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Dispersability and Vulnerability Analysisof Certi�
ate SystemsPubli
ation No.Eunjin Jung, Ph.D.The University of Texas at Austin, 2006Supervisor: Mohamed G. GoudaA 
erti�
ate is a way to distribute publi
 keys of users in a distributed system.For example, in the 
urrent Internet, 
erti�
ates are heavily used in SSL/TLS forse
uring e-
ommer
e. In this thesis, we des
ribe the three phases of a 
erti�
ate,how a 
erti�
ate is issued, used, and revoked/expired. In parti
ular, we propose anew way of distributing 
erti�
ates, 
alled 
erti�
ate dispersal. Certi�
ate dispersalassigns 
erti�
ates to users su
h that when a user u wants to se
urely 
ommuni
atewith another user v in a system, users u and v may �nd out the publi
 key ofuser v based on the 
erti�
ates stored in u or v. In other words, users u and vhave no need to 
onta
t any other user in the system. We de�ne dispersal in twovii



environments, a 
erti�
ate graph and a 
erti�
ate 
hain set and the 
osts of dispersal.In the environment of 
erti�
ate 
hain set, 
omputing an optimal dispersal is NP-
omplete. However, we identify several 
lasses of 
hain sets and 
erti�
ate graphsfor whi
h optimal dispersal 
an be 
omputed in polynomial-time. For ea
h 
lasswe present an algorithm that 
omputes an optimal dispersal. We also analyze thevulnerability of 
erti�
ate systems. Any 
erti�
ate system su�er from impersonationatta
ks when a private key of a user is revealed to an adversary. We de�ne the metri

alled vulnerability that measures the s
ope of damage when some private keys arerevealed, and show how di�erent 
erti�
ate systems have di�erent vulnerabilities.These results 
an be used to design a good 
erti�
ate system that satis�es systemrequirements of dispersal 
ost and vulnerability.
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Chapter 1
Introdu
tion
The 
on
ept of publi
 key 
ryptography (also known as asymmetri
 key 
ryptog-raphy) was �rst introdu
ed by DiÆe and Hellman in [14℄. The main idea is thattwo keys work as a pair: one that is known to the publi
 and the other that isonly known to one user. If a message is en
rypted with one key, then the en
ryptedmessage 
an be only de
rypted by the other key.If a user u en
rypts a non
e with the publi
 key of another user v and thenre
eives the same non
e from user v, then user u 
an be assured that user v ownsthe 
orresponding private key and authenti
ate user v. If a user u sends a messageto another user v with the hash of this message en
rypted with the private key of u,and then user v 
omputes the same hash of the re
eived message as the de
ryptedhash with the publi
 key of user u, then user v 
an be assured that user u generatedthis message. This en
rypted hash of a message is 
alled digital signature.Many distributed proto
ols and se
urity proto
ols, both in resear
h and pra
-ti
e, utilizes authenti
ation and digital signature provided by publi
 key 
ryptog-raphy. For example, e-
ommer
e on the Internet operates on Se
ure So
ket Layer(SSL), and SSL authenti
ates websites using publi
 key 
ryptography. In the dis-tributed 
omputing literature, some repli
ated state ma
hine proto
ols [10℄, use1



publi
 key 
ryptography, as well as some quorum proto
ols [29℄.Proto
ols that use authenti
ation and digital signatures based on publi
 key
ryptography require an underlying publi
 key infrastru
ture (PKI). PKI in
ludesthe issuan
e, distribution, and revo
ation of publi
 keys: how to issue the publi
and private key for users, how to distribute (and store) the publi
 keys of users, andhow to revoke the publi
 keys when the 
orresponding private keys are revealed toadversaries. In one of the simplest form of PKI, every user stores the publi
 keys ofall other users. This PKI does not s
ale very well when the number of users growsto millions, as in the Internet. Instead, SSL relies on a handful of publi
 keys thatare well-known to ea
h user to introdu
e more publi
 keys. This introdu
tion isdone by a digitally signed statement, whi
h is 
alled a \
erti�
ate".A 
erti�
ate 
an be understood as an ele
troni
 identi�
ation. A traveler whowants to pass the se
urity 
he
k at any airport in the States needs to provide a photoidenti�
ation along with a boarding pass. The name on the boarding pass needs tomat
h the name on the photo identi�
ation, and the photo in the identi�
ation mustmat
h the traveler. In other words, the photo identi�
ation states the relationshipbetween the name and the fa
e of the traveler.In the 
ontext of PKI, a 
erti�
ate states a relationship between a user andits 
orresponding publi
 key, and it is signed by a private key of another user. We
all the user who signed the 
erti�
ate with its private key the \issuer" and the userwhose publi
 key is stated in the 
erti�
ate the \subje
t" of this 
erti�
ate. Anyuser who knows the publi
 key of the issuer 
an verify the 
erti�
ate to make surethat it is indeed signed by the issuer. When the 
erti�
ate is su

essfully veri�ed,than the user may use the key written in the 
erti�
ate as the publi
 key of thesubje
t. In other words, the issuer introdu
es the publi
 key of the subje
t to thisuser. In SSL, most web browsers have publi
 keys of Certi�
ate Authorities (CA).2



When a 
lient wants to authenti
ate a website, then the website provides a 
erti�
ateto the 
lient that is signed by a well-known CA. The 
lient uses the publi
 key ofthe CA in the web browser to verify the 
erti�
ate, and then uses the publi
 key inthe 
erti�
ate for the subsequent authenti
ation proto
ol. In other words, the CAintrodu
es the publi
 key of the website to the 
lient. In the example of a travelerat the airport, a government (or the agen
y that issues a state identi�
ation) isa CA. A se
urity personnel 
an trust the government and trust the photo in theidenti�
ation to be the 
orre
t photo for the name. A 
lient 
an trust the CA andtrust that the publi
 key in the 
erti�
ate is the 
orre
t publi
 key for the website.Certi�
ates in PKI help with s
alability. On
e the government issues a photoidenti�
ation, a traveler may use the identi�
ation for many trips. Similarly, on
ethe CA issues a 
erti�
ate for a website, a website may use the 
erti�
ate for many
lients. In the example of SSL, a handful of publi
 keys are stored in ea
h webbrowser, and millions of 
lients 
an authenti
ate thousands of websites with veri�able
erti�
ates.Users may use more than one 
erti�
ate to learn publi
 keys of other users.For example, if a user u issues a 
erti�
ate for another user v and user v issues a
erti�
ate for a user w, then user u 
an learn the publi
 key of user w using thetwo 
erti�
ates issued by users u and v. Pretty Good Priva
y (PGP) is an examplesystem where more than one 
erti�
ate 
an be used. The series of 
erti�
ates is
alled a 
erti�
ate 
hain.In a distributed system, when a user u wants to �nd the publi
 key of user v,user u may need to use more than one 
erti�
ate. If there is a 
entral repository of
erti�
ates, user u may query the repository for 
erti�
ates. However, it is hard tomaintain su
h a repository for a large s
ale distributed system. In parti
ular, if thatsystem operates on an ad-ho
 network, the rea
hability of the 
erti�
ate repositorybe
omes non-trivial. We propose a novel way of distributing 
erti�
ates so that the3



users u and v 
an �nd all the ne
essary 
erti�
ates without 
onta
ting any otheruser. We 
all this distribution me
hanism 
erti�
ate dispersal. Certi�
ate disper-sal minimizes the 
ommuni
ation overhead in �nding 
erti�
ates. We prove that
omputing a 
erti�
ate dispersal that minimizes the average number of 
erti�
atesstored in a user is NP-Complete in general. The 
erti�
ate dispersal is optimal ifthe average number of 
erti�
ates stored in a user is minimum. We identify several
lasses of 
erti�
ate systems and present algorithms that 
ompute optimal 
erti�
atedispersals for su
h systems in polynomial time.A 
erti�
ate system may su�er from impersonation atta
ks. An imperson-ation atta
k o

urs when an adversary gets hold of the private key of a user u, andpretends to be user u by de
rypting messages en
rypted with the publi
 key of useru. The adversary 
an also impersonate another user v using the private key of useru as follows. The adversary may 
reate a new publi
 and private key pair, and issuea 
erti�
ate with this new publi
 key as if this publi
 key belonged to user v. Whena user w is not aware that the private key of user u is revealed to the adversary,user w may use the 
erti�
ate issued by the adversary and learn the wrong publi
key. When user w sends any message to user v that is en
rypted with the wrongpubli
 key, the adversary 
an inter
ept the message and learn its 
ontent.In Chapter 4, we de�ne a metri
 
alled \vulnerability" of a 
erti�
ate systemwhi
h measure the potential damage from impersonation atta
ks. We also identifywhat properties of the 
erti�
ate system a�e
t vulnerability. The analysis of theintera
tion between these properties gives guidelines on designing a good 
erti�
atesystem.A 
erti�
ate has a lifetime in a PKI. It is 
reated by the issuer, is used byusers who know the publi
 key of the issuer, and dies when it is revoked or expires.In the next 
hapter, we de�ne a 
erti�
ate and a 
erti�
ate system more formallyin the order of these events. In Chapter 3.1, we de�ne 
erti�
ate dispersal and4



explain how a dispersal 
an be 
omputed for any 
erti�
ate system, and how to
ompute an optimal dispersal for some 
lasses of 
erti�
ate systems. In Chapter 4,we 
ontinue by analyzing potential vulnerabilities of 
erti�
ate systems. Finally wedis
uss related work and 
on
lude with future dire
tions.

5



Chapter 2
Certi�
ates and Certi�
ateSystems
We 
onsider a system where users would like to send messages se
urely to otherusers. A user who would like to send a se
ure message is 
alled a sour
e and a userwho is intended to re
eive su
h a message is 
alled a destination.In the Internet, it is 
ommon that one sour
e may wish to send messages tomany destinations. For example, a sour
e Ali
e may wish to send her 
redit 
ardnumber se
urely to several destination shopping sites, say Amazon.
om, eBay.
om,and pri
eline.
om. The se
ure 
ommuni
ation between a sour
e and a destinationis prote
ted by en
rypting ea
h ex
hanged message with a shared key only knownto the sour
e and destination.In this system, ea
h user u, whether sour
e or destination, has a privatekey rku and a publi
 key bku. In order for a sour
e u to share a key sk with adestination v, u en
rypts key sk using the publi
 key bkv of v and send the result,denoted bkvfskg, to v. Only v 
an de
rypt this message and obtain key sk sharedwith u. This s
enario ne
essitates that u knows the publi
 key bkv of v. In the aboveexample, Ali
e needs to know the publi
 keys of Amazon, eBay, and pri
eline.6



If a user u knows the publi
 key bkv of another user v in the network, then u
an issue a 
erti�
ate, 
alled a 
erti�
ate from u to v, that identi�es the publi
 keybkv of v. This 
erti�
ate 
an be used by any user that knows the publi
 key of u tofurther a
quire the publi
 key of v.A 
erti�
ate from u to v is of the following form:< u; v; bkv > rkuThis 
erti�
ate is signed using the private key rku of u, and it in
ludes three items:the identity of the 
erti�
ate issuer u, the identity of the 
erti�
ate subje
t v, andthe publi
 key of the 
erti�
ate subje
t bkv. Any user that knows the publi
 keybku of u 
an use bku to obtain the publi
 key bkv of v from the 
erti�
ate from u tov. Note that when a user obtains the publi
 key bkv of user v from the 
erti�
ate,the user not only �nds out what bkv is, but also a
quires a proof that bkv is indeedthe publi
 key of user v.A 
erti�
ate has a lifetime. The issuer issues this 
erti�
ate, users use this
erti�
ate to �nd the publi
 key of the subje
t, and the issuer may revoke this
erti�
ate or the 
erti�
ate may expire. We will dis
uss the �rst two phases in moredetails below. (The revo
ation step will be dis
ussed in Se
tion 3.6.)2.1 Certi�
ate Issuan
eTo issue a 
erti�
ate < u; v; bkv > rku, the issuer u must take the following threesteps.i. Find the publi
 key bkv of user v: In this step, user u needs to make sure thatthe key bkv is the 
orre
t publi
 key of user v.ii. Compute the hash (message digest): In this step, user u assembles all theinformation that will be in
luded in the 
erti�
ate, in addition to the identity7



of the issuer u, the identity of the subje
t v, and the publi
 key bkv of user v.For example, the 
erti�
ate may in
lude the expiration date of this 
erti�
ate,and the name of the hash fun
tion that is used to 
ompute this hash.iii. En
rypt the 
omputed hash with the private key rku: In this step, user uen
rypts the 
omputed hash with the private key so that any user who knowsthe publi
 key of user u 
an verify that no adversary tampered with this
erti�
ate.Among these three steps the hardest step is the �rst one, to �nd the publi
key of another user in the system. Two di�erent types of users may take this
hallenge.i. Certi�
ate Authority: A Certi�
ate Authority (CA) in a system �nds the
orre
t publi
 key of other users and issues 
erti�
ates for them. In some
ases, a CA even generates the publi
 and private key for other users andassigns private keys to them. There 
an be multiple CAs in the system, andea
h user may have multiple CAs issue 
erti�
ates for the same publi
 key.ii. Any user: Any user in a system �nds the 
orre
t publi
 key of other usersand issues 
erti�
ates for them. Most times su
h �nding relies on veri�
ationon an o�ine 
hannel, for example so
ial 
onta
ts. A user may issue as many
erti�
ates as he or she wishes, so every user may have di�erent number of
erti�
ates issued for himself or herself.Note that �nding the 
orre
t publi
 key of a user is more than �nding thepubli
 key that mat
hes a given private key. More importantly, the identity inthe 
erti�
ate issued for a 
ertain publi
 key should mat
h the real owner of the
orresponding private key. For example, re
ently there was a 
erti�
ate issued forMountain Ameri
a Credit Union in Utah by Equifax Se
ure In
., whi
h is a divi-sion of the well-known 
redit reporting bureau Equifax, now part of the 
ompany8



Geotrust. Geotrust 
urrently holds around 25% of the market share in SSL 
er-ti�
ate issuan
e business. It turned out that the publi
 key in this 
erti�
ate didnot belong to the 
laimed Mountain Ameri
a 
redit union, but to an atta
ker who
olle
ted 
redit 
ard numbers from Mountain Ameri
a 
redit union a

ount holders.(The details 
an be found in [26℄.) Reiter and Stubblebine [34℄ noted that thereshould be o�ine veri�
ation in 
erti�
ate issuan
e.2.2 Certi�
ates to �nd publi
 keysThe 
erti�
ates issued by di�erent users in a network 
an be represented by a di-re
ted graph, 
alled the 
erti�
ate graph of the network. Ea
h node in the 
erti�
ategraph represents a user in the network. Ea
h dire
ted edge from node u to node vin the 
erti�
ate graph represents a 
erti�
ate from u to v in the network.
Figure 2.1: A 
erti�
ate graph of Ali
e and BobFig. 2.1 shows a 
erti�
ate graph for a network with two sour
es, Ali
e andBob, and six destinations, Amazon, eBay, pri
eline, Amex, Visa, and Dis
over.A

ording to this graph,Ali
e issues three 
erti�
ates(Ali
e, Amazon), (Ali
e, eBay), and (Ali
e, pri
eline), andBob issues three 
erti�
ates(Bob, Amex),(Bob, V isa), and (Bob, Dis
over)A more eÆ
ient way to support se
ure 
ommuni
ation between the sour
es9



and the destinations is to introdu
e some intermediaries between the sour
es andthe destinations. The number of introdu
ed intermediaries is mu
h smaller than thenumber of sour
es and the number of destinations. Ea
h intermediary has its ownpubli
 and private key pair. The sour
es know the publi
 keys of intermediaries andthe intermediaries issue 
erti�
ates of the publi
 keys of the destinations. For exam-ple, two intermediaries, namely VeriSign and CertPlus, 
an be introdu
ed betweenthe two sour
es and the six destinations in Fig. 2.1. The result is the 
erti�
ategraph in Fig. 2.2.
Visa Discover

CertPlus

Amazon eBay priceline Amex

VeriSign

BobAlice Carol sources

intermediaries

destinationsFigure 2.2: A 
erti�
ate graph with intermediariesA

ording to the 
erti�
ate graph in Fig. 2.2, Ali
e needs to issue only one
erti�
ate to VeriSign and Bob needs to issue only one 
erti�
ate to CertPlus. Ali
e
an then use the two 
erti�
ates (Ali
e, V eriSign) and (V eriSign; Amazon) toobtain the publi
 key bkAmazon, and so 
an se
urely send messages to Amazon.Also, Bob 
an use the two 
erti�
ates (Bob;CertP lus) and (CertP lus; V isa) toobtain the publi
 key bkV isa, and then 
an se
urely send messages to Visa.For Ali
e to use the 
erti�
ate (V eriSign;Amazon), Ali
e needs to verifythe 
erti�
ate �rst through the following four steps.i. Find the publi
 key of VeriSign: In this example, Ali
e already has a key thatshe believes to be the 
orre
t publi
 key of VeriSign, in 
erti�
ate (Ali
e; V eriSign).ii. Compute the hash (message digest): Ali
e 
omputes the hash of all the infor-mation in
luded in 
erti�
ate (V eriSign;Amazon).iii. De
rypt the in
luded hash with the publi
 key of VeriSign: Ali
e de
rypts10



the in
luded hash in 
erti�
ate (V eriSign;Amazon) with the publi
 key ofVeriSign in 
erti�
ate (Ali
e; V eriSign).iv. Compare the two hashes: Ali
e 
ompares the two hashes from the se
ond andthird steps. If these two hashes mat
h, this 
erti�
ate (V eriSign;Amazon) issu

essfully veri�ed.As far as the veri�
ation is 
on
erned, the issuer 
ould en
rypt the whole 
er-ti�
ate with its private key. However, the publi
 key de
ryption is 
omputationallyexpensive, so it is easier to 
ompute the hash of a 
erti�
ate and de
rypt just thein
luded hash rather than de
rypting the whole 
erti�
ate. Moreover, sin
e hashfun
tions are one way, users 
an be assured that using the hash instead of the whole
erti�
ate does not 
ompromise the veri�
ation.As dis
ussed above, the 
erti�
ate issuan
e is not 
omputationally expensive,but �nding the 
orre
t publi
 key of a subje
t may be diÆ
ult. The intermediariesin Fig. 2.2 redu
e the number of 
erti�
ates that Ali
e needs to issue. InsteadAli
e needs to verify 
erti�
ates issued by intermediaries (
erti�
ate authorities) by
omputing hashes and de
rypting hashes. After verifying the 
erti�
ates, Ali
e 
anlearn the publi
 keys of websites and use the keys for 
ommuni
ating se
urely withthe websites.In general, for users u and v in a 
erti�
ate graph G, if u wishes to sendmessages se
urely to v, then there must be a \
hain" from u to v in G. Certi�
ate
hains are de�ned as follows:A simple path from a sour
e u to a destination v in a 
erti�
ate graph G is
alled a 
hain from u to v in G. u is the sour
e of the 
hain and v is the destinationof the 
hain. When sour
e u wishes to 
ommuni
ate se
urely with destination v,sour
e u needs to �nd a 
hain from u to v.1 On
e u �nds a 
hain, it needs to verify1There are 
erti�
ate systems where u needs to �nd more than a 
hain from u to v, but weassume the minimum requirement of one 
hain here. More 
ompli
ated systems will be dis
ussedin Chapter 4. 11



all the 
erti�
ates in the 
hain to �nd the publi
 key of destination v. The 
hainfrom u to v through v0 � � � vk 
onsists of 
erti�
ates (u; v0), (v0; v1), � � � , (vk�1; vk),(vk; v). The veri�
ation of ea
h 
erti�
ate (vi; vi+1), 0 � i � k is done as follows:i. Find the publi
 key of vi: By the time user u gets to 
erti�
ate (vi; vi+1), useru must have veri�ed all the 
erti�
ates in the 
hain from u to vi. From the
erti�
ate (vi�1; vi), user u 
an obtain the publi
 key of vi.ii. Compute the hash (message digest): User u 
omputes the hash of all theinformation in
luded in 
erti�
ate (vi; vi+1).iii. De
rypt the in
luded hash with bkvi : User u de
rypts the in
luded hash in the
erti�
ate with bkvi found in the �rst step.iv. Compare the two hashes: User u 
ompares the two hashes from the se
ondand third steps. If they mat
h, this 
erti�
ate is su

essfully veri�ed.When 
erti�
ate (vi; vi+1) is su

essfully veri�ed, user umoves on to (vi+1; vi+2).On
e all the 
erti�
ates in the 
hain are veri�ed su

essfully, sour
e u 
an obtainthe publi
 key of destination v from the last 
erti�
ate of the 
hain.For users u and v in a 
erti�
ate graph G, if u wishes to se
urely sendmessages to v, then there must be a 
hain from u to v in G. On the other hand,there may be a 
hain from u to v even though u does not need to se
urely sendmessages to v. Fig. 2.3 shows the six 
hains that are needed to support the se
ure
ommuni
ations between the two sour
es and the six destinations in Fig. 2.1. Notethat there is a 
erti�
ate (V eriSign, Amex) in the 
erti�
ate graph in Fig. 2.2that is not needed to support se
ure 
ommuni
ation between any sour
e and anydestination in Fig. 2.1. Sin
e Ali
e does not need to se
urely 
ommuni
ate withAmex, the 
erti�
ate 
hain (Ali
e, V eriSign),(V eriSign, Amex) in the 
erti�
ategraph in Fig. 2.2 is not in
luded in Fig. 2.3.12



Figure 2.3: Certi�
ate 
hains from Fig. 2.2The 
erti�
ates in ea
h 
hain need to be \dispersed" between the sour
e anddestination of the 
hain su
h that if a sour
e u wishes to se
urely send a messageto a destination v then u 
an obtain the publi
 key of v from the set of 
erti�
atesstored in u and v. (Note that to \store a 
erti�
ate in a user" does not ne
essarilymean that the user has a lo
al 
opy of the 
erti�
ate. Rather, it means that theuser only needs to know where to �nd the 
erti�
ate, if a need for that 
erti�
atearises, either in its lo
al storage or in a remote lo
ation.)For example, assume that ea
h sour
e in Fig. 2.3 stores its 
erti�
ate tothe 
orresponding intermediary, and that ea
h destination in Fig. 2.3 stores the
erti�
ate from its 
orresponding intermediary to itself. Thus,Ali
e stores the 
erti�
ate (Ali
e, V eriSign),Bob stores the 
erti�
ate (Bob, CertP lus),Amazon stores the 
erti�
ate (V eriSign, Amazon),eBay stores the 
erti�
ate (V eriSign, eBay),pri
eline stores the 
erti�
ate (V eriSign, pri
eline),Amex stores the 
erti�
ate (CertP lus, Amex),Visa stores the 
erti�
ate (CertP lus, V isa), andDis
over stores the 
erti�
ate (CertP lus, Dis
over)In this 
ase, if Ali
e wishes to se
urely send messages to pri
eline, then Ali
e 
anuse the two 
erti�
ates stored in Ali
e's 
omputer and pri
eline website to obtainthe publi
 key of pri
eline and se
urely send the messages to pri
eline. Certi�
ates13



that are not part of any 
hain are not stored be
ause they are not needed. Thisis illustrated by the 
erti�
ate (V eriSign, Amex), whi
h appears in Fig. 2.2 but isnot stored in Amex.Note that the intermediary, in this 
ase VeriSign, needs to 
ommuni
atewith Ali
e or pri
eline for them to se
urely 
ommuni
ate with ea
h other. In thisparti
ular example there is only one intermediary, VeriSign, so it may not be toohard for Ali
e to 
onta
t VeriSign. However, one 
an imagine that the 
hain 
ouldbe arbitrarily longer than 2, and in a su
h 
ase, it would be rather ineÆ
ient if thesour
e of the 
hain need to 
onta
t all the users appearing in the 
hain. Certi�
atedispersal, de�ned in Chapter 3.1 more formally, assigns 
erti�
ates to users su
hthat sour
e and destination of a 
hain 
ould �nd all the 
erti�
ates in the 
hainwithout 
onta
ting any other user.2.3 Certi�
ate Expiration or Revo
ationCerti�
ates' lifetime ends when a 
erti�
ate is either expired or revoked. If theissuer of a 
erti�
ate had a spe
i�
 expiration date in mind, then the expirationdate be
omes part of the 
erti�
ate. Other users may verify that the 
erti�
ate hasnot expired using this expiration date. If the 
urrent time is after the expirationdate, then other users may 
hoose not to use the 
erti�
ate nor the publi
 keyintrodu
ed by the 
erti�
ate. The issuer 
an have some 
ontrol over the usage of a
erti�
ate it issued by 
ontrolling the expiration date. The later the expiration dateis, the longer the 
erti�
ate may be used.For a 
erti�
ate system to be able to 
ontrol usage with expiration dates,the users' 
lo
ks must be syn
hronized. Imagine a 
erti�
ate whose expiration dateof June 30, 2006. However, if a user has set a wrong time to its system 
lo
k, thenthis user may 
ontinue using the 
erti�
ate even after all other users stop using this
erti�
ate. Therefore, for a 
erti�
ate system to rely on an expiration, some form14



of 
lo
k syn
hronization is required.Certi�
ate revo
ation is ne
essary when a 
erti�
ate be
omes invalid beforeits expiration date 
omes. There are two reasons of revo
ation:i. In
orre
t publi
 key of the subje
t: The issuer intentionally or a

identallysigned a 
erti�
ate with an in
orre
t publi
 key of the subje
t.ii. Revealed private key of the issuer: The private key of the issuer was revealedto an adversary and the 
erti�
ate may have been issued by the adversary, notby the spe
i�ed issuer in the 
erti�
ate.Certi�
ate revo
ation in both 
ases is ne
essary not only for the issuer butfor other users as well. Other users who know the publi
 key of the issuer may learnan in
orre
t publi
 key of the subje
t in either 
ase. In the 
ase of revealed privatekey, the legitimate owner of the private key may revoke the 
orresponding publi
key altogether instead of revoking ea
h 
erti�
ate signed by the revealed private key.If there is a Certi�
ate Authority (CA) in the system, the Certi�
ate Au-thority may publish a Certi�
ate Revo
ation List (CRL). This list 
ontains all the
erti�
ates that need to be revoked but have not expired. The list is signed by theCA's private key so that the users in the system may verify the integrity of the list.The delivery of the list may be part of a periodi
 update sent by CA to all the usersin the system. For example, Mi
rosoft Windows updates 
ontains the update on thekeys used by Mi
rosoft to sign third party devi
e driver software. The list may alsobe published in a well-known lo
ation, for example the CA's homepage, so that theusers may download the list between periodi
 updates.If there is no CA in the system, then any issuer in the system may publishits own \revo
ation 
erti�
ate". This 
erti�
ate is signed by the private key ofthe issuer, and 
ontains either the publi
 key of the issuer or information on aparti
ular 
erti�
ate. If the publi
 key of the issuer is in
luded, then other users15



may stop using the in
luded publi
 key of the issuer, whi
h e�e
tively revoke allthe 
erti�
ates signed by the mat
hing private key of the issuer. (The issuer mayget a new pair of publi
 and private key and publish 
erti�
ates if it wishes.) Ifthe revo
ation 
erti�
ate in
ludes information on a parti
ular 
erti�
ate, it may
ontain a 
erti�
ate identi�
ation number if it exists, or any unique information ofthe 
erti�
ate to be revoked.This revo
ation 
erti�
ate 
an be dispersed as a regular 
erti�
ate. If adispersal is 
omputed periodi
ally by a spe
i�
 user, then any issuer who issues arevo
ation 
erti�
ate send the revo
ation 
erti�
ate to the spe
i�
 user. Then theuser 
an simply ignore the 
erti�
ate(s) to be revoked a

ording to the revo
ation
erti�
ate. If the revo
ation 
erti�
ate 
ontains a publi
 key of an issuer, then allthe 
erti�
ates issued by the 
orresponding private key will not be dispersed to anyuser. If the revo
ation 
erti�
ate is for a parti
ular 
erti�
ate, then the revoked
erti�
ate will not be dispersed to any user. If the dispersal is not 
omputed byany spe
i�
 user, then revo
ation 
erti�
ates 
an be dispersed using the dynami
dispersal proto
ol in Se
tion 3.6, as a regular 
erti�
ate.Dispersal of 
erti�
ate 
hains and its 
ost are de�ned in Chapter 3.1. InSe
tion 3.2, we show that �nding an optimal dispersal of any set of 
hains is NP-
omplete. Thus it be
omes of interest to 
hara
terize the spe
ial 
ases of pra
ti
alinterest where the problem 
an be solved eÆ
iently, as well as e�e
tive heuristi
algorithms to solve general instan
es of problems. Subsequently, we identify spe-
ial 
lasses of 
hain sets that are of pra
ti
al interests and devise polynomial-timealgorithms that 
ompute optimal dispersals for ea
h 
lass. For instan
e, the exam-ple dispersal above re
e
ts the 
erti�
ate dispersal in Se
ure So
ket Layer (SSL).Su
h 
hain sets are de�ned as \short" 
hain sets in Se
tion 3.5, and we present analgorithm that 
omputes an optimal dispersal of any given short 
hain set.
16



Chapter 3
Certi�
ate Dispersal
3.1 Certi�
ate DispersalIn this se
tion, we introdu
e de�nitions and notations to des
ribe the optimal dis-persal and prove four theorems of the properties of a 
erti�
ate dispersal.A 
erti�
ate graph G is a dire
ted graph in whi
h ea
h dire
ted edge, 
alleda 
erti�
ate, is a pair (u, v), where u and v are distin
t nodes in G. Note thata

ording to this de�nition no 
erti�
ate has the same node as both its issuer andsubje
t.A simple dire
ted path of 
erti�
ates (v0, v1), (v1, v2), � � � , (vk�1, vk) ina 
erti�
ate graph G, where the nodes v0, v1, � � � , vk are all distin
t, is 
alled a
erti�
ate 
hain from v0 to vk in G.A dispersal D of a 
erti�
ate graph G assigns a set of 
erti�
ates in G to ea
hnode in G su
h that the following 
ondition holds. The 
erti�
ates in ea
h 
hainfrom a node u to a node v in G are in the set D:u [D:v, where D:u and D:v arethe two sets of 
erti�
ates assigned by dispersal D to nodes u and v, respe
tively.LetD be a dispersal of a 
erti�
ate graphG. The 
ost of dispersalD, denoted
ost:D, is the average number of 
erti�
ates assigned by dispersal D to ea
h node17



in G: 
ost:D = 1n(Xv inG jD:vj);where n is the number of nodes in G.A dispersal D of a 
erti�
ate graph G is optimal if and only if for any otherdispersal D0 of the same 
erti�
ate graph G, 
ost:D � 
ost:D0.
Figure 3.1: A star 
erti�
ate graphFor example, 
onsider the star 
erti�
ate graph in Fig. 3.1. This graph
an be dispersed as follows. If v is the 
enter node, then D:v = fg. Otherwise,D:v = f(v; 
enter node); (
enter node; v)g. The 
ost of this 
erti�
ate dispersal is2(n�1)n , where n is the number of nodes in this graph.Theorem 1 (Upper Bound on Dispersability Cost) For any 
erti�
ate disper-sal D of a 
erti�
ate graph G with n nodes,
ost:D � n� 1Proof: In Se
tion 3.4, we present a 
erti�
ate dispersal algorithm Ffull that as-signs to every node v in a 
erti�
ate graph G, the 
erti�
ates in a outgoing spanningtree rooted at v. Let Dfull be the dispersal of G 
omputed by Ffull. Be
ause ea
houtgoing spanning tree in a 
erti�
ate graph G has at most n� 1 
erti�
ates, wheren is the number of nodes in G, for any node u in G, jDfull:uj � n� 1.
ost:Dfull = 1n(Xv inG jDfull:vj) � 1nn(n� 1) = n� 118



For an optimal dispersal D of G,
ost:D � 
ost:Dfull � n� 1
ost:D � n� 1For strongly-
onne
ted graphs and dire
ted graphs, Zheng, Omura, U
hida,and Wada presented algorithms that 
ompute optimal dispersals in [38℄. The sameauthors also showed the tight upper bounds in these two 
lasses of 
erti�
ate graphs.For a strongly 
onne
ted graph G, the upper bound is O(d + e=n), where d is thediameter of G, e is the number of edges in G, and n is the number of nodes in G.For a dire
ted graph G0, the upper bound on 
ost:G0 is O(p � d0 + e0=n0), where pis the number of strongly 
onne
ted 
omponents of G0, d0 is the maximum diameterof strongly 
onne
ted 
omponents of G0, e0 is the number of edges in G0, and n0 isthe number of nodes in G0.A dispersal may be de�ned on the set of 
hains that are a
tually in use, whi
his a subset of all the 
hains in a 
erti�
ate graph. A set of 
hains in a 
erti�
ategraph G is 
alled a 
hain set of G. For a 
hain from node v0 to another node vk,node v0 is 
alled the sour
e of the 
hain and node vk is 
alled the destination of the
hain. A dispersal D of a 
hain set CS assigns a set of 
erti�
ates in CS to ea
hsour
e node and ea
h destination node in CS su
h that the following 
onditionholds. The 
erti�
ates in ea
h 
hain from a sour
e node u to a destination node vin CS are in the set D:u [D:v, where D:u and D:v are the two sets of 
erti�
atesassigned by dispersal D to nodes u and v, respe
tively. Thus, given a 
hain in CS,the sour
e node u and the destination node v of the 
hain 
an �nd all the 
erti�
atesin the 
hain in the set D:u[D:v. When the sour
e node u and the destination node19



v need to sear
h for a 
hain from u to v, then they 
an simply merge D:u and D:vto 
onstru
t a 
erti�
ate graph Gu;v, and sear
h for a simple path from u to v inGu;v. If there is a simple path from u to v in Gu;v, then this path is a 
erti�
ate
hain from u to v. On the other hand, if there is no path from u to v in Gu;v, thennodes u and v re
ognize that there was no 
erti�
ate 
hain in the given CS.Dispersal of a 
hain set is useful for many types of systems. We dis
uss threeexample types of systems here.i. Deployed systems: In a deployed system, all the 
erti�
ates are dispersedamong the nodes in the system before the nodes start on a parti
ular mis-sion. For example, 
onsider mobile units parti
ipating in a military operation.Chains that 
an be used for authenti
ation are 
arefully 
hosen and dispersed.Ea
h unit stores the assigned set of 
erti�
ates by a dispersal of 
hosen 
hains.The units are deployed in mission and when a unit needs to authenti
ate an-other unit, they do not have guarantee that any other unit will be available.Thanks to dispersal, these two nodes 
an use the 
erti�
ates stored in ea
h unitto �nd a 
erti�
ate 
hain from one to the other. Many military appli
ations�t in this type of systems.ii. Client-Server systems: In a 
lient-server system, there are only a limitednumber of 
erti�
ate authorities that issue 
erti�
ates. In su
h systems, itis not ne
essary to 
olle
t all the 
erti�
ates to optimally disperse them.For example, in Se
ure So
ket Layer (SSL) systems, VeriSign is one of thefew 
erti�
ate authorities. A server, for example Amazon.
om, does notneed to know all the 
erti�
ates in the system but only stores the 
erti�-
ate (Amazon:
om; V eriSign). This is an optimal dispersal (more details arein Se
tion 3.5) of this SSL system.iii. Evolving systems: In an evolving system where 
erti�
ates may be issued20



and revoked during the exe
ution of the system, the system 
an start withan optimal dispersal of su
h system and gradually diverge from the dispersal.Even when the system diverges from its dispersal, it is still bene�
ial to startwith an optimal dispersal as long as the 
hanges in 
erti�
ates are not a majorportion of 
erti�
ates in the system. Moreover, the dynami
 dispersal proto
olin [20℄ disperses newly issued 
erti�
ates and revo
ation 
erti�
ates so thatthe system stabilizes ba
k to dispersal.The de�nitions of the 
ost of a dispersal of a 
hain set and its optimality arede�ned similarly to those in a 
erti�
ate graph.Let D be a dispersal of a 
hain set CS. The 
ost of dispersal D, denoted
ost:D, is the sum of the number of 
erti�
ates in the sets assigned by dispersal Dto every sour
e or destination node in CS.
ost:D = Xv is a sour
e or destination node inCS jD:vjA dispersalD of a 
hain set CS is optimal if and only if for any other dispersalD0 of the same 
hain set CS, 
ost:D � 
ost:D0In other words, an optimal dispersal D of a 
hain set CS minimizes the averagenumber of 
erti�
ates stored in ea
h node.Let (u; v) be a 
erti�
ate that appears in one or more 
hains in a 
hain setCS, and let D be a dispersal of CS. The lo
ation set of 
erti�
ate (u; v) assignedby D, denoted D(u; v), is de�ned as a set of all nodes x su
h that (u; v) is in the setof 
erti�
ates D:x. It is straightforward to show that the 
ost of dispersal D equalsP(u;v)2CS jD(u; v)j.The lo
ation set D(u; v) of a 
erti�
ate (u; v) assigned by a dispersal D of a21




hain set CS is optimal if and only if for any other dispersal D0 of CS, jD(u; v)j �jD0(u; v)j.Theorem 2 Let D be a dispersal of a 
hain set CS. If D is optimal, then for every
erti�
ate (u; v) in CS the lo
ation set D(u; v) is optimal.Proof: The proof is by 
ontradi
tion. Assume that D is optimal, and thereexists another dispersal D0 of CS where for some 
erti�
ate (u; v) in CS, jD(u; v)j >jD0(u; v)j.Now 
onsider the following assignment of 
erti�
ates to ea
h node in CS.D00(x; y) := 8><>:D0(x; y) if (x; y) = (u; v);D(x; y) if (x; y) 6= (u; v)Note that D00 is a dispersal of CS. This is true be
ause for any 
hain from anode i to another node j in CS, all the 
erti�
ates in the 
hain are in D00:i [D00:j.Consider a 
erti�
ate (x; y) in the 
hain from i to j in CS, where (x; y) 6= (u; v).D(x; y) 
ontains node i or node j by the de�nition of dispersal, so D00(x; y) 
ontainsnode i or node j. In other words, any 
erti�
ate (x; y) in a 
hain from node i tonode j in CS, where (x; y) 6= (u; v), is in D00:i [ D00:j. Similarly, for 
erti�
ate(u; v), if (u; v) is in a 
hain from i to j in CS, D0(u; v) 
ontains node i or nodej by the de�nition of dispersal, so D00(u; v) 
ontains node i or node j. In otherwords, if 
erti�
ate (u; v) is in a 
hain from node i to j in CS, then (u; v) is inD00:i[D00:j. Therefore, for any given 
hain from a node i to another node j in CS,all the 
erti�
ates in the 
hain are in D00:i [D00:j. Thus, D00 is a dispersal of CS.The 
ost of dispersal D00 is 
omputed as follows.
ost:D00 = Xv2CS jD00:vj = � X(x;y)2CS;(x;y)6=(u;v) jD(x; y)j�+ jD0(u; v)j22



By the assumption jD0(u; v)j < jD(u; v)j,
ost:D00 = � X(x;y)2CS;(x;y) 6=(u;v) jD(x; y)j�+ jD0(u; v)j< � X(x;y)2CS;(x;y) 6=(u;v) jD(x; y)j�+ jD(u; v)j = 
ost:DThus, the 
ost of dispersal D00 is less than the 
ost of dispersal D 
ontradi
ting theassumption that D is an optimal dispersal.Therefore, the lo
ation set D(u; v) assigned by an optimal dispersal D isoptimal for every 
erti�
ate (u; v) in CS.Theorem 3 Let D be a dispersal of a 
hain set CS. If for every 
erti�
ate (u; v)in CS the lo
ation set D(u; v) is optimal, then D is an optimal dispersal of CS.Proof: The proof is by 
ontradi
tion. Let D be a dispersal for a 
hain set CSand for every 
erti�
ate (u; v) in CS the lo
ation set D(u; v) is optimal. Also, letD0 be another dispersal of CS where 
ost:D0 < 
ost:D. By the de�nition of the 
ostof dispersal, X(u;v)2CS jD0(u; v)j = 
ost:D0 < 
ost:D = X(u;v)2CS jD(u; v)jThus, there must be at least one 
erti�
ate (u; v) in CS su
h that jD0(u; v)j <jD(u; v)j. This 
ontradi
ts the de�nition of an optimal lo
ation set of (u; v).Therefore, if D(u; v) is optimal for every 
erti�
ate (u; v) in a 
hain set CS,then D is an optimal dispersal of CS.
23



3.2 NP-Completeness ProofIn this se
tion, we show that the 
hain dispersal problem is NP-Complete by aredu
tion from the vertex 
over problem. For 
onvenien
e, these two problems aredes
ribed below.� The Vertex Cover (VC) Problem: Given a 
onne
ted graph G and a positiveinteger k, we ask if there exists a vertex 
over of size � k. Any instan
e of thisproblem 
an be represented by the pair (G; k). For dire
ted graphs, the VCproblem 
an be de�ned similarly by ignoring the dire
tions asso
iated withthe ar
s; the resulting problem on dire
ted graphs remains NP-
omplete.� The Certi�
ate Dispersal (CD) Problem: Given a 
hain set CS and a positiveinteger m, we ask if there exists a dispersal D of CS su
h that 
ost:D � m.Any instan
e of this problem 
an be represented by the pair (CS;m).Theorem 4 CD is NP-Complete.Proof: First, we show that CD is in NP. Given an instan
e (CS;m) of CD,and a dispersal D of CS with 
ost:D � m, one 
an verify in polynomial-time thatindeed D is a dispersal of CS and 
ost:D � m. To verify that D is a dispersalof CS, one 
he
ks that all the 
erti�
ates in ea
h 
hain from a node u to anothernode v in CS are in D:u[D:v. On
e D is veri�ed as dispersal, 
ost:D is 
omputedas the sum of jD:uj for ea
h node u in CS and 
an be 
ompared to m. The time
omplexity of this veri�
ation step is O(p� n), where p is the number of 
hains inthe 
hain set and n is the length of the longest 
hain in CS.Se
ond, we show that VC redu
es to CD in polynomial-time. Given aninstan
e (G; k) of VC, we 
onstru
t an instan
e (CS;m) of CD su
h that the CDinstan
e has a yes answer if and only if the given VC has a yes answer. The
onstru
tion is as follows: 24



i. For ea
h edge (u; v) in G, CS has a 
hain (u; x)(x; y)(y; v) of length 3.ii. Let n+ be the number of nodes that have outgoing edges in G, and n� be thenumber of nodes that have in
oming edges in G. Set m = n+ + n� + k.(CD ( VC) We now show that if the instan
e (G; k) of VC has a yesanswer, then the 
orresponding instan
e (CS;m) of CD has a yes answer. Let Xbe a vertex 
over of G, where jX j � k. For ea
h node u in the 
over X , assign
erti�
ate (x; y) in CS to D:u. For ea
h node u in G, if there exists (u; x) in CS,then assign 
erti�
ate (u; x) to D:u. For ea
h node v in G, if there exists (y; v) inCS, then assign 
erti�
ate (y; v) to D:v. In the following two steps, we prove thatD is a dispersal of CS whose 
ost is at most m.i. D is a dispersal of CS: For any 
hain in CS from a node u to a node v, the
hain 
onsists of three 
erti�
ates (u; x), (x; y), and (y; v). Certi�
ate (u; x)is stored in D:u and 
erti�
ate (y; v) is stored in D:v. For 
erti�
ate (x; y),(x; y) is stored in every node in the vertex 
over of G. By the de�nition ofthe vertex 
over, for ea
h edge (u; v) in G, the vertex 
over 
ontains node uor node v. Certi�
ate (x; y) is assigned to every node in the vertex 
over ofG, so (x; y) is stored in D:u or D:v. Thus, every 
erti�
ate in the 
hain fromu to v is stored in D:u [D:v, as required by the de�nition of dispersal.ii. 
ost:D � m: For ea
h node u in G that has any outgoing edges, there is
erti�
ate (u; x) in CS that is assigned only to node u by D. Similarly, forea
h node v in G that has any in
oming edges, there is 
erti�
ate (y; v) in CSthat is assigned only to node v by D. For 
erti�
ate (x; y), (x; y) is assignedto all the nodes in the vertex 
over, so (x; y) is assigned to at most k nodes.In total, 
ost:D is at most m = (k + n+ + n�).The above argument shows that D is a dispersal of 
onstru
ted CS and
ost:D � m. This proves that if an instan
e of VC (G; k) has a yes answer, then25



the 
orresponding instan
e of CD (CS;m) has a yes answer.(CD ) VC) We now show that if the 
onstru
ted instan
e (CS;m) of CDhas a yes answer, then the given instan
e (G; k) of VC has a yes answer. Let D bea dispersal of CS, where 
ost:D � m. For every edge (u; v) in G, there is 
hain(u; x)(x; y)(y; v) in CS. For 
erti�
ates (u; x) and (y; v), they will be assigned toat least one node, so jD(u; x)j � 1 and jD(y; v)j � 1. The number of su
h (u; x)
erti�
ates is n+ and the number of su
h (y; v) 
erti�
ates is n�. So 
erti�
ate(x; y) is assigned to at most k nodes, where k is m � n+ � n�. In other words,jD(x; y)j � k.Now, for ea
h edge (u; v) in G, there is 
hain (u; x)(x; y)(y; v) in CS, and(x; y) is stored in D:u[D:v. In other words, for ea
h edge (u; v) in G, the lo
ationset of D(x; y) 
ontains node u or node v. Therefore, the lo
ation set of D(x; y) is avertex 
over of G. The size of the lo
ation set D(x; y) is at most k, so the size ofthe vertex 
over is at most k, and the instan
e (G; k) of VC has a yes answer.In 
on
lusion, the above proof shows that CD is in NP and VC redu
es toCD in polynomial-time. Therefore, CD is NP-Complete.In the light of the above 
omplexity result, it be
omes of importan
e toidentify spe
ial 
lasses of 
hain sets of pra
ti
al interest for whi
h the problem 
anbe solved eÆ
iently. This dire
tion is pursued in the following 
ases.i. Short 
hain sets: In Se
tion 3.5, we start by investigating the 
lass of 
hainsets, where ea
h 
hain is of length at most 2. This 
lass of 
hain sets is theone 
urrently being used in the Se
ure So
ket Layer (SSL) proto
ol.ii. Dis
onne
ted 
hain sets : In Se
tion 3.5, we investigate the 
lass of 
hain setswhere for a given 
erti�
ate, no node 
an be both the sour
e and the destina-tion of any 
hain that 
ontains this 
erti�
ate. This re
e
ts a system wherethe authenti
ation is needed in an asymmetri
 manner. For example, whenthere are 
lients and servers in the system, one 
an imagine that 
lients would26



use 
erti�
ates to authenti
ate servers, while servers would use passwords toauthenti
ate 
lients. Su
h asymmetri
 systems 
an be represented as this 
lassof 
hain sets.iii. Con
ise graphs : In Se
tion 3.4, we investigate the 
lass of 
hain sets where the
hains are derived from a
y
li
 
erti�
ate graphs. This 
lass re
e
ts systemswhere the need for authenti
ation is uni-dire
tional. For example, any hierar-
hi
al system where a lower level user is authenti
ated by a higher level user,but not the other way around, would be represented by an a
y
li
 
erti�
ategraph.For all these three 
lasses of 
hain sets, we present polynomial-time algorithms that
ompute optimal dispersals of 
hain sets in ea
h 
lass and prove their optimality.Also in Se
tion 3.5, we identify two 
lasses of parameterized 
hain sets thatare de�ned using an integer parameter k. In the �rst 
lass, ea
h 
hain set has atmost k 
hains with 3 or more 
erti�
ates. In the se
ond 
lass, ea
h 
hain set has atmost k nodes that may a
t both as sour
es and destinations. For both 
lasses, weobtain polynomial-time algorithms that 
ompute optimal dispersals when k is �xed.
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3.3 Heuristi
 Dispersal Algorithms3.3.1 Full Tree Algorithm for Certi�
ate DispersalBefore we introdu
e our �rst 
erti�
ate dispersal algorithm, we need to introdu
ethe following de�nition of 
ompa
t 
hain sets.Let G be a 
erti�
ate graph and v be a node in G. A 
ompa
t 
hain set forv, denoted S:v, is a set of 
hains in G that satis�es the following three 
onditions.i. If G has no 
hains that starts at v, then S:v is empty.ii. If G has a 
hain from v to w, then S:v has exa
tly one shortest 
hain from vto w.iii. If S:v has a 
hain, then S:v also has every nonempty pre�x of this 
hain.
a

b c

d

e fFigure 3.2: The diamond 
erti�
ate graphAs an example, 
onsider the diamond 
erti�
ate graph in Fig. 3.2. In thisgraph, there are no 
erti�
ate 
hains that start at node e or f , and the 
ompa
t
hain sets for node e and f are both empty:S:e = fg; S:f = fgThe 
ompa
t 
hain set for node d has two 
hains:S:d = f< (d; e) >;< (d; f) >g28



Also the 
ompa
t 
hain set for ea
h of the two nodes b and 
 has three 
hains:S:b = f< (b; d) >;< (b; d); (d; e) >;< (b; d); (d; f) >gS:
 = f< (
; d) >;< (
; d); (d; e) >;< (
; d); (d; f) >gThe 
ompa
t 
hain set for node a has �ve 
hains:S:a = f < (a; b) >;< (a; 
) >;< (a; 
); (
; d) >;< (a; 
); (
; d); (d; e) >;< (a; 
); (
; d); (d; f) >gThe following two 
omments are in order. First, ea
h 
ompa
t 
hain set S:v fora node v de�nes a maximal, shortest-path, outgoing tree rooted at node v in the
erti�
ate graph. Se
ond, it is possible to have two or more distin
t 
ompa
t 
hainsets for a node. For example, a se
ond 
ompa
t 
hain set for node a in the 
erti�
ategraph in Figure 4 is as follows:f < (a; b) >;< (a; 
) >;< (a; b); (b; d) >;< (a; b); (b; d); (d; e) >;< (a; b); (b; d); (d; f) >gUsing the above de�nition of a 
ompa
t 
hain set, we are now ready to present our�rst 
erti�
ate dispersal algorithm, 
alled the full tree algorithm and denoted Ffull.This algorithm assigns to every node v all the 
erti�
ates in a 
ompa
t 
hain setS:v for v. In other words,Ffull:(G; v) = the set of all 
erti�
ates that exist in a 
ompa
t 
hain set S:vfor v.Lemma 1 Ffull is a 
erti�
ate dispersal algorithm.Proof: We show that Ffull satis�es the two 
onditions of a 
erti�
ate dispersal29



algorithm, 
onne
tivity and 
ompleteness. First, if there is a 
hain from u to v inG, then at least one of the shortest 
hains from u to v is in S:u by 
ondition ii inthe de�nition of 
ompa
t 
hain set. Se
ond, any 
erti�
ate (u, v) in G is in S:usin
e it is the shortest 
hain from u to v. By the de�nition of Ffull, the 
erti�
ate(u, v) is in Ffull:(G;u). Therefore, Ffull satis�es two properties of 
onne
tivity and
ompleteness.Next, we show that the dispersal algorithm Ffull is far from being eÆ
ient.First, we show in Lemma 5 that the 
ost of applying Ffull to any strongly 
onne
ted
erti�
ate graph meets the upper bound on dispersability 
ost. Se
ond, we show inLemma 6 that the 
ost of applying Ffull to any hourglass 
erti�
ate graph is withina fa
tor of four from the upper bound on dispersability 
ost. A 
erti�
ate graph inFig. 3.3 is an example hourglass 
erti�
ate graph. This graph has n nodes and n�1
erti�
ates, where n is odd, arranged in an hourglass shape with one 
enter node,(n� 1)=2 input nodes, and (n� 1)=2 output nodes.
Figure 3.3: An hourglass 
erti�
ate graphLemma 2 For any strongly 
onne
ted 
erti�
ate graph G with n nodes,
:(Ffull; G) = n� 1

Proof: The 
erti�
ate dispersal algorithm Ffull assigns, to every node v in a
erti�
ate graph G, the 
erti�
ates in a maximal outgoing tree rooted at v. If G is30



strongly 
onne
ted, then any maximal outgoing tree is in fa
t a spanning tree with(n � 1) 
erti�
ates, where n is the number of nodes in G. Therefore, for any nodev in G, jFfull:(G; v)j = n� 1
:(Ffull; G) = 1n(Xv inGjFfull:(G; v)j) = n� 1
Lemma 3 For any hourglass 
erti�
ate graph G with n nodes (see Fig. 3.3),
:(Ffull; G) = n2 + 2n� 34n � n4Proof: Re
all that any hourglass 
erti�
ate graph G has one 
enter node, n�12input nodes, and n�12 output nodes.jFfull:(G; 
enter)j = n� 12For every input node v, jFfull:(G; v)j = n� 12 + 1 = n+ 12For every output node v, jFfull:(G; v)j = 0Thus, 
:(Ffull; G) = 1n(n� 12 + (n� 12 )(n+ 12 ))= n2 + 2n� 34n � n431



3.3.2 Half Tree Algorithm for Certi�
ate DispersalBefore we introdu
e our se
ond heuristi
 dispersal algorithm, we need to introdu
ethe following de�nition of 
onsistent 
ompa
t 
hain sets.Let S:u and S:v be two 
ompa
t 
hain sets for nodes u and v, respe
tively, ina 
erti�
ate graph G. S:u and S:v are 
onsistent if and only if for every two nodesx and y in G, if S:u has a sub
hain that starts at x and ends at y and S:v also hasa sub
hain that starts at x and ends at y then these two sub
hains are identi
al.A 
olle
tion of 
ompa
t 
hain sets fS:vjv is a node in Gg is 
onsistent if andonly if any two 
ompa
t 
hain sets in the 
olle
tion are 
onsistent.We are now ready to present our se
ond 
erti�
ate dispersal algorithm, 
alledthe half tree algorithm and denoted Fhalf . This algorithm takes as input a 
onsistent
olle
tion of 
ompa
t 
hain sets fS:vjv is a node in a 
erti�
ate graph Gg and
omputes a set of 
erti�
ates Fhalf :(G; v) for every node v in G. Algorithm Fhalf isde�ned in Algorithm 1.Lemma 4 Fhalf is a 
erti�
ate dispersal algorithm.Proof: First, if there is a 
hain between nodes u and v, then at least one of theshortest 
hains from u to v is stored in S:u. All the 
erti�
ates in the 
hain fromu to v will be stored in u and v by the de�nition of Fhalf . Se
ond, any 
erti�
ate(u, v) in G will be stored in S:u sin
e it will be the shortest 
hain from u to v. Bythe de�nition of Fhalf , the 
erti�
ate (u, v) is stored either in u or in v. Therefore,Fhalf satis�es two properties of 
erti�
ate dispersal algorithm.Next, we show in Theorem 5 that in the important 
ase of strongly 
onne
ted
erti�
ate graphs, Fhalf is not less eÆ
ient than Ffull, and in some instan
es, Fhalf isin fa
t more eÆ
ient than Ffull. Then in Theorem 6, we show that in the important32




ase of tree 
erti�
ate graphs, Fhalf is not less eÆ
ient than Ffull, and in someinstan
es, Fhalf is in fa
t more eÆ
ient than Ffull. In Lemma 5, we show that inthe 
ase of the hourglass 
erti�
ate graphs Fhalf a
hieves mu
h less dispersal 
ostthan what Ffull a
hieves.Theorem 5 For any strongly 
onne
ted 
erti�
ate graph G,
:(Fhalf ; G) � 
:(Ffull; G)For some strongly 
onne
ted 
erti�
ate graph G,
:(Fhalf ; G) < 
:(Ffull; G)
Proof: Let G be any strongly 
onne
ted 
erti�
ate graph, and v be any node inG. The 
erti�
ates in the set Fhalf :(G; v) de�ne a graph G0, whi
h is a subgraph ofthe original graph G. In G0, there 
an be at most one path from any node to nodev, and at most one path from node v to any other node. Graph G0 satis�es exa
tlyone of the following two 
onditions.i. G0 has no 
y
le.ii. G0 has a 
y
le, but it has at most n� 1 nodes.In the �rst 
ase, the number of 
erti�
ates in G0 is at most n� 1, sin
e thereis no 
y
le in G0. In the se
ond 
ase, the number of 
erti�
ates in G0 is also at mostn � 1, whi
h is the number of 
erti�
ates if all the n � 1 nodes parti
ipate in the
y
le. Therefore, jFhalf :(G; v)j � n� 1.
:(Fhalf ; G) = 1n Xv in G jFhalf :(G; v)j � n(n� 1)n = n� 133



Be
ause G is strongly 
onne
ted, 
:(Ffull; G) = n� 1 by Lemma 2. Therefore,
:(Fhalf ; G) � 
:(Ffull; G)This 
ompletes our proof of the �rst part of the theorem.
u v wFigure 3.4: The two-ring 
erti�
ate graphTo prove the se
ond part of the theorem, 
onsider the two-ring 
erti�
ategraph G00 in Fig. 3.4. This graph is strongly 
onne
ted and has three nodes. Thenby Lemma 2, 
:(Ffull; G00) = n� 1 = 2By applying Fhalf to G00, we getFhalf :(G00; u) = f(u; v); (v; u)gFhalf :(G00; v) = f gFhalf :(G00; w) = f(v; w); (w; v)gTherefore, 
:(Fhalf ; G00) = 13(2 + 0 + 2) = 43 < 
:(Ffull; G00)

Theorem 6 For every tree 
erti�
ate graph T ,
:(Fhalf ; T ) � 
:(Ffull; T )
34



For any 
omplete tree 
erti�
ate graph G,
:(Fhalf ; G) < 
:(Ffull; G)
Proof: For any node u in G, the 
ompa
t 
hain set S:u of u 
onstru
ts a max-imal shortest-path outgoing tree Tu. Sin
e we may repeatedly store same in
om-ing edges in nodes in Fhalf , 
:(Fhalf ; G) � Pu2G 
:(Fhalf ; Tu), while 
:(Ffull; G) =Pu2G 
:(Ffull; Tu). If we 
an prove 
:(Fhalf ; Tu) � 
:(Ffull; Tu) for any tree Tu, then
:(Fhalf ; G) �Xu2G 
:(Fhalf ; Tu)�Xu2G 
:(Ffull; Tu) = 
:(Ffull; G)
:(Fhalf ; G) � 
:(Ffull; G)We 
an prove 
:(Fhalf ; Tu) � 
:(Ffull; Tu) for any tree Tu by indu
tion. Whenthe number of 
erti�
ates is 2 in the maximal tree, there are 2 possible trees. Ifthe tree looks like Figure 8(a), then 
:(Fhalf ; Tu) = 
:(Ffull; Tu) = 2. If the treelooks like Figure 8(b), then 
:(Fhalf ; Tu) = 3, whereas 
:(Ffull; Tu) = 2. Therefore
:(Fhalf ; Tu) � 
:(Ffull; Tu) holds for any maximal tree Tu with 2 
erti�
ates.

u

(a)

u

(b)Figure 3.5: Maximal trees with 2 edgesLet's assume that 
:(Fhalf ; Tu) � 
:(Ffull; Tu) holds for trees with up to n
erti�
ates. When n + 1th 
erti�
ate (v, v0) is added at a node v, then it willin
rease the 
hain length from the root node u of the tree to v(This new 
erti�
ate35



has to 
ome with a new subje
t node v0, otherwise it will break the tree property).For a 
hain from u to a leaf node v0 in the given maximal tree Tu, we show thatPw2u�>v jFhalf (Tu; w)j �Pw2u�>v jFfull(Tu; w)j for any node w on the path fromu to v0. The number of 
erti�
ates stored in the nodes that are not on the pathfrom u to v0 will not be a�e
ted by this new 
erti�
ate.
v’

v
u

ul−1Let l be the 
hain length from u to v. By the de�nition of Ffull algorithm,the in
rement of 
:(Ffull; Tu) is l + 1 be
ause the nodes from u to v will store thenew 
erti�
ate (v, v0) lo
ally.For Fhalf , if a node w is far from v0 by even length of 
hain, for example ul�1,the node w has to store one more outgoing 
erti�
ates, as the 
hain length from wto the leaf node v0 in
reases. If l = 2k, then the number of su
h nodes are k. Also
:(Fhalf ; Tu) is in
reased by Fhalf :(Tu; v0), whi
h is k + 1. Therefore, the in
rementof 
:(Fhalf ; Tu) is also l + 1, whi
h is equal to that of 
:(Ffull; Tu). If l = 2k + 1,then the nodes whi
h stores one more outgoing 
erti�
ate are k, and Fhalf :(Tu; v0)is k+1. But in this 
ase, the 
erti�
ate from kth node to k+1th node on the 
hainis not going to be stored as in
oming 
erti�
ate in any nodes any longer. Therefore,k+1 nodes 
an redu
e their Fhalf :(Tu; v0) by 1. In total, the in
rement will be k inl = 2k + 1 
ase.Sin
e the in
rement of 
:(Fhalf ; T ) is l+1 or (l�1)=2 when that of 
:(Ffull; T )is �xed as l + 1 when n + 1th 
erti�
ate is added, 
:(Fhalf ; T ) � 
:(Ffull; T ) holdsfor any tree T with n+ 1 number of 
erti�
ates.By indu
tion, it is shown that 
:(Fhalf ; G) � 
:(Ffull; G) for any maximaltree Tu for any node u in G. Therefore, 
:(Fhalf ; G) � 
:(Ffull; G) for any tree
erti�
ate graph G. This 
ompletes our proof of the �rst part of the lemma.To prove the se
ond part of the lemma, let h be blogd n
, whi
h is the height36



of the tree, where d is the degree of the tree, d � 2.
:(Ffull; G) = Xv in G the number of 
erti�
ates that appearin S:v= X1�i�h i � di
:(Fhalf ; G) = Xv in G the number of 
erti�
ates that appearin S:v= X1�i�bh2 
 i � di + Xbh2 
+1�i�h di � (h� i)+ Xbh2 
+1�i�h di � (h� i+ 1)= X1�i�bh2 
 i � di + Xbh2 
+1�i�h di � (2h� 2i+ 1)
Sin
e Xb h2 
+1�i�h di � (2h� 2i+ 1) < Xb h2 
+1�i�h i � diholds when d � 2 and h � 1,
:(Fhalf ; G) < 
:(Ffull; G)
Lemma 5 For any hourglass 
erti�
ate graph G with n nodes and e 
erti�
ates (see37



Figure 3) where n is odd, 
:(Fhalf ; G) = en < 
:(Ffull; G)
Proof: Re
all that an hourglass 
erti�
ate graph G with n nodes has one 
enternode, n�12 input nodes, and n�12 output nodes. Applying Fhalf to this 
erti�
ategraph, we getfor every input node u, Fhalf :(G;u) = f(u; 
)gfor the 
enter node 
, Fhalf :(G; 
) = f gfor every output node w, Fhalf :(G;w) = f(
; w)g Therefore,


:(Fhalf ; G) = n� 1n = en < n4 � 
:(Ffull; G)
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ALGORITHM 1 : half tree algorithmINPUT: a 
erti�
ate graph GOUTPUT: the half tree dispersal D of GSTEPS:1: for every nonempty S:v in the 
onsistent 
olle
tionof 
ompa
t 
hain sets do2: let 
 denote the longest 
hain < (v0; v1); � � � ;(vk�1; vk) > in S:v: note that v0 = v;3: let x := bk2
;4: �nd the largest y, 0 � y � k, su
h that all
erti�
ates in the pre�x < (v0; v1); � � � ;(vy�1; vy) > are already in Fhalf (G; v);5: if x � y6: thenstore the 
erti�
ates in every pre�x ofthe sub
hain < (vy; vy+1); � � � ; (vk�1; vk) >in Fhalf :(G;w) where w is the node atwhi
h the pre�x ends;7: else7a: store the 
erti�
ates in the pre�x< (vy; vy+1); � � � ; (vx�1; vx) > in Fhalf (G; v);7b: store the 
erti�
ates in every pre�x ofthe sub
hain < (vx; vx+1); � � � ; (vk�1; vk) >in Fhalf :(G;w) where w is the node atwhi
h the pre�x ends;endif ;8: remove 
hain 
 from S:v;9: enddo;
39



3.4 Optimal Algorithms for Certi�
ate Graphs3.4.1 Optimal Dispersal of Re
exive GraphsIn this se
tion we identify a 
lass of 
erti�
ate graphs 
alled re
exive graphs, andgive an algorithm that 
omputes an optimal dispersal of these graphs.A 
erti�
ate graph G is 
alled re
exive if and only if the following two 
on-ditions hold.i. Short Cy
les : Every simple dire
ted 
y
le in G is of length 2.ii. Re
exivity : If there is a 
erti�
ate from a node u to a node v in G, then Galso has a 
erti�
ate from v to u.
b d e

g

a f

cFigure 3.6: An example of a re
exive 
erti�
ate graphFig. 3.6 shows an example of a re
exive graph that has 7 nodes and 12
erti�
ates. Note that there are two opposite dire
tion 
erti�
ates between the twonodes a and d, and there are no 
erti�
ates between the two nodes a and b.A ni
e feature of re
exive graphs is that there is a 
erti�
ate 
hain from anynode to any other node in the graph. Thus any node 
an get the publi
 key of anyother node in the graph and 
an se
urely send messages to it.Let G be a re
exive graph. An undire
ted version of G is obtained fromG by repla
ing ea
h pair of opposite dire
tion 
erti�
ates between two nodes byan undire
ted edge. For example, an undire
ted version of the re
exive graph inFig. 3.6 is shown in Fig. 3.7.Next we des
ribe an algorithm for optimal dispersal of any re
exive graphG. Note that this algorithm operates on an undire
ted version G0 of G.40



b d e

g

a f

cFigure 3.7: An undire
ted version of the re
exive 
erti�
ate graph in Fig. 3.6ALGORITHM 2 : optimal dispersal of a re
exive 
erti�
ate graphINPUT: a re
exive 
erti�
ate graph GOUTPUT: an optimal dispersal D of GSTEPS:1: 
onstru
t an undire
ted version G0 of G.2: for ea
h node u in G0, D:u := fg3: for ea
h undire
ted edge fu; vg in G0 do4: 
ompute the set R:u that 
ontains u and every node xwhere there is a simple path between x and u in G0and this path does not 
ontain the edge fu; vg5: 
ompute the set R:v that 
ontains v and every node xwhere there is a simple path between x and v in G0and this path does not 
ontain the edge fu; vg6: if jR:uj � jR:vj7: then for every node x in R:u, D:x := D:x [ f(u; v); (v; u)g8: else for every node x in R:v, D:x := D:x [ f(u; v); (v; u)gAlgorithm 2 
an be applied to the re
exive 
erti�
ate graph in Fig. 3.6 asfollows. First, the undire
ted version of the 
erti�
ate graph is 
onstru
ted as shownin Fig. 3.7. For the edge fa; dg, the two sets R:a and R:d are 
omputed as follows:R:a = fag; R:d = fb; 
; d; e; f; ggSin
e jR:aj = 1 < 6 = jR:dj, the two 
erti�
ates (a, d) and (d; a) are stored inD:a. Similarly, the two 
erti�
ates (b, d) and (d, b) are stored in D:b and the two
erti�
ates (
, d) and (d, 
) are stored in D:
.41



For the edge fe; fg, the two sets R:e and R:f are 
omputed as follows:R:e = fa; b; 
; d; e; gg; R:f = ffgSin
e jR:ej = 6 > 1 = jR:f j, the two 
erti�
ates (e, f) and (f , e) are stored in D:f .Similarly, the two 
erti�
ates (e, g) and (g; e) are stored in D:g.For the edge fd; eg, the two sets R:d and R:e are 
omputed as follows:R:d = fa; b; 
; dg; R:e = fe; f; ggSin
e jR:dj = 4 > 3 = jR:ej, the two 
erti�
ates (d, e) and (e; d) are stored in D:e,D:f , and D:g.The resulting 
erti�
ate dispersal of the graph is as follows:D:a = f(a; d); (d; a)g;D:b = f(b; d); (d; b)g;D:
 = f(
; d); (d; 
)g;D:d = fg;D:e = f(d; e); (e; d)g;D:f = f(d; e); (e; d); (e; f); (f; e)g;D:g = f(d; e); (e; d); (e; g); (g; e)gThe 
ost of this dispersal is (2 + 2 + 2 + 0 + 2 + 4 + 4)=7 = 16=7 � 2:3 
erti�
atesper node.Theorem 7 Given a re
exive 
erti�
ate graph G, the dispersal D of G 
omputedby Algorithm 2 is optimal.Proof: We divide the proof into two parts. First, we show that Algorithm 242




omputes a dispersal. Se
ond, we show that D is optimal.Proof of First Part: By the de�nition of dispersal in Se
tion 3.1, if all the
erti�
ates in ea
h 
hain from a node u to a node v in G are in set D:u[D:v, thenD is a dispersal of G.Consider a pair of nodes v0 and vk, where there is a 
erti�
ate 
hain (v0, v1),(v1, v2), � � � , (vk�1, vk) from v0 to vk in G. For ea
h 
erti�
ate (vi; vi+1) in this
hain, the two sets R:vi and R:vi+1 are 
omputed by Algorithm 2 for the undire
tededge fvi; vi+1g. Sin
e there is a 
hain from v0 to vi in G, there is a simple pathbetween v0 and vi in G0. Thus, R:vi 
ontains v0. Similarly, sin
e there is a simpledire
ted 
hain from vi+1 to vk in G, there is a simple path between vi+1 and vkin G0. Thus, R:vi+1 
ontains vk. By steps in line 6-8 in Algorithm 2, (vi; vi+1) isstored either in all nodes in R:vi or in all nodes in R:vi+1. Be
ause R:vi 
ontainsv0 and R:vi+1 
ontains vk, 
erti�
ate (vi; vi+1) is stored either in D:v0 or in D:vk.Thus, every 
erti�
ate (vi; vi+1) in the 
hain, is stored in D:v0 [D:vk. Therefore,the 
hain from v0 to vk is stored in the set D:v0 [D:vk. D is a dispersal of G.For every pair of 
erti�
ates (u; v) and (v; u) in G, an undire
ted edge fu; vgis 
onstru
ted in G0. The two 
erti�
ates (u; v) and (v; u) are stored either in allnodes in R:u or in all nodes in R:v, where R:u and R:v are the two sets 
omputed byAlgorithm 1 for the undire
ted edge fu; vg. By the de�nition of R:u and R:v, R:u
ontains u and R:v 
ontains v. Thus, by step iii in Algorithm 2, the two 
erti�
ates(u; v) and (v; u) are either stored in D:u or in D:v. Therefore, for every 
erti�
atein G, there is a node x in G su
h that this 
erti�
ate is in D:x. The 
ompleteness
ondition holds.Proof of Se
ond Part:Let D0 be any other dispersal of a re
exive 
erti�
ate graph G and let (u; v)be any dire
ted 
erti�
ate in G. The 
erti�
ate (u; v) is on every dire
ted 
hain froma node in R:u to a node in R:v, where R:u and R:v are the two sets 
omputed by43



Algorithm 2 for the undire
ted edge fu; vg. Therefore, D0 needs to assign 
erti�
ate(u; v) to every node in R:u or to every node in R:v. In either 
ase, D0 yields adispersal 
ost that is no less than the dispersal 
ost of D 
omputed by Algorithm 2.The 
omplexity of Algorithm 2 is O(en), where e is the number of edges inthe undire
ted version of the input re
exive graph and n is the number of nodes inthe re
exive graph. Sin
e e = n� 1, the 
omplexity of this algorithm is O(n2).Note that the star 
erti�
ate graph in Fig. 3.1 in Se
tion 3.1 is re
exiveand so Algorithm 2 
an be used to 
ompute an optimal dispersal of this graph.Using Algorithm 2, we obtain the following 
erti�
ate dispersal for this graph:D:v = fg if v is the 
enter nodeD:v = f(v, 
enter node),(
enter node, v)g otherwiseThe 
ost of this 
erti�
ate dispersal = (0 + 2(n � 1))=n. From Theorem 7,we 
on
lude that this 
ost is the smallest possible 
ost of 
erti�
ate dispersal for thestar 
erti�
ate graph.3.4.2 Optimal Dispersal of Biased GraphsIn this se
tion, we present an algorithm that 
omputes an optimal dispersal foranother 
lass of 
erti�
ate graphs, 
alled biased graphs. As dis
ussed below, the
lass of biased graphs is for all pra
ti
al purposes mutually ex
lusive from the 
lassof re
exive graphs dis
ussed in the previous se
tion.A 
erti�
ate graph G is 
alled biased if and only if it satis�es the followingtwo 
onditions.i. A
y
li
ity : G has no dire
ted 
y
les.ii. Nonredundan
y : G has at most one 
erti�
ate 
hain from any node to any44



other node.From the de�nitions of re
exive and biased graphs, it follows that everyre
exive graph that has one or more 
erti�
ates is not biased and every biasedgraph that has one or more 
erti�
ates is not re
exive. Biased 
erti�
ate graphsrepresent many useful 
erti�
ate systems. For example, a hierar
hi
al 
erti�
atesystem would typi
ally generate a tree-shaped 
erti�
ate graph. Any dire
ted tree-shaped 
erti�
ate graph is a biased 
erti�
ate graph.Note that a re
exive graph supports se
ure two-way 
ommuni
ation betweenevery two nodes in the graph, whereas a biased graph supports se
ure one-way
ommuni
ation between some two nodes in the graph. For example, 
onsider thebiased graph in Fig. 3.8. This graph supports se
ure one-way 
ommuni
ation fromnode a to node b and from node a to node 
, but it does not support any se
ure
ommuni
ation between the two nodes b and 
.
b d e

g

a f

cFigure 3.8: A biased 
erti�
ate graphNext, we present an algorithm whi
h 
omputes optimal dispersals for the
lass of biased graphs.As an example, let us 
onsider the appli
ation of the steps in lines 5{7 inAlgorithm 3 on the 
erti�
ate (a; d) in the biased graph in Fig. 3.8. In this 
ase,the two sets R:a and R:d are 
omputed as follows:R:a = fag; R:d = fd; b; 
gThus, jR:aj = 1 < 3 = jR:dj and so 
erti�
ate (a; d) is added only to D:a.45



ALGORITHM 3 : optimal algorithm of a biased 
erti�
ate graphINPUT: a biased 
erti�
ate graph GOUTPUT: an optimal dispersal D of GSTEPS:1: for ea
h node u in G, D:u := fg2: for ea
h 
erti�
ate (u; v) in G do3: 
ompute the set R:u that 
ontains u and every node xwhere there is a 
hain from x to u in G4: 
ompute the set R:v that 
ontains v and every node xwhere there is a 
hain from v to x in G5: if jR:uj � jR:vj6: then for every node x in R:u, D:x := D:x [ f(u; v)g7: else for every node x in R:v, D:x := D:x [ f(u; v)gAs a se
ond example, 
onsider the appli
ation of the steps in lines 5{7 inAlgorithm 3 on the 
erti�
ate (e; g) in the biased graph in Fig. 3.8. In this 
ase, thetwo sets R:e and R:g are 
omputed as follows:R:e = ff; eg; R:g = fggThus, jR:ej = 2 > 1 = jR:gj and so 
erti�
ate (e; g) is added only to D:g.Theorem 8 Given a biased 
erti�
ate graph G, the dispersal D of G 
omputed byAlgorithm 3 is optimal.Proof: The proof is similar to that of Theorem 7.3.4.3 Optimal Dispersal of Con
ise GraphsIn this se
tion, we present an algorithm that 
omputes optimal dispersal for 
hainsets \derivable" from a 
lass of 
erti�
ate graphs 
alled 
on
ise 
erti�
ate graphs.A 
erti�
ate graph G is 
alled 
on
ise if and only if it satis�es the following two46




onditions.i. Short Cy
les : Every simple dire
ted 
y
le in G is of length 2.ii. Non-redundan
y : G has at most one 
hain from any node to any other node.Con
ise 
erti�
ate graphs represent many useful 
erti�
ate systems. For example,a hierar
hi
al 
erti�
ate system would typi
ally generate a tree-shaped 
erti�
ategraph. Any tree-shaped 
erti�
ate graph is a 
on
ise 
erti�
ate graph.Fig. 3.9(a) shows an example of a 
on
ise 
erti�
ate graph. Note that in a
on
ise graph there 
an be two opposite dire
tion 
erti�
ates between two adja
entnodes. We refer to any su
h pair of 
erti�
ates as twins, and we refer to ea
h oneof those 
erti�
ates as the twin 
erti�
ate of the other. In the 
on
ise graph in Fig.3.9(a), the two 
erti�
ates (b; 
) and (
; b) are twins.
a

d

b c

(a)
f (a; b), (b; 
), (
; b), (b; d),(a; b)(b; 
),(a; b)(b; d),(
; b)(b; d) g(b)Figure 3.9: An Example of Con
ise Certi�
ate Graph and Derivable Chain SetA 
hain set is derivable from some 
erti�
ate graph G if and only if the 
hainset 
onsists of all the 
erti�
ate 
hains in G. For example, the 
hain set in Fig. 3.9(b)is derivable from the 
erti�
ate graph in Fig. 3.9(a).Algorithm 4 
omputes an optimal dispersal of a 
on
ise 
erti�
ate graph.Consider 
erti�
ate (b; 
) in the example 
on
ise 
erti�
ate graph in Fig. 3.9(a).Algorithm 4 
omputes the set of nodes from whi
h there is a 
hain to b, denotedR:b, as fa; bg. Also, Algorithm 4 
omputes the set of nodes to whi
h there is a 
hain47



ALGORITHM 4 : optimal dispersal of 
on
ise 
erti�
ate graphsINPUT: a 
on
ise 
erti�
ate graph GOUTPUT: a dispersal D of the 
hain set CS derivable from GSTEPS:1: for ea
h node u in G, D:u := fg2: for ea
h 
erti�
ate (u; v) in G do3: 
ompute the set R:u that 
ontains u and every node x from whi
h there isa 
hain to u in G and this 
hain does not 
ontain the twin 
erti�
ate (v; u)4: 
ompute the set R:v that 
ontains v and every node x to whi
h there isa 
hain from v in G and this 
hain does not 
ontain the twin 
erti�
ate (v; u)5: if jR:uj � jR:vj6: then for every node x in R:u, add (u; v) to D:x7: else for every node y in R:v, add (u; v) to D:yfrom 
, denoted R:
 as f
g. jR:bj > jR:
j, so (b; 
) is stored in 
. After 
onsideringall the 
erti�
ates in the graph, the example 
on
ise 
erti�
ate graph is optimallydispersed by Algorithm 4 as follows:f D:a = f(a; b)g, D:b = f(
; b)g,D:
 = f(b; 
)g, D:d = f(b; d)g gTheorem 9 Given a 
on
ise 
erti�
ate graph G, the dispersal D of the 
hain setCS derivable from G 
omputed by Algorithm 4 is optimal.Proof: We divide the proof into two parts. First, we show that Algorithm 4
omputes a dispersal D. Se
ond, we show that D is optimal.Proof of First Part:We show that the 
erti�
ate subsets D:x, 
omputed by Algorithm 4 for everynode x in G, satisfy the 
ondition of dispersal in Se
tion 2.48



Consider a pair of nodes v0 and vk, where there is a 
hain (v0, v1), (v1, v2),� � � , (vk�1, vk) from v0 to vk in G. By the de�nition of the derivable 
hain set, the
hain from v0 to vk is in CS. For ea
h 
erti�
ate (vi; vi+1) in this 
hain, the twosets R:vi and R:vi+1 are 
omputed by Algorithm 4. Sin
e there is a 
hain from v0to vi in G, R:vi 
ontains v0. Similarly, sin
e there is a simple dire
ted 
hain fromvi+1 to vk in G, R:vi+1 
ontains vk. By line 5-7 in Algorithm 4, (vi; vi+1) is storedeither in all nodes in R:vi or in all nodes in R:vi+1. Be
ause R:vi 
ontains v0 andR:vi+1 
ontains vk, 
erti�
ate (vi; vi+1) is stored either in D:v0 or in D:vk. Thus,every 
erti�
ate (vi; vi+1) in the 
hain from v0 to vk is stored in D:v0[D:vk. Hen
e,D is a dispersal of the 
hain set CS derivable from G.Proof of Se
ond Part: The proof is by 
ontradi
tion. Let D0 be anotherdispersal of CS where 
ost:D0 < 
ost:D. Then there must be su
h a 
erti�
ate(u; v) that jD0(u; v)j < jD(u; v)j. By the de�nition of dispersal, (u; v) needs to bestored inD0:x[D0:y for every 
hain from x to y that 
ontains (u; v). By the de�nitionof derivable 
hain set, 
erti�
ate (u; v) is used in every dire
ted 
hain from any nodex in R:u to any node y in R:v, where R:u and R:v are the two sets 
omputed byAlgorithm 4 for 
erti�
ate (u; v). In other words, jD0(u; v)j � min(jR:uj; jR:vj).Sin
e jD(u; v)j = min(jR:uj; jR:vj), jD0(u; v)j � jD(u; v)j. This 
ontradi
ts theassumption of jD0(u; v)j < jD(u; v)j.Therefore, D 
omputed by Algorithm 4 is optimal.The 
omplexity of Algorithm 4 is O(en), where e is the number of 
erti�
atesin the input 
on
ise 
erti�
ate graph and n is the number of nodes in the 
on
ise
erti�
ate graph.
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3.5 Optimal Algorithms for Chain Sets3.5.1 Optimal Dispersal of Short Chain SetsIn the previous se
tion, we proved that 
omputing an optimal dispersal of any
hain set, whi
h in
ludes 
hains whose length is 3 or more, is NP-
omplete. Inthis se
tion, we show that there is a polynomial-time algorithm that 
omputes anoptimal dispersal of any 
hain set whose 
hains are all of length at most 2. This
lass of 
hain sets is 
urrently in use in the Internet in Se
ure So
ket Layer (SSL).A 
hain set CS is short if and only if the length of the longest 
hain in CSis at most 2. For example, 
onsider the star 
erti�
ate graph in Fig. 3.10(a). Inthis 
erti�
ate graph, assume that ea
h satellite node, b, 
, or d, wishes to se
urely
ommuni
ate with every other satellite node. Fig. 3.10(b) shows the resulting short
hain set.
a

d

b c

(a) f (b; a)(a; 
), (d; a)(a; b),(
; a)(a; b), (
; a)(a; d),(b; a)(a; d), (d; a)(a; 
)g(b)Figure 3.10: An Example of Short Chain SetAlgorithm 5 
omputes an optimal dispersal of a short 
hain set. Considerthe 
erti�
ate (b; a) in the example short 
hain set in Fig. 3.10. Chains that have(b; a) are (b; a)(a; 
) and (b; a)(a; d). So b is the sour
e of every 
hain that has (b; a).Therefore, Algorithm 5 assigns (b; a) to D:b. After 
onsidering all the 
erti�
ates inthe short 
hain set, the optimal dispersal 
omputed by Algorithm 5 as follows:
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ALGORITHM 5 : optimal dispersal of short 
hain setsINPUT: a short 
hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for ea
h node u in CS, D:u := fg2: for ea
h 
erti�
ate (u; v) in CS do3: if there is a node x su
h thatthe sour
e or destination of every 
hain that has (u; v) is x4: then add (u; v) to D:x5: else add (u; v) to both D:u and D:v
fD:a = fg, D:b = f(a; b); (b; a)g,D:
 = f(a; 
); (
; a)g, D:d = f(a; d); (d; a)ggTheorem 10 Given a short 
hain set CS, the dispersal D of CS 
omputed byAlgorithm 5 is optimal.Proof: The proof 
onsists of two parts. First, we show that Algorithm 5
omputes a dispersal D. Se
ond, we show that D is optimal.Proof of First Part :By the de�nition of dispersal in Se
tion 2, if all the 
erti�
ates in ea
h 
hainfrom a sour
e node u to a destination node v in CS are in set D:u [D:v, then Dis a dispersal of CS. In other words, if a 
erti�
ate (u; v) is stored in the sour
e ordestination nodes of every 
hain that 
ontains (u; v), then D is a dispersal.By Algorithm 5, every 
erti�
ate (u; v) is stored either in D:x of some nodex, or both D:u and D:v. Sin
e the maximum length of a 
hain in CS is 2, every
hain that 
ontains (u; v) starts at u or ends at v. Hen
e if (u; v) is stored in bothD:u and D:v then 
erti�
ate (u; v) is stored in the sour
e or destination node of51



every 
hain that 
ontains (u; v). If (u; v) is stored in node x, then by Algorithm 5 xis either the sour
e node or the destination node of every 
hain that 
ontains (u; v).Therefore, (u; v) is stored in the sour
e or the destination node of every 
hain that
ontains (u; v).Proof of Se
ond Part :The proof is by 
ontradi
tion. Let D be the dispersal of a short 
hain set CS
omputed by Algorithm 5 andD0 be another dispersal of CS. Assume that 
ost:D0 <
ost:D. There must be at least one 
erti�
ate (u; v) su
h that jD0(u; v)j < jD(u; v)j.Let (u; v) be su
h a 
erti�
ate, jD0(u; v)j < jD(u; v)j. By Algorithm 5,jD(u; v)j is either 1 (if there exists some node x that is the sour
e or destinationnode of every 
hain that has (u; v)) or 2 (otherwise). Therefore, jD0(u; v)j = 1 andjD(u; v)j = 2, and there exists no node x in CS that is the sour
e or destinationnode of every 
hain that has (u; v). By the de�nition of dispersal, the node w inD0(u; v) should be the sour
e or a destination of every 
hain that 
ontains (u; v) inCS. This 
ontradi
ts that there exists no node x in CS su
h that x is the sour
e ordestination node of every 
hain that has (u; v).Therefore, 
ost:D � 
ost:D0 for any dispersal D0 of CS. Algorithm 5 
om-putes an optimal dispersal of a short 
hain set CS.The time 
omplexity of Algorithm 5 is O(ep), where e is the number of
erti�
ates in the input short 
hain set and p is the number of 
hains in the 
hainset.3.5.2 Optimal Dispersal of Dis
onne
ted Chain SetsIn this se
tion, we identify a spe
ial 
lass of 
hain sets and present an algorithmthat 
omputes an optimal dispersal for this 
lass of 
hain sets in polynomial-time.A 
hain set CS is dis
onne
ted if and only if for every 
erti�
ate (u; v) in CS,the set of sour
e nodes of the 
hains that 
ontain (u; v) and the set of destination52



nodes of the 
hains that 
ontain (u; v) are disjoint. This re
e
ts a system where theauthenti
ation is performed in an asymmetri
 manner. For example, when there are
lients and servers in the system, one 
an imagine that 
lients would use 
erti�
atesto authenti
ate servers, while servers would use passwords to authenti
ate 
lients.Su
h asymmetri
 systems 
an be represented as dis
onne
ted 
hain sets. Fig. 3.11shows an example of a dis
onne
ted 
hain set.f (d; a),(a; b)(b; 
),(a; 
)(
; d),(a; b)(b; 
)(
; d)(d; e)gFigure 3.11: An Example of Dis
onne
ted Chain Set(d; a) has the set of sour
e nodes fdg and the set of destination nodes feg,whi
h are disjoint. (a; b) has the set of sour
e nodes fag and the set of destinationnodes f
; eg, whi
h are disjoint. Every 
erti�
ate in this 
hain set has disjoint setsof sour
e and destination nodes.ALGORITHM 6 : optimal dispersal of dis
onne
ted 
hain setsINPUT: a dis
onne
ted 
hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for ea
h node u in G, D:u := fg2: for ea
h 
erti�
ate (u; v) in G do3: G0=(V 0; E0) where V 0 = fg and E0 = fg4: for ea
h 
hain from node x to node y that 
ontains (u; v) do5: add nodes x and y to V 06: add (x; y) to E07: 
ompute a minimal vertex 
over of the bipartite graph G08: add (u; v) to ea
h node in the vertex 
overAlgorithm 6 
omputes an optimal dispersal of a dis
onne
ted 
hain set. Con-sider 
erti�
ate (a; b) in the example dis
onne
ted 
hain set in Fig. 3.11. Algo-53



rithm 6 
onstru
ts a bipartite graph G0 for 
erti�
ate (a; b), where G0 = (V 0; E0),V 0=fa; 
; eg, and E 0=f(a; 
); (a; e)g. The vertex 
over of minimum size of G0 is fag.Thus, (a; b) is stored in D:a. After 
onsidering all 
erti�
ates in the 
hain set, theexample dis
onne
ted 
hain set is optimally dispersed by Algorithm 6 as follows:fD:a = f(a; b); (b; 
); (
; d)g, D:b = fg, D:
 = fg,D:d = f(a; 
); (d; a)g, D:e = f(d; e)ggTheorem 11 Given a dis
onne
ted 
hain set CS, the dispersal D of CS 
omputedby Algorithm 6 is optimal.Proof: The proof 
onsists of two parts. First, we show that Algorithm 6 pro-du
es a dispersal. Se
ond, we show that the resulting dispersal is optimal.Proof of First Part:Let D:u be the set of 
erti�
ates assigned to a node u in CS by Algorithm 6.Consider any 
erti�
ate (u; v) in a 
hain from a sour
e node x to a destination nodey in CS. By Algorithm 6, sin
e there is a 
hain from x to y that goes through(u; v), there is an edge (x; y) in G0 for (u; v). By the de�nition of vertex 
over, foredge (x; y) in G0, node x or node y is in the vertex 
over. