Rating Certificates

Eunjin (EJ) Jung and Mohamed G. Gouda
Department of Computer Sciences
The University of Texas at Austin
Email:{ejung,goudd@cs.utexas.edu

Abstract— We consider a system where each user has a publicgraph. An example of an SSL certificate system is shown in
key and a private key. In this system, a certificate is a data @m  Fig. 1. Each node represents a user and each edge represents
that is issued by one usew and contains the public key of another a certificate.
user v. A third user w that knows the public key of w can verify
that this certificate has not been corrupted (by an adversary
since it was issued byu, and so can accept the public key in
the certificate as the correct public key ofv. User w can use
this accepted public key ofv in two ways. First, w can securely
communicate with v. Second,w can obtain more public keys of
other users, as it used the public key ofu to obtain the public
key of v. However, the safety of the second use is questionable if
u, the issuer of the certificate, has concluded that it cannotrtist
v enough to accept a public key merely because accepts it. To
solve this problem, we propose that each certificate shoulddve a Fig. 1. An example of an SSL certificate system
“rating”. The rating of a certificate describes how much trust the

issuer puts on the subject concerning key acceptance. We ment s vne of certificate systems has limitations. In most
two algorithms for computing the set of all users that can acept

the given public key where all certificates have ratings. Theirst ~ Certificate systems, there are much fewer trusted cergficat

algorithm is simple, but its time complexity is O(n®), where n  authorities than users. The overhead of issuing certificste

is the number of users in the system. The second algorithm is on the few trusted certificate authorities, and also if agtev

more sophisticated, but its time complexity isO(e), where e is  key of a certificate authority is revealed to an adversary,

the number of certificates in the system. Thls algorithm meet 4. scope of the damage can be catastrophic. We can use

the lower bound of the worst case complexity. We also discuss . . . e ..

how to find an input to these two algorithms, and present two @ hierarchical structure of certificate authorities to riisite

algorithms that compute an optimal set of certificates that & the load and the risk of a few certificate authorities, as in

necessary for a user to accept the public key of another users Lotus Notes [3]. However, the construction and planning of
hierarchical structure of certificate authorities regsiaesingle

. INTRODUCTION point of control for the whole system.

Many of the security problems in the Internet can be solved A certificate system without trusted certificate authositie
by a collection of basic security building blocks such ais called self-organized. In a self-organized certificatstem,
authentication, privacy, integrity, non-repudiationdamutho- users issue certificates for other users. There may be a key
rization. For example, if we can authenticate the source sfrver which stores public keys of users and certificate®tss
packets, denial of service attacks can be diminished. Afsoby users, but the key server does not guarantee that these
we can guarantee privacy and authentication in transactiarertificates are correct, i.e. that they contain the compebtic
on the Internet, identity theft can be reduced. In the Irernkeys. Therefore, in such a system, it is not clear whether
certificate systems are extensively used to provide someuskrs can trust the certificates issued by other users or not.
those basic security building blocks. An example of a certificate system without trusted certificat

There are two types of certificate systems: one with trustatthorities is PGP.
certificate authorities, and the other without trustedifteste PGP certificate systems are self-organized: any user can
authorities. An example of certificate systems with trustddsue a certificate for another user. Imagine a user Alice
certificate authorities is Secure Socket Layers (SSL) [d{l acreates her own public and private key pair and advertises th
an example of certificate systems without trusted certdicapublic key to her friends, including Bob. In turn, Bob issues
authorities is Pretty Good Privacy (PGP) [2]. a certificate for Alice’s public key, so that Carol, who does

In a certificate system with trusted certificate authorjtiesot know Alice’s public key, can use the public key of Bob
users can use any certificate issued by one of the trustettl his certificate to obtain Alice’s public key. Later, Déwi
certificate authorities to securely communicate with othéssues a certificate for Carol. The certificate system betwee
users. For example, in the current Internet, users trust dioyr users, Alice, Bob, Carol, and David is shown in Fig. 2.
certificate issued by VeriSign and use the public key in the In the example PGP system in Fig. 2, Carol already issued a
certificate for secure communication over SSL. The cert#icacertificate for Bob, which indicates that Carol knows theljmub
system in SSL can be represented as an hourglass certifiéate of Bob. However, Carol does not trust the certificates

Bob



This certificate is signed using the private kByu of useru,

and it includes five items:
Fig. 2. An example of a PGP certificate system

u is the identity of the certificate issuer,
v is the identity of the certificate subject,
issued by Bob. Hence, she does not accept the key in the B.v is the public key of the subjeat,
certificate issued by Bob for Alice as the public key of info is other relevant information regarding this certi-

Alice. The problem is, when another user David needs to ficate such as expiration date, and

securely communicate with Alice, he needs to know whether si g is an encrypted message digest of this certificate.
the certificate issued by Bob is trustworthy or not, befoiagis It is constructed by computing a message digest
the key in the certificate as the public key of Alice. To solve of all other four items in this certificate and en-
this problem, Carol needs to share her trust informatioruaibo crypting the message digest with the private key
Bob with David. R.u of issueru.

This is not a problem in a certificate system with trusted For simplicity, a certificate(u, v, B.v,i nf 0,si g) is de-
certificate authorities, such as SSL, since any certificateeid noted (u,v). Any userz that knows the public key3.u of
by trusted certificate authorities should contain corredilip  useru can useB.u to decryptsi g in (u,v). Userz continues
keys. However, in a self-organized certificate system sischta compute the message digest of all other four items in
PGP, each user needs additional information to decide whetthe certificate. If the decrypted message matches the nessag
to accept the public key in each certificate as the corredigubdigest computed by uset, then userz can accept the key
key or not. B.v in certificate(u, v) as the public key of user.

In the following sections, we define our system model more The certificates issued by different users in a system can
formally, and discuss the problems in using certificates g represented by a directed graph, called teetificate
obtain public keys of other users. We show what informaticgraph of the system. Each node in the certificate graph
can be added to certificates so that users can share their tf@gresents a user and its corresponding public and private
information about other users. We discuss the semantid¢eeof key pair B.u and R.u. Each directed edgéu,v) from node
added information. We present two algorithms that compute,to nodew in the certificate graph represents a certificate
for a given public key and a given set of certificates, the §et tu, v, B.v,i nf o,si g).
all users that can accept this public key as the correct oee. W

continue to discuss how to obtain the input set of certifcate —
for these algorithm, and present two algorithms that comput
an optimal set of certificates that are necessary for a user to (b—(c—(®

accept the public key of another user.
Fig. 3. A certificate graph example

Il. CERTIFICATE SYSTEMS ) N o
Fig. 3 shows a certificate graph for a system with five users:

We consider a system where each ugéras a private key ¢, b, ¢, d, ande. According to this graph,
R.u and a public keyB.u. In this system, in order for a user

to securely send a messageto another usev, useru needs userq issued two certificatega, b) and (a, d)
to encrypt the message using the public keyB.v, before userb issued one certificat@, c)
sending the encrypted message, dendsed{m}, to userv. userc issued one certificaté, e)

(This message may be a session encryption/decryption key fo userd issued one certificatéd, c)
further secure communication.) This necessitates that wise  usere issued no certificates.
know the public keyB.v of userv.

If a useru knows the public keyB.v of another usep inthis A simple path ¢o, v1), (v, v2), -+, (vg—1, vx) N @
system, then user can issue a certificate, called a certificatgertificate graphG:, where the usersy, vy, ---, v; are all
from u to v, that identifies the public key.v of userv. This distinct, is called acertificate chainfrom vy to vy in G of
certificate can be used by any user in the system that knd@Bgthk. vy is thesourceof the chain andy, is thedestination
the public key of user, to further acquire the public key of the chain. Source, of the certificate chain frong to vy,
of userv. Note that this model encompasses both certificagén accept all the keyB.v, --- B.v; in these certificates as
systems with and without trusted certificate authorities. Rublic keys of the users, --- vy in this chain, respectively.
certificate system with trusted certificate authoritied Wwilve For example, useu in Fig. 3 may use the certificate chain
only certificates issued by those certificate authoritidseneas (a,b) (b, d) to accept the public key#.b and B.d of userb
a certificate system without trusted certificate autharitiemy and userd.
have certificates issued by any user in the system.

o : : I1l. THE PROBLEM OF TRUST IN CERTIFICATE SYSTEMS
A certificate from usek to userv is of the following form:

The use of certificate chains to accept public keys of other
(u,v, B.v,i nf o,si g) users is based on the assumption that all the certificates in



the chain are correct, i.e. all the keys in the certificates a@ Bob Carol

indeed the correct public keys of the subjects. Howeves, thi Alice: unknown Bob: untrusted Carol: completely trusted
may not be the case all the time. Some users may not take

enough precautions before issuing certificates and as & resu Fig. 4. An example of a PGP certificate system with level ostru
issue a certificate with a wrong public key for the subject.

Some user may intentionally issue incorrect certificates to

impersonate other users. When a user knows that some us&@yighe matchingR.v, or u will accept any public keys in
not trustworthy or is suspected of issuing incorrect cegtés, certificate chains starting witfu, v)? The current specification
this trust information needs to be shared with other users. of PGP does not specify the semantics clearly.

PGP manages this trust information for each user, but doeshis example shows that users need to share their trust
not support sharing. In PGP, a user puts the public keys igformation with other users regarding which certificates a
other users that it believes to be correct in its Iquablic key trustworthy. Moreover, this trust information needs to be
ring. Each entry in the key ring contains an ID of another usegigned so that other users can verify that this information
its public key and other information. is not tampered by an adversary. One way to share this

For each public key in the key ring, users can choose frofitist information in a tamper-resistant manner is to add thi
four levels of trustconpl et el y trusted, margi nal |y trust information to certificates. In the following sectjome
trusted, untrusted, and unknown to assign to. (The propose a solution to this problem by adding “ratings” (trus
default level of trust isunknown.) Note that this level of information) to certificates.
trust isnot trust on whether the public key is the correct one
for that user or not. Rather, the level of trust is trust on the
public key as a signing key. In the default setting of PGP, for To solve the two problems discussed in the previous section,
a user to accept a kepp.z as the public key of a user, it one could imagine adding the trust level assigned by each
needs to find either oneonpl et el y trusted public key user to a certificate. For example, Carol in Fig. 4 could add
or twonargi nal Iy trusted public keys in its own key the levelunt r ust ed to the certificate(Carol, Bob) so that
ring, that sign certificates which has the same Iy as the David could decide not to use the certificatBob, Alice).
public key of userz. Fig. 4 shows the example system wittHowever, this only solves the first problem of sharing trust
level of trust in each user’s key ring. For example, David ithformation, not even completely. The levetr gi nal | y
the system in Fig. 4onpl etel y trusted Carol's public trusted needs a parametedvARG NALS_NEEDED to be
key in his key ring, so David accepts Bob's public key in theffective. One can add this parameter as part of the cetéfica
certificate(C'arol, Bob). as well. Still, the second problem of how to choose the

PGP users can tune their own security settings by chanrgpropriate level is not solved. This is because PGP treats
ing COMPLETESNEEDED, MARGINALS NEEDED, and a public key as a "signing key”. For David to accept a key in
CERT.DEPTH. The first two parameters indicate how many certificate chain, David needs to trust each public keyi® th
trusted keys are needed to accept a public key. CBEPTH  chain as a signing key. David could use the trust information
indicates how long a certificate chain can be to accept the certificate, if added, but this trust information is gasid
public key in the last certificate in the chain. by a stranger, so David may not feel comfortable trusting tha

However, there are two problems with the current levghformation.
of trust scheme in PGP. First, the trust information is \We add a new field called “rating” to a certificate: a rating of
not shared with other users. In the example in Fig. 4, certificate is trust information that the issuer has on e k
David conpl etely trusted Carol's public key, and acceptance decision made by the subject. Now a certificate

Carol hasunt rust ed Bob’s public key. There is a certifi- from userw to userv with a rating contains six items as
cate chain from Carol to Alice(Carol, Bob)(Bob, Alice).  follows:

However, Carol will not accept this public key_ of Al- (u,v, B.v,rating,info,sig)

ice because Carol has no trust on Bob’s public key to

introduce a new key. When David wants to obtain Al w, v, B.v, i nfo, andsi g are the same as explained in

ice’s public key, David may want to use the certifiSection Il.rati ng is a rating which can be any one of the

cate chain(David, Carol)(Carol, Bob)(Bob, Alice). Even following that will be explained shortly:

though David is relying on Carol’'s public key in the certifiea

chain (Dawvid, Carol)(Carol, Bob)(Bob, Alice), David may accept ed

make a different, in fact more vulnerable decision from Caro | Ndependent

and accept the public key in this chain as the public key of k-accepted

Alice. .
Second, it is not clear how users can decide which level BP" simplicity,

trust they should assign to public _keys. When a usassigns (u,v, B.v,rating,info,sig)

conpl etely trusted to a public key of usev, B.v, does

it mean thatu will accept any public keys in certificates signeds denoted(u, v,r ati ng) wherer ati ng is

IV. RATINGS IN CERTIFICATES

a certificate of a form



A for accepted
I for i ndependent
A(k) for k-accepted

A certificate(u, v, r at i ng) with rating provides two pieces

of important information: the public key of user and the
rating of userv by useru. Any userw that knows the public
key of useru can accept the public key of useras long as
they could verify the certificate. Moreover, usercan use the

rati

ng information in this certificate to decide whether to

accept the public keys accepted by usesr not.

1)

2)

accept ed: A certificate of the form

(u,v, B.v,accept ed,i nf o,si g) 3)
indicates that: acceptsB.v as the public key of user
and thatu also accepts any public key.z of a userz,

if v accepts the same kdy.z as the public key of user
Z.
In Fig. 5, useru issues a certificatgu,v, A) and
user v issues two certificateqv,w,rating) and
(v,z,rating). Clearly v accepts both key®.w and
B.r as the public keys of users and z, and the
rating of the certificatéu, v, A) is accept ed, so user
u accepts the same keyB.w and B.z in certificates
(v,w,rating) and(v,z,rating) as the public keys
of userw and userz, respectively.

W
)

Fig. 5. An example oficcept ed certificates

G

Note thatu will accept the public keys of users and

z in the certificate chaingu, v, A)(v,w,r ati ng) and
(u,v, A)(v,z,r ati ng) regardless of the ratings in the
certificates(v, w, r at i ng) and (v, z,r ati ng).

i ndependent : A certificate of the form
(u,v, B.v,i ndependent ,i nf o,si g)

indicates that, acceptsB.v as the public key of user.

It also indicates that whetheraccepts a key.z as the
public key of a user: or not is independent of whether
v accepts the same ke&y.z as the public key of user
or not. In other words, user does not accept any key
B.z as the public key of a userjust because accepts
the same keyB.z as the public key of uset.

In Fig. 6, useru issues two certificate$u, v, I) and
(u,w, A), userv issues a certificatd¢v, z,r at i ng),

(u,v,I)(v,z,rating) in Fig. 6, because the rating of
certificate (u,v, I) is i ndependent . In the example
certificate system in Fig. 6, there is another certificate
chain fromu to z (u,w, A)(w,z,rating), and the
rating of (u, w, A) is accept ed. Sincew acceptsB.z

as the public key of user, v acceptsB.xz as well.

i ndw\

@M/@

Fig. 6. An example of ndependent certificates

k-accept ed: A certificate of the form
(u,v, B.v, k- accept ed,i nf o,si g)

indicates thatu, acceptsB.v as the public key of user.

It also indicates that, accepts a keyB.z as the public
key of userz, if u has also issued certificates for users
Uy Ug—1,

(u, v, A(K)), (u,v1, A(j1)), - -

where eachy; < k, and eachv; accepts the samB.x
as the public key of uset. (Intuitively, the issuer has
£ of the full trust on the subject.)

