a setC of all users that can acceptB:dst as
the public key of userdst.

If we apply Algorithm 1 to the example certificate graph
in Fig. 8, we compute the following setC of users that can
acceptB:dst as the public key of userdst.C = fdst; x; y; v; ug

The complexity of this algorithm isO(n3), wheren is the
number of users in the certificate graph. In each execution of
the while loop in lines 5-13, at least one user has to be added
to C, so thewhile loop can be executed at mostn times.
Also, for eachfor loop inside thewhile loop, the number of
users that may not be inC is at mostn, so thefor loop can be
executed at mostn times. Also, to find the users that match the
if condition inside thefor loop, Algorithm 1 may consider up
to n users. In total, the complexity of Algorithm 1 isO(n3).
The correctness of Algorithm 1 is straightforward from the
definition of ratings.

Algorithm 2 also takes the same input, a certificate graphG and a userdst in G and computes the same output, a set of
users that accept the keyB:dst in G as the public key of userdst. However, Algorithm 2 computes the set in much less
complexity than Algorithm 1. The intuition of Algorithm 2
comes from constructing a minimal spanning tree. Starting
from userdst in G, Algorithm 2 considers each certificate(u; v) that is issued by a useru, u =2 C, for a userv, v 2 C.
If the certificate has the rating ofaccepted, then useru is
added toC and the certificates issued foru will be considered
later. Algorithm 2 continues adding users toC until there is
no more certificate issued by a user that is not inC for a user
in C .

The complexity of Algorithm 2 isO(e), where e is the

ALGORITHM 2 optimally computes the set of accepting
users

INPUT: a certificate graphG and a userdst in G
OUTPUT: a setC of users that acceptB:dst

as the public key of userdst
STEPS:
1: C := fdstg; Z := fg;
2: for each certificate(u; dst;rating) in G do
3: C := C [fug;
4: add all the certificates(x; u;rating) issued foru

in G to Z
5: endfor;
6: for each useru in G, c[u] := 0;
7: for each certificate(u; v;rating) in Z do
8: remove(u; v;rating) from Z;
9: if (u; v;rating)=(u; v;A) andu =2 C
10: then C := C [fug;
11: add all the certificates(x; u;rating) issued

for u in G to Z
12: else if (u; v;rating)=(u; v; A(k)) andu =2 C
13: then c[u] := c[u]+1k ;
14: if c[u]�1
15: then C := C [fug;
16: add all the certificates(x; u;rating)

issued foru in G to Z
17: endfor;
18: return C
number of certificates in the certificate graph. Each certificate(u; v) in G is added toZ only when userv is added toC , and
each userv is added toC only once. (Initially the users that
have issued certificates fordst are added toC , and after that,
the conditions in line 9 and 12 assure thatv is not inC before
it is added.) Therefore, each certificate inG can be added toZ at most once. Once it is added, each certificate(u; v) will
be considered exactly one time. The first step in thefor loop
in lines 7-17 is to remove the certificate, and then the same
certificate(u; v) cannot be added toZ again sincev is already
in C. So thefor loops in line 2 and thefor loop in lines 7-17
can be executed at moste times in total.for loops in line 6
takesn steps, as it initializen elements in the array. In total,
the complexity of Algorithm 2 isO(n + e). Since the input
graph is a certificate graph, it is safe to assume thatn � e. It
is because that any user in the certificate graph should have
at least one certificate that is either issued by this user or for
this user. Therefore,O(n+ e)=O(e).

We prove Algorithm 2 correct by induction on the lengthi of certificate chains. Fori = 1, any user who has issued a
certificate fordst will be added toC (line 3). Assume any
user that were to acceptB:dst as the public key ofdst based
on the ratings in certificate chains of length at mosti is added
to C. Any useru that has certificate chains of length at most

i+1 to dst will be added toC if it has issued a certificate with
accepted rating for any node inC (line 9). Similarly, if it
has issuedk certificates for users inC with ki-accepted
ratings, whereki � k, it will have
[u℄ � 1 and be added
to C (line 14). There are no other ways users could acceptB:dst. Therefore, the set computed by Algorithm 2 includes
all users that acceptB:dst as the public key of userdst in G.

