Implementation of the Control Unit in the TRIPS Prototype
Processor

Ramadass Nagarajan Robert G. McDonald Doug Burger Stephendkigle
Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin
cart @s. ut exas. edu - www. cs. ut exas. edu/ users/ cart

Department of Computer Sciences
Technical Report TR-2006-34
The University of Texas at Austin

June 26, 2006

Abstract

Future processor microarchitectures will feature distribd hardware components communicating
using on-chip interconnection networks. Managing the commxecution state and controlling the
operations of different components are important desigallehges for performing distributed com-
putation on such architectures. This paper describes treedmained control mechanisms used in the
distributed microarchitecture of the TRIPS prototype @mssor. A set of master-slave protocols driven
from a centralized unit and implemented atop point-to-paigtworks controls the overall execution in
the processor. The protocols are latency tolerant and sttmpback-end capable of executing up to 16
instructions in each cycle.

1 Introduction

Hard power budgets, coupled with growing on-chip wire delays areirmgsocessor architectures to be-
come increasingly distributed. At the same time, stopping clock frequenagtlis@re forcing architectures
to expose and exploit higher levels of concurrency from applicatiorsduiér designs are also being pre-
ferred for managing complexity and enhancing design productivity. réewgcroarchitectural solutions
have been proposed to address these issues [1, 4, 7, 8]. Commonftthathcare two key design princi-
ples. First, distributed computation on a single chip involves a number of simplegsing elements (PES).
Second, on-chip interconnection networks transport fine-grainedages between the different PEs.

The TRIPS architecture is one such solution. It uses a microarchitectireathsists of both processor
and on-chip memory components residing as nodes on a set of intertionmatworks and communicating
using well-defined protocols [1]. The microarchitecture adheres to tlmviag design principles: a) use
a small number of heterogeneous components, b) design for produttiratygh component reuse, and c)
do not use global wires anywhere in the system. The processor caofsiststiple heterogeneous tiles—
execution units, register file banks, data and instruction cache bankkeeanects them using a set of data
and control micronetworks. Likewise, the on-chip memory system is cordgom® a set of memory banks
residing on a switched network. The TRIPS prototype chip is one implementdtiba TRIPS architecture.
It consists of two processor cores and a shared 1MB non-uniformatBe [2]. Implemented in the 130nm
IBM ASIC fabrication technology, the chip consists of over 170 million trassson a 18 mmx 18 mm
die area.

Wires are treated as a first class design elements throughout the TRH#®cture and different pro-
tocols recognize and tolerate the latency of signal propagation throughithearchitecture. The TRIPS
processor composes one large processor from different heteroge tiles. Consequently, the microarchi-
tectural execution of a program involves all the tiles in the processoexXemnple, the register file banks are
required for providing register values, the data cache banks for mespenations, and the execution units
for executing instructions. All of these distributed tiles must be managed &rgetksources allocated and
deallocated—for the successful execution of a program. This paperildes the control logic that performs
these operations in the TRIPS processor.

A single master unit called the Global control Tile (GT) generates contrabigand drives them to
the other tiles (slaves) using the control networks. The GT tracks theitixestate on behalf of the entire
processor and initiates various control protocols such as fetch,texélash, and commit by sending signals
on the control network. The slaves locally perform different contparations solely based on inputs from
the network. The slaves operate independently of each other and tbegisowobviate any global synchro-
nization. The protocols are latency tolerant; control signal propagationgh the microarchitecture for
one operation can be fully overlapped with another operation.

The use of control networks and protocols to manage distributed computdfiioa several benefits.
First, it avoids the use of global wires on control logic paths, making it matalde for future technologies.
Second, it enables scaling to more processing units; adding more units wobuices additional nodes on
the network. Finally, it enables modularity, simplifying design entry and vatiba efforts. In addition,
the TRIPS execution model provides a significant reduction in the amourtdrdfol state compared to
conventional architectures, thus simplifying the GT implementation. By centrglibim management to a
single unit, any sequencing restrictions between the control protocaisnplemented only within the GT,
thus simplifying the implementation of the slaves.

The rest of the paper is organized as follows. Section 2 provides awmi@weof the TRIPS prototype
chip, the microarchitecture, and details of the execution model. This sectiondalstifies the different
control operations required for managing the distributed execution on th@aribitecture. Section 3
provides an overview of the different logic blocks that comprise the obafit in the TRIPS processor. We

Operand Network (OPN) Global Refill Network (GRN) Global Dispatch Network (GDN)

[(HE R [} R R
[] [[E [E E
[0 O] [E [E [E E

EaGsliaoann
nonoinaaan
noonmiE”)

3 Ele le [1] [o]

| EEREE pass:

E‘ @mm@@D@EEEE Global Commit Network (GCN) Global Status Network (GSN)

{ooontoaaan HO-T
oo oo] gl < 00D
[o) ([][]]]][oo
N g Ml e][=][~][#]

a) TRIPS Chip Organization b) TRIPS Processor Micronetworks

Figure 1: TRIPS Chip Overview.

present the details of the key control operations in Section 4 and corwitide summary of our prototyping
experience in Section 5.

2 TRIPS Microarchitecture

The TRIPS architecture is designed to address key challenges podetlifeytechnologies—power effi-
ciency, high concurrency, and adaptability to the demands of dive@eatons [1]. Figure 1(a) depicts
the schematic of the TRIPS prototype chip. It consists of two processes,cand a secondary memory
system, each of which is composed from smaller replicated hardware unitsated by a set of micronet-
works. In Figure 1a, the processor cores occupy the top right abohboight quadrants, and the secondary
memory system occupies the left half.

Each processor core is implemented using five different tiles, some of \ahécteplicated. Each exe-
cution tile (ET) consists of an integer and floating point unit, a 64-entryrvasen station, and is capable
of executing one instruction in each cycle. Each register tile (RT) contagiostimn of the architecture and
physical register file. The data tiles (DT) and instruction tiles (IT) comprieg@thmary memory system for
instruction and data respectively. The global control tile (GT) sequeethecoverall execution of a program.
Each processor supports 16-wide out-of-order issue, 80KB of éttuation cache, 32KB of L1 data cache,
and a window of 1024 in-flight instructions.

2.1 Micronetworks

Both the processor and L2 microarchitectures do not use any globa.wifach tile is small, typically

of the order of2 — 5 mm?; therefore, connections within a tile use only local wires. A two-dimensional,
worm-hole routed data network, also called the operand network (OBNhects all tiles except the ITs.

It is used for communicating data operands between the tiles. A set of cartmorks—GRN, GDN,
GSN, and GCN—is responsible for transmitting all control signals that mahageverall execution in the
processor. Unlike the OPN, there is no flow control on any of the contrthorks and consequently, no
signal propagation stalls. Figure 1(b) depicts these networks. Eachrisknetwork connects only the
immediate neighbors and has a transmission latency of one cycle.

S Completions
spatc|
'SP Completed
Execute

Allocate Fetch
|-cache Ready for
Resident Fetch

Refill

Commit

Deallocated

Figure 2: Different states of block execution.

2.2 Block Structure

The TRIPS ISA groups up to 128 instructions into a single TRIPS blockISAencodes each block in five
128-byte chunks, four of which are instruction chunks and one of thémader chunk that contains meta
information about the block. The microarchitecture executes these bloakddatk-atomic fashion—every
block is logically fetched, executed and committed as a single atomic unit. Excgpfiany, are handled
at block boundaries and are not instruction-precise. A block alwats @ constant number of outputs—up
to 32 registers, up to 32 stores and one branch output specifying thesadif the next block.

2.3 Block Execution

The prototype processor supports an active execution window of ulo @f blocks. The execution
resources are partitioned into eight slots cafi@inesand each block executes in a separate frame. The
processor can be configured to run in either single-threaded mode dtasienus multi-threaded mode.
In the single-threaded mode of operation, up to eight blocks belonging wathe thread can be in-flight
simultaneously, seven of them speculatively. In the multi-threaded modeeddtomn, each thread can have
up to two blocks in-flight, one of them speculatively. Control registers inGfieconfigure the processor
into one of these two modes.

The execution of a single block involves several block-level operatibigure 2 shows the different
states in the lifetime of a block and the operations that induce the transitions hetveestates. A refill
operation fills the instructions of a block into the I-cache from the secgndamory. After a free frame
is allocated, the fetch and dispatch operations distribute the instructions teettiion units, where they
execute in a dataflow fashion. Operand values are routed from one tit@tioes and any register and store
outputs are routed to the RTs and DTs respectively. The block completesdistion after it has produced
all of its outputs. A commit operation saves the architectural state modified tble Blay misspeculations
will result in the flush of all state modified by the block.

Distributed execution of a single block requires solutions to two major chakermjecontrolling the
operations of the distributed tiles, and b) managing the execution state of atjhin flocks. The GT
implements the control logic functions required for both of these tasks. Tais i® different from other
distributed processors. Multi-core architectures such as NiagarBR4®}/ [8] and SmartMemories [4] are
examples of architectures that use a full processor, complete with refiisséeand caches, as individual
PEs on a distributed substrate. TRIPS uses smaller PEs to compose adefigmo Consequently, TRIPS
requires fine-grained control mechanisms to keep all the componentsragired for correct operation.

The GT drives several protocols—refill, fetch, commit, and flush—to maitag distributed execution.
It initiates a protocol by sending a signal on one of the control netw@kser tiles respond by performing
the specified operation independently. For design simplicity and high psafare, the implementation must
satisfy a number of desired properties. First, any control state mainenaust attain a balance between

/ Refill Unit \

I-cache < GSN

MSHRs
Fetch Unit
GDN/GRN ITLB
I-cache dir.

Exit
Predictor

Retire Unit

\ Commit/Flush Ctrl /
t | t

v v [
OPN GCN GSN

Figure 3: High-level organization of the GT.

centralization—for minimizing replication—and distribution—for maximizing coneoay. Second, since
transporting signals across different tiles involves high latency, thealgmatocols must be latency tolerant.
Different protocols must overlap their operations as much possible to maxihrizeghput. Finally, the
protocols must be devised such that peak execution bandwidth of ongciistrexecuting per tile in each
cycle can be met.

3 GT Implementation

The GT implements all of its logic functions using four major sub-units: the fetit) tefill unit, retire
unit, and the exit predictor. Figure 3 shows the high level organizatioregktBub-units. In this section, we
provide detailed descriptions of some these sub-units. We also comphlrgueaanit with their counterparts
in conventional processors and provide the rationale behind their design

3.1 Fetch Unit

The fetch unit consists of a TLB (Translation-Lookaside Buffer) andiractory of the blocks that are
resident in the I-cache. In addition, it contains the program countél} @ each thread and control
registers that are used to configure the execution of each block.

3.1.1 I-cache Directory

Table 1 provides an overview of how different portions of a block ahed by the ITs. The instructions of
a single block are striped across all of the ITs. For example, ITO cathas 0 of a block and IT1 caches

Tags for cached blocks GT

chunk 0 instructions | ITO \% Valid block

chunk 1 instructions | IT1 L LRU information

chunk 2 instructions | IT2 PTAG | Physical tag of the block’s address
chunk 3 instructions | IT3 H Meta information for the block

chunk 4 instructions | IT4

Table 1: Storage of a block in the I-cache. Table 2: An entry in the I-cache directory.

4

\% Valid refill

S Set in the cache being refilled

w Way in the set being refilled

TID Thread corresponding to the refill
PTAG | Physical tag of the block’s address

F Refill already flushed/cancelled

C Refilled completed

Ca Block L1 cacheable or not

H Meta information for the refilled block

Table 3: State tracked for each pending refill.

chunk 1 of the same block. The I-cache directory contains a listing of alkblthat are currently resident in
the I-cache. Table 2 provides a description of an entry in the directtwydirectory consists of 128 entries,
organized in a 2-way set-associative fashion. Each entry identifiegjaeucached block and also stores a
portion of the meta information associated with the block. The directory is virtirallgxed and entries are
evicted and replaced in a LRU fashion.

The I-cache directory is similar to the tag array in conventional cacheékelMRIPS processor, the GT
maintains a single array on behalf of all the ITs. An alternate design couldairathe tag array as part of
each IT. Since a single block is striped across all ITs and each of theratepn a distributed fashion, this
approach would require special hardware to keep the tag arrayistemmsA centralized directory provides
a consistent view of the cached blocks and avoids scenarios whei@garf a block are not present in the
I-cache. The tag array in each IT can be eliminated, thus simplifying the imptatiganin both the GT and
ITs.

3.1.2 Instruction TLB

A set of sixteen registers provide the translations of virtual addre$s#saks to physical addresses. Each
register defines the size and read/execute access attributes of up to sieteery segments. The minimum
size of a memory segment is 64KB and the maximum size is 1TB. Instruction meegmests may be
marked as uncacheable in the L1. A block in such a segment will never likifittethe I-cache. A miss in
the ITLB or an access protection violation will result in an exception beimggded. Similar to the I-cache
directory, implementing the ITLB inside the GT avoids redundant implementatiomrilTth

3.2 Refill Unit

The refill unit maintains the status of pending I-cache refills. The TRIRPSgssor supports up to four
outstanding refills, but at most one per thread. Table 3 shows the stathdh@T tracks for each pending
refill. The state includes information such as the I-cache set and the way tedilled, whether the refill

has completed or not, and the meta header information for the block beingdreTitie pending refill state
in the GT is similar to the I-cache MSHR (Miss Status Handling Register) state u@otional processors.

3.3 Retire Unit

The retire unit consists of the retirement table which tracks the executionadtateblocks in flight. It
is also responsible for initiating the flush, commit, and deallocation of the blodkiglin. Table 4 shows
the details of the state maintained for each block. Most of this state is updatdly kog the GT, when it

\Y Valid block

O Oldest block in thread

Y Youngest block in thread

BADDR | Virtual address of the block
PADDR | Predicted address of the next block
RADDR | Actual resolved address of the next block

RC Registers completed
SC Stores completed
BC Branch completed

RCOMM | Registers committed
SCOMM | Stores committed

E Exception in block

F Block already flushed

Table 4: State tracked for each block in the retirement table.

starts various block-level operations. The rest is updated when thec&ives notifications on the control
networks from other tiles.

The retirement table is similar to the reorder buffer (ROB) in conventionalgasors. However, this
table does not track the status of individual instructions. It has only wimg #®r each block, thus containing
far fewer entries than a conventional ROB.

3.4 Exit Predictor

The exit predictor predicts the address of the next block to execute dra@ingle thread. It uses both
local and global history information and employs a tournament-style predgitigitar to the Alpha 21264
predictor [5]. The predictor state amounts to a total of 74 Kbits and togethey, sustain competitive
accuracies compared to the Alpha 21264 predictor.

The predictor performs three major operationsesict, update and repairPredict provides a predic-
tion for the next block. Update modifies the predictor tables with the informat@n & committing block.
Repair corrects any predictor state modified by incorrect speculatioa.pigdict and update operations
each consume three processor cycles, while the repair consumes t&s. ciione of the operations are
overlapped with any other. A detailed discussion of the predictor implementati@myond the scope of the
paper.

3.5 Physical Implementation

The TRIPS chip implemented using the 130nm IBM ASIC fabrication technolsgs more than 170
million transistors in a chip area 8f1 mm?2. Each processor core occupies 29% of the overall chip area.
The GT occupies roughly 2% of each processor, in a 3.4 mm area. The predictor tables consume
nearly 50% of all the logic cells in the GT. The fetch and retire sub-unitsusoasl 9% and 11% of the logic
cells respectively. The OPN router inside the GT occupies 14% of the &1 arhe refill unit and other
miscellaneous logic consume the rest.

4 Block Operations

This section provides a detailed description of four block-level opersitiah I-cache fills, b) block fetch
and dispatch, c) block commit, and d) block flush. We describe how the Gt bdgcks simplify the

6

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle X | Cycle X+1

Predict Predict Predict TLB Hit/Miss Refil | Refill Fetch
(Stage 0) | (Stage 1) | (Stage2) | lookup | detection Complete | SLOTO
Address | [-cache Stall Frame
Select lookup CACHE allocation
MISS

[] Predictcycle [] Control cycle [] Fetch cycle

Figure 4: Refill Pipeline.

implementation and also discuss design limitations and alternatives.

4.1 I-cache Fills

The I-cache fill of a block happens in two stepéill-andupdate In the fill step, the instruction bits are
fetched from the secondary cache and buffered in a structure caélddl thuffer. In the update step, the
instruction bits are read from the fill buffer and written into the I-cachekbaihe refill protocol performs
the fill operation. The fetch protocol described in the next section padthe update operation.

Figure 4 depicts the different events during the execution of the refilbpod It begins with the GT
sending the physical address of the block on the GRN interface (cycl®8jing the preceding cycles
(0-2), the GT computes the address of the block to refill. The GT perforimsBatranslation, a lookup
of the I-cache directory, and detects a miss in cycles 3 and 4. It begingfiteoperation in cycle 5.
Each IT subsequently receives the refill command and independentbhlesiseveral transactions with the
secondary memory to fetch its chunk of the block. When the fill operation letespin all the ITs, they
notify the GT using the GSN. After the GT receives such a completion me$sagehe ITs, the entire
refill operation is marked as completed.

The centralized I-cache tags and the refill protocol allows the GT to dahcoperation of the ITs
effectively. Occasionally, the GT may chose to discard a block saved filltheffers without updating the
I-cache. It does so by simply not initiating an update step. By modifying ttreesrin the I-cache directory,
the GT may evict an already cached block to accommodate a new block. fitnalized tags help maintain
consistency in the IT data banks. At the same time, the ITs can operate mogeyly without any explicit
synchronization.

An alternate design for the refill protocol might merge the fill and updates siep refill and eliminate
the need for fill buffers. However, branch mispredictions often resukfills that do not correspond to any
legal block. These spurious refills pollute the I-cache and evict othekblkbat are currently in the working
set of the program. Occasionally, branch mispredictions result in ¢grrefetching refills. However, we
observed that the pollution resulting from spurious refills outweigh theftieioé occasional serendipitous
refills.

4.2 Block Fetch

The GT initiates a fetch protocol to distribute the instructions from the IT datkd the execution units.

Figure 5 shows the different events during the fetch protocol. The GTatls a free frame for the block
and begins the fetch protocol by issuing a command on the GDN. The comndundes the address of the
block and the frame identifier allocated for the block. In addition, the GT alkstoucts the ITs to perform

the update step of a refill operation if the fetch resulted from a precesfitig r

Cycle 0 | Cycle 1 Cycle 2 | Cycle 3 Cycle 4 Cycle 5 | Cycle6 | Cycle7 | Cycle 8
Predict Predict Predict TLB Hit/Miss Fetch Fetch Fetch Fetch
Block A | (Stage 0) | (Stage 1) | (Stage2) | lookup | detection | SL.OTO | SLOT1 SLOT2 | SLOT3
Address |-cache Frame
Select lookup allocation
Predict Predict Predict Stall
Block B (Stage 0) | (Stage 1) | (Stage 2))
/
Cycle 9 | Cycle 10 | Cycle 11 | Cycle 12 Cycle Cycle 14 | Cycle 15 | Cycle 16 | Cycle 17
13
Fetch Fetch Fetch Fetch
SLOT 4 SLOT 5 SLOT 6 SLOT 7
Stall Address TLB Hit/Miss Fetch Fetch Fetch Fetch Fetch
Select lookup [detection [510T0 | SLOT1 | SLOT2 | SLOT3 | SLOT4
|-cache Frame
lookup allocation

[] Predictcycle [] Control cycle [] Fetch cycle

Figure 5: Fetch Pipeline.

The GDN transports up to 128 bits of instructions during each cycle. Siacle iastruction chunk
consists of 128-bytes, initiating the fetch and dispatch for an entire blatucees eight cycles. Following
the eight cycles, the GT can initiate the fetch and dispatch for the next tHagple 5 shows how the fetches
for two blocks are pipelined. The GT consumes eight cycles to initiate the détitte first block, starting
from cycle 5. In parallel, a prediction is made and the fetch of the next b&oskt up during the cycles
5-12. The fetch of the second block starts at cycle 13.

The distributed fetch protocol provides significantly higher fetch bandwidthpared to conventional
processors. Directing the fetch from the GT obviates the need for framageenent at every tile. Since
a new frame is required for executing every block, managing the freef listires in a distributed fashion
and keeping them in sync requires additional hardware mechanisms gMarihe free list in the GT and
propagating the allocated identifier along with every fetch reduces the cxitypieother tiles.

The implementation tightly couples the predictor operations and the fetch prafoetions in one
single pipeline. In steady state, the three cycles for predict and thrisdgc update can fully overlap with
the 8 cycles of fetch required for one block. Thus there are no bubbthe fetch pipeline, enabling a new
block fetch every eight cycles. This offers a peak fetch rate of 16uatitms per cycle (128 instruction /
8 cycles) matching the peak execution rate of the processor. Occasidhallyredictor update operation
may delay the predict operation causing bubbles in the fetch pipeline. Borpde, in Figure 5, an update
operation starting in cycle 5, could delay the predict operation for thensidalock until cycle 8. The fetch
of block B will not start until cycle 14, introducing a bubble in the pipeline.

An alternate design could have completely decoupled the prediction pipetimetfre fetch pipeline
using a fetch target buffer [6]. That design offers two advantagiest, multiple refills can be initiated well
ahead of a fetch, offering prefetching benefits. Second, stalls in &aégpbipipeline are less likely to affect
the fetch pipeline. Implementing this design requires additional block managémnika fetch unit. During
design time, the extra complexity did not appear to be worth the benefits.

Cycle 0 Cycle 1 Cycle 2 Cycle X Cycle X+1
Register/Branch/ Commit detect Commitsend | ... Commit acks Frame
Store (GCN) received (GSN) deallocation
Completion Predict(_)r
received Commit
(GSN/OPN)

Figure 6: Commit Pipeline.

4.3 Block Retirement

The retire unit detects when a block has completed execution, and initiatesisheafid commit of the
blocks. Itis also responsible for deallocating the frame allocated foruéixgca block.

4.3.1 Completion Detection

A block completes its execution if it has produced all of its outputs. The REk the register outputs, while
the DTs track the store outputs. A branch instruction sends its result to thsiGg the OPN. When the RTs
detect that all registers have been produced, they inform the GT kingeaa message on the GSN. The GT
receives one message on behalf of the entire block and subsequetdtesijis retirement table. The GT
detects the completion of the store similarly. When all outputs have been pahdhe GT marks the block
as completed. Detecting completion in such a distributed and hierarchicalrfasloids the complexity of
sending and tracking multiple messages to the GT to detect completion.

4.3.2 Flush Operation

The GT flushes the execution of a block if any misspeculations or excetierdetected. Exceptions are
reported and detected along with the completion messages. A flush opeediar Wwith the GT issuing a

flush message on the GCN, which propagates to the RTs, DTs and thed&hdil& responds by invalidating

all state corresponding to the flushed blocks. The GT invalidates all thecstasponding to the flushed
blocks in the retirement table and stops pending fetches for flushed blocks

4.3.3 Commit Operation

A block may be committed if it has completed its executed without any exceptiorialhgrevious blocks
have been committed. Figure 6 shows the different events of a commit operétioegins with the GT
issuing a commit message on the GCN. The RTs and the DTs begin the commttayparal when they
are have completed that operation, they send a message to the GT usingMNh&M@S$5T deallocates the
block, after it has received the acknowledgements from both the RT ardTthThese acknowledgements
are required because, the number of outputs and therefore, the comnuylasgies for each block.

4.4 Summary

A control signal generated at the GT incurs multiple cycles of latency toggeate to all the tiles. Table 5
provides the minimum latencies for a few block events. For example, the minimumsy&tea executing the
last instruction assigned to the farthest ET (bottom right corner) is 2@xyi the result of this instruction
is a register output, that result takes a minimum of four cycles to reach aNd@&ifying the completion

of the register outputs to the GT consumes up to four additional cycles. Cimmlzith events for a single

Dispatch of first instruction to nearest ET 4
Dispatch of last instruction to farthest ET 17
Execution of first instruction in nearest ET7
Execution of last instruction in farthest ET20

Commit in nearest RT/DT 20
Commit in farthest RT/DT 24
Deallocation 32

Table 5: Minimum latencies for a few block events. Latencies are measupddérssor cycles from the
start of the fetch protocol in the GT.

block, the overall lifetime of block from start to deallocation could involve ai$igant number of control
signal propagation cycles. Hiding these cycles is important for attainingthighghput.

In the TRIPS prototype implementation, all control protocols are pipelinecexfor fetch, a new
operation for other protocols can be started in every cycle. The fetch $econd block can be initiated
eight cycles after the first block. The fetch of a new block following afflaan be started three cycles after
the flush. Such pipelining amortizes the latency of the control protocolssonaltiple tiles and blocks.
For example, while one tile is performing the flush of speculative blockghanoould perform the commit
of the non-speculative block, and a third tile could dispatch the instructioasiew block all in the same
cycle.

5 Conclusion

Distributed microarchitectures with on-chip networks are likely to be prevaighe future. Control of the
distributed hardware units and management of the common execution state avililnportant component
of the design. The TRIPS prototype processor implements fine-graimgcbcosing a set of master-slave
protocols. During the implementation of these protocols, we learned a fewtamptgssons:

e Separation of the control networks: In the first design, we implemented all of the control protocols
using a single shared network. However, we observed that the comténtithe network among the
different protocols wasted the execution bandwidth of the processdact, it was not possible to
match the peak execution rate of the processor. Consequently, in thedgigh we implemented
each protocol with a separate network at the cost of additional wiringdegtwhe tiles. Since the
protocols were well-defined and fairly simple, migrating to a new implementation dichvalve a
significant redesign effort.

e Predictor/Fetch coupling: For design simplicity, we chose to couple the predictor and fetch opera-
tions in one single pipeline. This introduced bubbles in the fetch pipeline, limitingetol rate of
the processor. Future implementations must choose to decouple the two gipeline

¢ Reducing flush overhead:Reducing the penalty of a flush, i.e, the latency to start a new fetch after
a flush was important. The GT implementation could not reduce this latency tadhgifthan three
cycles. Further reductions required additional ports in the TLB and ttalie directory and their
associated complexity.

The GT logic paths were such that detecting a flush and subsequentingléa retirement table state
was a single cycle operation. These paths were the dominant critical péties@&T for meeting cycle time.
However, none of the GT paths appear among the top timing critical paths intihe grocessor.

10

Our experience shows that even on a distributed substrate, the cqmdraktions can be accomplished
with relatively simple protocols. The techniques demonstrated in this papetadéte design solutions for
future distributed microarchitectures.

References

[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, Cin, C. R. Moore, J. Burrill, R. G.
McDonald, W. Yoder, and the TRIPS Team. Scaling to the End of Silicon witleERrchitectures.
IEEE Computer37(7):44-55, July 2004.

[2] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniforathe structure for wire-delay domi-
nated on-chip caches. Rroceedings of the 10th International Conference on Architecturap&ubor
Programming Languages and Operating Systguages 211-222, October 2002.

[3] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way mutétded sparc processdéEEE
Micro, 25(2):21-29, 2005.

[4] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. HamwSmart memories: A modular
reconfigurable architecture. Proceedings of the 27th Annual International Symposium on Computer
Architecture pages 161-171, June 2000.

[5] N. Ranganathan, R. Nagarajan, D. Jimenez, D. Burger, S. Vkl&e@nd C. Lin. Combining hyper-
blocks and exit prediction to increase front-end bandwidth and perfareaalechnical Report TR-02-
41, Department of Computer Sciences, The University of Texas at A&&jtember 2002.

[6] G.Reinman, T. M. Austin, and B. Calder. A scalable front-end archite for fast instruction delivery.
In Proceedings of 26th Annual International Conference on Computehi®cture pages 234-245,
May 1999.

[7] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScaidroceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitectysages 291-302, December 2003.

[8] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. GreendaH. Hoffman, P. Johnson, J.-W.
Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumperkidnk, S. Amarasinghe, and
A. Agarwal. The Raw microprocessor: A computational fabric for sofevearcuits and general-purpose
programs.EEE Micro, 22(2):25-35, 2002.

11

