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A certificate is a way to distribute public keys of users in a distributed system.
For example, in the current Internet, certificates are heavily used in SSL/TLS for
securing e-commerce. In this thesis, we describe the three phases of a certificate,
how a certificate is issued, used, and revoked/expired. In particular, we propose a
new way of distributing certificates, called certificate dispersal. Certificate dispersal
assigns certificates to users such that when a user u wants to securely communicate
with another user v in a system, users u and v may find out the public key of
user v based on the certificates stored in w or v. In other words, users v and v

have no need to contact any other user in the system. We define dispersal in two
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environments, a certificate graph and a certificate chain set and the costs of dispersal.
In the environment of certificate chain set, computing an optimal dispersal is NP-
complete. However, we identify several classes of chain sets and certificate graphs
for which optimal dispersal can be computed in polynomial-time. For each class
we present an algorithm that computes an optimal dispersal. We also analyze the
vulnerability of certificate systems. Any certificate system suffer from impersonation
attacks when a private key of a user is revealed to an adversary. We define the metric
called vulnerability that measures the scope of damage when some private keys are
revealed, and show how different certificate systems have different vulnerabilities.
These results can be used to design a good certificate system that satisfies system

requirements of dispersal cost and vulnerability.
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Chapter 1

Introduction

The concept of public key cryptography (also known as asymmetric key cryptog-
raphy) was first introduced by Diffie and Hellman in [14]. The main idea is that
two keys work as a pair: one that is known to the public and the other that is
only known to one user. If a message is encrypted with one key, then the encrypted
message can be only decrypted by the other key.

If a user u encrypts a nonce with the public key of another user v and then
receives the same nonce from user v, then user v can be assured that user v owns
the corresponding private key and authenticate user v. If a user u sends a message
to another user v with the hash of this message encrypted with the private key of w,
and then user v computes the same hash of the received message as the decrypted
hash with the public key of user u, then user v can be assured that user u generated
this message. This encrypted hash of a message is called digital signature.

Many distributed protocols and security protocols, both in research and prac-
tice, utilizes authentication and digital signature provided by public key cryptog-
raphy. For example, e-commerce on the Internet operates on Secure Socket Layer
(SSL), and SSL authenticates websites using public key cryptography. In the dis-

tributed computing literature, some replicated state machine protocols [10], use



public key cryptography, as well as some quorum protocols [29].

Protocols that use authentication and digital signatures based on public key
cryptography require an underlying public key infrastructure (PKI). PKI includes
the issuance, distribution, and revocation of public keys: how to issue the public
and private key for users, how to distribute (and store) the public keys of users, and
how to revoke the public keys when the corresponding private keys are revealed to
adversaries. In one of the simplest form of PKI, every user stores the public keys of
all other users. This PKI does not scale very well when the number of users grows
to millions, as in the Internet. Instead, SSL relies on a handful of public keys that
are well-known to each user to introduce more public keys. This introduction is
done by a digitally signed statement, which is called a “certificate”.

A certificate can be understood as an electronic identification. A traveler who
wants to pass the security check at any airport in the States needs to provide a photo
identification along with a boarding pass. The name on the boarding pass needs to
match the name on the photo identification, and the photo in the identification must
match the traveler. In other words, the photo identification states the relationship
between the name and the face of the traveler.

In the context of PKI, a certificate states a relationship between a user and
its corresponding public key, and it is signed by a private key of another user. We
call the user who signed the certificate with its private key the “issuer” and the user
whose public key is stated in the certificate the “subject” of this certificate. Any
user who knows the public key of the issuer can verify the certificate to make sure
that it is indeed signed by the issuer. When the certificate is successfully verified,
than the user may use the key written in the certificate as the public key of the
subject. In other words, the issuer introduces the public key of the subject to this
user.

In SSL, most web browsers have public keys of Certificate Authorities (CA).



When a client wants to authenticate a website, then the website provides a certificate
to the client that is signed by a well-known CA. The client uses the public key of
the CA in the web browser to verify the certificate, and then uses the public key in
the certificate for the subsequent authentication protocol. In other words, the CA
introduces the public key of the website to the client. In the example of a traveler
at the airport, a government (or the agency that issues a state identification) is
a CA. A security personnel can trust the government and trust the photo in the
identification to be the correct photo for the name. A client can trust the CA and
trust that the public key in the certificate is the correct public key for the website.

Certificates in PKI help with scalability. Once the government issues a photo
identification, a traveler may use the identification for many trips. Similarly, once
the CA issues a certificate for a website, a website may use the certificate for many
clients. In the example of SSL, a handful of public keys are stored in each web
browser, and millions of clients can authenticate thousands of websites with verifiable
certificates.

Users may use more than one certificate to learn public keys of other users.
For example, if a user u issues a certificate for another user v and user v issues a
certificate for a user w, then user v can learn the public key of user w using the
two certificates issued by users u and v. Pretty Good Privacy (PGP) is an example
system where more than one certificate can be used. The series of certificates is
called a certificate chain.

In a distributed system, when a user u wants to find the public key of user v,
user u may need to use more than one certificate. If there is a central repository of
certificates, user v may query the repository for certificates. However, it is hard to
maintain such a repository for a large scale distributed system. In particular, if that
system operates on an ad-hoc network, the reachability of the certificate repository

becomes non-trivial. We propose a novel way of distributing certificates so that the



users v and v can find all the necessary certificates without contacting any other
user. We call this distribution mechanism certificate dispersal. Certificate disper-
sal minimizes the communication overhead in finding certificates. We prove that
computing a certificate dispersal that minimizes the average number of certificates
stored in a user is NP-Complete in general. The certificate dispersal is optimal if
the average number of certificates stored in a user is minimum. We identify several
classes of certificate systems and present algorithms that compute optimal certificate
dispersals for such systems in polynomial time.

A certificate system may suffer from impersonation attacks. An imperson-
ation attack occurs when an adversary gets hold of the private key of a user u, and
pretends to be user u by decrypting messages encrypted with the public key of user
u. The adversary can also impersonate another user v using the private key of user
u as follows. The adversary may create a new public and private key pair, and issue
a certificate with this new public key as if this public key belonged to user v. When
a user w is not aware that the private key of user u is revealed to the adversary,
user w may use the certificate issued by the adversary and learn the wrong public
key. When user w sends any message to user v that is encrypted with the wrong
public key, the adversary can intercept the message and learn its content.

In Chapter 4, we define a metric called “vulnerability” of a certificate system
which measure the potential damage from impersonation attacks. We also identify
what properties of the certificate system affect vulnerability. The analysis of the
interaction between these properties gives guidelines on designing a good certificate
system.

A certificate has a lifetime in a PKI. It is created by the issuer, is used by
users who know the public key of the issuer, and dies when it is revoked or expires.
In the next chapter, we define a certificate and a certificate system more formally

in the order of these events. In Chapter 3.1, we define certificate dispersal and



explain how a dispersal can be computed for any certificate system, and how to
compute an optimal dispersal for some classes of certificate systems. In Chapter 4,
we continue by analyzing potential vulnerabilities of certificate systems. Finally we

discuss related work and conclude with future directions.



Chapter 2

Certificates and Certificate

Systems

We consider a system where users would like to send messages securely to other
users. A user who would like to send a secure message is called a source and a user
who is intended to receive such a message is called a destination.

In the Internet, it is common that one source may wish to send messages to
many destinations. For example, a source Alice may wish to send her credit card
number securely to several destination shopping sites, say Amazon.com, eBay.com,
and priceline.com. The secure communication between a source and a destination
is protected by encrypting each exchanged message with a shared key only known
to the source and destination.

In this system, each user w, whether source or destination, has a private
key rk, and a public key bk,. In order for a source u to share a key sk with a
destination v, u encrypts key sk using the public key bk, of v and send the result,
denoted bk,{sk}, to v. Only v can decrypt this message and obtain key sk shared
with u. This scenario necessitates that v knows the public key bk, of v. In the above

example, Alice needs to know the public keys of Amazon, eBay, and priceline.



If a user u knows the public key bk, of another user v in the network, then u
can issue a certificate, called a certificate from w to v, that identifies the public key
bk, of v. This certificate can be used by any user that knows the public key of u to
further acquire the public key of v.

A certificate from u to v is of the following form:

< u,v,bky, > rky

This certificate is signed using the private key rk, of u, and it includes three items:
the identity of the certificate issuer u, the identity of the certificate subject v, and
the public key of the certificate subject bk,. Any user that knows the public key
bk, of u can use bk, to obtain the public key bk, of v from the certificate from u to
v. Note that when a user obtains the public key bk, of user v from the certificate,
the user not only finds out what bk, is, but also acquires a proof that bk, is indeed
the public key of user v.

A certificate has a lifetime. The issuer issues this certificate, users use this
certificate to find the public key of the subject, and the issuer may revoke this
certificate or the certificate may expire. We will discuss the first two phases in more

details below. (The revocation step will be discussed in Section 3.6.)

2.1 Certificate Issuance

To issue a certificate < u,v, bk, > rk,, the issuer v must take the following three

steps.

i. Find the public key bk, of user v: In this step, user u needs to make sure that

the key bk, is the correct public key of user v.

ii. Compute the hash (message digest): In this step, user u assembles all the

information that will be included in the certificate, in addition to the identity



iii.

of the issuer u, the identity of the subject v, and the public key bk, of user v.
For example, the certificate may include the expiration date of this certificate,

and the name of the hash function that is used to compute this hash.

Encrypt the computed hash with the private key rk,: In this step, user u
encrypts the computed hash with the private key so that any user who knows
the public key of user u can verify that no adversary tampered with this

certificate.

Among these three steps the hardest step is the first one, to find the public

key of another user in the system. Two different types of users may take this

challenge.

i.

ii.

Certificate Authority: A Certificate Authority (CA) in a system finds the
correct public key of other users and issues certificates for them. In some
cases, a CA even generates the public and private key for other users and
assigns private keys to them. There can be multiple CAs in the system, and

each user may have multiple CAs issue certificates for the same public key.

Any user: Any user in a system finds the correct public key of other users
and issues certificates for them. Most times such finding relies on verification
on an offline channel, for example social contacts. A user may issue as many
certificates as he or she wishes, so every user may have different number of

certificates issued for himself or herself.

Note that finding the correct public key of a user is more than finding the

public key that matches a given private key. More importantly, the identity in

the certificate issued for a certain public key should match the real owner of the

corresponding private key. For example, recently there was a certificate issued for

Mountain America Credit Union in Utah by Equifax Secure Inc., which is a divi-

sion of the well-known credit reporting bureau Equifax, now part of the company



Geotrust. Geotrust currently holds around 25% of the market share in SSL cer-
tificate issuance business. It turned out that the public key in this certificate did
not belong to the claimed Mountain America credit union, but to an attacker who
collected credit card numbers from Mountain America credit union account holders.
(The details can be found in [26].) Reiter and Stubblebine [34] noted that there

should be offline verification in certificate issuance.

2.2 Certificates to find public keys

The certificates issued by different users in a network can be represented by a di-
rected graph, called the certificate graph of the network. Each node in the certificate
graph represents a user in the network. Each directed edge from node u to node v

in the certificate graph represents a certificate from u to v in the network.

CimazoD (o8 Crieind Cmen) Visa > iscored

Figure 2.1: A certificate graph of Alice and Bob

Fig. 2.1 shows a certificate graph for a network with two sources, Alice and
Bob, and six destinations, Amazon, eBay, priceline, Amex, Visa, and Discover.

According to this graph,

Alice issues three certificates
(Alice, Amazon), (Alice, eBay), and (Alice, priceline), and
Bob issues three certificates

(Bob, Amex),(Bob, Visa), and (Bob, Discover)

A more efficient way to support secure communication between the sources



and the destinations is to introduce some intermediaries between the sources and
the destinations. The number of introduced intermediaries is much smaller than the
number of sources and the number of destinations. Each intermediary has its own
public and private key pair. The sources know the public keys of intermediaries and
the intermediaries issue certificates of the public keys of the destinations. For exam-
ple, two intermediaries, namely VeriSign and CertPlus, can be introduced between
the two sources and the six destinations in Fig. 2.1. The result is the certificate
graph in Fig. 2.2.

sources

intermediaries

destinations

Figure 2.2: A certificate graph with intermediaries

According to the certificate graph in Fig. 2.2, Alice needs to issue only one
certificate to VeriSign and Bob needs to issue only one certificate to CertPlus. Alice
can then use the two certificates (Alice, VeriSign) and (VeriSign, Amazon) to
obtain the public key bkAmazon, and so can securely send messages to Amazon.
Also, Bob can use the two certificates (Bob, CertPlus) and (CertPlus,Visa) to
obtain the public key bky;sq, and then can securely send messages to Visa.

For Alice to use the certificate (VeriSign, Amazon), Alice needs to verify

the certificate first through the following four steps.

i. Find the public key of VeriSign: In this example, Alice already has a key that

she believes to be the correct public key of VeriSign, in certificate (Alice, VeriSign).

ii. Compute the hash (message digest): Alice computes the hash of all the infor-

mation included in certificate (VeriSign, Amazon).

iii. Decrypt the included hash with the public key of VeriSign: Alice decrypts

10



the included hash in certificate (VeriSign, Amazon) with the public key of
VeriSign in certificate (Alice, VeriSign).

iv. Compare the two hashes: Alice compares the two hashes from the second and
third steps. If these two hashes match, this certificate (VeriSign, Amazon) is

successfully verified.

As far as the verification is concerned, the issuer could encrypt the whole cer-
tificate with its private key. However, the public key decryption is computationally
expensive, so it is easier to compute the hash of a certificate and decrypt just the
included hash rather than decrypting the whole certificate. Moreover, since hash
functions are one way, users can be assured that using the hash instead of the whole
certificate does not compromise the verification.

As discussed above, the certificate issuance is not computationally expensive,
but finding the correct public key of a subject may be difficult. The intermediaries
in Fig. 2.2 reduce the number of certificates that Alice needs to issue. Instead
Alice needs to verify certificates issued by intermediaries (certificate authorities) by
computing hashes and decrypting hashes. After verifying the certificates, Alice can
learn the public keys of websites and use the keys for communicating securely with
the websites.

In general, for users w and v in a certificate graph G, if v wishes to send
messages securely to v, then there must be a “chain” from w to v in G. Certificate
chains are defined as follows:

A simple path from a source u to a destination v in a certificate graph G is
called a chain from u to v in G. u is the source of the chain and v is the destination
of the chain. When source u wishes to communicate securely with destination v,

source u needs to find a chain from u to v.! Once u finds a chain, it needs to verify

!There are certificate systems where u needs to find more than a chain from u to v, but we
assume the minimum requirement of one chain here. More complicated systems will be discussed
in Chapter 4.
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all the certificates in the chain to find the public key of destination v. The chain
from u to v through vy - - - vg consists of certificates (u,vo), (vo,v1), -+, (Vk—1, k),

(vg,v). The verification of each certificate (v;, v;11), 0 <7 < k is done as follows:

i. Find the public key of v;: By the time user u gets to certificate (v;, v;y1), user
u must have verified all the certificates in the chain from u to v;. From the

certificate (v;_1,v;), user u can obtain the public key of v;.

ii. Compute the hash (message digest): User u computes the hash of all the

information included in certificate (v, vit1).

iii. Decrypt the included hash with bk,,: User u decrypts the included hash in the

certificate with bk,, found in the first step.

iv. Compare the two hashes: User u compares the two hashes from the second

and third steps. If they match, this certificate is successfully verified.

When certificate (v;, v;11) is successfully verified, user u moves on to (v; 1, vit2).
Once all the certificates in the chain are verified successfully, source u can obtain
the public key of destination v from the last certificate of the chain.

For users u and v in a certificate graph G, if u wishes to securely send
messages to v, then there must be a chain from u to v in G. On the other hand,
there may be a chain from u to v even though w does not need to securely send
messages to v. Fig. 2.3 shows the six chains that are needed to support the secure
communications between the two sources and the six destinations in Fig. 2.1. Note
that there is a certificate (VeriSign, Amez) in the certificate graph in Fig. 2.2
that is not needed to support secure communication between any source and any
destination in Fig. 2.1. Since Alice does not need to securely communicate with
Amex, the certificate chain (Alice, VeriSign),(VeriSign, Amez) in the certificate
graph in Fig. 2.2 is not included in Fig. 2.3.

12
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Figure 2.3: Certificate chains from Fig. 2.2
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The certificates in each chain need to be “dispersed” between the source and
destination of the chain such that if a source u wishes to securely send a message
to a destination v then u can obtain the public key of v from the set of certificates
stored in v and v. (Note that to “store a certificate in a user” does not necessarily
mean that the user has a local copy of the certificate. Rather, it means that the
user only needs to know where to find the certificate, if a need for that certificate
arises, either in its local storage or in a remote location.)

For example, assume that each source in Fig. 2.3 stores its certificate to
the corresponding intermediary, and that each destination in Fig. 2.3 stores the

certificate from its corresponding intermediary to itself. Thus,

Alice stores the certificate (Alice, VeriSign),
Bob stores the certificate (Bob, CertPlus),
Amazon stores the certificate (VeriSign, Amazon),

eBay stores the certificate (VeriSign, eBay),

Amex stores the certificate (CertPlus, Amex),

(
(
(
priceline stores the certificate (VeriSign, priceline),
(
Visa stores the certificate (CertPlus, Visa), and
(

Discover stores the certificate (CertPlus, Discover)

In this case, if Alice wishes to securely send messages to priceline, then Alice can
use the two certificates stored in Alice’s computer and priceline website to obtain

the public key of priceline and securely send the messages to priceline. Certificates

13



that are not part of any chain are not stored because they are not needed. This
is illustrated by the certificate (VeriSign, Amex), which appears in Fig. 2.2 but is
not stored in Amex.

Note that the intermediary, in this case VeriSign, needs to communicate
with Alice or priceline for them to securely communicate with each other. In this
particular example there is only one intermediary, VeriSign, so it may not be too
hard for Alice to contact VeriSign. However, one can imagine that the chain could
be arbitrarily longer than 2, and in a such case, it would be rather inefficient if the
source of the chain need to contact all the users appearing in the chain. Certificate
dispersal, defined in Chapter 3.1 more formally, assigns certificates to users such
that source and destination of a chain could find all the certificates in the chain

without contacting any other user.

2.3 Certificate Expiration or Revocation

Certificates’ lifetime ends when a certificate is either expired or revoked. If the
issuer of a certificate had a specific expiration date in mind, then the expiration
date becomes part of the certificate. Other users may verify that the certificate has
not expired using this expiration date. If the current time is after the expiration
date, then other users may choose not to use the certificate nor the public key
introduced by the certificate. The issuer can have some control over the usage of a
certificate it issued by controlling the expiration date. The later the expiration date
is, the longer the certificate may be used.

For a certificate system to be able to control usage with expiration dates,
the users’ clocks must be synchronized. Imagine a certificate whose expiration date
of June 30, 2006. However, if a user has set a wrong time to its system clock, then
this user may continue using the certificate even after all other users stop using this

certificate. Therefore, for a certificate system to rely on an expiration, some form

14



of clock synchronization is required.
Certificate revocation is necessary when a certificate becomes invalid before

its expiration date comes. There are two reasons of revocation:

i. Incorrect public key of the subject: The issuer intentionally or accidentally

signed a certificate with an incorrect public key of the subject.

ii. Revealed private key of the issuer: The private key of the issuer was revealed
to an adversary and the certificate may have been issued by the adversary, not

by the specified issuer in the certificate.

Certificate revocation in both cases is necessary not only for the issuer but
for other users as well. Other users who know the public key of the issuer may learn
an incorrect public key of the subject in either case. In the case of revealed private
key, the legitimate owner of the private key may revoke the corresponding public
key altogether instead of revoking each certificate signed by the revealed private key.

If there is a Certificate Authority (CA) in the system, the Certificate Au-
thority may publish a Certificate Revocation List (CRL). This list contains all the
certificates that need to be revoked but have not expired. The list is signed by the
CA’s private key so that the users in the system may verify the integrity of the list.
The delivery of the list may be part of a periodic update sent by CA to all the users
in the system. For example, Microsoft Windows updates contains the update on the
keys used by Microsoft to sign third party device driver software. The list may also
be published in a well-known location, for example the CA’s homepage, so that the
users may download the list between periodic updates.

If there is no CA in the system, then any issuer in the system may publish
its own “revocation certificate”. This certificate is signed by the private key of
the issuer, and contains either the public key of the issuer or information on a

particular certificate. If the public key of the issuer is included, then other users
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may stop using the included public key of the issuer, which effectively revoke all
the certificates signed by the matching private key of the issuer. (The issuer may
get a new pair of public and private key and publish certificates if it wishes.) If
the revocation certificate includes information on a particular certificate, it may
contain a certificate identification number if it exists, or any unique information of
the certificate to be revoked.

This revocation certificate can be dispersed as a regular certificate. If a
dispersal is computed periodically by a specific user, then any issuer who issues a
revocation certificate send the revocation certificate to the specific user. Then the
user can simply ignore the certificate(s) to be revoked according to the revocation
certificate. If the revocation certificate contains a public key of an issuer, then all
the certificates issued by the corresponding private key will not be dispersed to any
user. If the revocation certificate is for a particular certificate, then the revoked
certificate will not be dispersed to any user. If the dispersal is not computed by
any specific user, then revocation certificates can be dispersed using the dynamic
dispersal protocol in Section 3.6, as a regular certificate.

Dispersal of certificate chains and its cost are defined in Chapter 3.1. In
Section 3.2, we show that finding an optimal dispersal of any set of chains is NP-
complete. Thus it becomes of interest to characterize the special cases of practical
interest where the problem can be solved efficiently, as well as effective heuristic
algorithms to solve general instances of problems. Subsequently, we identify spe-
cial classes of chain sets that are of practical interests and devise polynomial-time
algorithms that compute optimal dispersals for each class. For instance, the exam-
ple dispersal above reflects the certificate dispersal in Secure Socket Layer (SSL).
Such chain sets are defined as “short” chain sets in Section 3.5, and we present an

algorithm that computes an optimal dispersal of any given short chain set.
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Chapter 3

Certificate Dispersal

3.1 Certificate Dispersal

In this section, we introduce definitions and notations to describe the optimal dis-
persal and prove four theorems of the properties of a certificate dispersal.

A certificate graph G is a directed graph in which each directed edge, called
a certificate, is a pair (u, v), where u and v are distinct nodes in G. Note that
according to this definition no certificate has the same node as both its issuer and
subject.

A simple directed path of certificates (vg, v1), (v1, v2), -+, (Vg—1, vk) in
a certificate graph G, where the nodes vy, vi, ---, v are all distinct, is called a
certificate chain from vy to v in G.

A dispersal D of a certificate graph G assigns a set of certificates in G to each
node in G such that the following condition holds. The certificates in each chain
from a node v to a node v in G are in the set D.u U D.v, where D.u and D.v are
the two sets of certificates assigned by dispersal D to nodes u and v, respectively.

Let D be a dispersal of a certificate graph G. The cost of dispersal D, denoted

cost.D, is the average number of certificates assigned by dispersal D to each node
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in G:

1
t.D=— D.
cost.D = (Y D),

vinG
where n is the number of nodes in G.
A dispersal D of a certificate graph G is optimal if and only if for any other
dispersal D' of the same certificate graph G, cost.D < cost.D’'.

F

Figure 3.1: A star certificate graph

For example, consider the star certificate graph in Fig. 3.1. This graph
can be dispersed as follows. If v is the center node, then D.v = {}. Otherwise,

D.v = {(v, center node), (center node,v)}. The cost of this certificate dispersal is
2(n—1)
n

, where n is the number of nodes in this graph.

Theorem 1 (Upper Bound on Dispersability Cost) For any certificate disper-
sal D of a certificate graph G with n nodes,

cost.D <n-—1

Proof: In Section 3.4, we present a certificate dispersal algorithm F's,;; that as-
signs to every node v in a certificate graph G, the certificates in a outgoing spanning
tree rooted at v. Let Dy, be the dispersal of G computed by Fp,;;. Because each
outgoing spanning tree in a certificate graph G has at most n — 1 certificates, where

n is the number of nodes in G, for any node v in G, |Dpyy.ul <n — 1.

nn—1)=n-1

S|

1
cost.Dyyy = E( Z |Dfull-v|) <

vinG
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For an optimal dispersal D of G,

cost.D < cost. Dy <n—1

cost.D <n-—1

|

For strongly-connected graphs and directed graphs, Zheng, Omura, Uchida,
and Wada presented algorithms that compute optimal dispersals in [38]. The same
authors also showed the tight upper bounds in these two classes of certificate graphs.
For a strongly connected graph G, the upper bound is O(d + e/n), where d is the
diameter of G, e is the number of edges in G, and n is the number of nodes in G.
For a directed graph G’, the upper bound on cost.G' is O(p x d' + €'/n'), where p
is the number of strongly connected components of G', d’ is the maximum diameter
of strongly connected components of G’ €' is the number of edges in G’, and n' is
the number of nodes in G'.

A dispersal may be defined on the set of chains that are actually in use, which
is a subset of all the chains in a certificate graph. A set of chains in a certificate
graph G is called a chain set of G. For a chain from node vy to another node vy,
node vg is called the source of the chain and node vy, is called the destination of the
chain.

A dispersal D of a chain set C'S assigns a set of certificates in C'S to each
source node and each destination node in C'S such that the following condition
holds. The certificates in each chain from a source node u to a destination node v
in CS are in the set D.u U D.v, where D.u and D.v are the two sets of certificates
assigned by dispersal D to nodes u and v, respectively. Thus, given a chain in CS,
the source node u and the destination node v of the chain can find all the certificates

in the chain in the set D.«w U D.v. When the source node u and the destination node
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v need to search for a chain from w to v, then they can simply merge D.u and D.v

to construct a certificate graph G, ,, and search for a simple path from v to v in

Gup- If there is a simple path from u to v in Gy, then this path is a certificate

chain from u to v. On the other hand, if there is no path from v to v in Gy, then

nodes v and v recognize that there was no certificate chain in the given C'S.

Dispersal of a chain set is useful for many types of systems. We discuss three

example types of systems here.

i.

ii.

iii.

Deployed systems: In a deployed system, all the certificates are dispersed
among the nodes in the system before the nodes start on a particular mis-
sion. For example, consider mobile units participating in a military operation.
Chains that can be used for authentication are carefully chosen and dispersed.
Each unit stores the assigned set of certificates by a dispersal of chosen chains.
The units are deployed in mission and when a unit needs to authenticate an-
other unit, they do not have guarantee that any other unit will be available.
Thanks to dispersal, these two nodes can use the certificates stored in each unit
to find a certificate chain from one to the other. Many military applications

fit in this type of systems.

Client-Server systems: In a client-server system, there are only a limited
number of certificate authorities that issue certificates. In such systems, it
is not necessary to collect all the certificates to optimally disperse them.
For example, in Secure Socket Layer (SSL) systems, VeriSign is one of the
few certificate authorities. A server, for example Amazon.com, does not
need to know all the certificates in the system but only stores the certifi-
cate (Amazon.com, VeriSign). This is an optimal dispersal (more details are

in Section 3.5) of this SSL system.

Evolving systems: In an evolving system where certificates may be issued
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and revoked during the execution of the system, the system can start with
an optimal dispersal of such system and gradually diverge from the dispersal.
Even when the system diverges from its dispersal, it is still beneficial to start
with an optimal dispersal as long as the changes in certificates are not a major
portion of certificates in the system. Moreover, the dynamic dispersal protocol
in [20] disperses newly issued certificates and revocation certificates so that

the system stabilizes back to dispersal.

The definitions of the cost of a dispersal of a chain set and its optimality are
defined similarly to those in a certificate graph.

Let D be a dispersal of a chain set C'S. The cost of dispersal D, denoted
cost.D, is the sum of the number of certificates in the sets assigned by dispersal D

to every source or destination node in C'S.

cost.D = Z |D.v|

vis a source or destination node in C'S

A dispersal D of a chain set C'S is optimal if and only if for any other dispersal
D’ of the same chain set CS,

cost.D < cost.D'

In other words, an optimal dispersal D of a chain set C'S minimizes the average
number of certificates stored in each node.

Let (u,v) be a certificate that appears in one or more chains in a chain set
CS, and let D be a dispersal of C'S. The location set of certificate (u,v) assigned
by D, denoted D(u,v), is defined as a set of all nodes x such that (u,v) is in the set
of certificates D.z. It is straightforward to show that the cost of dispersal D equals
Z(u,v)EC’S [D(u, v)].

The location set D(u,v) of a certificate (u,v) assigned by a dispersal D of a
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chain set C'S is optimal if and only if for any other dispersal D’ of C'S, |D(u,v)| <
D' (u, v)].

Theorem 2 Let D be a dispersal of a chain set CS. If D is optimal, then for every

certificate (u,v) in CS the location set D(u,v) is optimal.

Proof: The proof is by contradiction. Assume that D is optimal, and there
exists another dispersal D' of C'S where for some certificate (u,v) in CS, |D(u,v)| >
D' (u, v)].

Now consider the following assignment of certificates to each node in C'S.

D'(z,y) if (z,y) = (u,v),

D(z,y) if (z,y) # (u,v)

D"(z,y) :=

Note that D" is a dispersal of C'S. This is true because for any chain from a
node ¢ to another node j in CS, all the certificates in the chain are in D".i U D".j.
Consider a certificate (z,y) in the chain from ¢ to j in CS, where (z,y) # (u,v).
D(z,y) contains node i or node j by the definition of dispersal, so D"(z,y) contains
node ¢ or node j. In other words, any certificate (z,y) in a chain from node i to
node j in CS, where (z,y) # (u,v), is in D".s U D".j. Similarly, for certificate
(u,v), if (u,v) is in a chain from ¢ to j in C'S, D'(u,v) contains node i or node
7 by the definition of dispersal, so D"(u,v) contains node ¢ or node j. In other
words, if certificate (u,v) is in a chain from node 7 to j in CS, then (u,v) is in
D".iUD".j. Therefore, for any given chain from a node ¢ to another node j in CS,
all the certificates in the chain are in D".i U D".j. Thus, D" is a dispersal of C'S.

The cost of dispersal D" is computed as follows.

cost.D" = > |D".v| = ( > |D(x,y)|> + | D' (u,v)|

veCS (z,y)€CS,(2,y)#(u,0)
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By the assumption |D'(u,v)| < |D(u,v)|,

cost.D" = ( > |D(z, y)l) +1D'(u,v)]

(2,y)€CS,(z,y)#(u,v)

< ( Z |D(:c,y)|> + |D(u,v)| = cost.D
(z,y)€CS,(y)#(uw)
Thus, the cost of dispersal D" is less than the cost of dispersal D contradicting the
assumption that D is an optimal dispersal. ]
Therefore, the location set D(u,v) assigned by an optimal dispersal D is

optimal for every certificate (u,v) in CS.

Theorem 3 Let D be a dispersal of a chain set CS. If for every certificate (u,v)
in CS the location set D(u,v) is optimal, then D is an optimal dispersal of C'S.

Proof: The proof is by contradiction. Let D be a dispersal for a chain set C'S
and for every certificate (u,v) in C'S the location set D(u,v) is optimal. Also, let
D’ be another dispersal of C'S where cost.D' < cost.D. By the definition of the cost

of dispersal,

Z |D'(u,v)| = cost.D' < cost.D = Z |D(u, v)]
(u,w)eC'S (u,v)eCS
Thus, there must be at least one certificate (u,v) in C'S such that |D'(u,v)| <
|D(u,v)|. This contradicts the definition of an optimal location set of (u,v). [
Therefore, if D(u,v) is optimal for every certificate (u,v) in a chain set C'S,

then D is an optimal dispersal of C'S.
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3.2 NP-Completeness Proof

In this section, we show that the chain dispersal problem is NP-Complete by a
reduction from the vertex cover problem. For convenience, these two problems are

described below.

e The Vertex Cover (VC) Problem: Given a connected graph G and a positive
integer k, we ask if there exists a vertex cover of size < k. Any instance of this
problem can be represented by the pair (G, k). For directed graphs, the VC
problem can be defined similarly by ignoring the directions associated with

the arcs; the resulting problem on directed graphs remains NP-complete.

e The Certificate Dispersal (CD) Problem: Given a chain set C'S and a positive
integer m, we ask if there exists a dispersal D of CS such that cost.D < m.

Any instance of this problem can be represented by the pair (C'S,m).
Theorem 4 CD is NP-Complete.

Proof:  First, we show that CD is in NP. Given an instance (C'S,m) of CD,
and a dispersal D of C'S with cost.D < m, one can verify in polynomial-time that
indeed D is a dispersal of C'S and cost.D < m. To verify that D is a dispersal
of C'S, one checks that all the certificates in each chain from a node u to another
node v in CS are in D.uU D.v. Once D is verified as dispersal, cost.D is computed
as the sum of |D.u| for each node u in C'S and can be compared to m. The time
complexity of this verification step is O(p x n), where p is the number of chains in
the chain set and n is the length of the longest chain in C'S.

Second, we show that VC reduces to CD in polynomial-time. Given an
instance (G, k) of VC, we construct an instance (CS,m) of CD such that the CD
instance has a yes answer if and only if the given VC has a yes answer. The

construction is as follows:
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i.

ii.

For each edge (u,v) in G, CS has a chain (u, z)(z,y)(y,v) of length 3.

Let n™ be the number of nodes that have outgoing edges in G, and n~ be the

number of nodes that have incoming edges in G. Set m =n" +n~ + k.

(CD < VC) We now show that if the instance (G,k) of VC has a yes

answer, then the corresponding instance (C'S,m) of CD has a yes answer. Let X

be a vertex cover of G, where |X| < k. For each node u in the cover X, assign

certificate (z,y) in C'S to D.u. For each node w in G, if there exists (u,z) in C'S,

then assign certificate (u,z) to D.u. For each node v in G, if there exists (y,v) in

C'S, then assign certificate (y,v) to D.v. In the following two steps, we prove that

D is a dispersal of C'S whose cost is at most m.

i.

ii.

D is a dispersal of C'S: For any chain in C'S from a node v to a node v, the
chain consists of three certificates (u, ), (z,y), and (y,v). Certificate (u,x)
is stored in D.u and certificate (y,v) is stored in D.v. For certificate (z,y),
(z,y) is stored in every node in the vertex cover of G. By the definition of
the vertex cover, for each edge (u,v) in G, the vertex cover contains node u
or node v. Certificate (z,y) is assigned to every node in the vertex cover of
G, so (z,y) is stored in D.u or D.v. Thus, every certificate in the chain from

u to v is stored in D.u U D.v, as required by the definition of dispersal.

cost.D < m: For each node uw in G that has any outgoing edges, there is
certificate (u,z) in C'S that is assigned only to node u by D. Similarly, for
each node v in G that has any incoming edges, there is certificate (y,v) in C'S
that is assigned only to node v by D. For certificate (z,y), (z,y) is assigned
to all the nodes in the vertex cover, so (z,y) is assigned to at most k nodes.

In total, cost.D is at most m = (k +nt +n7).

The above argument shows that D is a dispersal of constructed C'S and

cost.D < m. This proves that if an instance of VC (G, k) has a yes answer, then
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the corresponding instance of CD (C'S,m) has a yes answer.

(CD = VC) We now show that if the constructed instance (C'S, m) of CD
has a yes answer, then the given instance (G, k) of VC has a yes answer. Let D be
a dispersal of CS, where cost.D < m. For every edge (u,v) in G, there is chain
(u,z)(x,y)(y,v) in CS. For certificates (u,z) and (y,v), they will be assigned to
at least one node, so |D(u,x)| > 1 and |D(y,v)| > 1. The number of such (u,z)
certificates is nt and the number of such (y,v) certificates is n~. So certificate
(x,y) is assigned to at most k nodes, where k is m — nt — n~. In other words,
|D(z,y)| < k.

Now, for each edge (u,v) in G, there is chain (u,z)(z,y)(y,v) in CS, and
(z,y) is stored in D.u U D.v. In other words, for each edge (u,v) in G, the location
set of D(z,y) contains node u or node v. Therefore, the location set of D(z,y) is a
vertex cover of G. The size of the location set D(z,y) is at most k, so the size of
the vertex cover is at most k, and the instance (G, k) of VC has a yes answer.

In conclusion, the above proof shows that CD is in NP and VC reduces to
CD in polynomial-time. Therefore, CD is NP-Complete. ]

In the light of the above complexity result, it becomes of importance to
identify special classes of chain sets of practical interest for which the problem can

be solved efficiently. This direction is pursued in the following cases.

i. Short chain sets: In Section 3.5, we start by investigating the class of chain
sets, where each chain is of length at most 2. This class of chain sets is the

one currently being used in the Secure Socket Layer (SSL) protocol.

ii. Disconnected chain sets: In Section 3.5, we investigate the class of chain sets
where for a given certificate, no node can be both the source and the destina-
tion of any chain that contains this certificate. This reflects a system where
the authentication is needed in an asymmetric manner. For example, when

there are clients and servers in the system, one can imagine that clients would
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use certificates to authenticate servers, while servers would use passwords to
authenticate clients. Such asymmetric systems can be represented as this class

of chain sets.

iii. Concise graphs: In Section 3.4, we investigate the class of chain sets where the
chains are derived from acyclic certificate graphs. This class reflects systems
where the need for authentication is uni-directional. For example, any hierar-
chical system where a lower level user is authenticated by a higher level user,
but not the other way around, would be represented by an acyclic certificate

graph.

For all these three classes of chain sets, we present polynomial-time algorithms that
compute optimal dispersals of chain sets in each class and prove their optimality.
Also in Section 3.5, we identify two classes of parameterized chain sets that
are defined using an integer parameter k. In the first class, each chain set has at
most k chains with 3 or more certificates. In the second class, each chain set has at
most k£ nodes that may act both as sources and destinations. For both classes, we

obtain polynomial-time algorithms that compute optimal dispersals when k is fixed.
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3.3 Heuristic Dispersal Algorithms

3.3.1 Full Tree Algorithm for Certificate Dispersal

Before we introduce our first certificate dispersal algorithm, we need to introduce
the following definition of compact chain sets.
Let G be a certificate graph and v be a node in G. A compact chain set for

v, denoted S.v, is a set of chains in G that satisfies the following three conditions.

i. If G has no chains that starts at v, then S.v is empty.

ii. If G has a chain from v to w, then S.v has exactly one shortest chain from v

to w.

iii. If S.v has a chain, then S.v also has every nonempty prefix of this chain.

Figure 3.2: The diamond certificate graph

As an example, consider the diamond certificate graph in Fig. 3.2. In this
graph, there are no certificate chains that start at node e or f, and the compact

chain sets for node e and f are both empty:

Se=1{}, 5.f ={}

The compact chain set for node d has two chains:

Sd={<(d,e) >, < (d, f) >}
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Also the compact chain set for each of the two nodes b and ¢ has three chains:

S.b={< (b,d) >, < (b,d);(d,e) >, < (b,d);(d, f) >}

S.c={<(¢,d) >,< (¢,d); (d,e) >, < (¢,d); (d, f) >}

The compact chain set for node a has five chains:

S.a={<(a,b) > < (a,c) >, < (a,c);(c,d) >,

< (a,c); (c,d); (d,e) >, < (a,c); (c,d); (d, f) >}

The following two comments are in order. First, each compact chain set S.v for
a node v defines a maximal, shortest-path, outgoing tree rooted at node v in the
certificate graph. Second, it is possible to have two or more distinct compact chain
sets for a node. For example, a second compact chain set for node a in the certificate

graph in Figure 4 is as follows:

{ < (a,b) >,< (a,c) >, < (a,b); (b,d) >,

< (a,b); (b,d); (d,e) >, < (a,b); (b,d); (d, f) >}

Using the above definition of a compact chain set, we are now ready to present our
first certificate dispersal algorithm, called the full tree algorithm and denoted Fpyy.
This algorithm assigns to every node v all the certificates in a compact chain set
S.v for v. In other words,

Frui.(G,v) = the set of all certificates that exist in a compact chain set S.v

for v.
Lemma 1 Fyyy s a certificate dispersal algorithm.
Proof: We show that Fy,; satisfies the two conditions of a certificate dispersal
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algorithm, connectivity and completeness. First, if there is a chain from u to v in
G, then at least one of the shortest chains from w to v is in S.u by condition ¢ in
the definition of compact chain set. Second, any certificate (u, v) in G is in S.u
since it is the shortest chain from u to v. By the definition of Fyy, the certificate
(u, v) is in Fpyy.(G,u). Therefore, Fyyy satisfies two properties of connectivity and
completeness. u

Next, we show that the dispersal algorithm Fy,; is far from being efficient.
First, we show in Lemma 5 that the cost of applying Fy,; to any strongly connected
certificate graph meets the upper bound on dispersability cost. Second, we show in
Lemma 6 that the cost of applying Fs,; to any hourglass certificate graph is within
a factor of four from the upper bound on dispersability cost. A certificate graph in
Fig. 3.3 is an example hourglass certificate graph. This graph has n nodes and n—1
certificates, where n is odd, arranged in an hourglass shape with one center node,

(n — 1)/2 input nodes, and (n — 1)/2 output nodes.

00 0O
Figure 3.3: An hourglass certificate graph

Lemma 2 For any strongly connected certificate graph G with n nodes,

¢.(Frun,G) =n—1

Proof: The certificate dispersal algorithm F,; assigns, to every node v in a

certificate graph G, the certificates in a maximal outgoing tree rooted at v. If G is
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strongly connected, then any maximal outgoing tree is in fact a spanning tree with
(n — 1) certificates, where n is the number of nodes in G. Therefore, for any node

v in G,

|Ffu”.(G, U)| =n-—-1

e(Fpan, @) = ~( 3 |Fpun (G,0)]) = n — 1

vinG
|
Lemma 3 For any hourglass certificate graph G with n nodes (see Fig. 3.3),
2
n“+2n—-3 n
(Fru,G) = ——— ~ —
c.(Frun, G) in 1
n—1

Proof: Recall that any hourglass certificate graph G has one center node, “5=

input nodes, and "T_l output nodes.

—1
|Ffulz-(G, center)| = nT

For every input node v,

n—1 n+1
| Fran-(G,v)| = — 7t 1=

For every output node v,

|Ffull'(Gav)| =0
Thus,

e(Fpun @) = ~(" % + (P52

n?+2n—3
4n

e~ 3
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3.3.2 Half Tree Algorithm for Certificate Dispersal

Before we introduce our second heuristic dispersal algorithm, we need to introduce
the following definition of consistent compact chain sets.

Let S.u and S.v be two compact chain sets for nodes u and v, respectively, in
a certificate graph G. S.u and S.v are consistent if and only if for every two nodes
x and y in G, if S.u has a subchain that starts at © and ends at y and S.v also has
a subchain that starts at « and ends at y then these two subchains are identical.

A collection of compact chain sets {S.v|v is a node in G} is consistent if and
only if any two compact chain sets in the collection are consistent.

We are now ready to present our second certificate dispersal algorithm, called
the half tree algorithm and denoted Fjq ¢. This algorithm takes as input a consistent
collection of compact chain sets {S.v|v is a node in a certificate graph G} and
computes a set of certificates Fpq¢.(G,v) for every node v in G. Algorithm Fjq ¢ is

defined in Algorithm 1.
Lemma 4 Fpyy is a certificate dispersal algorithm.

Proof: First, if there is a chain between nodes v and v, then at least one of the
shortest chains from u to v is stored in S.u. All the certificates in the chain from
u to v will be stored in u and v by the definition of Fpe . Second, any certificate
(u, v) in G will be stored in S.u since it will be the shortest chain from u to v. By
the definition of Fpq ¢, the certificate (u, v) is stored either in u or in v. Therefore,
Fhaiy satisfies two properties of certificate dispersal algorithm. |

Next, we show in Theorem 5 that in the important case of strongly connected
certificate graphs, Fjq; ¢ is not less efficient than F'y,;;, and in some instances, Fpq is

in fact more efficient than F',y;. Then in Theorem 6, we show that in the important
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case of tree certificate graphs, Fjqip is not less efficient than F'y,y, and in some
instances, Fjqt is in fact more efficient than Fp,y;. In Lemma 5, we show that in
the case of the hourglass certificate graphs Fpe; achieves much less dispersal cost

than what F'r,y achieves.

Theorem 5 For any strongly connected certificate graph G,
¢.(Fhatp, G) < e.(Fruu, G)
For some strongly connected certificate graph G,

¢.(Fraty, G) < c.(Fyuu, G)

Proof: Let G be any strongly connected certificate graph, and v be any node in
G. The certificates in the set Fpq¢.(G, v) define a graph G, which is a subgraph of
the original graph G. In G’, there can be at most one path from any node to node
v, and at most one path from node v to any other node. Graph G’ satisfies exactly

one of the following two conditions.

i. G' has no cycle.

ii. G' has a cycle, but it has at most n — 1 nodes.

In the first case, the number of certificates in G’ is at most n — 1, since there
is no cycle in G'. In the second case, the number of certificates in G’ is also at most
n — 1, which is the number of certificates if all the n — 1 nodes participate in the
cycle. Therefore, |Fpq¢.(G,v)| <n—1.

1 -1
c'(FhalfaG) = E Z |Fhalf'(G7v)| < M

vin G

=n-—1
n
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Because G is strongly connected, c.(Ffyy, G) = n — 1 by Lemma 2. Therefore,
c.(Fhraty, G) < c.(Fruu, G)

This completes our proof of the first part of the theorem.

U VW

Figure 3.4: The two-ring certificate graph

To prove the second part of the theorem, consider the two-ring certificate
graph G" in Fig. 3.4. This graph is strongly connected and has three nodes. Then
by Lemma 2,

c.(Ffu”,G") =n—1=2

By applying Fhqir to G”, we get

Fhalf'(G”vu) = {(uvv)7 (v,u)}
Fhatf-(G",v) = {}
Fhalf'(Guv w) = {(’U, w)v (wv ’U)}

Therefore,

1 4
C.(Fhalf,G") = §(2 +0+ 2) = g < C.(Ffu”,G")

Theorem 6 For every tree certificate graph T,

c.(Fraf, T) < c.(Fruu,T)
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For any complete tree certificate graph G,

c.(Fhaty, G) < c(Fru, G)

Proof: For any node u in GG, the compact chain set S.u of u constructs a max-
imal shortest-path outgoing tree 7T),. Since we may repeatedly store same incom-
ing edges in nodes in Frat, ¢-(Fhaifs G) < D yeq € (Fhaifs Tu), while c.(Fpuu, G) =
> wee ¢ (Frun, Tu). If we can prove c.(Fpaif, Tu) < c¢.(Fyun, Ty) for any tree Ty, then

¢-(Fhatf, G) < c.(Fhatf, Tu
ueG
<Z (Futt; Tu) = c.(Frun, G)
ueG

C-(Fhalfy G) < C-(Ffull’ G)

We can prove c.(Fpaf,Tu) < c.(Ffuu, Tu) for any tree Ty, by induction. When
the number of certificates is 2 in the maximal tree, there are 2 possible trees. If
the tree looks like Figure 8(a), then c.(Fhaf,Tu) = c-(Ffuu,Tu) = 2. If the tree
looks like Figure 8(b), then c.(Fpqyf,Tu) = 3, whereas c.(Fpyy, T) = 2. Therefore

c.(Fratf, Tu) < c.(Fpuu, Ty) holds for any maximal tree T, with 2 certificates.

(a (b)

Figure 3.5: Maximal trees with 2 edges

Let’s assume that c.(Fhaif, Tu) < ¢.(Fpyu,Tu) holds for trees with up to n
certificates. When n + 1% certificate (v, v') is added at a node v, then it will

increase the chain length from the root node u of the tree to v(This new certificate
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has to come with a new subject node v', otherwise it will break the tree property).
For a chain from u to a leaf node v’ in the given maximal tree T, we show that
Yweuso [Fratf (Tu, )| <Y cu wo | Fru(Ty, w)| for any node w on the path from
u to v'. The number of certificates stored in the nodes that are not on the path

from u to v’ will not be affected by this new certificate.

Let [ be the chain length from u to v. By the definition of Fy,; algorithm,
the increment of c.(Ffyyy,Ty) is I 4+ 1 because the nodes from u to v will store the
new certificate (v, v') locally.

For Fpqf, if a node w is far from v’ by even length of chain, for example u; 1,
the node w has to store one more outgoing certificates, as the chain length from w
to the leaf node v’ increases. If [ = 2k, then the number of such nodes are k. Also
c.(Fraif, Tyy) is increased by Fhaf.(Ty, "), which is k + 1. Therefore, the increment
of ¢.(Fhaif,Ty) is also I + 1, which is equal to that of c.(Fyuy, Tu). If 1 = 2k + 1,
then the nodes which stores one more outgoing certificate are k, and Fpqf.(Ty,v')
is k + 1. But in this case, the certificate from kth node to k£ + 1th node on the chain
is not going to be stored as incoming certificate in any nodes any longer. Therefore,
k + 1 nodes can reduce their Fpqif.(Ty,v') by 1. In total, the increment will be k in
l =2k +1 case.

Since the increment of ¢.(Fpqif, T') is 141 or (I—1)/2 when that of c.(Fyuu, T')
is fixed as [ + 1 when n + 1th certificate is added, c.(Fpay,T) < c.(Fpuu,T') holds
for any tree T" with n + 1 number of certificates.

By induction, it is shown that c.(Fhaif, G) < c.(Fpuu, G) for any maximal
tree T, for any node w in G. Therefore, c.(Fpay,G) < c.(Fpuu, G) for any tree
certificate graph G. This completes our proof of the first part of the lemma.

To prove the second part of the lemma, let h be |log;n|, which is the height
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of the tree, where d is the degree of the tree, d > 2.

c.(Frun, G) = Z the number of certificates that appear

vin G

in S.v

= Z i*dt

1<i<h

c.(Fhay, G) = Z the number of certificates that appear

vin G
in S.v
= > ixd+ Y dx(h—i)
1<i<| %] LB +1<i<h
+ > dix(h—i+1)
|L]+1<i<h
= > ixd'+ Y dx(2h—2i+1)
1<i<| 2] LB +1<i<h

Since

Yoo dx@h-2i+1)< ) ixd

LB ]+1<i<h LB ]+1<i<h

holds when d > 2 and h > 1,

c.(Fraty, G) < c.(Fyuu, G)

Lemma 5 For any hourglass certificate graph G with n nodes and e certificates (see
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Figure 8) where n is odd,

e
C.(Fhalf,G) = " < C-(FfullaG)

Proof: Recall that an hourglass certificate graph G with n nodes has one center

node, an input nodes, and an output nodes. Applying Fjpq ¢ to this certificate

graph, we get

for every input node v,  Fhqif.(G,u) = {(u,c)}
for the center node c, Fras.(G,c) ={} Therefore,

for every output node w, Fhray.(G,w) = {(c,w)}

~ c.(Fpun, G)

38



ALGORITHM 1 : half tree algorithm

INPUT: a certificate graph G
OUTPUT: the half tree dispersal D of G

STEPS:
1: for every nonempty S.v in the consistent collection
of compact chain sets do

2: let ¢ denote the longest chain < (vg,v1);--- ;
(vg—1,vE) > in S.v: note that vy = v;

3: let z := L%J,

4: find the largest y, 0 < y < k, such that all
certificates in the prefix < (vg,v1);---;
(vy—1,vy) > are already in Fpqi¢(G,v);

9: ife<y

6: then
store the certificates in every prefix of
the subchain < (vy,vy41);- -+ ; (Vg—1, V%) >
in Fpe¢.(G,w) where w is the node at
which the prefix ends;

7 else

Ta: store the certificates in the prefix
< (’Uy, vy-l—l); o 5 (vg—1,vz) > in Fhalf(Gv v);

7b: store the certificates in every prefix of
the subchain < (vg,vz41); - ; (vg_1,vg) >
in Fpe¢.(G,w) where w is the node at
which the prefix ends;

endif;
8: remove chain ¢ from S.v;
9: enddo;
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3.4 Optimal Algorithms for Certificate Graphs

3.4.1 Optimal Dispersal of Reflexive Graphs

In this section we identify a class of certificate graphs called reflexive graphs, and
give an algorithm that computes an optimal dispersal of these graphs.
A certificate graph G is called reflexive if and only if the following two con-

ditions hold.

i. Short Cycles : Every simple directed cycle in G is of length 2.

ii. Reflexivity : If there is a certificate from a node u to a node v in G, then G

a

- go
B @
o

Figure 3.6: An example of a reflexive certificate graph

also has a certificate from v to w.

Fig. 3.6 shows an example of a reflexive graph that has 7 nodes and 12
certificates. Note that there are two opposite direction certificates between the two
nodes a and d, and there are no certificates between the two nodes a and b.

A nice feature of reflexive graphs is that there is a certificate chain from any
node to any other node in the graph. Thus any node can get the public key of any
other node in the graph and can securely send messages to it.

Let G be a reflexive graph. An wundirected version of G is obtained from
G by replacing each pair of opposite direction certificates between two nodes by
an undirected edge. For example, an undirected version of the reflexive graph in
Fig. 3.6 is shown in Fig. 3.7.

Next we describe an algorithm for optimal dispersal of any reflexive graph

G. Note that this algorithm operates on an undirected version G’ of G.
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Figure 3.7: An undirected version of the reflexive certificate graph in Fig. 3.6

ALGORITHM 2 : optimal dispersal of a reflexive certificate graph

INPUT: a reflexive certificate graph G
OUTPUT: an optimal dispersal D of G

STEPS:

1: construct an undirected version G’ of G.

2: for each node w in G', D.u == {}

3: for each undirected edge {u,v} in G’ do

4: compute the set R.u that contains u and every node z
where there is a simple path between x and u in G’
and this path does not contain the edge {u, v}

o: compute the set R.v that contains v and every node x
where there is a simple path between z and v in G’
and this path does not contain the edge {u,v}

6: if |R.u| <|R.v|
7 then for every node z in R.u, D.x := D.x U {(u,v), (v,u)}
8: else for every node z in R.v, D.x := D.z U {(u,v), (v,u)}

Algorithm 2 can be applied to the reflexive certificate graph in Fig. 3.6 as
follows. First, the undirected version of the certificate graph is constructed as shown

in Fig. 3.7. For the edge {a,d}, the two sets R.a and R.d are computed as follows:

R.a = {a}, Rd= {by ¢, d7 €, f’g}

Since |R.a|] = 1 < 6 = |R.d|, the two certificates (a, d) and (d,a) are stored in
D.a. Similarly, the two certificates (b, d) and (d, b) are stored in D.b and the two

certificates (¢, d) and (d, ¢) are stored in D.c.
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For the edge {e, f}, the two sets R.e and R.f are computed as follows:

R.e={a,b,c,d,e,g},R.f ={f}

Since |R.e| =6 > 1 = |R.f|, the two certificates (e, f) and (f, e) are stored in D.f.
Similarly, the two certificates (e, ¢g) and (g, e) are stored in D.g.

For the edge {d, e}, the two sets R.d and R.e are computed as follows:

R'd = {a'7 b’ C’ d}7 R'e = {67 f’ g}

Since |R.d| = 4 > 3 = |R.e|, the two certificates (d, e) and (e, d) are stored in D.e,
D.f, and D.g.

The resulting certificate dispersal of the graph is as follows:

D.a = {(a,d),(d,a)},
D.b={(b,d),(d,b)},
D.c={(c,d),(d,c)},
D.e ={(d,e),(e,d)},
D.f ={(d,e), (e, d), (e, f), (f,e)},

D.g = {(dv 6), (6,d), (e’g)) (ga 6)}

The cost of this dispersal is (2+2+24+0+2+4+4)/7 = 16/7 ~ 2.3 certificates

per node.

Theorem 7 Given a reflexive certificate graph G, the dispersal D of G computed
by Algorithm 2 is optimal.

Proof: We divide the proof into two parts. First, we show that Algorithm 2
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computes a dispersal. Second, we show that D is optimal.

Proof of First Part: By the definition of dispersal in Section 3.1, if all the
certificates in each chain from a node u to a node v in G are in set D.u U D.v, then
D is a dispersal of G.

Cousider a pair of nodes vy and vy, where there is a certificate chain (v, v1),
(v1, v2), -+, (vg_1, vg) from vy to vg in G. For each certificate (v, v;y1) in this
chain, the two sets R.v; and R.v;41 are computed by Algorithm 2 for the undirected
edge {vj,vi+1}. Since there is a chain from vy to v; in G, there is a simple path
between vy and v; in G'. Thus, R.v; contains vy. Similarly, since there is a simple
directed chain from v;11 to v in G, there is a simple path between v;y; and v
in G'. Thus, R.v;;1 contains v;. By steps in line 6-8 in Algorithm 2, (v;, v;y1) is
stored either in all nodes in R.v; or in all nodes in R.v;y1. Because R.v; contains
vo and R.vj;+1 contains vy, certificate (v;,vi+1) is stored either in D.vg or in D.vy.
Thus, every certificate (v;,v;41) in the chain, is stored in D.vy U D.vg. Therefore,
the chain from vy to vy is stored in the set D.vg U D.vg. D is a dispersal of G.

For every pair of certificates (u,v) and (v,u) in G, an undirected edge {u,v}
is constructed in G'. The two certificates (u,v) and (v,u) are stored either in all
nodes in R.u or in all nodes in R.v, where R.u and R.v are the two sets computed by
Algorithm 1 for the undirected edge {u,v}. By the definition of R.u and R.v, R.u
contains u and R.v contains v. Thus, by step iii in Algorithm 2, the two certificates
(u,v) and (v, u) are either stored in D.u or in D.v. Therefore, for every certificate
in G, there is a node x in G such that this certificate is in D.xz. The completeness
condition holds.

Proof of Second Part:

Let D' be any other dispersal of a reflexive certificate graph G and let (u,v)
be any directed certificate in G. The certificate (u, v) is on every directed chain from

a node in R.u to a node in R.v, where R.u and R.v are the two sets computed by
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Algorithm 2 for the undirected edge {u,v}. Therefore, D' needs to assign certificate

(u,v) to every node in R.u or to every node in R.v. In either case, D' yields a

dispersal cost that is no less than the dispersal cost of D computed by Algorithm 2.

|

The complexity of Algorithm 2 is O(en), where e is the number of edges in

the undirected version of the input reflexive graph and n is the number of nodes in
the reflexive graph. Since e = n — 1, the complexity of this algorithm is O(n?).

Note that the star certificate graph in Fig. 3.1 in Section 3.1 is reflexive

and so Algorithm 2 can be used to compute an optimal dispersal of this graph.

Using Algorithm 2, we obtain the following certificate dispersal for this graph:

Do ={} if v is the center node

D.v = {(v, center node),(center node, v)} otherwise

The cost of this certificate dispersal = (0 + 2(n — 1))/n. From Theorem 7,
we conclude that this cost is the smallest possible cost of certificate dispersal for the

star certificate graph.

3.4.2 Optimal Dispersal of Biased Graphs

In this section, we present an algorithm that computes an optimal dispersal for
another class of certificate graphs, called biased graphs. As discussed below, the
class of biased graphs is for all practical purposes mutually exclusive from the class
of reflexive graphs discussed in the previous section.

A certificate graph G is called biased if and only if it satisfies the following

two conditions.
i. Acyclicity : G has no directed cycles.

ii. Nonredundancy : G has at most one certificate chain from any node to any
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other node.

From the definitions of reflexive and biased graphs, it follows that every
reflexive graph that has one or more certificates is not biased and every biased
graph that has one or more certificates is not reflexive. Biased certificate graphs
represent many useful certificate systems. For example, a hierarchical certificate
system would typically generate a tree-shaped certificate graph. Any directed tree-
shaped certificate graph is a biased certificate graph.

Note that a reflexive graph supports secure two-way communication between
every two nodes in the graph, whereas a biased graph supports secure one-way
communication between some two nodes in the graph. For example, consider the
biased graph in Fig. 3.8. This graph supports secure one-way communication from
node a to node b and from node a to node ¢, but it does not support any secure

communication between the two nodes b and c.
()
@>@/ -
© )

Figure 3.8: A biased certificate graph

®

Next, we present an algorithm which computes optimal dispersals for the
class of biased graphs.

As an example, let us consider the application of the steps in lines 57 in
Algorithm 3 on the certificate (a,d) in the biased graph in Fig. 3.8. In this case,

the two sets R.a and R.d are computed as follows:
R.a ={a},R.d={d,b,c}

Thus, |R.a| =1 < 3 = |R.d| and so certificate (a,d) is added only to D.a.
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ALGORITHM 3 : optimal algorithm of a biased certificate graph

INPUT: a biased certificate graph G
OUTPUT: an optimal dispersal D of G

STEPS:
1: for each node w in G, D.u := {}
2: for each certificate (u,v) in G do

3: compute the set R.u that contains u and every node z
where there is a chain from z to v in G

4: compute the set R.v that contains v and every node
where there is a chain from v to z in G

5: if |R.u| <|R.v|

6: then for every node z in R.u, D.z := D.x U {(u,v)}

T else for every node z in R.v, D.x := D.x U {(u,v)}

As a second example, consider the application of the steps in lines 5-7 in
Algorithm 3 on the certificate (e, g) in the biased graph in Fig. 3.8. In this case, the

two sets R.e and R.g are computed as follows:

Re={f,e},R.g={g}

Thus, |R.e] =2 > 1 = |R.g| and so certificate (e, g) is added only to D.g.

Theorem 8 Given a biased certificate graph G, the dispersal D of G computed by
Algorithm 3 is optimal.

Proof: The proof is similar to that of Theorem 7. ]

3.4.3 Optimal Dispersal of Concise Graphs

In this section, we present an algorithm that computes optimal dispersal for chain
sets “derivable” from a class of certificate graphs called concise certificate graphs.

A certificate graph G is called concise if and only if it satisfies the following two
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conditions.
i. Short Cycles : Every simple directed cycle in G is of length 2.
ii. Non-redundancy : G has at most one chain from any node to any other node.

Concise certificate graphs represent many useful certificate systems. For example,
a hierarchical certificate system would typically generate a tree-shaped certificate
graph. Any tree-shaped certificate graph is a concise certificate graph.

Fig. 3.9(a) shows an example of a concise certificate graph. Note that in a
concise graph there can be two opposite direction certificates between two adjacent
nodes. We refer to any such pair of certificates as twins, and we refer to each one
of those certificates as the twin certificate of the other. In the concise graph in Fig.

3.9(a), the two certificates (b, c) and (c, b) are twins.

@
:

~(©)  { (ab), (b0, (cd), (ba),
¢ i
@ (c: b)(b,’d) 7}

(a) (b)
Figure 3.9: An Example of Concise Certificate Graph and Derivable Chain Set

A chain set is derivable from some certificate graph G if and only if the chain
set consists of all the certificate chains in G. For example, the chain set in Fig. 3.9(b)
is derivable from the certificate graph in Fig. 3.9(a).

Algorithm 4 computes an optimal dispersal of a concise certificate graph.
Consider certificate (b,c) in the example concise certificate graph in Fig. 3.9(a).
Algorithm 4 computes the set of nodes from which there is a chain to b, denoted

R.b, as {a,b}. Also, Algorithm 4 computes the set of nodes to which there is a chain
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ALGORITHM 4 : optimal dispersal of concise certificate graphs

INPUT: a concise certificate graph G
OUTPUT: a dispersal D of the chain set C'S derivable from G

STEPS:
1: for each node w in G, D.u := {}
2: for each certificate (u,v) in G do

3: compute the set R.u that contains v and every node x from which there is
a chain to v in G and this chain does not contain the twin certificate (v, u)
4: compute the set R.v that contains v and every node = to which there is

a chain from v in G and this chain does not contain the twin certificate (v, u)
5: if |R.u| <|R.v|
then for every node z in R.u, add (u,v) to D.x
7 else for every node y in R.v, add (u,v) to D.y

<

from ¢, denoted R.c as {c}. |R.b] > |R.c|, so (b,c) is stored in c. After considering
all the certificates in the graph, the example concise certificate graph is optimally

dispersed by Algorithm 4 as follows:

{ D.a={(a,b)}, D.b={(c,b)},
D.c={(b,c)}, D.d={(b,d)} }

Theorem 9 Given a concise certificate graph G, the dispersal D of the chain set

CS derivable from G computed by Algorithm 4 is optimal.

Proof: We divide the proof into two parts. First, we show that Algorithm 4
computes a dispersal D. Second, we show that D is optimal.
Proof of First Part:
We show that the certificate subsets D.x, computed by Algorithm 4 for every

node z in G, satisfy the condition of dispersal in Section 2.
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Cousider a pair of nodes vy and vg, where there is a chain (vg, v1), (v1, v2),
-+, (vg—1, vg) from vy to vg in G. By the definition of the derivable chain set, the
chain from vy to v is in C'S. For each certificate (v;,v;+1) in this chain, the two
sets R.v; and R.v;;1 are computed by Algorithm 4. Since there is a chain from vy
to v; in G, R.v; contains vg. Similarly, since there is a simple directed chain from
vit1 to vg in G, R.v;41 contains vg. By line 5-7 in Algorithm 4, (v;,v;41) is stored
either in all nodes in R.v; or in all nodes in R.v;1;. Because R.v; contains vy and
R.v;j;1 contains vy, certificate (v;,v;+1) is stored either in D.vg or in D.vg. Thus,
every certificate (v;,v;1+1) in the chain from vg to v is stored in D.vg U D.vy. Hence,
D is a dispersal of the chain set C'S derivable from G.

Proof of Second Part: The proof is by contradiction. Let D’ be another
dispersal of C'S where cost.D’' < cost.D. Then there must be such a certificate
(u,v) that |D'(u,v)| < |D(u,v)|. By the definition of dispersal, (u,v) needs to be
stored in D'.zUD'".y for every chain from  to y that contains (u, v). By the definition
of derivable chain set, certificate (u,v) is used in every directed chain from any node
x in R.u to any node y in R.v, where R.w and R.v are the two sets computed by
Algorithm 4 for certificate (u,v). In other words, |D'(u,v)| > min(|R.u|, |R.v|).
Since |D(u,v)| = min(|R.u|,|R.v|), |D'(u,v)| > |D(u,v)|. This contradicts the
assumption of |D'(u,v)| < |D(u,v)]|.

Therefore, D computed by Algorithm 4 is optimal. [ |

The complexity of Algorithm 4 is O(en), where e is the number of certificates
in the input concise certificate graph and n is the number of nodes in the concise

certificate graph.
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3.5 Optimal Algorithms for Chain Sets

3.5.1 Optimal Dispersal of Short Chain Sets

In the previous section, we proved that computing an optimal dispersal of any
chain set, which includes chains whose length is 3 or more, is NP-complete. In
this section, we show that there is a polynomial-time algorithm that computes an
optimal dispersal of any chain set whose chains are all of length at most 2. This
class of chain sets is currently in use in the Internet in Secure Socket Layer (SSL).

A chain set CS is short if and only if the length of the longest chain in C'S
is at most 2. For example, consider the star certificate graph in Fig. 3.10(a). In
this certificate graph, assume that each satellite node, b, ¢, or d, wishes to securely
communicate with every other satellite node. Fig. 3.10(b) shows the resulting short

chain set.

(a) (b)

Figure 3.10: An Example of Short Chain Set

Algorithm 5 computes an optimal dispersal of a short chain set. Consider
the certificate (b,a) in the example short chain set in Fig. 3.10. Chains that have
(b,a) are (b,a)(a,c) and (b,a)(a,d). So b is the source of every chain that has (b, a).
Therefore, Algorithm 5 assigns (b, a) to D.b. After considering all the certificates in

the short chain set, the optimal dispersal computed by Algorithm 5 as follows:
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ALGORITHM 5 : optimal dispersal of short chain sets

INPUT: a short chain set CS
OUTPUT: a dispersal D of C'S

STEPS:
1: for each node u in C'S, D.u := {}
2: for each certificate (u,v) in C'S do

3: if there is a node x such that
the source or destination of every chain that has (u,v) is z
4: then add (u,v) to D.x
5: else add (u,v) to both D.u and D.v
{D.a= {}, D:b={(a,0),(b,a)},

D.c = {(a, C)y (C, a)}, D.d = {(avd)7 (dva)}}

Theorem 10 Given a short chain set CS, the dispersal D of CS computed by

Algorithm 5 is optimal.

Proof:  The proof consists of two parts. First, we show that Algorithm 5

computes a dispersal D. Second, we show that D is optimal.

Proof of First Part:

By the definition of dispersal in Section 2, if all the certificates in each chain
from a source node u to a destination node v in C'S are in set D.u U D.v, then D
is a dispersal of C'S. In other words, if a certificate (u,v) is stored in the source or
destination nodes of every chain that contains (u,v), then D is a dispersal.

By Algorithm 5, every certificate (u,v) is stored either in D.x of some node
x, or both D.u and D.v. Since the maximum length of a chain in C'S is 2, every
chain that contains (u,v) starts at v or ends at v. Hence if (u,v) is stored in both

D.u and D.v then certificate (u,v) is stored in the source or destination node of
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every chain that contains (u,v). If (u,v) is stored in node z, then by Algorithm 5 z
is either the source node or the destination node of every chain that contains (u, v).
Therefore, (u,v) is stored in the source or the destination node of every chain that
contains (u,v).

Proof of Second Part:

The proof is by contradiction. Let D be the dispersal of a short chain set C'S
computed by Algorithm 5 and D’ be another dispersal of C'S. Assume that cost.D’ <
cost.D. There must be at least one certificate (u, v) such that |D'(u,v)| < |D(u,v)|.

Let (u,v) be such a certificate, |D'(u,v)| < |D(u,v)|. By Algorithm 5,
|D(u,v)| is either 1 (if there exists some node z that is the source or destination
node of every chain that has (u,v)) or 2 (otherwise). Therefore, |D'(u,v)| = 1 and
|D(u,v)| = 2, and there exists no node = in C'S that is the source or destination
node of every chain that has (u,v). By the definition of dispersal, the node w in
D'(u,v) should be the source or a destination of every chain that contains (u,v) in
C'S. This contradicts that there exists no node x in C'S such that x is the source or
destination node of every chain that has (u,v).

Therefore, cost.D < cost.D' for any dispersal D’ of C'S. Algorithm 5 com-
putes an optimal dispersal of a short chain set C'S. ]

The time complexity of Algorithm 5 is O(ep), where e is the number of
certificates in the input short chain set and p is the number of chains in the chain

set.

3.5.2 Optimal Dispersal of Disconnected Chain Sets

In this section, we identify a special class of chain sets and present an algorithm
that computes an optimal dispersal for this class of chain sets in polynomial-time.
A chain set CS is disconnected if and only if for every certificate (u,v) in CS,

the set of source nodes of the chains that contain (u,v) and the set of destination
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nodes of the chains that contain (u,v) are disjoint. This reflects a system where the
authentication is performed in an asymmetric manner. For example, when there are
clients and servers in the system, one can imagine that clients would use certificates
to authenticate servers, while servers would use passwords to authenticate clients.
Such asymmetric systems can be represented as disconnected chain sets. Fig. 3.11

shows an example of a disconnected chain set.

)7

)(b, ),

)(¢,d),

(a,0)(b, c)(c,d)(d, e)}

Figure 3.11: An Example of Disconnected Chain Set

(d,a) has the set of source nodes {d} and the set of destination nodes {e},
which are disjoint. (a,b) has the set of source nodes {a} and the set of destination
nodes {c, e}, which are disjoint. Every certificate in this chain set has disjoint sets

of source and destination nodes.

ALGORITHM 6 : optimal dispersal of disconnected chain sets

INPUT: a disconnected chain set C'S
OUTPUT: a dispersal D of C'S

STEPS:

1: for each node v in G, D.u := {}

2: for each certificate (u,v) in G do

3: G'=(V',E') where V! = {} and E' = {}

for each chain from node z to node y that contains (u,v) do
add nodes z and y to V'
add (z,y) to E'

compute a minimal vertex cover of the bipartite graph G’

add (u,v) to each node in the vertex cover

Algorithm 6 computes an optimal dispersal of a disconnected chain set. Con-

sider certificate (a,b) in the example disconnected chain set in Fig. 3.11. Algo-
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rithm 6 constructs a bipartite graph G’ for certificate (a,b), where G' = (V', E'),
V'={a,c, e}, and E'={(a,c), (a,e)}. The vertex cover of minimum size of G’ is {a}.
Thus, (a,b) is stored in D.a. After considering all certificates in the chain set, the

example disconnected chain set is optimally dispersed by Algorithm 6 as follows:

{D.a = {(a,b),(b,c),(c,d)}, D.b ={}, D.c = {},
D.d= {(a,c),(d,a)}, D.e = {(d,e)}}

Theorem 11 Given a disconnected chain set CS, the dispersal D of C'S computed
by Algorithm 6 is optimal.

Proof: The proof consists of two parts. First, we show that Algorithm 6 pro-
duces a dispersal. Second, we show that the resulting dispersal is optimal.

Proof of First Part:

Let D.u be the set of certificates assigned to a node u in C'S by Algorithm 6.
Consider any certificate (u,v) in a chain from a source node z to a destination node
y in CS. By Algorithm 6, since there is a chain from z to y that goes through
(u,v), there is an edge (x,y) in G' for (u,v). By the definition of vertex cover, for
edge (z,y) in G', node x or node y is in the vertex cover. Therefore, for the chain
from z to y, (u,v) is stored in D.z or D.y. This is true for all the certificates in the
chain from z to y, for any chain in C'S. Hence, D satisfies the dispersal condition
in Section 2, so D is a dispersal of C'S.

Proof of Second Part:

By Theorem 3, if we can find a dispersal D where D(u,v) of every certificate
(u,v) in CS is optimal, then D is an optimal dispersal of C'S. So we only need to
prove that a dispersal computed by Algorithm 6 produces an optimal location set
of each certificate in C'S. The proof is by contradiction. Assume there is another

dispersal D’ of CS, where cost.D' < cost.D. There must be at least one certificate
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(u,v) where |D'(u,v)| < |D(u,v)|. For every chain from a node z to a node y
that contains (u,v), D'(u,v) should contain x or y. Therefore, D'(u,v) is a vertex
cover of the bipartite graph G’ constructed for (u,v), where |D'(u,v)| < |D(u,v)|.
This contradicts that D(u,v) is the vertex cover of minimum size of G’ by line 7
in Algorithm 6. Therefore, D(u,v) is an optimal location set of (u,v) for every
certificate (u,v) in C'S. By Theorem 3, D is optimal. [

For each certificate (u,v), the graph G’ constructed for (u,v) is a bipartite
graph. It is because the set of source nodes of the chains that contain (u,v) and
the set of the destination nodes of the chains that contain (u,v) are disjoint by the
definition of disconnected chain set. Finding a vertex cover in a bipartite graph is
a well known problem in graph theory, which takes O(n'e’) steps where n' is the
number on nodes in G’ and €’ is the number of edges in G'. In the worst case n’ = n
and €' = p, where n is the number of nodes in C'S, and p is the number of chains in
CS. Therefore, the time complexity of Algorithm 6 is O(e x np)=0(enp), where e

is the number of certificates in CS.

3.5.3 Optimal Dispersal of k-long Chain Sets

In Section 3.2, we showed that computing an optimal dispersal of any chain set,
which includes chains of length 3 or more, is NP-complete. If all the chains in a
chain set are of length at most 2, i.e. if the chain set is short, then we can use
Algorithm 5 in Section 3.5.1 to compute an optimal dispersal of the short chain set.
In this section, we consider a more general class of chain sets where there are a fixed
number k, k > 1, of chains of length greater than 2. Consideration of such chain
sets is motivated, for instance, by the following example. Consider a hierarchical
network made of a number of autonomous systems. Certificate chains within any
single autonomous system are expected to be short, whereas certificate chains that

span multiple autonomous systems are expected to be long. The chain set of these
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autonomous systems contain mostly short ¢ntra-chains, but may contain a fixed
number of long inter-chains. Our main result here is a polynomial-time algorithm
that computes an optimal dispersal for such chain set for fixed k.

In this section, we present Algorithm 7 that computes an optimal dispersal
of a chain set where there are k chains of length greater than 2 for some constant
k. We call such sets k-long chain sets. Roughly speaking, our general strategy is
to consider all possible ways of assigning certificates that appear in long chains to
the relevant source and destination nodes, and then handling the remaining short
chains with the aid of Algorithm 5. To develop some initial intuition, first we show
how to compute an optimal dispersal of an example 1-long chain set in Fig. 3.12(b),

and then we show how to generalize for k-long chain sets.

Figure 3.12: An Example of 1-Long Chain Set

Let C'S be the 1-long chain set in Fig. 3.12(b), which is a chain set of the
certificate graph in Fig. 3.12(a). There is one long chain (c,a)(a,b)(b,d) and three

other short chains. There are three types of certificates in this chain set.

i. Certificates used only in long chains: for example, (b, d).

A certificate of this type can be dispersed either to the source or to the desti-
nation of each long chain that contains this certificate. For example, certificate
(b,d) in CS is used only in the long chain and needs to be dispersed either to

cor to d. This certificate is not used in any other chains, so it does not change

56



the cost of dispersal whether it is dispersed to ¢ or d.

ii. Certificates used only in short chains: for example, (b, c).

For certificates of the second type, we can use Algorithm 5 in Section 3.5.1 to
disperse such certificates. For example, certificate (b, c) is dispersed to node a

by Algorithm 5.

iii. Certificates used in both long and short chains: for example, (a,b), (c, a).

Dispersing a certificate of the third type needs to consider every possible as-
signment of this certificate among sources and destinations of long chains. For
example, certificate (a,b) is used in three chains, (a,b)(b,c), (¢,a)(a,b) and
(c,a)(a,b)(b,d). If we choose to disperse (a,b) to the source ¢ of long chain,
then we do not need to disperse (a,b) to any other node in CS, since ¢ hap-
pens to be source or destination of all the short chains that contain (a,b).
By contrast, if we choose to disperse (a,b) to the destination d of long chain,
then we need to disperse (a,b) to other nodes than d since d is neither source
nor destination of two short chains (a, b)(b, c) and (¢, a)(a,b). In other words,
D(a,b) could be either {c} or {a,b,d}, depending on whether (a, b) is assigned
to the source or the destination of the long chain. This shows that for each
certificate of the third type that is used in both long and short chains, in each
assignment of this certificate in sources and destinations of long chains, we

need to check which short chains still needs dispersal of this certificate.

After considering all three types of certificates in CS, the resulting optimal

dispersal of C'S in Fig. 3.12(b) becomes as follows:

{ Da={(ba}, Db={(ca)},
D.c ={(c,a),(a,b)}, D.d={(b,d)} }
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To extend this solution for 1-long chain set to k-long chain set, we need to
define a terminal set of a chain set. A terminal set of a chain set C'S is a subset
of nodes in C'S that consists of the source or destination of each chain in C'S. For
example, the four nodes a, b, ¢, c are the sources of all four chains in the chain set
in Fig. 3.12(b), so {a,b,c} is a terminal set of this chain set. Algorithm 7 computes

an optimal dispersal of k-long chain sets using this terminal set.

ALGORITHM 7 : optimal dispersal of k-long chain sets

INPUT: a k-long chain set C'S
OUTPUT: a dispersal D of C'S

STEPS:
1: for each node w in C'S, D.u := {}
2: for each certificate (u,v) in C'S do
3: compute the chain set LS of all long chains that contain (u,v) in CS
for each possible terminal set X of LS

for each node w in C'S,

if w € X then Dx.w := {(u,v)} else Dx.w :={}

compute the chain set S of all the chains that contain (u, v)

and their sources and destinations are not in X

run Algorithm 5 on S and add the resulting location set of (u,v) to Dx
find Dx with the minimal cost
10: for each node uw in C'S, add Dx.u to D.u

Consider (c,a) in the example chain set in Fig. 3.12(b). The set of all long
chains that contain (¢,a), denoted LS in Algorithm 7, is {(c,a)(a,b)(b,d)}. For a
terminal set {c}, (¢, a) is dispersed to node ¢ and the set of remaining short chains,
denoted S in Algorithm 7, becomes {(b,c)(c,a)}. There is node b that is the source
of every chain in S, so (¢, a) is dispersed to node b. The resulting dispersal of (¢, a),
{b, ¢}, is an optimal location set of (c,a). After considering every certificate, the
dispersal of the example chain set in Fig. 3.12(b) computed by Algorithm 7 becomes

the same with the dispersal above, and this dispersal is optimal. Theorem 12 shows
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that Algorithm 7 computes an optimal dispersal of a given k-long chain sets.

Theorem 12 Given a k-long chain set C'S, the dispersal D of the chain set C'S

computed by Algorithm 7 is optimal.

Proof: We divide the proof into two parts. First, we show that Algorithm 7
computes a dispersal D. Second, we show that D is optimal.

Proof of First Part:

We show that the certificate subsets D.u, computed by Algorithm 7 for every
node u in CS, satisfy the condition of dispersal in Section 2.

Consider a certificate (u,v). Algorithm 7 computes the chain set LS of for
all the long chains that contain (u,v). Algorithm 7 stores (u,v) in every node in
a terminal set of LS. By the definition of a terminal set, (u,v) is stored in either
source or destination of each long chain in LS. For all the remaining short chains
that contain (u,v) in C'S, by line 7-9 in Algorithm 7 (same as line 3-5 in Algorithm 5),
(u, v) is stored either in D.w for some node w or in D.u and D.v. (The rest of proof
is same with the optimality proof of Algorithm 5.) For each remaining short chain,
the chain that contains (u,v) starts at u or ends at v. Hence if (u,v) is stored in
both D.u and D.v then certificate (u,v) is stored in the source or destination node
of every remaining chain that contains (u,v). If (u,v) is stored in node w, then
by Algorithm 7, then w is either the source node or the destination node of every
remaining chain. Therefore, (u,v) is stored in the source or the destination node of
every chain that contains (u,v). This is true for any certificate (u,v) in C'S. Hence,
D is a dispersal of the chain set C'S.

Proof of Second Part:

The proof is by contradiction. Let D be the dispersal of a k-long chain
set C'S computed by Algorithm 7 and D’ be another dispersal of C'S. Assume
that cost.D' < cost.D. There must be at least one certificate (u,v) such that
D' (u, v)| < |D(u, v)|.
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There are three cases of (u,v):
i. (u,v) is a certificate used only in long chains.
ii. (u,v) is a certificate used only in short chains.
iii. (u,v) is a certificate used in both long and short chains.

For case 1), Algorithm 7 considers every possible terminal set X of the long
chains that contain (u,v). Therefore, the resulting |D(u,v)| = minx |Dx(u,v)|.
By the definition of the terminal set, D'(u,v) has to be a terminal set of the long
chains that contain (u,v). In other words, |D'(u,v)| > minx |Dx (u,v)| = |D(u,v)|.
Therefore, |D(u,v)| < |D'(u,v)]

For case ii), Algorithm 7 computes an optimal dispersal of the short chains
containing (u,v). The proof is same as the optimality proof of Algorithm 5 for short
chain sets. Therefore, |D(u,v)| < |D'(u,v)].

For case iii), find a terminal set X of the long chains that contain (u,v), such
that X C D'(u,v). Since Algorithm 7 considers every possible terminal set of the
long chains that contain (u, v), it also computes Dx (u, v) for the found terminal set
X, where X C Dx(u,v). For the remaining short chains in S, since the sources and
destinations of the short chains in S are not in X, so D'(u,v) \ X should contain
source or destination of each chain in S. Also, Algorithm 5 computes an optimal
location set of (u,v) in S. Therefore, |Dx(u,v) \ X| < |D'(u,v) \ X|. Since X C
D'(u,v) and X C Dx(u,v), |Dx(u,v)| < |D'(u,v)|. |D(u,v)] = miny |Dx(u,v)],
so |D(u,v)| < |D'(u,v)|.

In all three cases, |D(u,v)| < |D'(u,v)|, which contradicts the assumption of
|D(u,v)| > |D'(u,v)|. Therefore, dispersal D computed by Algorithm 7 is optimal.

|

The time complexity of this algorithm is O(2* x ep), where k is the number

of long chains in C'S, e is the number of certificates in C'S, and p is the number of
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chains in C'S. This complexity is computed as follows: the number of terminal sets
for k long chains is O(2*), and for each terminal set, the number of short chains to
consider is O(p). We repeat this procedure for e certificates. Since k is a constant,

the time complexity becomes O(ep).

3.5.4 Optimal Dispersal of k-Connected Chain Sets

In Section 3.5.2, we presented Algorithm 6 that computes an optimal dispersal
of a disconnected chain set. In this section, we investigate more general class of
chain sets where there are at most k£ nodes in the intersection of the source set
and the destination set of each certificate in a chain set. We call such chain sets
k-connected chain sets. This class of chain sets models a client-server system that
uses two different authentication methods. As discussed in Section 3.5.2, in some
client-server systems, clients authenticate servers via certificates, whereas servers
authenticate clients via other means, e.g. passwords. However, there may be a few
mutual authentications via certificates between servers. These certificates used by
servers may have non-empty intersection of the source and destination sets. Such
client-server systems can be represented as k-connected chain sets.

Fig. 3.13(b) shows an example of 1-connected chain set, which is a chain
set of the certificate graph in Fig. 3.13(a). For certificate (a, b), the sources of the
chains that contain (a,b) are {a,c} and the destinations of such chains are {b, c,d}.
The intersection of two sets is {c}. Similarly, the cardinality of the intersection set
is at most 1 for every certificate in this chain set, so the chain set in Fig. 3.13(b) is
1-connected.

Assume that (a,b) is stored in D.c in some dispersal D of this chain set. The
remaining chain to be dispersed is (a,b)(b, c)(c,d). Certificate (a,b) can be stored
either in D.a or in D.d, either of which makes no difference in the dispersal cost.

Or, assume that (a,b) is not stored in D’.c in some dispersal D’ of this chain set.
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Figure 3.13: An Example of 1-Connected Chain Set

Certificate (a,b) needs to be stored in D’.a and D'.b. We can repeat this process

for each certificate to find the dispersal as follows:

{D.a = {(a,b),(b,c)}, D.b={(cd),(d,a)},
D.c= {(a,b)}, D.d = {(c,d)} }

This is also an optimal dispersal of this 1-connected chain set.

To extend this solution for 1-connected chain set to k-connected chain set, we
need to define an intersection set of a certificate. An intersection set of a certificate
(u,v) in a chain set CS is a set of nodes that appear both in the set of sources
and the set of destinations of the chains that contain (u,v). For certificate (a,b)
in Fig. 3.13(b), the sources of the chains that contain (a,b) are {a,c} and the
destinations of such chains are {b,c,d}. The intersection of two sets is {c}, so
{c} is the intersection set of (a,b). Algorithm 8 computes an optimal dispersal of
k-connected chain sets using this intersection set.

The proof of the optimality of this algorithm is straightforward. Since this
algorithm considers every possible subset of the intersection set, it is guaranteed
to find the optimal location set of each certificate. By Theorem 3, the dispersal
computed by this algorithm is optimal.

The time complexity of this algorithm is O(2¥ x enp), where k is the tight

62



ALGORITHM 8 : optimal dispersal of k-connected chain sets

INPUT: a k-connected chain set C'S
OUTPUT: a dispersal D of C'S

STEPS:
1: for each node u in C'S, D.u := {}
2: for each certificate (u,v) in C'S do
3: compute the intersection set I.S of (u,v)
for each subset X of IS
for each node w in CS, if w € X then Dx.w := {(u,v)} else Dx.w := {}
compute the chain set S of all the chains that contain (u, v)
and their sources and destinations are not in X
7 for each chain from y to z in S
8: if y € IS\ X then add (u,v) to Dx.z and remove the chain from S
9: if z € IS\ X then add (u,v) to Dx.y and remove the chain from S
10: run Algorithm 6 on S and add the resulting location set of (u,v) to Dx
11: find Dx with the minimal cost
12: for each node w in C'S, add Dx.u to D.u

upper bound of the number of nodes in intersection sets of all the certificates in
CS, n is the number of nodes in C'S, e is the number of certificates in C'S, and p
is the number of chains in C'S. Since there are at most k& nodes in the intersection
set of each certificate, there are at most 2¥ subsets of the intersection set. For each
subset, we run Algorithm 6, whose complexity is O(enp). Therefore, the total time

complexity becomes O(2Fenp). Since k is a constant, the time complexity becomes

O(enp).
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3.6 Dynamic Dispersal

In the previous sections, we discussed the concept of certificate dispersal. Algo-
rithms in Sections 3.4 show how to compute a certificate dispersal for a “static”
certificate graph, i.e. the topology of the certificate graph does not change over
time. However, in many certificate systems, certificate graphs do change due to
issuing new certificates, adding new users, revoking old certificates, and removing
old users. To maintain the certificate dispersal of a dynamic certificate graph, the

changes in the graph need to be propagated to the appropriate users.

Certificate issuing/revocation

BACK/FORE

Dynamic Dispersal

CERT

Figure 3.14: Inputs and Output of Dynamic Dispersal Protocol

Fig. 3.14 shows the inputs and output of our dynamic dispersal protocol.
The dynamic dispersal protocol running at each user has two inputs FORE and BACK.
FORE in user u is the set of the certificates that have been issued by user u, and
BACK in user u is the set of users that have issued certificates for u. Note that the
two inputs FORE and BACK in all users define the certificate graph of the system. We
assume that FORE and BACK are maintained by an outside protocol that issues new
certificates and revokes old ones. We also assume that FORE and BACK are always
correct and so they are always consistent. For example, if at any time a certificate
(u,v) is in FORE.u of user u, then u is in BACK.v of user v at the same time.

The dynamic dispersal protocol maintains a variable CERT.u at each user u.

64



At stabilization, the value of CERT.u is a outgoing spanning tree rooted at user w.
Thus, by Lemma 1, values of CERTs at stabilization constitute a certificate dispersal
of the system.

The dynamic dispersal protocol in user u is shown in Protocol 1 below.
Protocol 1 consists of three actions.

In the first action, when the timer of user w expires, user u uses its input
FORE.u to update the variable CERT.u and sends a copy of CERT.u to each user v in
BACK.u. Then u updates its timer to expire after 1time time units, and the cycle
repeats. For convenience, we refer to CERT.u messages that user u has sent in this
action as a round of gossip. If user u does not change its CERT.u and does not
observe any change in its inputs FORE.u and BACK.u, then the time period between
two consecutive rounds of gossip by u is 1ltime time units. The value ltime is
expected to be in the range of days or months.

In the second action, user u receives a certificate tree sent by a user v (where
w is in BACK.v). In this case, u updates its CERT.u using its input FORE.u, and
then merges its CERT.u with the received certificate tree. If the update or merge
operations change CERT.u then u reduces the value of its timer to at most stime
time units. Note that the value stime is in the range of minutes or hours so it is
much less than the value 1time. In other words, any change in the variable CERT.u
causes u to initiate its next round of gossip after no more than stime time units.

In the third action, when user u observes that its inputs BACK.u or FORE.u
has changed, then user w sets its timer to be at most stime time units. This change

causes u to initiate its next round of gossip after no more than stime time units.

3.6.1 Issuing certificates

When a user u issues a certificate (u,v), there are two events that need to occur.

(Note that these two events occur outside the dynamic dispersal protocol.) The first
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PROTOCOL 1 dynamic dispersal

user u
const  stime, ltime //stime is a short time period
//1ltime is a long time period
//ltime is greater than stime
input  BACK : {x| x has issued a certificate (x,uw)}
FORE : {(u,x) | u has issued a certificate (u,x)}
var CERT : a certificate tree rooted at u
tree : a certificate tree
timer : 0..1time
v : any user other than u
begin
timer=0 -> update (CERT, FORE);

for each user v in BACK, send CERT to v;
timer:=1ltime

[1 rcv tree from v -> update(CERT, FORE);
merge (CERT, tree);
if CERT has changed, timer:=min(timer, stime)

[] BACK or FORE has changed -> timer:=min(timer,stime)

end

event is to add (u,v) to FORE.u, and the second event is to add u to BACK.v. These
events cause users v and v to execute the third action in the protocol and to reduce
their timers to be at most stime time units. In stime time units, the timers in
both users u and v will expire and then users v and v will execute the first action
and update their CERTs and send a copy of the updated CERT to each user in their
BACKs.
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3.6.2 Revoking Certificates

When a user u wants to revoke a certificate (u,v) it has issued before, two events
need to occur in users u and v. (Note that these two events occur outside the
dynamic dispersal protocol.) The first event is to remove (u,v) from FORE.u, and
the second event is to remove u from BACK.v.

When user u observes the change in FORE.u, u executes the third action and
set its timer to be at most stime. When the timer expires, v will update CERT.u
and send it to users in BACK.u. When user « in BACK.u receives the newly updated
CERT.u from user w, & will merge it with its own CERT.x. During this merge, the
revoked certificate (u,v) and any path using that certificate will be removed from

CERT.x.

3.6.3 update Procedure

Procedure update (CERT,FORE) is defined as follows.

PROCEDURE 1 update(CERT, FORE)

INPUT: a certificate tree CERT rooted at u and
a set of certificates FORE issued by u

OUTPUT: a certificate tree CERT rooted at u

var tmp: a certificate tree rooted at u
begin

add all the valid certificates in FORE to tmp;

while there is a valid certificate (x,y) in CERT where
x !I=u,
X is in tmp, and
y is not in tmp

do add (x,y) to tmp;

CERT:=tmp;

end
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It is convenient to explain this procedure by an example. Consider user a
where FORE.a in user a contains one certificate (a,b) and CERT.a contains two cer-
tificates (a,b), (b, c) as shown in Fig. 3.15(a). When user a issues a new certificate
(a,c), FORE.a changes into {(a,b), (a,c)}. This change causes user a to execute its
third action and then after stime time units to execute its first action. In the first
action, procedure update (CERT.a,FORE.a) is executed. First, all the certificates in
FORE.a are added to a certificate tree tmp and tmp becomes {(a,b), (a,c)}. Certifi-
cate (b, ¢) cannot be added to tmp because user c is already in tmp. In the last step,

tmp is copied to CERT.a, and CERT.a becomes {(a, b), (a, c¢)} as shown in Fig. 3.15(b).

P Lot &
® OO ® © & ©

@ (b)

Figure 3.15: update of CERT.a due to change in FORE.a

3.6.4 merge Procedure

Procedure merge (CERT, tree) is defined as follows.

It is convenient to explain this procedure by an example. Consider user a
where FORE.a contains two certificate (a, b), (a,c) and CERT.a contains three certifi-
cates (a,b), (a,c),(b,d) as shown in Fig. 3.16(a). When user b revokes certificate
(b,d), FORE.b changes into {(b,c)}. This change causes user b to execute its third
action and after stime time units to execute its first action. In the first action, user
b updates its CERT.b to be {(b,c)}. User a still does not know about this revocation,
so CERT.a remains the same as shown in Fig. 3.16(a). After stime time units, user b
sends a copy of its CERT.b to user a. When user a receives the certificate tree {(b,c)},
user a executes its second action, and procedure merge (CERT.a,tree) is executed

with CERT.a and the received tree {(b,c)}. Procedure merge (CERT.a,tree) first
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PROCEDURE 2 merge(CERT, tree)

INPUT: a certificate tree CERT rooted at u and
a certificate tree ‘‘tree’’ rooted at t, where
t I=u

OUTPUT: a certificate tree CERT

begin

if CERT has a certificate (u,t) ->
remove from CERT the subtree rooted at t, if any;
remove from tree every subtree rooted at a node, other than t,
that occurs in CERT;
while tree has a valid certificate (x,y) where
X is in CERT and
y is not in CERT
do add y and certificate (x,y) to CERT;
[] CERT has no certificate (u,t) ->
skip
fi

end

checks if there is certificate (a,b) in CERT.a. There is certificate (a, b), so the subtree
rooted at user b, (b,d) in CERT.a is removed from CERT.a. Then, certificate (b, c) is
considered, but is not added to CERT.a because c is already in CERT.a. In result,

CERT.a becomes {(a,b), (a,c)} as shown in Fig. 3.16(b).
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Figure 3.16: merge of CERT.a due to change in CERT.b
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3.6.5 Stabilization of Dynamic Dispersal

The dynamic dispersal algorithm in Section 3.6 is based on a message passing model.
In [21], it is shown to be hard to design stabilizing protocols in the traditional
message passing model where there are channels between users. In this paper, we
use a non-conventional model of communication. A state consists of the values of
timer and CERT of all the users in the system. As mentioned in above, we assume
that FORE and BACK of each user remain correct and consistent in every state. In one
state transition, only one user can execute its first action. Furthermore, in the same
transition, each user v in BACK.u receives the same copy of this message and executes
its second action. In other words, we have no messages in transit, so there is no
need for channels in the state description. There are two reasons that we adopted
this model. First, this model allows the proofs to be easier to follow. Second, this
model is sensible, given that the time it takes for the timer in each user to expire is
very large compared to the time each state transition takes. stime is in the range
of minutes and hours, and each state transition takes only milliseconds, so we can
assume that no two timers expire at the same time.

For the proofs of convergence and closure, we define a computation to be a
sequence of states of the system where along with this computation FORE and BACK
of all the users remain unchanged. In the following theorems, we show that the
dynamic dispersal protocol eventually stabilizes into a legitimate state, where the
values of CERTs of all users constitute a certificate dispersal of the certificate graph
of the system. Following the proof technique in [4], we show the convergence and

the closure of this protocol to prove its stabilization.

Theorem 13 (Convergence) Each computation of the dynamic dispersal protocol
has a state where the value of each CERT.u in the protocol is an outgoing spanning
tree rooted at u in the certificate graph of the protocol (as defined by the two inputs
FORE and BACK of all users in the protocol).

70



Proof sketch To prove that CERT.u eventually becomes an outgoing spanning tree
rooted at node w of the certificate graph G, we first prove that CERT.u eventually
becomes a tree rooted at v, and then prove that every node that is reachable from
w in G is reachable in CERT.u.

There are two procedures, update (CERT.u,FORE.u) and merge (CERT .u,tree),
that can change CERT.u. The procedure update (CERT.u,FORE.u) constructs a tree
by starting from the certificates in FORE.u. All the certificates in FORE.u are is-
sued by user u, so the resulting tree from update (CERT.u,FORE.u) is rooted at
u. Similarly, the procedure merge (CERT.u,tree) adds certificates in the received
tree to CERT.u, a certificate tree rooted at w. Therefore, the resulting tree from
merge (CERT.u,tree) is also rooted at u. Based on these observations, after a state
transition in this computation, CERT.u in user u becomes a tree rooted at u.

Now we prove that CERT.u is an outgoing spanning tree, i.e. any node that
is reachable from node u in G is also CERT.u. Assume that there is a path from
u to another node v in G, (u,u1)(ui,u2)- - (ug,v). Node ug has the certificate
(ug,v) in its FORE, so the certificate (ug,v) is in its CERT. Node uy sends its CERT
periodically to node ug_1, so node uy_; will have a path from itself to node v in its
CERT. Repeatedly, each node on the path will send its CERT to the previous node in
the path and node u will have a path from itself to node v in its CERT. Therefore,
every node v that is reachable from node u in G is also reachable in CERT.u. |

Note that our dynamic dispersal protocol is different from stabilizing span-
ning tree algorithms. The spanning tree algorithms in [15, 3, 11] build a single
spanning tree for the whole system that covers every process in the system, and
build one tree rooted at a special process (usually referred as a leader). Each pro-
cess in these algorithms stores the parent node identifier, the distance from the root,
and possibly the root identifier. On the other hand, our dynamic dispersal protocol

stores an outgoing spanning tree in each user, which does not necessarily cover every
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user in the system. Also, in our dynamic dispersal protocol, there is no leader, and

each user v maintains an outgoing spanning tree rooted at u.

Theorem 14 (Closure) Ezecuting any step of the dynamic dispersal protocol start-
ing from a state, where the value of each varitable CERT.u in the protocol is an out-

going spanning tree rooted at u, leaves the values of all CERT variables unchanged.

Proof sketch In a computation, the inputs BACK and FORE remain unchanged.
Therefore, only two types of steps can be executed: time propagation and the first
action. Time propagation cannot change the value of CERT. When the time propa-
gation causes the timer in user u to expire, the first action in the dynamic dispersal
protocol will be executed. When the timer expires, user u updates its CERT.u with
FORE.u, but CERT.u remains the same since FORE.u remains unchanged. Now user
u sends a copy of its CERT.u to each user v in BACK.u. User v receives a tree and
merge it with its own CERT.v. Since CERT.u is the same, merge (CERT, tree) will not
change CERT.v. Therefore, when the certificate graph of the system does not change,
CERT.u in each user u, an outgoing spanning tree rooted at u, remains unchanged.

3.6.6 Time Complexity

In this section, we compute the time that takes to bring the system to stabilization
in terms of the timer 1time. Note that each state transition is triggered by a timer
expiration in a user, so any user will execute the first action of dynamic dispersal
algorithm at least once in ltime time units. Also, the time that takes for a state
transition is very small compared to 1time. Therefore, in 1time time units, we can

assume that all users have executed the first action at least once.

Theorem 15 In each computation of the dynamic dispersal protocol, the protocol
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reaches a legitimate state in at most T time units, where

T=1ltimex (2p—1)

, where p is the length of the longest path in the certificate graph.

Proof sketch A legitimate state of the dynamic dispersal protocol is one where
the value of CERT.u of every user u in the system is an outgoing spanning tree rooted
at u.

Cousider a certificate (z,y) that is not in the certificate graph, but in some
CERT.u of user « in the beginning of the computation. This certificate disappears
from CERT of any user in the system in 1time X p. After the first 1time time units
in the computation, user x updates CERT.x with FORE.x and remove the certificate
(z,y) from CERT.x, if there was (z,y) in CERT.x. After the second ltime time units,
any user in BACK.x receives CERT.x and removes the certificate (z,y) from its CERT,
if there was (z, y) in its CERT. In other words, any user that had (z,y) in the second
level of the tree in CERT removes (z,y) from its CERT. The cycle repeats, and after
(1time X p), any user that had (x,y) in its CERT removes (x,y) from its CERT.

Cousider a certificate (v,w) that is in every possible reach tree rooted at
some user u in the certificate graph, but not in CERT.u in the beginning of the
computation. After the first 1time time units in the computation, user v updates
CERT.v with FORE.v and add the certificate (v, w) to CERT.v if it was not in CERT.v
already. For the next (1time x (p—1)) time units, a user in BACK.v may have node w
in its CERT through a incorrect certificate and not add (v, w) to its CERT. However,
any incorrect certificate will be removed from CERT of any user in (ltime X p)
time units as shown above. Therefore, after (1time x (p + 1)) time units since
the beginning of the computation, any user in BACK.v adds (v,w) to its CERT, if

it was not there already. In other words, any user that should have (v,w) in the
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second level of the tree in CERT adds (v, w) to its CERT. The cycle repeats, and after
(1time X (2p — 1)) time units, any user that should have (v, w) in its CERT adds
(v,w) to its CERT.

As shown above, in (1time X (2p—1)) time units, any certificate that is not in
the certificate graph disappears from CERT of every user, and any certificate that is in
every possible reach tree of user u appears in CERT.u. Therefore, in (1time x (2p—1)),
CERT.u becomes an outgoing spanning tree rooted at u.

|

We believe that the upper bound on the convergence span described in The-

orem 15 is quite loose. It is an interesting problem to compute a tight upper bound

of the convergence span.

3.6.7 Dispersal in Client/Server Systems

This dynamic dispersal protocol is useful in any dynamic certificate systems. Con-
sider a client/server system, where there are much fewer servers than clients in the
system. We can run the dynamic dispersal protocol among the servers and let any
server issue a certificate for a client. Each server will have an outgoing spanning
tree in its CERT, so each server will be able to find a certificate chain from itself to
any client that has a certificate issued by an authenticated server.

For example, many coffee shops offer free Internet connection for their cus-
tomers. To prevent free-riders that are not customers, coffee shops may require the
customers to register. For convenience, a customer needs to register only once at
any coffee shop (the coffee shop issues a certificate for the customer), and the cus-
tomer can use the free connection at all coffee shops that are participating in this
membership without logging in or getting temporary authorization each time he or
she goes to a coffee shop, since any coffee shop has a certificate chain from itself

to the customer. The authentication using the certificate chain does not require
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any interaction with the customer, so once the customer registers to get a certifi-
cate from one coffee shop, the customer does not need to know how he or she gets
authenticated and authorized for the Internet connection.

Also, this client/server system can help two clients authenticate each other.
A client cl has issued a certificate for a server sl and sl issued a certificate for
cl. A client ¢2 has issued a certificate for a server s2 and s2 issued a certificate for
c2. When client ¢l wants to securely communicate with client ¢2, client ¢l can ask
server sl for a certificate chain from sl to s2 and use the chain and the certificates
(c1,s1) and (s2,¢2) to find the public key of client ¢2.

A hierarchical certificate authorities used in Lotus Notes [32] is a special case
of such client/server system. In a system with a hierarchical certificate authorities,
the certificate graph between certificate authorities constitutes a star graph, where
the root certificate authority has issued a certificate for each non-root certificate
authority and each non-root certificate authority has issued a certificate for the root
certificate authority. In such a system, when a client c1 who has issued a certificate
for a certificate authority cal wants to securely communicate with another client ¢2
who has issued a certificate for a certificate authority ca2, cl can contact cal for cer-
tificates (cal,root)(root,ca2). In Lotus Notes, cal also finds the certificate (ca2, c2)
from ca2 so that cl can use the public key of ¢2 safely without communicating with

c2.
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Chapter 4

Vulnerability Analysis

The certificates issued by different users in a system can be represented by a directed
graph, called the certificate graph of the system. Each node u in the certificate graph
represents a user u with the corresponding public key b.u and private key r.u in the
system. If a user has more than one public key, then the user will be represented
by several nodes in the graph, one node for each public and private key pair. Each
directed edge from node u to node v in the certificate graph represents a certificate
(u,v,b.v)r.u. A certificate chain from a node u to a node v is a simple path from
node u to node v in a certificate graph. For nodes u and v in a certificate graph G,
if u wishes to securely send messages to v, then u seeks a path from u to v in G.
(There are systems where u seeks a set of paths from u to v, which will be discussed
in Section 4.7.)

In a certificate graph, two types of damage can occur when the private key r.u
of a node u is revealed to an adversary: explicit and implicit. The explicit damage
is that the adversary can impersonate node u to other nodes until it is known to
other nodes that the private key r.u of u is revealed to the adversary. The implicit
damage is that the adversary can impersonate nodes other than w to other nodes in

the system by signing forged certificates with the revealed private key r.u of node
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As an example, consider the certificate graph in Fig. 4.1. If node a wishes
to send a secure message to node g in this certificate graph, then node a needs to
find a certificate chain from node a to node g. In the certificate graph in Fig. 4.1,

there is one certificate chain from node a to node g, (a,d), (d,e), (e, g).

Figure 4.1: An example of a certificate graph

Assume that the private key r.d of node d is revealed to an adversary. The
adversary can encrypt and decrypt messages using r.d to impersonate node d to any
other node in the graph. This impersonation of node d is explicit damage. Assume
that node a does not know that r.d is revealed. The adversary can create a new
public and private key pair, b.g' and r.g’, and sign a forged certificate (d, g,b.g')r.d
with the revealed private key r.d of node d. Node ¢’ in Fig. 4.1 denotes the im-
personated user g with the public and private key pair b.g’ and r.g' created by the
adversary, and the dotted edge (d,g') denotes the forged certificate (d,g,b.g")r.d.
The certificate chain (a,d), (d,g’) presents to node a the public key b.g' created by
the adversary as if it belonged to user g. This impersonation of node g is implicit
damage.

The explicit and implicit damage that can be brought into a certificate graph
when the private key of a node u is revealed to an adversary is called the vulnerability
of node u. For example, if the private key r.d of node d in Fig. 4.1 is revealed to an
adversary, then the adversary can impersonate node d to all other nodes in the graph
without forging any certificates. In addition to impersonating node d, the adversary

can impersonate nodes a, b, ¢ to nodes e, f, g by signing forged certificates (d, a'),
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(d,b"), and (d, ') with the revealed private key r.d of node d. Also, the adversary
can impersonate nodes e, f, g to nodes a, b, ¢ by forging certificates (d, €’), (¢', f'),
and (e, g').

We have identified a metric to quantify the damage from this type of attacks.
We call this metric “vulnerability” of certificate graphs. As discussed in detail in
this chapter, a metric of the vulnerability of certificate graphs is useful in answering
several questions. First, how to determine which certificate graphs are less vulner-
able and which ones are more vulnerable. Second, how to determine which criteria
for accepting public keys from certificate chains are better. Third, how to bal-
ance between the resilience against impersonation attacks and storage cost. There
have been intuitive answers to these questions, such as short certificate chains and
many independent certificate chains are preferable than long and dependent ones.
The vulnerability metric quantifies how effectively these intuitive answers work to
reduce vulnerability.

In the following sections, we formally define the vulnerability metrics of nodes
and of certificate graphs, and present theorems that show vulnerabilities of several
certificate graphs with different requirements. Also, we present three algorithms to
compute the vulnerability of an arbitrary certificate graph. Using these algorithms,
we investigate the effect of graph topology, certificate dispersal, and acceptance
criteria on the vulnerability of certificate graphs. Then we discuss the vulnerability
when many private keys are revealed to an adversary. We present a brief summary

of related work and end with concluding remarks.

4.1 Vulnerability of Certificate Graphs

Let G be a certificate graph and d be a node in G. We assume that each node in G
stores the certificates it issues, and each node accepts all public keys in a certificate

chain as long as each certificate in the chain is verified. (We will discuss in Section 4.6
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about the case when each node requires more than one chain to accept the public
key.) Assume that the private key r.d of node d is revealed to an adversary. The
adversary can use the revealed private key to encrypt and decrypt any messages as
if the adversary were node d, and so it can impersonate node d to all other nodes
from which there are certificate chains to d. Also, the adversary can use r.d to
impersonate a node dst, other than d, to another node src, also other than d in G,

by performing the following three steps.

i. The adversary creates a private key r.dst’ and its corresponding public key
b.dst’. Later, the adversary will pretend that these keys are the public and

private keys of node dst.

ii. The adversary uses the revealed private key r.d of node d to issue a forged

certificate (d, dst, b.dst')r.d. This forged certificate is denoted (d, dst').

iii. The adversary provides node src with the certificate chain that consists of a
chain of correct certificates from src to d and the forged certificate (d, dst’).
From this chain, node src can wrongly deduce that the public key b.dst’ cre-
ated by the adversary is the public key of node dst. Any message sent by
the adversary that is encrypted with the matching private key r.dst’ will be

authenticated by node src as if it were sent by node dst.

Note that this scenario of the adversary would work only if G has a certificate chain
from src to d that does not contain any certificate issued by dst and G has no
certificate (sre, dst).

The next theorem states a necessary and sufficient condition for an adversary
to impersonate node dst to another node src in a certificate graph where the private

key r.d of some node d is revealed to an adversary.

Theorem 16 Let G be a certificate graph and src and dst be any two distinct nodes

in G. Let d be a node in G whose private key r.d is revealed to an adversary. The
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adversary can impersonate node dst to node src if and only if src # d, G has a
certificate chain from src to d that does not contain any certificates issued by node

dst, and one of the following two conditions holds.
1. dst =d, or
it. G has no certificate (src,dst)

Proof:

Proof for if 1If dst = d, then the adversary can use the revealed private
key r.d of node d to encrypt and decrypt any message as if it were node d and
impersonate node dst to node src. If dst # d, then G has no certificate (src, dst), so
src does not know the correct public key of dst. Now the adversary can sign a forged
certificate (d, dst') with the revealed private key r.d of d. There is a certificate chain
from src to d that does not contain any certificates issued by dst, so the adversary
can add the forged certificate (d, dst’) to the correct certificate chain from src to d
and present the certificate chain from src to dst’ to node src. If node src does not
know that the private key of node d is revealed to the adversary, then src will not
notice that the certificate (d, dst') is forged and accept the public key in (d, dst’) as
the valid public key of dst.

Proof for only if In order to prove the only if part, we prove the contra-
position. If any of the following three conditions holds, then the adversary cannot

impersonate dst to src:
i. sre=d

ii. G has no certificate chain from src to d that does not contain any certificate

issued by dst.

ili. dst # d and G has certificate (src, dst).
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First, assume src = d. In this case, src will not accept any forged certifi-
cate including a new public key created by the adversary, since src stores all the
certificates it issued.

Second, assume that G has no certificate chain from src to d that does not
contain any certificate issued by dst. If G has no certificate chain from src to d
that does not contain any certificate issued by dst, there are two possible cases to
consider. In the first case, G has no certificate chain from src to d. In the second
case, G has at least one certificate chain from src to d, but every such chain from
src to d contains a certificate issued by dst. In the first case, the adversary cannot
create a certificate chain from src to dst’, because G has no certificate chain from src
to d to which the adversary can add a forged certificate (d,dst’). So the adversary
cannot impersonate dst to src. In the second case, src will verify the public key
of node dst in the process of validating the certificate chain from src to d, and will
notice that the identity of dst is repeated twice in the certificate chain and reject
the public key of dst’. In both cases, the adversary cannot impersonate dst to src.

Third, assume d # dst and G has certificate (sre,dst). If src has issued the
certificate (src, dst), then src already knows the correct public key of dst, so it will
not accept any other public key created by the adversary as a valid public key of
dst. Hence, the adversary cannot impersonate dst to src. This completes the proof
for the only if part. ]

Let G be a certificate graph and d be a node in G. Assume that the private
key r.d of node d is revealed to an adversary. The vulnerability of node d, denoted
V(d), is the number of node pairs (src, dst) where the adversary can impersonate
node dst to node src divided by the number of node pairs (src, dst) where src # dst

and src # d in G. More formally,

_ [IMP(d)]

Vi) =
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where IM P(d) = {(src,dst)| the adversary can impersonate dst to src using r.d}
and n is the number of nodes in G.
The following theorem gives tight upper and lower bounds on the vulnera-

bility of a node in a certificate graph.

Theorem 17 For a node d in any certificate graph G, we have

1>V(d) =

|{src|G has a certificate chain from src to d}|
(n—1)?

Proof: The most number of node pairs (src, dst) where the adversary can im-
personate dst to src is the total number of node pairs (src, dst) where src # dst and
src # d, which is (n — 1)2. Therefore, the upper bound of V' (d) is 1. Also, since the
adversary knows r.d, the adversary can always impersonate node d to every node
that has a certificate chain from itself to d. (This is the scope of explicit damage.)
Therefore, the number of node pairs (src,d) where G has a certificate chain from
src to d divided by (n — 1)? is the lower bound. [

The following lemmas show that the bounds shown in the above theorem are

tight.

Lemma 6 There exists node d in some certificate graph G, where
V(d)=1

Proof: Consider the certificate graph in Fig. 4.2. When the private key of the
center node is revealed to an adversary, the adversary can impersonate any node
dst to any other node src, where src is not the center node. There are 8 nodes
that can be srec, and for each src node among them, there are 8 other nodes that

can be impersonated to src. Therefore, the number of node pairs (src,dst) where
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the adversary can impersonate dst to src is 8 x 8 = 64, and n = 9. Therefore, the

vulnerability of the center node is 1. ]

Figure 4.2: The (8, 1)-star certificate graph

Lemma 7 There exists node d in some certificate graph G, where

{src|G has a certificate chain from src to d}|
(n—1)?

V(d) =

Proof: In the certificate graph in Fig. 4.3, every node has issued certificates to
all other nodes in the graph. If the private key of node c is revealed to an adversary,
the adversary can impersonate only node ¢ to nodes a and b, since node a already
knows the correct public key of node b in the certificate (a,b) and node b knows the

correct public key of node a in the certificate (b,a). So the vulnerability of node ¢

2

is 57 =%, which meets the lower bound. In fact, the vulnerability of any node in a

fully connected certificate graph meets the lower bound. ]

()

@/A.‘G

Figure 4.3: An example of fully connected certificate graph

Let G be a certificate graph, then the vulnerability of graph G, denoted
V(G), is defined as follows:

V(G) = réleagc V(d)
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4.2 Vulnerability of Special Certificate Graphs

In this section, we give three theorems that show the vulnerability of three special
classes of certificate graphs: n-loops, (m, k)-stars, and (d, h)-trees. In many certifi-
cate systems, for example PGP, certificate graphs are not planned in advance and
certainly not designed. Rather, they are developed in an ad-hoc manner depending
on which users decide to issue certificates for which other users. However, if we do
have the luxury of planning and designing certificate graphs, then we can choose the
best among these special classes according to the system requirements. n-loop cer-
tificate graphs are useful when the certificate graph needs to be strongly-connected
but the number of certificates needs to be minimized. (m, k)-star certificate graphs
are useful when a trusted certificate authority (center node) is available. (d, h)-tree
certificate graphs are useful in hierarchical systems.

The following three theorems compute the vulnerabilities of three special
classes of certificate graphs. The theorems show that n-loop certificate graphs are
less vulnerable than (m,2)-star certificate graphs for n > 4. On the other hand,
(2, h)-tree certificate graphs are less vulnerable than n-loop certificate graphs for
n > 10. The comparison results are discussed in more detail in the end of this
section.

An n-loop certificate graph is a certificate graph that has n nodes arranged

in a unidirectional ring. Fig. 4.4 shows the 8-loop certificate graph.

L

Figure 4.4: The 8-loop certificate graph

Theorem 18 The vulnerability of an n-loop certificate graph is 1 — 2&—7_21)
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O

Figure 4.5: The (4, 2)-star certificate graph

Proof: Label each node 0---n — 1. Assume that the private key of node j is
revealed to an adversary. The adversary can impersonate node k to node 7 if k = j,
or if (4, k) and there is a path from node i to node j that does not contain node k.
Therefore, to node j—1, the adversary can impersonate nodes j, j+,1, -+ ,j+n(n—
2). To node j — 2, the adversary can impersonate nodes j,j +n 1, ,7 +n (n — 3).

After considering each node, the number of (src,dst) pairs in which the adversary
n(n—1)

can impersonate node dst to node src is —5—. The vulnerability of node j is
%:1 - 2&—_721) This holds for any node j in this graph, so the vulnerability
of an n-loop certificate graph is 1 — 2(’;—__21) [

An (m, k)-star certificate graph is a certificate graph that consists of m uni-
directional rings that share one center node and each ring has k unshared nodes.

Fig. 4.5 shows the (4, 2)-star certificate graph.

Theorem 19 The vulnerability of an (m, k)-star certificate graph is 1 — gm;k

Proof: The vulnerability of a graph is the maximum vulnerability of every node
in the graph. In an (m, k)-star certificate graph, the center node has the highest
vulnerability. Now let us compute the vulnerability of the center node. Label the k
nodes in a satellite ring from 1 -- k and the center node as node 0. There is an edge
from node ¢ to node i 4441 1, where 0 < i < k. When the private key of the center
node is revealed to an adversary, the adversary can impersonate to node 1 any node
in the graph except for the nodes 2---k in the same satellite ring. To node 2, the
adversary can impersonate any node in the graph except for the nodes 3-- -k in the

same satellite ring. As a result, the adversary can impersonate Zle(mk —(k—1))
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pairs for each satellite ring. So the vulnerability of the center node is

k
1
V (center) = (m» (mk—(k—1)))
k2 2
1 mk(k + 1)
= ——| mk(mk — k) + ——
e (im0 + 2
1 kE+1
_2mk -2k +k+1
N 2mk
_2mk—-k+1
N 2mk
_q_ k=t
2mk
Therefore, the vulnerability of an (m, k)-star certificate graph is 1 — gm;k [ |

A (d, h)-tree certificate graph is a complete tree certificate graph with degree
d and height h, where there is an edge from each parent node to each of its children
nodes and an edge from each child node to its parent node. Fig. 4.6 is an example

of a (d, h)-tree certificate graph, where d = 3 and h = 2.
Theorem 20 The vulnerability of a (d, h)-tree certificate graph is 1 — % —

2 .
(d—l)d(n—l) — (d—l)(%n—l)z , approximately 1 — dih

Proof: The vulnerability of a graph is the maximum of vulnerability of all nodes
in the graph. In a (d, h)-tree certificate graph, the root node has the highest vulner-
ability. The vulnerability of the root node can be computed as follows. Consider a
node ¢ in level h. When the private key of the root node is revealed to an adversary,
the adversary can impersonate any node to node i except the (h — 1) nodes on the
certificate chain from node 7 to the root node. On the other hand, for a node j in
level h — 1, the adversary can impersonate any node to node j except its d children
nodes and the (h — 2) nodes on the certificate chain from node j to the root node.

So, the adversary can impersonate (n — 1 — (h — 2 4+ d)) nodes to node j. Similarly,
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for a node in level [, where [ < h, the adversary can impersonate (n—1— (I —1+d))

nodes to the node. As a result, the vulnerability of the root node is :
1 h-1
V (root) = CESNE (Zdz(n ~1-(i—1+d)+d"(n—1-(h— 1)))
n—
i=1

(- S-S o)
=——|(n—-d d' — id" + (n— h)d
(n—1)2 i=1

=1
1 h h—1 h
_ ' i+1 : i
Er=v OIS W
=1 =1 =1
d2 dh—l -1 hdh-l—l o 1
1 1)2<"("_1)_ (d 1 - d ;H)
— _ _
~oon A @4 hd 1
T n-—1 (d—1)(n—1)2
L A -4 hd ol
T on-—1 (d—1)(n —1)2
d" 4 hdh ! 1 d? 1
T T d=Dn-12 n-1 (d-1m-12 [d-1n-1)
1 dh+1_|_hdh+1 B d—1+1 B d2
B (d—1)(n—-12 (d—-1)(n—1) (d—1)(n—1)2
_ . A"+ R d d?

(d—1)(n—-12 ([d—1)(n—1) (d—1)(n—1)2

dh+1 hdh+1
~ {since n is large} 1 — i

(d—1)(n—1)2
dhtt —1 d"H(1+ h)
~ ] = — ~ dh 1-— 2
{since n 71 } AL
N d—1 d d(dh)?
h
—1— 7

Therefore, the vulnerability of a (d, h)-tree certificate graph is approximately 1 — dih.
|

Fig. 4.7 shows the vulnerabilities of three special certificate graphs, n-loops,
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Figure 4.6: The (3,2)-tree certificate graph

(m, 2)-stars, and (2, h)-trees as functions of the number of nodes in each graph.
From this graph, it is clear that n-loops are less vulnerable than (m,2)-stars and
(2, h)-trees. This metric of vulnerability can be used to show which certificate graph

is less vulnerable.
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Figure 4.7: Comparison of three special graphs

4.3 Vulnerability of Arbitrary Certificate Graphs

In the previous section we computed the vulnerability of three special classes of
certificate graphs. We now present Algorithm 9 that computes the vulnerability of
an arbitrary certificate graph.

By Theorem 16, if G has a path from node src to node d that does not
contain node dst, then the adversary can impersonate dst to src when the private

key of node d is revealed to it (and G has no certificate (src,dst)). As mentioned
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in Section 4.1, we assume that each node only stores the certificates it issued and
accepts all the public keys in the presented certificate chain as long as each certificate
in the chain is verified. To find every node src that has a path to node d that does
not contain node dst, Algorithm 9 removes node dst and its incoming and outgoing
edges from G and sees which nodes are still connected to d. Consider the example
certificate graph G in Fig. 4.1. In Fig. 4.8(a), node a and its incoming and outgoing
edges are removed from G. There are paths from nodes b,c,e, f,g to node d in
Fig. 4.8(a). Therefore, if the private key of node d is revealed to an adversary,
then the adversary can impersonate node a to nodes b, ¢, e, f,g. On the other hand,
without node e and its incoming and outgoing edges, there are no paths from nodes
f,g to node d as shown in Fig. 4.8(b). Therefore, when the private key of d is

revealed to an adversary, the adversary cannot impersonate node e to nodes f,g.

't
gb;?/@/\

(a) without node a

©)
\ ®
(b==ld

o 0

(b) without node e

Figure 4.8: Computing vulnerability of the example graph

For a given certificate graph G, Algorithm 9 computes a transitive closure
C4s¢ without using any incoming and outgoing edges of node dst for each node dst
in G (lines 3-4). Cys contains an edge (src, d) if and only if there is a path from src
to d that does not contain dst and G has no certificate (src,dst) (line 5). In other
words, if there is an edge (src,d) in Cggy, then an adversary can impersonate dst to

src when the private key of node d is revealed to the adversary.
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ALGORITHM 9 : Vulnerability of a certificate graph

INPUT: a certificate graph G with n nodes
OUTPUT: vulnerability of G

STEPS:

1: fordst =0ton—1

2: Cdst =G

3: remove all the incoming and outgoing edges of
node dst from Cyg

4: Cgst := transitive closure of Cyy

5: if G has an edge (src, dst) for any node sre,
then remove (src,dst) from Cyg

6: endfor

7: C := transitive closure of G

8 ford=0ton—1

9: V(d) := ) 4seq(the in-degree of node d in Cyy)
+ the in-degree of node d in C

10: endfor

11: return maxgcg %

To compute the vulnerability of a node d in G, Algorithm 9 finds all the node
pairs (sre,dst) in G such that G has a path from src to d that does not contain dst
and has no certificate (sre, dst). For each node dst in G, the in-degree of node d in
the transitive closure Cgg; is the number of node pairs (sre,dst) in G that satisfies
the condition. So the sum of the in-degree of node d in the transitive closure Cy,; for
each node dst in G shows the scope of the implicit damage of the revealed private
key of node d.

In the example certificate graph G in Fig. 4.1, when the private key of d
is revealed to an adversary, the adversary can impersonate node d to any other
user in G. To compute this explicit damage of the revealed private key of node d,
Algorithm 9 also computes a transitive closure C' of G (line 7). C contains an edge

(src,d) if and only if there is a path from src to d in G. In other words, if there is an
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edge (srec,d) in C, then the adversary can impersonate d to src using the revealed
private key of node d. Therefore, the in-degree of node d in the transitive closure C
of G shows the scope of the explicit damage of the revealed private key of node d.

Using these transitive closures, Algorithm 9 computes the vulnerability of
each node d in a given certificate graph G, and then returns the maximum as the
vulnerability of the certificate graph.

In this algorithm, the most expensive step is line 4. The cost of computing
a transitive closure of a certificate graph with n nodes is O(n?), and we need to
compute (n + 1) transitive closures. Therefore, the complexity of this algorithm is

O(n%).

4.4 Effect of Topology on Vulnerability

The vulnerability of a certificate graph is affected by the topology of the graph. For

15

ig, Whereas

example, the (4,2)-star certificate graph in Fig. 4.5 has vulnerability
the (8, 1)-star certificate graph has vulnerability 1. Therefore, these two certificate
graphs, despite having the same number of nodes and the same connectivity, have
different vulnerabilities.

In Fig. 4.9, we show the effect of topology on vulnerability of star certificate
graphs. Theorem 19 gives the vulnerability of (m, k)-star certificate graphs. How-
ever, if we keep the same number of nodes in the star certificate graph but change
the value of k, not every satellite ring can have exactly £ nodes. We put k£ nodes in
as many rings as possible, and leave the remaining nodes in the last ring. We ran
Algorithm 9 on the star certificate graphs with 100 nodes where k, the maximum
number of nodes in each satellite ring, changes from 1 to 99. Fig. 4.9 shows that
the vulnerability decreases as k increases.

In Fig. 4.10, we show the effect of topologies on vulnerability of tree certificate

graphs. Theorem 20 gives the vulnerability of (d, h)-tree certificate graphs. However,
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Figure 4.9: Vulnerability of Star Certificate Graphs

if we keep the same number of nodes in the certificate graph but change the value
of d, the resulting tree may not be complete. In those trees, we pack the leaf nodes
to the left. We ran Algorithm 9 on the tree certificate graphs with 100 nodes where
d, the degree of tree, changes from 2 to 99. Fig. 4.10 shows that the vulnerability

increases as d Increases.
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Figure 4.10: Vulnerability of Tree Certificate Graphs
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4.5 Effect of Dispersal on Vulnerability

In a certificate graph where certificate chains are used to find a public key, nodes
may store a few certificates in their local storage to expedite the search for a public
key [22, 23, 38]. In particular, certificate dispersal D of a certificate graph G in
Chapter 3.6 assigns a set of certificates D.u to each node u so that if G has a
certificate chain from node u to node v, then D.u U D.v contains all the certificates
in the certificate chain. If certificate dispersal is applied, then when a node u wishes
to securely communicate with a node v, then node u will look for a public key of node
v in D.u first before it sends out a query to node v for more certificates. Therefore,
if node u already has a certificate that has node v as the subject of the certificate,
the adversary cannot impersonate node v to node w by issuing forged certificates.
In other words, the vulnerability of a certificate graph is not only determined by the
topology of the certificate graph, but also affected by the dispersal of the certificate
graph.

As mentioned in Section 4.3, when no dispersal is deployed, if the private key
of node d is revealed to an adversary, then the adversary can impersonate nodes d,
e, f, g to nodes a, b, ¢, and impersonate nodes a, b, ¢, d to nodes e, f, g. However,
when we assign all the certificates in an outgoing spanning tree rooted at node x
to the set D.x, if the private key of node d is revealed to an adversary, then the
adversary can impersonate only node d to all other nodes, so there can be no implicit
damage to the graph. Theorem 16 is modified here to take the effect of dispersal

into consideration.

Theorem 21 Let G be a certificate graph and src and dst be any two distinct nodes
in G. Let D be any dispersal of G and d be a node in G whose private key r.d is
revealed to an adversary. The adversary can impersonate node dst to node src if
and only if src # d, G has a certificate chain from src to d that does not contain

any certificate issued by node dst, and one of the following two conditions holds.
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t. dst =d, or
it. D.src Z (k,dst),k € G

Proof:

Proof for if If dst = d, then the adversary can use the revealed private
key r.d of node d to encrypt and decrypt any message as if it were node d and
impersonate node dst to node src. If dst # d, then D.src has no certificate (k, dst),
for any node k in G, so src does not know the correct public key of dst. Now the
adversary can sign a forged certificate (d, dst') with the revealed private key r.d of
d. There is a certificate chain from src to d that does not contain any certificates
issued by dst, so the adversary can add the forged certificate (d, dst') to the correct
certificate chain from src to d and present the certificate chain from src to dst' to
node src. If node src does not know that the private key of node d is revealed to the
adversary, then src will not notice that the certificate (d, dst’) is forged and accept
the public key in (d, dst') as the valid public key of dst.

Proof for only if In order to prove the only if part, we prove the contra-
position. If any of the following three conditions holds, then the adversary cannot

impersonate dst to src:
i. sre=d

ii. G has no certificate chain from src to d that does not contain any certificate

issued by dst.

ili. dst # d and D.src has certificate (k,dst), for some node k in G.

First, assume src = d. In this case, src will not accept any forged certifi-
cate including a new public key created by the adversary, since src stores all the
certificates it issued.

Second, assume that G has no certificate chain from src to d that does not

contain any certificate issued by dst. If G has no certificate chain from src to d
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that does not contain any certificate issued by dst, there are two possible cases to
consider. In the first case, G has no certificate chain from src to d. In the second
case, G has at least one certificate chain from src to d, but every such chain from
src to d contains a certificate issued by dst. In the first case, the adversary cannot
create a certificate chain from src to dst’, because G has no certificate chain from src
to d to which the adversary can add a forged certificate (d,dst’). So the adversary
cannot impersonate dst to src. In the second case, src will verify the public key
of node dst in the process of validating the certificate chain from src to d, and will
notice that the identity of dst is repeated twice in the certificate chain and reject
the public key of dst’. In both cases, the adversary cannot impersonate dst to src.

Third, assume d # dst and D.src has certificate (k,dst) for some node k in
G. Based on certificate (k, dst), src already knows the correct public key of dst, so
it will not accept any other public key created by the adversary as a valid public
key of dst. Hence, the adversary cannot impersonate dst to src. This completes the
proof for the only if part. |

Algorithm 10 shown below is modified from Algorithm 9 to include the effect
of dispersal in the evaluation of vulnerability. If node src has a certificate (z, dst)
due to dispersal for any user z, then no adversary can impersonate dst to x with
the revealed private key of any user y. Specifically, after line 4 in Algorithm 9, the
following line is added: if any D.src has an edge (z, dst), then remove all the edges
(sre,y) from Cggy.

The graph in Fig. 4.11 shows how much vulnerability is reduced by the
optimal certificate dispersal of tree certificate graphs. In the case of “No Dispersal”,
each node knows only the public keys in the certificates it issued. In the case of
“With Dispersal”, each node stores certificates assigned by an optimal dispersal of
the certificate graph and knows the public keys in the stored certificates. The cost

of certificate dispersal is defined as the average number of certificates stored in each
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ALGORITHM 10 : Vulnerability with certificate dispersal

INPUT: a certificate graph G with n nodes and a dispersal D of G
OUTPUT: vulnerability of G

STEPS:

l: fordst =0ton—1

2: Cdst =G

3: remove all the incoming and outgoing edges

of node dst from Cly;

4: Cyst := transitive closure of Cyg
5: if any D.src has an edge (z, dst),
then remove all the edges (src,y) from Cyg

6: endfor

7. C' .= transitive closure of G

8:ford=0ton—1

9: V(d) := Y 4sc(the in-degree of node d in Cyy)
+ the number of edges (src,d) in C
for any node src in G

10: endfor

11: return maxgcg %

node. An optimal dispersal of a certificate graph is a dispersal whose cost is less
than or equal to the cost of any other dispersal of the same certificate graph. The
tree certificate graphs have 100 nodes and the degree changes from 2 to 99. The
result without dispersal is the same as Fig. 4.10.

Note that the cost of the optimal dispersal of tree certificate graphs decreases,
as shown in Fig. 4.12) whereas the vulnerability increases, as the degree of the tree
increases. The x-axis of the graph in Fig. 4.12 is same as Fig. 4.11, and the y-axis
shows the optimal dispersal cost. There is a clear trade-off between the vulnerability
and the optimal dispersal cost of tree certificate graphs.

The trade-off between the dispersal cost and the vulnerability in general is
fairly straightforward, since a higher dispersal cost means that nodes know more

correct public keys, corresponding to more nodes that the adversary will not be
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Figure 4.12: Optimal Dispersal Cost of Tree Graphs

able to impersonate. However, the trade-off between the dispersal cost of the opti-
mal dispersal and the vulnerability shown here suggests that the certificate graph
topology and the certificate dispersal algorithm must be carefully chosen to reach
the right balance between the performance overhead (i.e. the size of local storage
for dispersed certificates) and the resilience against attacks (i.e. the vulnerability).
A graph with little vulnerability may be resource-intensive to accommodate higher
dispersal cost, which is suitable for high assurance networks. On the other hand,
a graph with limited storage may prefer a certificate graph topology with small

dispersal cost and suffer a higher exposure to impersonation attacks.
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4.6 Effect of Acceptance Criteria on Vulnerability

To reduce the implicit damage of a revealed private key of a node, many researchers
proposed to use some acceptance criteria to verify the validity of the public key of
the destination node of the certificate chain [5, 24, 27, 30, 33, 34, 36, 40]. Some of
the results are described in Chapter 5. Most of these criteria can be modeled as
a function that takes a set of certificate chains as an input and outputs a yes/no
answer. A node u, who wants to find the public key of another node v, will find a
set of certificate chains from u to v. Node u can give this set as an input to the
acceptance criteria function, and if the output answer is yes, then the public key of
node v in the certificate chain will be accepted by node u as valid. Theorem 16 is

modified here to take the acceptance criteria into consideration.

Theorem 22 Let G be a certificate graph and src and dst be any two distinct nodes
in G. Let d be a node in G whose private key r.d s revealed to an adversary. The
adversary can impersonate node dst to node src if and only if src # d and one of

the following two conditions holds.

t. d =dst and G has a set of certificate chains from src to dst that satisfies the

acceptance criteria of G, or

i. P(src,dst) and the set of certificate chains where each chain in the set consists
of a correct certificate chain from src to d, that does not contain any certificate
issued by node dst, and a forged certificate (d,dst'), satisfies the acceptance

criteria of G.

A simple acceptance criteria is to limit the length of certificate chains that
can be used. For example, a node might set the value of this limit to be 6 and
accept only chains that consist of 6 or fewer certificates. In fact, this acceptance

criteria is implemented in the current PGP system as the parameter CERT_ DEPTH.
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Algorithm 11 shown below computes vulnerability of certificate graphs in the case
where this acceptance criteria is used. To explain Algorithm 11, we need to define
the concept of k-closure.

A k-closure of a graph G is a directed graph that has the same number of
nodes in G, and this graph has an edge (src, dst) if and only if there is a directed
path of length at most k& from src to dst in G. Note that 1-closure of G is G itself,
and 0-closure of G is a graph with the same nodes in G but does not contain any
edges.

Algorithm 11 takes a certificate graph G and the limit k(=CERT_DEPTH) on
chain length as input and compute (k-1)-closures for each node dst, so that the
adversary can add a forged certificate to the existing chain and the resulting chain

will satisfy the limit k& on chain length.

ALGORITHM 11 : Vulnerability with limit £ on chain length

INPUT: a certificate graph G with n nodes and
a limit k(=CERT_DEPTH) on chain length
OUTPUT: vulnerability of G

STEPS:

1. fordst =0ton—1

2: Cdst =G

3: remove all the incoming and outgoing edges of
node dst from Cyg

4: Cygst := (k — 1)-closure of Cyy

5: if G has an edge (src, dst),
then remove (src,dst) from Cyg

6: endfor

7: C := k-closure of G

8 ford=0ton—1

9: V(d) := ) 4sc(the in-degree of node d in Cyy)
+ the in-degree of node d in C

10: endfor

11: return maxgcg %
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The graphs in Figs. 4.13-4.14 show how vulnerability changes as we apply
different CERT_DEPTH as the limit on chain length. As CERT DEPTH increases, a node
can accept longer chains, and the vulnerability increases. In Fig. 4.13, each star
certificate graph has 100 nodes and 10 satellite rings, and the maximum number
of nodes in a satellite ring is 10. We changed the value of CERT_DEPTH from 1 to
11, since the longest chain that the adversary will use from the original certificate
graph is 10. (The longest chain from a node in a satellite ring to the center node is
10.) After 10, the vulnerability is same as that in Fig. 4.9. For comparison, we show
the vulnerability of the graph without applying CERT _DEPTH shown as a dotted line
here.

In Fig. 4.14, each tree certificate graph has 100 nodes and the degree is
2. Since the root node has the maximum vulnerability, the longest chain that an
adversary will use from the original certificate graph is from the leaf node to the
root node, which has length 6. Hence, we changed the value of CERT_DEPTH from 1

to 7. After 6, the vulnerability is the same as Fig. 4.10, shown as a dotted line here.
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Figure 4.13: Effect of limit on chain length on vulnerability

As another example of acceptance criteria, we can use “path independence”
proposed in [33]. This acceptance criteria requires k independent paths from src to

dst for node src to be able to use the public key of dst in the certificate graph. To
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Figure 4.14: Effect of limit on chain length on vulnerability

find independent paths, the authors propose to use the min-cut size of a certificate
graph from src to dst. Since src only uses the public key of dst if the min-cut size
of a certificate graph from src to dst is at least k, the adversary needs to know at
least k private keys.

In the current Internet, SSL/TLS [13] is one of the most commonly used pro-
tocols based on certificates. In SSL/TLS, most of the websites that have certificates
signed by a CA, such as VeriSign, do not have alternate certificates signed by other
CA. In other words, there is only one chain from one node to another. For this type
of certificate graphs, path independence cannot be used.

The other commonly used protocol based on certificates is PGP [40]. PGP
certificate graphs have the properties of small world [37]. The certificate graph in
Fig. 4.15 is an example of small world graphs. Fig. 4.16 shows how vulnerabil-
ity changes as k changes for this example certificate graph. As k increases, the
vulnerability decreases.

In both examples of acceptance criteria, the graphs in Fig. 4.13 and Fig. 4.16
show that a stricter acceptance criteria reduces the vulnerability of certificate graphs.
However, it also increases the number of valid public keys that cannot satisfy the

stricter acceptance criteria. For example, in Fig. 4.13, the ”"avg usable keys” is the
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average number of public keys a node can use. This increases as the depth limit
increases. For the certificate graph in Fig. 4.15, the average number of public keys
a node can use decreases from 5 to 1764 ~ 2.7 as k increases from 2 to 3.

Also, according to the analysis in [8], the degrees of nodes in a self-organized
certificate graph follow Zipf’s distribution. In other words, most nodes in a self-
organized certificate systems have a very small number of outgoing edges. In the
Fig. 9 in [8], about half of the nodes in the largest strongly connected component
of the 2001 PGP graph have fewer than three outgoing edges, and about 30% of
the nodes have only one outgoing edge. Therefore, when the path independence is
applied as the acceptance criteria, a large £ may cause many public keys to become
unusable by other nodes. In the previous example of the 2001 PGP graph, £ > 3
will cause half of the nodes not to be able to use any public keys in certificate chains
of length at least 2.

Clearly, there is a trade-off between the vulnerability of a certificate graph
and the usability of the public keys in the certificate graph. Hence, acceptance
criteria needs to be chosen and configured very carefully. This metric of vulnerability
can help system administrators balance the resilience against impersonation attacks

and the usability of the public keys in certificate graphs.

4.7 Vulnerability of Many Revealed Keys

As shown in the previous section, when an acceptance criteria requires more than
one certificate chain from a node src to a node dst for node src to accept the public
key in the certificate chain as the public key of dst, the vulnerability of a certificate
graph can change depending on how many private keys are revealed to an adversary.
Theorem 22 is modified here to take the case where many private keys are revealed

to an adversary into the consideration.

Theorem 23 Let G be a certificate graph and src and dst be any two distinct nodes
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in G. Let D be a set of nodes in G where the private key r.d of each node d in D
1s revealed to an adversary. The adversary can impersonate node dst to node src

if and only if src # d for any node d in D and one of the following two conditions

holds.

t. d = dst for some node d in D and G has a set of certificate chains from src

to dst that satisfies the acceptance criteria of G.

it. There is no certificate (src,dst) and the set of certificate chains, in which
each chain consists of a correct certificate chain from src to some node d in D
that does not contain any certificate issued by node dst and a forged certificate

(d,dst"), satisfies the acceptance criteria of G.

The vulnerability of the set D is defined as follows:

[IMP(D)|

N T e

where IM P(D) = {(src,dst)| the adversary can impersonate dst to src using private
keys of nodes in D} and n is the number of nodes in G. Let G be a certificate
graph and there can be at most « private keys revealed to an adversary, then the
vulnerability of graph G with « revealed keys, denoted V (G, z), is defined as follows:

V(G,z) = max V(D)
DCG,D|<a

Note that this definition generalizes the definition of V' (G), which is equal to V (G, 1).

Figure 4.15: An example of a self-organized certificate graph
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For the example certificate graph in Fig. 4.15, assume that the acceptance
criteria of path independence with k = 2 is applied. Also, assume that the private
keys of nodes b and d are revealed to an adversary. There is no certificate (a, c), and
there are certificates (a,b) and (a,d), so the adversary can impersonate node ¢ to
node a. Also, there is no certificate (f,c), and there are certificate chains (f, a)(a, b)
and (f,e)(e,d) that do not contain ¢, so the adversary can impersonate node ¢ to
node f. There are 16 node pairs (src, dst) such that the adversary can impersonate
dst to src using the private keys of nodes b and d, so the vulnerability of {b,d} is
%. This is also the maximum vulnerability of the example certificate graph when
x =250 V(G,2) = 3.

Fig. 4.16 shows how the vulnerability of the certificate graph in Fig. 4.15
changes as the number of revealed private keys changes. We applied the acceptance
criteria of path independence with the parameter k£ from 1 to 3, and changed the
number of revealed private keys x from 1 to 6. As the number of revealed private
keys increases, the vulnerability increases. As long as the number of revealed private

keys is less than k, the vulnerability is limited to explicit damage.
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Figure 4.16: Vulnerability of many revealed keys
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Chapter 5

Related Work

Several papers have investigated the use of certificates for confidentiality, authenti-
cation, and authorization. We summarize the results of these papers in the following
paragraphs.

Architectures for issuing, storing, discovery, and validating certificates in
networks are presented in [35, 7, 31, 18, 6, 12, 16, 19, 28]. In a large scale network
such as today’s Internet, one cannot expect to have a central authority to issue, store,
and validate all the certificates. A distributed system, where each user participates
in issuing, storing, and validating certificates is desirable in such a network.

In [39] and [25], distributed architectures for issuing certificates, particularly
in mobile networks, are presented.

In [39], Zhou and Haas present an architecture for issuing certificates in an
ad-hoc network. According to this architecture, the network has k servers. Each
server has a different share of some private key rk. To generate a certificate, each
server uses its own share of 7k to sign the certificate. If no more than ¢ servers have
suffered from Byzantine failures, where k > 3t + 1, then the resulting certificate is
correctly signed using the private key rk, thanks to threshold cryptography. The

resulting certificate can be verified using the corresponding public key which is
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known to every node in the ad-hoc network.

In [25], Kong, Perfos, Luo, Lu and Zhang presented another distributed
architecture for issuing certificates. Instead of employing k servers in the ad-hoc
network, no special nodes such as servers are in the network and every node in
the network is provided with a different share of the private key rk. For a node
u to issue a certificate, the node w forwards the certificate to its neighbors and
each of them sign the certificate using its share of rk. If node u has at least ¢t + 1
correct neighbors (i.e. they have not suffered from any failures), then the resulting
certificate is correctly signed using the private key rk.

In [28], Li, Winsborough, and Mitchell presented a role-based trust manage-
ment language RT) and suggested the use of strongly typed distributed certificate
storage to solve the problem of certificate chain discovery in distributed storage.
However, they do not discuss how to efficiently assign certificates among the dis-
tributed storages. By contrast, our work focuses on minimizing storage overhead
in certificate dispersal among the users while they have enough certificates so that
there is no need for certificate chain discovery.

In [2], Ajmani, Clarke, Moh, and Richman presented a distributed certificate
storage using peer-to-peer distributed hash table. This work assumes dedicated
servers host a SDSI certificate directory and focuses on fast look-up service and
load balancing among the servers. By contrast, our work assigns certificates to
users such that there is no need for look-up and there are no dedicated certificate
storage servers. Our work also focuses on efficient use of storages in all users in
network.

Perhaps the closest work to the certificate dispersal is [22] where the authors,
Hubaux, Buttyan, and Capkun, investigated how to disperse certificates in a certifi-
cate graph among the network nodes under two conditions. First, each node stores

the same number of certificates. Second, with high probability, if two nodes meet
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then they have enough certificates for each of them to obtain the public key of the
other. By contrast, our work is based on two different conditions. First, different
nodes may store different number of certificates, but the average number of certifi-
cates stored in nodes is minimized. Second, it is guaranteed (i.e. with probability
1) that if two nodes meet then they have enough certificates for each of them to
obtain the public key of the other (if there exists a chain between them in the chain
set).

Later, the same authors have showed in [9] that a lower bound on the number
of certificates to be stored in a node is v/n — 1 where n is the number of nodes in
the system. Our work here shows that finding an optimal dispersal of a given
chain set is NP-complete, and presents three polynomial-time algorithms which
compute optimal dispersal of chain sets in three classes of practical interests and
two extensions of these algorithms for more general classes of chain sets.

Zheng, Omura, Uchida, and Wada presented algorithms that compute opti-
mal dispersals for strongly-connected graphs and directed graphs in [38]. The same
authors also showed the tight upper bounds in these two classes of certificate graphs.

A public key infrastructure based on certificates is scalable and efficient in
issuing and validating certificates but cannot tolerate Byzantine failures. In par-
ticular, if one node suffers from Byzantine failure, then this node can successfully
impersonate any other node that is reachable from this node in the certificate graph
of the network. This vulnerability to Byzantine failures is not unique to our certifi-
cate work. In Section 4, we have identified a metric to evaluate the damage from
this type of attacks.

The metric of vulnerability can be used in any certificate system. For exam-
ple, X.509 [1], SSL/TLS [13], PGP [40], and SDSI/SPKI [17, 35]. In any of these
certificate systems, when a private key of some node is revealed to an adversary,

the adversary may successfully impersonate nodes to other nodes in the system. In

107



other words, the certificate systems may be vulnerable to impersonation attacks.
Many researchers proposed mechanisms to evaluate certificate chains to mit-
igate this vulnerability. Tarah and Huitema [36] investigated using the path length
as acceptance criteria. In [33], Reiter and Stubblebine investigated how to increase
assurance on authentication with multiple independent certificate chains. They in-
troduce two types of independent chains, disjoint paths (no edge is shared by any two
chains) and k-connective paths (k certificates need to be compromised to disconnect
all these paths). This paper shows that there are no polynomial-time algorithms
for locating maximum sets of paths with these properties and presents approxima-
tion algorithms. Beth, Borcherding, and Klein [5] and Maurer [30] proposed an
acceptance criteria based on probabilities. In PGP [40], users can limit the length
of acceptable certificate chains and also require certain number of certificate chains
to accept the public key of destination node. Levien and Aiken [27] presented an
analytical model of different types of attacks and compared the resilience of accep-
tance criteria in [30] and [33] based on this model. The same authors also suggested
another acceptance criteria based on the max flow algorithm. In [34], Reiter and
Stubblebine suggested a number of guiding principles for the design of acceptance

criteria.
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Chapter 6

Conclusion

A certificate system is a useful public key infrastructure for distributed systems.
A certificate can be stored anywhere in the system and can be used by any user
who knows the public key of the issuer of the certificate. We have proposed a new
way of distributing certificates that minimizes the communication overhead on the
third party, called a certificate dispersal. Certificate dispersal assigns certificates to
users in the system such that the two users that want to securely communicate with
each other do not need to contact any third party for certificates. We showed that
computing an optimal dispersal is NP-Complete when the dispersal cost is defined
as an average number of certificates stored in each user, given a certificate chain
set. We also presented several classes of certificate graphs and chain sets for which
optimal dispersals can be computed in polynomial-time. Algorithms for these classes
are also shown and proven to compute optimal dispersals. For a dynamic certificate
system, we also devised a stabilizing dispersal protocol.

We have defined a metric called vulnerability that measures the potential
scope of damage that an adversary with revealed private keys could incur to the
system. We show that the vulnerability of a certificate graph is affected by the

graph topology, dispersal, and acceptance criteria. One can use the vulnerability
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measure as a design criteria of certificate systems, given the system requirements on
dispersal cost and vulnerability.

As future work, we would like to build an application that utilizes the dis-
persal and vulnerability. For example, a large-scale distributed system where a
relatively small number of autonomous systems are cooperating could benefit from
dispersal and vulnerability. Between the coordinators of autonomous systems, one
can expect that the certificate system would not change rapidly. We can compute an
optimal dispersal between coordinators periodically, or run the dynamic dispersal
protocol. At the same time, the vulnerability metric could be a guideline in whether
to issue certain certificates or not, or even in deciding the price of issuance for those

certificates.
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