This algorithm is optimal in the sense that it meets the lower
bound of the worst case complexities of any algorithms that
compute the set of users that acceptB:dst as the public key
of user dst. The example certificate graph in Fig. 9 shows
when any algorithm has to consider all the three certificates
to compute the set. In fact, any certificate graph that has only
one certificate chain from any user to userdst, where all the
certificates haveaccepted ratings, needs exactlye steps to
find all the users that can accept the public key of userdst.
Therefore, Algorithm 2 meets the lower bound of the worst
case complexity.

u v w dstAA A

Fig. 9. A certificate graph with the worst case complexity

VII. C ERTIFICATE DISTRIBUTION

In the previous section, we showed two algorithms that
compute a set of users that can accept the public key of userdst in a given certificate graph. These algorithms can be used
by two types of entities: a public key server with a large
database of certificates or users with a limited database of
certificates.

In PGP, users can find certificate chains fromsr
 to dst
from search services based on public key servers [4], [5].
A public key server, for example keyserver.net [6], stores a
collection of public keys and certificates issued by users. Usersr
 can use this collection to find a certificate chain fromsr

to dst by itself, or use the search services such as [4], [5].
However, it is proven that finding all the certificate chains
from one user to another is NP-hard [5], so these services
provide an approximate set of certificate chains. Still the time
complexity of computing a set of chains from one user to
another isO(nO(l)), wheren is the number of users in the
certificate graph andl is the length of the longest acceptable
chain.

If the algorithms in the previous section are run by a public
key server then we can assume that the input certificate graph
is the full certificate graph of the system and userdst can
simply rely on this service to learn more public keys. When
usersr
 needs to learn the public key of userdst, sr
 can ask
the key servers to run Algorithm 2, and the server can decide
whether a usersr
 can accept the public key of userdst or
not on behalf of usersr
. However, if this kind of services
are not available, users need to make a decision on a partial
certificate graph.

Making decisions based on partial certificate graphs is rather
tricky. Consider the certificate graph in Fig. 8. Assume that

useru wants to find the public key of userdst. If useru only
had the certificate chain(u;w; I)(w; x; I)(x; dst; I) shown in
Fig. 10, then useru would not have accepted the public key
of dst. If user u wants to accept the public key of userdst,
then useru needs to find more certificates.

II

u

w

x

dstI

Fig. 10. A certificate chain withindependent ratings in Fig. 8

One way for useru to find the public key of userdst is
to send queries to userv. (Note that useru has the rating of
independent for userw, so useru cannot accept any key
based on a certificate chain throughw. Therefore, there is no
point in asking userw for more certificates.) However, it is
hard to guarantee that userv will be online whenu needs it.

Instead, users can store a subset of certificates locally [7],
[8]. The scheme in [7] does not require the knowledge of
the full certificate graph but may need to flood the network
with query/response messages to find the subset of certificates
to store. On the other hand, the scheme in [8] requires the
knowledge of the full certificate graph but assigns a subset
of certificates to each user such that userssr
 and dst are
guaranteed to be able to retrieve all certificate chains fromsr
 to dst in the union of their local subsets, if there were
such chains in the original certificate graph. In both schemes,
userssr
 anddst can use the union of their local subsets as
the input to Algorithm 1 or Algorithm 2 to decide whether to
accept the public key ofdst or not.

For example, in the certificate system in Fig. 8, usersu and dst may store the following certificates locally.u stores f(u; v; A); (u;w; I); (v; y; A(2)); (v; x; A(2))gdst stores f(y; dst; A); (x; dst; I)g
The union of these two sets is the certificate graph shown

in Fig. 11. When Algorithm 2 is applied on this certificate
graph, it computes the same setC=fdst; x; y; v; ug.

A

A(2) A

I

u

y

v

w

x

dstIA(2)

Fig. 11. A certificate graph from local database of certificates

Note that in a certificate system with ratings, not all of
these certificate chains are necessarily useful. For example,
the certificate chain(u;w; I)(w; x; I)(x; dst; I) in Fig. 10 is
not useful for useru to learn the public keys of usersx anddst. In fact, any certificate chain that contains a certificate
with a ratingindependent before the last certificate in the

chain will not be used in key acceptance decision. We present
an efficient algorithm, Algorithm 3, to compute a subgraph
for each userdst that contains only useful certificate chains.
Algorithm 3 is similar to Algorithm 2, and the pseudo code is
below. The time complexity of Algorithm 3 isO(min(e; ln)),
where n is the number of users inG, e is the number of
certificates inG, and l is the length of the longest acceptable
chain.

Algorithm 3 computes a subgraphG:dst of the certificate
graphG for each userdst in G, given a parameterl. l is
the length of the longest acceptable chain. Ifl is small, then
users can accept fewer public keys, but users will have less
risk of using incorrect certificates. Ifl is large, then users can
accept more public keys, but users may face more risk of using
incorrect certificates.G:dst contains all the certificates that are
needed by any useru in G to decide whether to acceptB:dst
as the public key of userdst or not. If a usersr
 is in G:dst,
then userdst can compute a subgraphG:dst(sr
) that can be
used by usersr
 to verify that usersr
 can accept the public
key of userdst. On the other hand, if usersr
 is not inG:dst,
then sr
 cannot accept the public key of userdst in a given
certificate graphG. Given a subgraphG:dst, Algorithm 4
below computes a subgraphG:dst(sr
) optimally.

In the certificate system in Fig. 8, Algorithm 3 computesG:dst as shown in Fig. 12. Note that the certificate(x; y; A) is
also in the original certificate graph in Fig. 8, but not included
in G:dst here. Since userx knows the public key of userdst and has already issued the certificate(x; dst;rating),
the certificate(x; y;A) is not necessary for userx to accept
the public key of userdst. Also all the certificates with
independent rating that are not issued fordst are excluded
from G:dst.

A

A(2) A

u

y

v

x

dstA(2) I

Fig. 12. G:dst of the certificate graph in Fig. 8

The time complexity of Algorithm 3 isO(min(e; ln)),
where n is the number of users inG, e is the number of
certificates inG, and l is the length of the longest acceptable
chain. It is easy to see that the time complexity of Algorithm3
cannot go overO(e), as it considers each certificate inG at
most once. Also the while loop in lines 8-21 runs at mostl� 1 times, and each loop can add at mostn nodes toG:dst.
Therefore Algorithm 3 executes at mostln steps. Therefore
the time complexity of Algorithm 3 isO(min(e; ln)).

This algorithm can be run by the key server for a userdst, or
userdst can flood the network with query/response messages
for the same result. (In particular, each addition of a certificate
in Algorithm 3 would require a pair of query/response mes-
sages.) Note that if the certificate system is dynamic, i.e. anew
certificate may be issued and/or a certificate may be revoked,
then this subgraphG:dst should be refreshed. The key server

ALGORITHM 3 computes the subgraphG:dst with length
limit l
INPUT: a certificate graphG and a userdst in G,

and the length limitl
OUTPUT: a subgraphG:dst of G
STEPS:
1: G:dst := fg;
2: Z := fg;
3: for each certificate(u; dst;rating) in G do
4: G:dst := G:dst [f(u; dst;Rating)g;
5: add all the certificates(x; u;rating) issued foru

in G to Z
6: endfor;
7: level := 2;
8: for each useru in G, c[u] := 0; T.u :=fg;
9: while Z 6= fg and level � l
10: for each certificate(u; v;rating) in Z do
11: remove (u; v;rating) from Z;
12: if (u; v;rating)=(u; v;A) andu =2 G:dst
13: then G:dst := G:dst [f(u; v; A)g;
14: add all the certificates(x; u;rating)

issued foru in G to Z0
15: else if (u; v;rating)=(u; v; A(k)) andu =2 G:dst
16: then c[u] := c[u]+1k ;
17: T.u := T.u[f(u; v;A(k))g
18: if c[u]�1
19: then G:dst := G:dst[T.u;
20: add all the certificates(x; u;rating)

issued foru in G to Z0
21: endfor;
22: Z := Z 0;
23: level := level + 1
24: endwhile;
25: return G:dst
may recompute this periodically or on request by userdst to
keep it up to date. Userdst can periodically initiate flooding
to refreshG:dst as well.

Once userdst hasG:dst locally, userdst can run Algo-
rithm 4 onG:dst to compute a subgraphG:dst(sr
) of G:dst
for a usersr
. The subgraphG:dst(sr
) serves as a proof to
show that usersr
 can accept the public key ofdst. When
a usersr
 wants to find a public key of userdst, then sr

can askdst for a subgraphG:dst(sr
). Whensr
 receives the
subgraphG:dst(sr
), thensr
 executes the following steps:

1) First, sr
 verifies thatG:dst(sr
) contains usersr
.
If not, sr
 cannot accept any public key based onG:dst(sr
).

2) Second,sr
 verifies that each certificate(sr
; u) inG:dst(sr
) is indeed issued bysr
. Usersr
 can either
keep the list of all the certificates it issued and compare
it with G:dst(sr
), or simply verify the signatures of

(sr
; u) with its own public key.
3) Third, sr
 verifies the signature of each certificate inG:dst(sr
) using the public key of the preceding cer-

tificate in G:dst(sr
). For example, useru in Fig. 12
uses the public key of userv to verify the certificates(v; y; A(2)) and(v; x; A(2)). If any certificate cannot be
verified, remove the certificate fromG:dst(sr
).

4) Fourth,sr
 uses the rating information in the remaining
certificates inG:dst(sr
) to decide whether to accept
the public key inG:dst(sr
) as the public key of userdst or not.

Note thatdst may not be able to verify all the certificates
in G:dst(sr
), before sending it tosr
. Unlessdst knows
the correct public key of usersr
, dst has to rely on usersr
 to verify the chains inG:dst(sr
). This is because of the
unidirectional nature of certificate verification. Any usercan
verify the certificate chain if it knows the correct public key
of the issuer of the first certificate in the chain. However, ifa
user does not know the correct public key of the issuer of the
first certificate, the user cannot be guaranteed to have correct
public keys in any of the certificates in the certificate chain.
User sr
 will detect any certificate that has been modified
wrongly and reject the incorrect certificate.

Now we show Algorithm 4 used by userdst to computeG:dst(sr
). Given a subgraphG:dst, Algorithm 4 computes
a subgraphG:dst(sr
) that can be used by usersr
 to find
the public key of userdst.
ALGORITHM 4 computes an optimal subgraphG:dst(sr
)
INPUT: a certificate graphG:dst and a usersr
 in G
OUTPUT: a subgraphG:dst(sr
)
STEPS:
1: if sr
 =2 G:dst return fg
2: G:dst(sr
) := fg;
3: for each nodeu in G:dst, done[u] :=false;
4: for each certificate(sr
; u;rating) in G:dst do
5: G:dst(sr
) := G:dst(sr
) [f(sr
; u;rating)g;
6: endfor;
7: done[src] :=true;
8: while dst =2 G:dst(sr
)
9: if u 2 G:dst(sr
) and done[u]=false
10: then add all the certificates(u; v;rating) issued

by u in G:dst to G:dst(sr
);
11: done[u] :=true;
12: endwhile;
13: return G:dst(sr
)

For example, assume that userv wants to find the public
key of userdst in Fig. 8. Userdst has the subgraphG:dst
shown in Fig. 12 computed by Algorithm 3. Userdst can
use Algorithm 4 to compute the subgraphG:dst(v) shown in
Fig. 14. Fig. 13 showsG:dst(u) for useru to accept the public
key of dst, which is same asG:dst. For usersx andy, each

of them needs only one certificate to accept the public key ofdst. Fig. 15 showsG:dst(y).
A

A(2) A

u

y

v

x

dstA(2) I

Fig. 13. G:dst(u) computed by Algorithm 4

A(2) A
y

v

x

dstA(2) I

Fig. 14. G:dst(v) computed by Algorithm 4

A
y

dst

Fig. 15. G:dst(y) computed by Algorithm 4

The time complexity of Algorithm 4 isO(e), wheree is
the number of certificates inG:dst. A certificate inG:dst is
added toG:dst(sr
) at most once, so the complexity isO(e).
Also, the resultingG:dst(sr
) is optimal in the sense that all
the certificates inG:dst(sr
) are necessary for usersr
 to
accept the public key ofdst. In Algorithm 3, for each useru, either one certificate(u; v;A) or k certificates(u; vi; ki),
where eachki � k, are added. Therefore, any certificate issued
by u in G:dst is necessary for useru to accept the public key
of dst. Algorithm 4 includes the certificates issued by users
that are on the chain fromsr
 to dst, so all the certificates
in G:dst(sr
) are necessary for usersr
 to accept the public
key of dst, i.e. G:dst(sr
) is optimal.

VIII. R ELATED WORK

SSL/TLS [1] certificates do not have any ratings in them-
selves, but in practice, users accept any certificates issued
by trusted certificate authorities such as VeriSign. This is
equivalent to having certificates with ratingaccepted from
users to trusted certificate authorities.

Lotus Notes [3] offers a hierarchical structure of certificate
authorities (CAs) to support a large scale distributed system.
Each user name has a “domain” information, and the users
with the same domain name have certificates issued by the
same CA. The CAs are configured in a tree structure so any
user who has the public key of the root CA can verify the
certificate chain from the root to any other user and accept
the public key in the chain. This is more scalable than having
a single CA in the system, but imposes more complexity in
the design of CA structure. Every certificate issued by a CA
is equivalent to having the rating ofaccepted.

The PGP system is discussed in Section III. Fig. 16 shows
the same certificate system with rating, instead of the PGP
level of trust. Using the ratings, David can decide not to accept
the public key in the certificate(Bob;Ali
e; I) as the public
key of Alice.

Bob Carol DavidAlice

independent acceptedindependent

Fig. 16. The example certificate system with rating

SDSI/SPKI [9] supports a boolean delegation flag in their
certificates to show that the subject of the certificate can
authorize another principal. When this flag is false, no more
certificates can be used after this certificate. This is equivalent
to having onlyaccepted and independent ratings in
the certificates. Our ratings are more expressive withk-
accepted.

Two frameworks in [10], [11] are based on certificates with
probabilities to express the (un)trustworthiness of subjects.
The semantics of these probabilities are defined and algorithms
to evaluate certificate chains based on them are presented.
However, it is not easy for users to translate their trustworthi-
ness into exact numbers, and the algorithms are complicated.
Our ratings offer clear semantics and the algorithms are
efficient.

Instead of adding information to certificates, a property
of a certificate graph can be used as acceptance criteria.
In [5], the min-cut sizek of a partial certificate graph from
a useru to a userdst is proposed as an acceptance criteria.
However, it is proven to be NP-Complete to find such a partial
certificate graph from useru to userdst in a certificate graph.
Approximation algorithms are provided, but their complexity
is still expensiveO(nO(l)), wheren is the number of users
in the certificate graph andl is the length of the longest
acceptable chain). In [12], the same authors discuss desirable
properties of acceptance criteria.

IX. CONCLUSION

A certificate system provides many useful features such
as privacy, integrity, authentication, and authorization. In a
certificate system with trusted certificate authorities, a user can
learn the public key of another user from a certificate issuedby
a trusted certificate authority. However, in a certificate system
without such trusted certificate authorities, users need toshare
trust information about other users.

We have discussed the problem of trusting certificates in
self-organized certificate systems, such as PGP, and proposed
a solution to this problem by adding ratings to certificates.
Table IX shows a summary of comparisons among the solu-
tions to the problem of trusting certificates in self-organized
certificate systems. The first column shows whether each
scheme can share the trust information among users or not.
Except for PGP, every scheme supports the trust information
by adding it as a field in a certificate. The second column
shows the granularity of the trust information of each scheme.

shared trust info partial trust complexity
PGP no per user not specified

SPKI/SDSI yes no low
probabilities yes per certificate high

ratings yes per certificate low

TABLE I

COMPARISON OFTRUST INFORMATION SCHEMES

The ratings and the two schemes using probabilities support
the issuer to specify partial trust for each certificate. However,
in PGP a user has one parameter to apply to all the certificates
for partial trust. SPKI/SDSI has only one boolean flag to
share the trust information, so it does not support partial
trust. The third column shows the complexity to use each
scheme in evaluating trust information. PGP does not share
the trust information, so the complexity is not specified. The
complexity of using ratings, and SPKI/SDSI is low since
they only require simple arithmetic operations and offer clear
semantics. However, the two schemes based on probabilities
require more complicated operations and it is hard for an
average user to understand the semantics of these operations.

We also showed two algorithms that compute a set of users
that can accept a public key. For a given certificate graphG
with e edges, the second algorithm has the complexity ofO(e),
which meets the lower bound of the worst case complexities.
These two algorithms need a certificate graph as an input. We
discussed how to use the public key servers and local databases
of certificates to obtain the input certificate graph for these
two algorithms. The resulting certificate graph might contain
certificates that are not useful in key acceptance decision.We
presented Algorithm 3 that computes a subgraphG:dst for
each userdst that contains only the useful certificates for any
user to decide whether to accept the public key ofdst in G or
not. The complexity of Algorithm 3 isO(min(e; ln)) wherel is the length of the longest acceptable chain andn is the
number of users. Based onG:dst, Algorithm 4 computes an
optimal subgraphG:dst(sr
) for usersr
, which contains all
the necessary certificates forsr
 to verify and decide whether
to accept the public key ofdst or not.

REFERENCES

[1] Tim Dierks and Eric Rescorla, “The TLS protocol version 1.1,” Internet
Draft (draft-ietf-tls-rfc2246-bis-08.txt), 2004.

[2] P. Zimmerman,The Official PGP User’s Guide, MIT Press, 1995.
[3] Søren Peter Nielsen, Frederic Dahm, Marc Lüscher, Hidenobu Ya-

mamoto, Fiona Collins, Brian Denholm, Suresh Kumar, and John
Softley, “Lotus notes and domino r5.0 security infrastructure revealed,”
1999.

[4] “Pathfind,” http://the.earth.li/ noodles/pathfind.html.
[5] Michael K Reiter and Stuart G. Stubblebine, “Resilient authentication

using path independence,”IEEE Transactions on Computers, vol. 47,
no. 12, pp. 1351–1362, December 1998.

[6] “Worldwide public key repository,” www.keyserver.net.
[7] Srdjan Capkun, Levente Buttyán, and Jean-Pierre Hubaux, “Self-

organized public-key management for mobile ad hoc networks,” IEEE
Transactions on Mobile Computing, vol. 2, no. 1, pp. 52–64, 2003.

[8] Mohamed G. Gouda and Eunjin Jung, “Certificate dispersalin ad-
hoc networks,” inProceedings of the 24th International Conference
on Distributed Computing Systems (ICDCS ‘04). 2004, IEEE.

[9] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
“SPKI certificate theory,” RFC 2693, 1999.

[10] U. Maurer, “Modeling a public-key infrastructure,” inProceedings of
the European Symposium on Research in Computer Security (ESORICS
’96). 1996, Springer-Verlag.

[11] T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in open
networks,” inProceedings of the European Symposium on Research in
Computer Security (ESORICS ’94) LNCS 875. 1994, pp. 3–18, Springer-
Verlag.

[12] Michael K. Reiter and Stuart G. Stubblebine, “Authentication metric
analysis and design,”ACM Transactions on Information and System
Security (TISSEC), vol. 2, no. 2, pp. 138–158, 1999.