In Fig. 7, useru issues three certificate@, v, A(2)),
(u,w, A(3)), and (u,y, A(3)). User v issues a cer-
tificate (v,z,rating), user w issues a certifi-
cate (w,z,rating), and usery issues a certificate
(y,z,rating). Clearly usersv, w, and y accept
the key B.z in (v,z,rating), (w,z,rating), and
(y,z,rating) as the public key of usew. User
u issued three certificateu, v, A(2)), (u,w, A(3)),
and (u,y, A(3)), so it also accepts the ke.z in
the certificates(v, z,r ati ng), (w,z,rating), and
(y,z,rating) as the public key of a user. Note that
the certificates(v, z), (w,z), (y,z) must include the
same keyB.z as the public key of user for useru to

accept it.
Z"‘“/‘“'@\

W

) (’U,, V-1, A(jszl))v

3-accepted

Fig. 7. An example ofk-accept ed certificates

Note that the semantics of these ratings are for key accep-
tance, not for key signing. This enables simpler use of gatin

and userw issues a certificatéw, z,r at i ng). Since An issuer of a certificate can assign the rating for the stibjec
userwu issues a certificate to user u clearly accepts depending on whether to accept a key just because this subjec
the public keyB.v of userv. However, usern would accepts the key or not. Even though this trust informatiah wi
not acceptB.z as the public key of useg if there be shared with all other users, the decision itself is a local

were only one certificate chain from to = throughwv

decision of the issuer.



V. KEY ACCEPTANCEEXAMPLES ALGORITHM 1 computes the set of accepting users

In the previous section, we defined three ratings for certifi- - )
cates, and showed their semantics. Consider the example 4P UT: a certificate graplis and a userlst in G
tificate graph' in Fig. 8. Each edgéu, v) in G is labeled with OUTPUT: a setU of users that can acceft.dst
the rating of the corresponding certificate,v,r at i ng). as the public key of usedst
Based on these ratings, we can compute the&’set all users

that can accepB.dst as the public key of useist. STEPS:

1 C = {dst};
: for each certificatdu, dst,r ati ng) in G do
C:=CuU{u}
: endfor;
: while users can be added © do
for each usew not in C do
if there is a usex in C' such that(u,z, 4A) € G
then C' := C U {u}
else ifthere arek usersvg ---vj,_1 in C such
that for eachv;, (u,v;, A(k;)) € G andk; <k
The setC' can be computed in three steps. 10: then C':= C'U {u}

1) First, observe that each of the userandy can accept 11 endfor;
B.dst as the public key of usafst, since each of them 12: €ndwhile;
has already issued a certificate declaring that the pubfig: retum ¢
key of dst is B.dst. Note that the rating in the certificate
(z,dst,I) isi ndependent . No matter what the rating
is in the certificate(z, dst), « declared that the public
key of dst is B.dst in this certificate, sa: acceptsB.dst

as the public key of usetst. If we apply Algorithm 1 to the example certificate graph

2) Second, Usew can acc_eptB.dst as th?. public I_(ey in Fig. 8, we compute the following sé&t of users that can
of userdst sincev has issued two certificates with a

: tB. th blic key of .
rating A(2) each, for userg andy (andz andy can acceptB.dst as the public key of usest
acceptB.dst as the public key of usedst from the C = {dst,z,y,v,u}

first step of our discussion). Note that usercannot . . . . 3 .
acceptB.dst as the public key of usafst even though The complexity of this algorithm i®(n?), wheren is the
w has issued a certificate for user(and« can accept number of users in the certificate graph. In each execution of

thewhile loop in lines 5-13, at least one user has to be added
to C, so thewhile loop can be executed at mosttimes.
Also, for eachfor loop inside thewhile loop, the number of
users that may not be il is at mostn, so thefor loop can be
executed at most times. Also, to find the users that match the
if condition inside thdor loop, Algorithm 1 may consider up
to n users. In total, the complexity of Algorithm 1 &(n?).
The correctness of Algorithm 1 is straightforward from the
definition of ratings.
{dst,z,y,v,u} Algorithm 2 also takes the same input, a certificate graph
G and a usetlst in G and computes the same output, a set of
In the following section, we present two algorithms thajsers that accept the ké§.dst in G as the public key of user
useru can use to decide whether to accept a public key or n@éz. However, Algorithm 2 computes the set in much less
based on a certificate graph. Note that this input certificag@mplexity than Algorithm 1. The intuition of Algorithm 2
graph does not have to be the full certificate graph of th@mes from constructing a minimal spanning tree. Starting
system. For example, userdoes not need the certificate chaifrom userdst in G, Algorithm 2 considers each certificate
(u, w)(w, z)(z, dst), since the ratings ifu, w) and(w, z) are (u,v) that is issued by a user, u ¢ C, for a user, v € C.
i ndependent . In Section VII, we discuss how to computeif the certificate has the rating @fccept ed, then usen is
the input certificate graphs for the following two algorittm added toC' and the certificates issued forwill be considered
later. Algorithm 2 continues adding users @until there is
no more certificate issued by a user that is no€ifior a user
The example discussed in the previous section is in fact hawC'.
Algorithm 1 below, given a certificate gragh and a usetist The complexity of Algorithm 2 isO(e), wheree is the

CcoNooukrwdR

Fig. 8. An example of a certificate graph with ratings

in G, computes a sat’ of all users that can accept.dst as
the public key of usetist.

B.dst as the public key of usetst, as discussed above),
since the rating of the issued certificate), z,I) is
i ndependent .

3) Third, useru can accepB.dst as the public key oflst
sincewu has issued a certificate towith rating A (and
v can accepiB.dst as the public key of usedst from
the second step of our discussion).

The setC' is therefore:

VI. KEY ACCEPTANCEALGORITHMS



ALGORITHM 2 optimally computes the set of accepting 4 1 to dst will be added taC' if it has issued a certificate with

users accept ed rating for any node irC' (line 9). Similarly, if it
has issuedk certificates for users i’ with k;-accept ed
INPUT: a certificate grapliz and a usetlst in G ratings, wherek; < k, it will have c[u] > 1 and be added
OUTPUT.: a setC' of users that accepB.dst to C' (line 14). There are no other ways users could accept
as the public key of usefst B.dst. Therefore, the set computed by Algorithm 2 includes
all users that accep®.dst as the public key of usefst in G.
STEPS: This algorithm is optimal in the sense that it meets the lower
1. C = {dst}; Z :={}; bound of the worst case complexities of any algorithms that
2: for each certificatgu, dst,r ati ng) in G do compute the set of users that accéptist as the public key
3 C:=C0U{u}; of userdst. The example certificate graph in Fig. 9 shows
4:  add all the certificategr, u,r at i ng) issued foru when any algorithm has to consider all the three certificates
inGto Z to compute the set. In fact, any certificate graph that hag onl
5: endfor; one certificate chain from any user to usit, where all the
6: for each usew in G, c[u] := 0; certificates havaccept ed ratings, needs exactly steps to
7: for each certificatgu, v,r ati ng) in Z do find all the users that can accept the public key of ukgr
8: remove(u, v, r at i ng) from Z; Therefore, Algorithm 2 meets the lower bound of the worst
9: if (u,v,rating)=(u,v,A) andu ¢ C case complexity.
10: then C = C U {u};
11:

add all the certificateGr, u,r at i ng) issued () A @L@

foruin G to Z

12: else if (u,v,r ating)=(u,v, A(k)) andu ¢ C Fig. 9. A certificate graph with the worst case complexity

13: then c[u] := cu]+%;

14: if c[u]>1

15: then C := C' U {u}; VIl. CERTIFICATE DISTRIBUTION

16: add all the certificategr, u,r at i ng) In the previous section, we showed two algorithms that

issued foru in G to Z compute a set of users that can accept the public key of user

17: endfor; dst in a given certificate graph. These algorithms can be used

18:return C by two types of entities: a public key server with a large
database of certificates or users with a limited database of
certificates.

In PGP, users can find certificate chains frent to dst

number of certificates in the certificate graph. Each ceatidic from search services based on public key servers [4], [5].
(u,v) in G is added taZ only when usew is added taC, and A public key server, for example keyserver.net [6], stores a
each usew is added toC' only once. (Initially the users that collection of public keys and certificates issued by useserU
have issued certificates fdst are added t&”, and after that, src can use this collection to find a certificate chain frem
the conditions in line 9 and 12 assure thas not inC before to dst by itself, or use the search services such as [4], [5].
it is added.) Therefore, each certificateGhcan be added to However, it is proven that finding all the certificate chains
Z at most once. Once it is added, each certifidatey) will  from one user to another is NP-hard [5], so these services
be considered exactly one time. The first step infdreloop provide an approximate set of certificate chains. Still theet
in lines 7-17 is to remove the certificate, and then the sardemplexity of computing a set of chains from one user to
certificate(u, v) cannot be added t4 again sincev is already another isO(n®®), wheren is the number of users in the
in C'. So thefor loops in line 2 and théor loop in lines 7-17 certificate graph and is the length of the longest acceptable
can be executed at mosttimes in total.for loops in line 6 chain.
takesn steps, as it initialize: elements in the array. In total, If the algorithms in the previous section are run by a public
the complexity of Algorithm 2 isO(n + e). Since the input key server then we can assume that the input certificate graph
graph is a certificate graph, it is safe to assume thdte. It s the full certificate graph of the system and ugat can
is because that any user in the certificate graph should haweply rely on this service to learn more public keys. When
at least one certificate that is either issued by this useoor tisersrc needs to learn the public key of usét, src can ask
this user. Therefore) (n + e)=0(e). the key servers to run Algorithm 2, and the server can decide

We prove Algorithm 2 correct by induction on the lengttwhether a usesrc can accept the public key of usést or
1 of certificate chains. Fof = 1, any user who has issued anot on behalf of usegrc. However, if this kind of services
certificate fordst will be added toC (line 3). Assume any are not available, users need to make a decision on a partial
user that were to acceit.dst as the public key ofist based certificate graph.
on the ratings in certificate chains of length at moist added Making decisions based on partial certificate graphs israth
to C'. Any useru that has certificate chains of length at mogricky. Consider the certificate graph in Fig. 8. Assume that



useru wants to find the public key of uselst. If useru only chain will not be used in key acceptance decision. We present
had the certificate chaifw, w, I)(w, z, I)(z,dst,I) shown in an efficient algorithm, Algorithm 3, to compute a subgraph
Fig. 10, then usetr, would not have accepted the public keyor each userst that contains only useful certificate chains.
of dst. If useru wants to accept the public key of usést, Algorithm 3 is similar to Algorithm 2, and the pseudo code is
then usern, needs to find more certificates. below. The time complexity of Algorithm 3 i®(min(e, in)),
where n is the number of users i@, e is the number of

certificates inG, and! is the length of the longest acceptable
chain.

/QD Algorithm 3 computes a subgraghi.dst of the certificate
graph G for each userdst in G, given a parametet. [ is
the length of the longest acceptable chainl i$ small, then

Fig. 10. A certificate chain with ndependent ratings in Fig. 8 users can accept fewer public keys, but users will have less

. ) _risk of using incorrect certificates. Ifis large, then users can
One way for user to find the public key of usetst is  accept more public keys, but users may face more risk of using
to send queries to user (Note that usew has the rating of incorrect certificatess.dst contains all the certificates that are
i ndependent for userw, so user cannot accept any key needed by any userin G to decide whether to accept.dst
based on a certificate chain through Therefore, there is N0 45 the public key of usefst or not. If a usersrc is in G.dst,
point in asking usem for more certificates.) However, it is then usewdst can compute a subgragi.dst(src) that can be
hard to guarantee that usemwill be online whenu needs it. ysed by usesrc to verify that usersrc can accept the public
Instead, users can store a subset of certificates locally [¢dy of userdst. On the other hand, if userc is not inG.dst,
[8]. The scheme in [7] does not require the knowledge @hen src cannot accept the public key of usést in a given
the full certificate graph but may need to flood the networketificate graphG. Given a subgraphG.dst, Algorithm 4
with query/response messages to find the subset of ced8icaje|ow computes a subgragh.dst (src) optimally.
to store. On the other hand, the scheme in [8] requires they the certificate system in Fig. 8, Algorithm 3 computes
knowle_d_ge of the full certificate graph but assigns a subsgtis; as shown in Fig. 12. Note that the certificdtey, A) is
of certificates to each user such that users and dst are gso in the original certificate graph in Fig. 8, but not irzd
guaranteed to be able to retrieve all certificate chains fro . 4s¢ here. Since user knows the public key of user
src to dst in the union of their local subsets, if there wergjs; and has already issued the certificéte dst, r at i ng),
such chains in the original certificate graph. In both schemegpne certificate(, y, A) is not necessary for userto accept
userssrc anddst can use the union of their local subsets age public key of userdst. Also all the certificates with

the input to Algorithm 1 or Algorithm 2 to decide whether tq ngependent rating that are not issued fast are excluded
accept the public key ofst or not. from G.dst.

For example, in the certificate system in Fig. 8, users
u and dst may store the following certificates locally.

u stores {(u,v, 4), (u,w, 1), (v,y, A(2)), (v, 2, A(2))} A
dst stores {(y,dst, A), (z,dst, 1)} @/
The union of these two sets is the certificate graph shown

in Fig. 11. When Algorithm 2 is applied on this certificate
graph, it computes the same gét{dst,z,y, v, u}.

Fig. 12. G.dst of the certificate graph in Fig. 8

The time complexity of Algorithm 3 isO(min(e,In)),
where n is the number of users G, e is the number of
certificates inG, and! is the length of the longest acceptable

A
A chain. It is easy to see that the time complexity of AlgoritBm
@ . . -
cannot go ovelD(e), as it considers each certificate @ at
most once. Also the while loop in lines 8-21 runs at most

[ —1 times, and each loop can add at mastodes toG.dst.
Therefore Algorithm 3 executes at mdst steps. Therefore
Fig. 11. A certificate graph from local database of certiéisat the time complexity of Algorithm 3 i€)(min(e, in)).
This algorithm can be run by the key server for a ugegr or
Note that in a certificate system with ratings, not all ofiserdst can flood the network with query/response messages
these certificate chains are necessarily useful. For examipbr the same result. (In particular, each addition of a fieatie
the certificate chairfu,w, I)(w,z, I)(z,dst,I) in Fig. 10 is in Algorithm 3 would require a pair of query/response mes-
not useful for usew to learn the public keys of usersand sages.) Note that if the certificate system is dynamic, ireva
dst. In fact, any certificate chain that contains a certificateertificate may be issued and/or a certificate may be revoked,
with a ratingi ndependent before the last certificate in thethen this subgraplii.dst should be refreshed. The key server



ALGORITHM 3 computes the subgrapfi.dst with length
limit {

INPUT: a certificate graplt and a usedst in G,
and the length limit
OUTPUT: a subgrapldr.dst of G

STEPS:

1: G.dst := {};

2: 7 =1}

3: for each certificatdu, dst,r ati ng) in G do

4 G.dst := G.dst U {(u,dst,Rat i ng)};

5 add all the certificateée, u,r at i ng) issued foru
in GtoZ

6: endfor;

7: level := 2;

8: for each usew in G, c[u] := 0; T.u :={};

©

:while Z # {} andlevel <1

10: for each certificatdu, v,rating) in Z do
11: remove (u, v, r ati ng) from Z;
12: if (u,v,rating)=(u,v,A)andu ¢ G.dst
13: then G.dst := G.dst U {(u,v, A)};
14: add all the certificate@e, u, r at i ng)
issued foru in G to Z’
15: else if (u,v,rati ng)=(u,v, A(k)) andu ¢ G.dst
16: then c[u] := cu]+%;
17 T.u = Tw{(u,v, A(k))}
18: if c[u]>1
19: then G.dst := G.dstUT.u;
20: add all the certificate@e, u, r at i ng)
issued foru in G to Z’
21: endfor;
22:. Z:=17",
23:  level :=level + 1
24: endwhile;

25: return G.dst

may recompute this periodically or on request by ugerto
keep it up to date. Usefst can periodically initiate flooding
to refreshG.dst as well.

Once userdst has G.dst locally, userdst can run Algo-
rithm 4 onG.dst to compute a subgrapfi.dst(src) of G.dst

for a usersrc. The subgraplz.dst(src) serves as a proof to

show that usesrc can accept the public key afst. When
a usersrc wants to find a public key of usefst, then src
can askdst for a subgrapt@i.dst(src). Whensrc receives the
subgraphG.dst(src), thensrc executes the following steps:

1) First, src verifies thatG.dst(src) contains usersrc.

(sre, u) with its own public key.
3) Third, src verifies the signature of each certificate in
G.dst(src) using the public key of the preceding cer-
tificate in G.dst(src). For example, uset in Fig. 12
uses the public key of user to verify the certificates
(v,y,A(2)) and(v, z, A(2)). If any certificate cannot be
verified, remove the certificate frod.dst(src).
Fourth,src uses the rating information in the remaining
certificates inG.dst(src) to decide whether to accept
the public key inG.dst(src) as the public key of user
dst or not.

Note thatdst may not be able to verify all the certificates
in G.dst(src), before sending it tosrc. Unlessdst knows
the correct public key of usesre, dst has to rely on user
src to verify the chains inG.dst(src). This is because of the
unidirectional nature of certificate verification. Any uszEm
verify the certificate chain if it knows the correct publicyke
of the issuer of the first certificate in the chain. Howeves if
user does not know the correct public key of the issuer of the
first certificate, the user cannot be guaranteed to haveatorre
public keys in any of the certificates in the certificate chain
User src will detect any certificate that has been modified
wrongly and reject the incorrect certificate.

Now we show Algorithm 4 used by uselst to compute
G.dst(src). Given a subgrapldr.dst, Algorithm 4 computes
a subgraph.dst(src) that can be used by userc to find
the public key of usetist.

4)

ALGORITHM 4 computes an optimal subgraghdst(src)

INPUT: a certificate graplt<.dst and a usesrc in G
OUTPUT: a subgrapld.dst(src)

STEPS:

1:if src ¢ G.dst return {}

2: G.dst(sre) :={};

3: for each nodes in G.dst, done[u] :=false

4: for each certificatdsrc,u,rati ng) in G.dst do

5. G.dst(src) := G.dst(src) U {(src,u,rating)};

6: endfor;

7: done]src] :=true;

8: while dst ¢ G.dst(src)

9: if u € G.dst(src) and done[u]false

10: then add all the certificategu, v,r at i ng) issued
by u in G.dst to G.dst(src);

11: done[u] :=true;

12: endwhile;
13:return G.dst(src)

If not, src cannot accept any public key based on For example, assume that usemwants to find the public

G.dst(src).
2) Second,src verifies that each certificatésrc,u) in

key of userdst in Fig. 8. Userdst has the subgrapty.dst
shown in Fig. 12 computed by Algorithm 3. Usdst can

G.dst(src) is indeed issued byrc. Usersrc can either use Algorithm 4 to compute the subgra@ghdst(v) shown in
keep the list of all the certificates it issued and compafég. 14. Fig. 13 showsé/.dst(u) for useru to accept the public
it with G.dst(src), or simply verify the signatures of key of dst, which is same a&/.dst. For usersz andy, each



of them needs only one certificate to accept the public key ofThe PGP system is discussed in Section Ill. Fig. 16 shows
dst. Fig. 15 showsZ.dst(y). the same certificate system with rating, instead of the PGP
level of trust. Using the ratings, David can decide not teeatc
the public key in the certificatéBob, Alice, I) as the public
% key of Alice.
Fig. 13. G.dst(u) computed by Algorithm 4

independent independent accepted

Fig. 16. The example certificate system with rating

SDSI/SPKI [9] supports a boolean delegation flag in their
certificates to show that the subject of the certificate can
authorize another principal. When this flag is false, no more
certificates can be used after this certificate. This is edgit
to having onlyaccept ed andi ndependent ratings in
Fig. 14. G.dst(v) computed by Algorithm 4 the certificates. Our ratings are more expressive With

accept ed.
Two frameworks in [10], [11] are based on certificates with

@ probabilities to express the (un)trustworthiness of stibje
The semantics of these probabilities are defined and ahgasit

@ to evaluate certificate chains based on them are presented.
However, it is not easy for users to translate their trustinor

Fig. 15. G.dst(y) computed by Algorithm 4 ness into exact numbers, and the algorithms are complicated

Our ratings offer clear semantics and the algorithms are

The time complexity of Algorithm 4 i< (e), wheree is efficient.
the number of certificates i&'.dst. A certificate inG.dst is Instead of adding information to certificates, a property
added toG'.dst(src) at most once, so the complexity@(e). of a certificate graph can be used as acceptance criteria.
Also, the resultings.dst(src) is optimalin the sense that all In [5], the min-cut sizek of a partial certificate graph from
the certificates inG.dst(src) are necessary for usetc to a useru to a userdst is proposed as an acceptance criteria.
accept the public key oflst. In Algorithm 3, for each user However, it is proven to be NP-Complete to find such a partial
u, either one certificatg¢u, v, A) or k certificates(u,v;, k;), certificate graph from user to userdst in a certificate graph.
where eaclk; < k, are added. Therefore, any certificate issuesipproximation algorithms are provided, but their complgxi
by u in G.dst is necessary for userto accept the public key is still expensiveO(n?"), wheren is the number of users
of dst. Algorithm 4 includes the certificates issued by useia the certificate graph and is the length of the longest
that are on the chain fromarc to dst, so all the certificates acceptable chain). In [12], the same authors discuss tésira
in G.dst(src) are necessary for userc to accept the public properties of acceptance criteria.
key of dst, i.e. G.dst(src) is optimal.

IX. CONCLUSION

VIIl. RELATED WORK A certificate system provides many useful features such

SSL/TLS [1] certificates do not have any ratings in themas privacy, integrity, authentication, and authorizatitm a
selves, but in practice, users accept any certificates dsswertificate system with trusted certificate authoritiesserucan
by trusted certificate authorities such as VeriSign. This isarn the public key of another user from a certificate isqned
equivalent to having certificates with ratiegcept ed from a trusted certificate authority. However, in a certificatstem
users to trusted certificate authorities. without such trusted certificate authorities, users neeshéwe

Lotus Notes [3] offers a hierarchical structure of certifica trust information about other users.
authorities (CAs) to support a large scale distributedesyst We have discussed the problem of trusting certificates in
Each user name has a “domain” information, and the usesalf-organized certificate systems, such as PGP, and @dpos
with the same domain name have certificates issued by #hesolution to this problem by adding ratings to certificates.
same CA. The CAs are configured in a tree structure so amgble 1X shows a summary of comparisons among the solu-
user who has the public key of the root CA can verify théons to the problem of trusting certificates in self-orgaui
certificate chain from the root to any other user and accegartificate systems. The first column shows whether each
the public key in the chain. This is more scalable than havisgheme can share the trust information among users or not.
a single CA in the system, but imposes more complexity Bxcept for PGP, every scheme supports the trust information
the design of CA structure. Every certificate issued by a Cdy adding it as a field in a certificate. The second column
is equivalent to having the rating @fccept ed. shows the granularity of the trust information of each schem



shared trust info | partial trust complexity [9]
PGP no per user not specified
SPKI/SDSI yes no low [20]
probabilities yes per certificate high
ratings yes per certificate low

(11]

TABLE |
COMPARISON OFTRUSTINFORMATION SCHEMES

[12]

The ratings and the two schemes using probabilities support
the issuer to specify partial trust for each certificate. sy,
in PGP a user has one parameter to apply to all the certificates
for partial trust. SPKI/SDSI has only one boolean flag to
share the trust information, so it does not support partial
trust. The third column shows the complexity to use each
scheme in evaluating trust information. PGP does not share
the trust information, so the complexity is not specifiedeTh
complexity of using ratings, and SPKI/SDSI is low since
they only require simple arithmetic operations and offeacl
semantics. However, the two schemes based on probabilities
require more complicated operations and it is hard for an
average user to understand the semantics of these opsration
We also showed two algorithms that compute a set of users
that can accept a public key. For a given certificate gr@ph
with e edges, the second algorithm has the complexit9 @),
which meets the lower bound of the worst case complexities.
These two algorithms need a certificate graph as an input. We
discussed how to use the public key servers and local dasbas
of certificates to obtain the input certificate graph for thes
two algorithms. The resulting certificate graph might conta
certificates that are not useful in key acceptance decisian.
presented Algorithm 3 that computes a subgraphst for
each usetlst that contains only the useful certificates for any
user to decide whether to accept the public key@fin G or
not. The complexity of Algorithm 3 i€ (min(e,ln)) where
[ is the length of the longest acceptable chain ani the
number of users. Based d@r.dst, Algorithm 4 computes an
optimal subgrapltz.dst(src) for usersrc, which contains all
the necessary certificates farc to verify and decide whether
to accept the public key afst or not.

REFERENCES

[1] Tim Dierks and Eric Rescorla, “The TLS protocol versiond,1 Internet
Draft (draft-ietf-tls-rfc2246-bis-08.txt), 2004.

[2] P. Zimmerman,The Official PGP User's GuideMIT Press, 1995.

[3] Seren Peter Nielsen, Frederic Dahm, Marc Lischer, hite Ya-
mamoto, Fiona Collins, Brian Denholm, Suresh Kumar, andnJoh
Softley, “Lotus notes and domino r5.0 security infrastauetrevealed,”
1999.

[4] “Pathfind,” http://the.earth.li/ noodles/pathfinchiit

[5] Michael K Reiter and Stuart G. Stubblebine, “Resilienthentication
using path independence/EEE Transactions on Computersol. 47,
no. 12, pp. 1351-1362, December 1998.

[6] “Worldwide public key repository,” www.keyserver.net

[7] Srdjan Capkun, Levente Buttyan, and Jean-Pierre HubauSelf-
organized public-key management for mobile ad hoc netwbrksEE
Transactions on Mobile Computingol. 2, no. 1, pp. 52—-64, 2003.

[8] Mohamed G. Gouda and Eunjin Jung, “Certificate dispeisaad-
hoc networks,” inProceedings of the 24th International Conference
on Distributed Computing Systems (ICDCS 02004, |IEEE.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomag] &. Ylonen,
“SPKI certificate theory,” RFC 2693, 1999.

U. Maurer, “Modeling a public-key infrastructure,” iroceedings of
the European Symposium on Research in Computer Securi@RES
'96). 1996, Springer-Verlag.

T. Beth, M. Borcherding, and B. Klein, “Valuation of stiin open
networks,” inProceedings of the European Symposium on Research in
Computer Security (ESORICS '94) LNCS 87894, pp. 3—18, Springer-
Verlag.

Michael K. Reiter and Stuart G. Stubblebine, “Autheation metric
analysis and design,”ACM Transactions on Information and System
Security (TISSEC)vol. 2, no. 2, pp. 138-158, 1999.



