
Implementation of the Control Unit in the TRIPS Prototype
Processor

Ramadass Nagarajan Robert G. McDonald Doug Burger Stephen W. Keckler
Computer Architecture and Technology Laboratory

Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Department of Computer Sciences
Technical Report TR-2006-34

The University of Texas at Austin

June 26, 2006

Abstract

Future processor microarchitectures will feature distributed hardware components communicating
using on-chip interconnection networks. Managing the common execution state and controlling the
operations of different components are important design challenges for performing distributed com-
putation on such architectures. This paper describes the fine-grained control mechanisms used in the
distributed microarchitecture of the TRIPS prototype processor. A set of master-slave protocols driven
from a centralized unit and implemented atop point-to-point networks controls the overall execution in
the processor. The protocols are latency tolerant and support a back-end capable of executing up to 16
instructions in each cycle.



1 Introduction

Hard power budgets, coupled with growing on-chip wire delays are causing processor architectures to be-
come increasingly distributed. At the same time, stopping clock frequency growths are forcing architectures
to expose and exploit higher levels of concurrency from applications. Modular designs are also being pre-
ferred for managing complexity and enhancing design productivity. Several microarchitectural solutions
have been proposed to address these issues [1, 4, 7, 8]. Common to all of them are two key design princi-
ples. First, distributed computation on a single chip involves a number of simple processing elements (PEs).
Second, on-chip interconnection networks transport fine-grained messages between the different PEs.

The TRIPS architecture is one such solution. It uses a microarchitecture that consists of both processor
and on-chip memory components residing as nodes on a set of interconnection networks and communicating
using well-defined protocols [1]. The microarchitecture adheres to the following design principles: a) use
a small number of heterogeneous components, b) design for productivitythrough component reuse, and c)
do not use global wires anywhere in the system. The processor consistsof multiple heterogeneous tiles—
execution units, register file banks, data and instruction cache banks—and connects them using a set of data
and control micronetworks. Likewise, the on-chip memory system is composed from a set of memory banks
residing on a switched network. The TRIPS prototype chip is one implementationof the TRIPS architecture.
It consists of two processor cores and a shared 1MB non-uniform L2cache [2]. Implemented in the 130nm
IBM ASIC fabrication technology, the chip consists of over 170 million transistors on a 18 mm× 18 mm
die area.

Wires are treated as a first class design elements throughout the TRIPS architecture and different pro-
tocols recognize and tolerate the latency of signal propagation through themicroarchitecture. The TRIPS
processor composes one large processor from different heterogeneous tiles. Consequently, the microarchi-
tectural execution of a program involves all the tiles in the processor. Forexample, the register file banks are
required for providing register values, the data cache banks for memoryoperations, and the execution units
for executing instructions. All of these distributed tiles must be managed together—resources allocated and
deallocated—for the successful execution of a program. This paper describes the control logic that performs
these operations in the TRIPS processor.

A single master unit called the Global control Tile (GT) generates control signals and drives them to
the other tiles (slaves) using the control networks. The GT tracks the execution state on behalf of the entire
processor and initiates various control protocols such as fetch, execute, flush, and commit by sending signals
on the control network. The slaves locally perform different control operations solely based on inputs from
the network. The slaves operate independently of each other and the protocols obviate any global synchro-
nization. The protocols are latency tolerant; control signal propagation through the microarchitecture for
one operation can be fully overlapped with another operation.

The use of control networks and protocols to manage distributed computation offers several benefits.
First, it avoids the use of global wires on control logic paths, making it more suitable for future technologies.
Second, it enables scaling to more processing units; adding more units only introduces additional nodes on
the network. Finally, it enables modularity, simplifying design entry and verification efforts. In addition,
the TRIPS execution model provides a significant reduction in the amount ofcontrol state compared to
conventional architectures, thus simplifying the GT implementation. By centralizing the management to a
single unit, any sequencing restrictions between the control protocols areimplemented only within the GT,
thus simplifying the implementation of the slaves.

The rest of the paper is organized as follows. Section 2 provides an overview of the TRIPS prototype
chip, the microarchitecture, and details of the execution model. This section also identifies the different
control operations required for managing the distributed execution on the microarchitecture. Section 3
provides an overview of the different logic blocks that comprise the control unit in the TRIPS processor. We

1



I R R R R G

E E EE D I M M M M N

N
C2C

NN
SDC

N
DMA

E E EE D I M M M M N

E E EE D I M M M M N

E E EE D I M M M M N

N

EBCSDCDMA
I R R R R G

E E EE D I M M M M N

N NNN

E E EE D I M M M M N

E E EE D I M M M M N

E E EE D I M M M M N

N

O
n

-C
h

ip
 N

e
tw

o
rk

 (
O

C
N

)
Operand Network (OPN)

Global Commit Network (GCN) Global Status Network (GSN)

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

G R R RRI

D E E EEI

D E E EEI

D E E EEI

D E E EEI

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

Global Refill Network (GRN) Global Dispatch Network (GDN)

G R R RRI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

D E E EEI D E E EEI

a) TRIPS Chip Organization b) TRIPS Processor Micronetworks

Processor 0

Processor 1

NUCA L2

Figure 1: TRIPS Chip Overview.

present the details of the key control operations in Section 4 and concludewith a summary of our prototyping
experience in Section 5.

2 TRIPS Microarchitecture

The TRIPS architecture is designed to address key challenges posed byfuture technologies—power effi-
ciency, high concurrency, and adaptability to the demands of diverse applications [1]. Figure 1(a) depicts
the schematic of the TRIPS prototype chip. It consists of two processor cores, and a secondary memory
system, each of which is composed from smaller replicated hardware units connected by a set of micronet-
works. In Figure 1a, the processor cores occupy the top right and bottom right quadrants, and the secondary
memory system occupies the left half.

Each processor core is implemented using five different tiles, some of whichare replicated. Each exe-
cution tile (ET) consists of an integer and floating point unit, a 64-entry reservation station, and is capable
of executing one instruction in each cycle. Each register tile (RT) contains aportion of the architecture and
physical register file. The data tiles (DT) and instruction tiles (IT) comprise the primary memory system for
instruction and data respectively. The global control tile (GT) sequences the overall execution of a program.
Each processor supports 16-wide out-of-order issue, 80KB of L1 instruction cache, 32KB of L1 data cache,
and a window of 1024 in-flight instructions.

2.1 Micronetworks

Both the processor and L2 microarchitectures do not use any global wires. Each tile is small, typically
of the order of2 − 5 mm

2; therefore, connections within a tile use only local wires. A two-dimensional,
worm-hole routed data network, also called the operand network (OPN), connects all tiles except the ITs.
It is used for communicating data operands between the tiles. A set of control networks—GRN, GDN,
GSN, and GCN—is responsible for transmitting all control signals that managethe overall execution in the
processor. Unlike the OPN, there is no flow control on any of the controlnetworks and consequently, no
signal propagation stalls. Figure 1(b) depicts these networks. Each link on a network connects only the
immediate neighbors and has a transmission latency of one cycle.

2



Completions

Refill

Start
I-cache

Resident

Ready for

Fetch

Dispatch

Execute
Completed

Flushed
Committing

Deallocated

Allocate Fetch

Flush
Commit

Acks

Figure 2: Different states of block execution.

2.2 Block Structure

The TRIPS ISA groups up to 128 instructions into a single TRIPS block. TheISA encodes each block in five
128-byte chunks, four of which are instruction chunks and one of thema header chunk that contains meta
information about the block. The microarchitecture executes these blocks ina block-atomic fashion—every
block is logically fetched, executed and committed as a single atomic unit. Exceptions, if any, are handled
at block boundaries and are not instruction-precise. A block always emits a constant number of outputs—up
to 32 registers, up to 32 stores and one branch output specifying the address of the next block.

2.3 Block Execution

The prototype processor supports an active execution window of up to eight of blocks. The execution
resources are partitioned into eight slots calledframesand each block executes in a separate frame. The
processor can be configured to run in either single-threaded mode or simultaneous multi-threaded mode.
In the single-threaded mode of operation, up to eight blocks belonging to thesame thread can be in-flight
simultaneously, seven of them speculatively. In the multi-threaded mode of operation, each thread can have
up to two blocks in-flight, one of them speculatively. Control registers in theGT configure the processor
into one of these two modes.

The execution of a single block involves several block-level operations: Figure 2 shows the different
states in the lifetime of a block and the operations that induce the transitions between the states. A refill
operation fills the instructions of a block into the I-cache from the secondary memory. After a free frame
is allocated, the fetch and dispatch operations distribute the instructions to the execution units, where they
execute in a dataflow fashion. Operand values are routed from one tile to another and any register and store
outputs are routed to the RTs and DTs respectively. The block completes its execution after it has produced
all of its outputs. A commit operation saves the architectural state modified the block. Any misspeculations
will result in the flush of all state modified by the block.

Distributed execution of a single block requires solutions to two major challenges: a) controlling the
operations of the distributed tiles, and b) managing the execution state of all in flight blocks. The GT
implements the control logic functions required for both of these tasks. This logic is different from other
distributed processors. Multi-core architectures such as Niagara [3],RAW [8] and SmartMemories [4] are
examples of architectures that use a full processor, complete with registerfiles and caches, as individual
PEs on a distributed substrate. TRIPS uses smaller PEs to compose a full processor. Consequently, TRIPS
requires fine-grained control mechanisms to keep all the components synchronized for correct operation.

The GT drives several protocols—refill, fetch, commit, and flush—to manage the distributed execution.
It initiates a protocol by sending a signal on one of the control networks.Other tiles respond by performing
the specified operation independently. For design simplicity and high performance, the implementation must
satisfy a number of desired properties. First, any control state maintenance must attain a balance between

3



Retire Unit
Commit/Flush Ctrl

Fetch Unit
ITLB

I-cache dir.

Refill Unit
I-cache 

MSHRs

Exit 

Predictor

OPN GCN GSN

GSN

GDN/GRN

Figure 3: High-level organization of the GT.

centralization—for minimizing replication—and distribution—for maximizing concurrency. Second, since
transporting signals across different tiles involves high latency, the control protocols must be latency tolerant.
Different protocols must overlap their operations as much possible to maximizethroughput. Finally, the
protocols must be devised such that peak execution bandwidth of one instruction executing per tile in each
cycle can be met.

3 GT Implementation

The GT implements all of its logic functions using four major sub-units: the fetch unit, refill unit, retire
unit, and the exit predictor. Figure 3 shows the high level organization of these sub-units. In this section, we
provide detailed descriptions of some these sub-units. We also compare each sub-unit with their counterparts
in conventional processors and provide the rationale behind their designs.

3.1 Fetch Unit

The fetch unit consists of a TLB (Translation-Lookaside Buffer) and adirectory of the blocks that are
resident in the I-cache. In addition, it contains the program counters (PC) for each thread and control
registers that are used to configure the execution of each block.

3.1.1 I-cache Directory

Table 1 provides an overview of how different portions of a block are cached by the ITs. The instructions of
a single block are striped across all of the ITs. For example, IT0 cacheschunk 0 of a block and IT1 caches

Tags for cached blocks GT
chunk 0 instructions IT0
chunk 1 instructions IT1
chunk 2 instructions IT2
chunk 3 instructions IT3
chunk 4 instructions IT4

Table 1: Storage of a block in the I-cache.

V Valid block
L LRU information
PTAG Physical tag of the block’s address
H Meta information for the block

Table 2: An entry in the I-cache directory.

4



V Valid refill
S Set in the cache being refilled
W Way in the set being refilled
TID Thread corresponding to the refill
PTAG Physical tag of the block’s address
F Refill already flushed/cancelled
C Refilled completed
Ca Block L1 cacheable or not
H Meta information for the refilled block

Table 3: State tracked for each pending refill.

chunk 1 of the same block. The I-cache directory contains a listing of all blocks that are currently resident in
the I-cache. Table 2 provides a description of an entry in the directory. The directory consists of 128 entries,
organized in a 2-way set-associative fashion. Each entry identifies a unique cached block and also stores a
portion of the meta information associated with the block. The directory is virtuallyindexed and entries are
evicted and replaced in a LRU fashion.

The I-cache directory is similar to the tag array in conventional caches. Inthe TRIPS processor, the GT
maintains a single array on behalf of all the ITs. An alternate design could maintain the tag array as part of
each IT. Since a single block is striped across all ITs and each of them operate in a distributed fashion, this
approach would require special hardware to keep the tag arrays consistent. A centralized directory provides
a consistent view of the cached blocks and avoids scenarios where portions of a block are not present in the
I-cache. The tag array in each IT can be eliminated, thus simplifying the implementation in both the GT and
ITs.

3.1.2 Instruction TLB

A set of sixteen registers provide the translations of virtual addresses of blocks to physical addresses. Each
register defines the size and read/execute access attributes of up to sixteen memory segments. The minimum
size of a memory segment is 64KB and the maximum size is 1TB. Instruction memory segments may be
marked as uncacheable in the L1. A block in such a segment will never be filled into the I-cache. A miss in
the ITLB or an access protection violation will result in an exception being generated. Similar to the I-cache
directory, implementing the ITLB inside the GT avoids redundant implementation in the ITs.

3.2 Refill Unit

The refill unit maintains the status of pending I-cache refills. The TRIPS processor supports up to four
outstanding refills, but at most one per thread. Table 3 shows the state thatthe GT tracks for each pending
refill. The state includes information such as the I-cache set and the way being refilled, whether the refill
has completed or not, and the meta header information for the block being refilled. The pending refill state
in the GT is similar to the I-cache MSHR (Miss Status Handling Register) state in conventional processors.

3.3 Retire Unit

The retire unit consists of the retirement table which tracks the execution stateof all blocks in flight. It
is also responsible for initiating the flush, commit, and deallocation of the blocks inflight. Table 4 shows
the details of the state maintained for each block. Most of this state is updated locally by the GT, when it

5



V Valid block
O Oldest block in thread
Y Youngest block in thread
BADDR Virtual address of the block
PADDR Predicted address of the next block
RADDR Actual resolved address of the next block
RC Registers completed
SC Stores completed
BC Branch completed
RCOMM Registers committed
SCOMM Stores committed
E Exception in block
F Block already flushed

Table 4: State tracked for each block in the retirement table.

starts various block-level operations. The rest is updated when the GT receives notifications on the control
networks from other tiles.

The retirement table is similar to the reorder buffer (ROB) in conventional processors. However, this
table does not track the status of individual instructions. It has only one entry for each block, thus containing
far fewer entries than a conventional ROB.

3.4 Exit Predictor

The exit predictor predicts the address of the next block to execute froma single thread. It uses both
local and global history information and employs a tournament-style predictionsimilar to the Alpha 21264
predictor [5]. The predictor state amounts to a total of 74 Kbits and together,they sustain competitive
accuracies compared to the Alpha 21264 predictor.

The predictor performs three major operations—predict, update and repair. Predict provides a predic-
tion for the next block. Update modifies the predictor tables with the information from a committing block.
Repair corrects any predictor state modified by incorrect speculation. The predict and update operations
each consume three processor cycles, while the repair consumes two cycles. None of the operations are
overlapped with any other. A detailed discussion of the predictor implementationis beyond the scope of the
paper.

3.5 Physical Implementation

The TRIPS chip implemented using the 130nm IBM ASIC fabrication technologyuses more than 170
million transistors in a chip area of3.1 mm

2. Each processor core occupies 29% of the overall chip area.
The GT occupies roughly 2% of each processor, in a 3.4 mm× 0.9 mm area. The predictor tables consume
nearly 50% of all the logic cells in the GT. The fetch and retire sub-units consume 19% and 11% of the logic
cells respectively. The OPN router inside the GT occupies 14% of the GT area. The refill unit and other
miscellaneous logic consume the rest.

4 Block Operations

This section provides a detailed description of four block-level operations: a) I-cache fills, b) block fetch
and dispatch, c) block commit, and d) block flush. We describe how the GT logic blocks simplify the

6



Fetch 

SLOT 0

Refill 

Complete

Frame 

allocation

…….

Stall

Refill Hit/Miss 

detection

CACHE 

MISS

TLB 

lookup

I-cache 

lookup

Predict

(Stage 2)

Address 

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle X Cycle X+1

Fetch 

SLOT 0

Refill 

Complete

Frame 

allocation

…….

Stall

Refill Hit/Miss 

detection

CACHE 

MISS

TLB 

lookup

I-cache 

lookup

Predict

(Stage 2)

Address 

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle X Cycle X+1

Predict cyclePredict cycle Fetch cycleControl cycleControl cycle

Figure 4: Refill Pipeline.

implementation and also discuss design limitations and alternatives.

4.1 I-cache Fills

The I-cache fill of a block happens in two steps –fill andupdate. In the fill step, the instruction bits are
fetched from the secondary cache and buffered in a structure called the fill buffer. In the update step, the
instruction bits are read from the fill buffer and written into the I-cache banks. The refill protocol performs
the fill operation. The fetch protocol described in the next section performs the update operation.

Figure 4 depicts the different events during the execution of the refill protocol. It begins with the GT
sending the physical address of the block on the GRN interface (cycle 5). During the preceding cycles
(0–2), the GT computes the address of the block to refill. The GT performs aTLB translation, a lookup
of the I-cache directory, and detects a miss in cycles 3 and 4. It begins therefill operation in cycle 5.
Each IT subsequently receives the refill command and independently launches several transactions with the
secondary memory to fetch its chunk of the block. When the fill operation completes in all the ITs, they
notify the GT using the GSN. After the GT receives such a completion messagefrom the ITs, the entire
refill operation is marked as completed.

The centralized I-cache tags and the refill protocol allows the GT to control the operation of the ITs
effectively. Occasionally, the GT may chose to discard a block saved in thefill buffers without updating the
I-cache. It does so by simply not initiating an update step. By modifying the entries in the I-cache directory,
the GT may evict an already cached block to accommodate a new block. The centralized tags help maintain
consistency in the IT data banks. At the same time, the ITs can operate independently without any explicit
synchronization.

An alternate design for the refill protocol might merge the fill and update steps of a refill and eliminate
the need for fill buffers. However, branch mispredictions often resultin refills that do not correspond to any
legal block. These spurious refills pollute the I-cache and evict other blocks that are currently in the working
set of the program. Occasionally, branch mispredictions result in correct prefetching refills. However, we
observed that the pollution resulting from spurious refills outweigh the benefits of occasional serendipitous
refills.

4.2 Block Fetch

The GT initiates a fetch protocol to distribute the instructions from the IT data banks to the execution units.
Figure 5 shows the different events during the fetch protocol. The GT allocates a free frame for the block
and begins the fetch protocol by issuing a command on the GDN. The command includes the address of the
block and the frame identifier allocated for the block. In addition, the GT also instructs the ITs to perform
the update step of a refill operation if the fetch resulted from a preceding refill.

7



Block B

Block A

Fetch 

SLOT 3

Fetch 

SLOT 2

Fetch 

SLOT 1

Fetch 

SLOT 0

Hit/Miss 

detection

Frame 

allocation

TLB 

lookup

I-cache 

lookup

Predict

(Stage 2)

Address 

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Predict

(Stage 0)

Cycle 5

Predict

(Stage 1)

Cycle 6

Predict

(Stage 2)

Cycle 7

Stall

Cycle 8

Block B

Block A

Fetch 

SLOT 3

Fetch 

SLOT 2

Fetch 

SLOT 1

Fetch 

SLOT 0

Hit/Miss 

detection

Frame 

allocation

TLB 

lookup

I-cache 

lookup

Predict

(Stage 2)

Address 

Select

Predict

(Stage 1)

Predict

(Stage 0)

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Predict

(Stage 0)

Cycle 5

Predict

(Stage 1)

Cycle 6

Predict

(Stage 2)

Cycle 7

Stall

Cycle 8

Predict cyclePredict cycle Fetch cycle

Stall

Fetch 

SLOT 4

Cycle 9

Fetch 

SLOT 7

Fetch 

SLOT 6

Fetch 

SLOT 5

Address 

Select

Cycle 10

TLB 

lookup

I-cache 

lookup

Cycle 11

Hit/Miss 

detection

Frame 

allocation

Cycle 12

Fetch 

SLOT 0

Cycle 

13

Fetch 

SLOT 1

Cycle 14

Fetch 

SLOT 2

Cycle 15

Fetch 

SLOT 3

Cycle 16

Fetch 

SLOT 4

Cycle 17

Stall

Fetch 

SLOT 4

Cycle 9

Fetch 

SLOT 7

Fetch 

SLOT 6

Fetch 

SLOT 5

Address 

Select

Cycle 10

TLB 

lookup

I-cache 

lookup

Cycle 11

Hit/Miss 

detection

Frame 

allocation

Cycle 12

Fetch 

SLOT 0

Cycle 

13

Fetch 

SLOT 1

Cycle 14

Fetch 

SLOT 2

Cycle 15

Fetch 

SLOT 3

Cycle 16

Fetch 

SLOT 4

Cycle 17

Control cycleControl cycle

Figure 5: Fetch Pipeline.

The GDN transports up to 128 bits of instructions during each cycle. Since each instruction chunk
consists of 128-bytes, initiating the fetch and dispatch for an entire block consumes eight cycles. Following
the eight cycles, the GT can initiate the fetch and dispatch for the next block.Figure 5 shows how the fetches
for two blocks are pipelined. The GT consumes eight cycles to initiate the fetchof the first block, starting
from cycle 5. In parallel, a prediction is made and the fetch of the next blockis set up during the cycles
5–12. The fetch of the second block starts at cycle 13.

The distributed fetch protocol provides significantly higher fetch bandwidthcompared to conventional
processors. Directing the fetch from the GT obviates the need for frame management at every tile. Since
a new frame is required for executing every block, managing the free list of frames in a distributed fashion
and keeping them in sync requires additional hardware mechanisms. Managing the free list in the GT and
propagating the allocated identifier along with every fetch reduces the complexity in other tiles.

The implementation tightly couples the predictor operations and the fetch protocol operations in one
single pipeline. In steady state, the three cycles for predict and three cycles for update can fully overlap with
the 8 cycles of fetch required for one block. Thus there are no bubblesin the fetch pipeline, enabling a new
block fetch every eight cycles. This offers a peak fetch rate of 16 instructions per cycle (128 instruction /
8 cycles) matching the peak execution rate of the processor. Occasionally, the predictor update operation
may delay the predict operation causing bubbles in the fetch pipeline. For example, in Figure 5, an update
operation starting in cycle 5, could delay the predict operation for the second block until cycle 8. The fetch
of block B will not start until cycle 14, introducing a bubble in the pipeline.

An alternate design could have completely decoupled the prediction pipeline from the fetch pipeline
using a fetch target buffer [6]. That design offers two advantages.First, multiple refills can be initiated well
ahead of a fetch, offering prefetching benefits. Second, stalls in the predict pipeline are less likely to affect
the fetch pipeline. Implementing this design requires additional block management in the fetch unit. During
design time, the extra complexity did not appear to be worth the benefits.

8



Register/Branch/

Store

Completion 

received

(GSN/OPN)

Cycle 0

Commit detect

Cycle 1

Commit send 

(GCN)

Predictor 

Commit

Cycle 2

…… Commit acks

received (GSN)

Cycle X

Frame 

deallocation

Cycle X+1

Register/Branch/

Store

Completion 

received

(GSN/OPN)

Cycle 0

Commit detect

Cycle 1

Commit send 

(GCN)

Predictor 

Commit

Cycle 2

…… Commit acks

received (GSN)

Cycle X

Frame 

deallocation

Cycle X+1

Figure 6: Commit Pipeline.

4.3 Block Retirement

The retire unit detects when a block has completed execution, and initiates the flush and commit of the
blocks. It is also responsible for deallocating the frame allocated for executing a block.

4.3.1 Completion Detection

A block completes its execution if it has produced all of its outputs. The RTs track the register outputs, while
the DTs track the store outputs. A branch instruction sends its result to the GTusing the OPN. When the RTs
detect that all registers have been produced, they inform the GT by sending a message on the GSN. The GT
receives one message on behalf of the entire block and subsequently updates its retirement table. The GT
detects the completion of the store similarly. When all outputs have been produced, the GT marks the block
as completed. Detecting completion in such a distributed and hierarchical fashion avoids the complexity of
sending and tracking multiple messages to the GT to detect completion.

4.3.2 Flush Operation

The GT flushes the execution of a block if any misspeculations or exceptionsare detected. Exceptions are
reported and detected along with the completion messages. A flush operation begins with the GT issuing a
flush message on the GCN, which propagates to the RTs, DTs and the ETs. Each tile responds by invalidating
all state corresponding to the flushed blocks. The GT invalidates all the statecorresponding to the flushed
blocks in the retirement table and stops pending fetches for flushed blocks.

4.3.3 Commit Operation

A block may be committed if it has completed its executed without any exceptions andif all previous blocks
have been committed. Figure 6 shows the different events of a commit operation. It begins with the GT
issuing a commit message on the GCN. The RTs and the DTs begin the commit operation and when they
are have completed that operation, they send a message to the GT using the GSN. The GT deallocates the
block, after it has received the acknowledgements from both the RT and the DT. These acknowledgements
are required because, the number of outputs and therefore, the commit latency varies for each block.

4.4 Summary

A control signal generated at the GT incurs multiple cycles of latency to propagate to all the tiles. Table 5
provides the minimum latencies for a few block events. For example, the minimum latency for executing the
last instruction assigned to the farthest ET (bottom right corner) is 20 cycles. If the result of this instruction
is a register output, that result takes a minimum of four cycles to reach an RT.Notifying the completion
of the register outputs to the GT consumes up to four additional cycles. Combining all events for a single

9



Dispatch of first instruction to nearest ET 4
Dispatch of last instruction to farthest ET 17
Execution of first instruction in nearest ET7
Execution of last instruction in farthest ET20
Commit in nearest RT/DT 20
Commit in farthest RT/DT 24
Deallocation 32

Table 5: Minimum latencies for a few block events. Latencies are measured inprocessor cycles from the
start of the fetch protocol in the GT.

block, the overall lifetime of block from start to deallocation could involve a significant number of control
signal propagation cycles. Hiding these cycles is important for attaining highthroughput.

In the TRIPS prototype implementation, all control protocols are pipelined. Except for fetch, a new
operation for other protocols can be started in every cycle. The fetch for a second block can be initiated
eight cycles after the first block. The fetch of a new block following a flush can be started three cycles after
the flush. Such pipelining amortizes the latency of the control protocols across multiple tiles and blocks.
For example, while one tile is performing the flush of speculative blocks, another could perform the commit
of the non-speculative block, and a third tile could dispatch the instructions of a new block all in the same
cycle.

5 Conclusion

Distributed microarchitectures with on-chip networks are likely to be prevalent in the future. Control of the
distributed hardware units and management of the common execution state will bean important component
of the design. The TRIPS prototype processor implements fine-grained control using a set of master-slave
protocols. During the implementation of these protocols, we learned a few important lessons:

• Separation of the control networks: In the first design, we implemented all of the control protocols
using a single shared network. However, we observed that the contention for the network among the
different protocols wasted the execution bandwidth of the processor. In fact, it was not possible to
match the peak execution rate of the processor. Consequently, in the finaldesign we implemented
each protocol with a separate network at the cost of additional wiring between the tiles. Since the
protocols were well-defined and fairly simple, migrating to a new implementation did not involve a
significant redesign effort.

• Predictor/Fetch coupling: For design simplicity, we chose to couple the predictor and fetch opera-
tions in one single pipeline. This introduced bubbles in the fetch pipeline, limiting thefetch rate of
the processor. Future implementations must choose to decouple the two pipelines.

• Reducing flush overhead:Reducing the penalty of a flush, i.e, the latency to start a new fetch after
a flush was important. The GT implementation could not reduce this latency to any further than three
cycles. Further reductions required additional ports in the TLB and the I-cache directory and their
associated complexity.

The GT logic paths were such that detecting a flush and subsequently clearing the retirement table state
was a single cycle operation. These paths were the dominant critical paths inthe GT for meeting cycle time.
However, none of the GT paths appear among the top timing critical paths in the entire processor.

10



Our experience shows that even on a distributed substrate, the control operations can be accomplished
with relatively simple protocols. The techniques demonstrated in this paper areviable design solutions for
future distributed microarchitectures.

References

[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore, J. Burrill, R. G.
McDonald, W. Yoder, and the TRIPS Team. Scaling to the End of Silicon with EDGE architectures.
IEEE Computer, 37(7):44–55, July 2004.

[2] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for wire-delay domi-
nated on-chip caches. InProceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 211–222, October 2002.

[3] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded sparc processor.IEEE
Micro, 25(2):21–29, 2005.

[4] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart memories: A modular
reconfigurable architecture. InProceedings of the 27th Annual International Symposium on Computer
Architecture, pages 161–171, June 2000.

[5] N. Ranganathan, R. Nagarajan, D. Jimenez, D. Burger, S. W. Keckler, and C. Lin. Combining hyper-
blocks and exit prediction to increase front-end bandwidth and performance. Technical Report TR-02-
41, Department of Computer Sciences, The University of Texas at Austin,September 2002.

[6] G. Reinman, T. M. Austin, and B. Calder. A scalable front-end architecture for fast instruction delivery.
In Proceedings of 26th Annual International Conference on Computer Architecture, pages 234–245,
May 1999.

[7] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 291–302, December 2003.

[8] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson, J.-W.
Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and
A. Agarwal. The Raw microprocessor: A computational fabric for software circuits and general-purpose
programs.IEEE Micro, 22(2):25–35, 2002.

11


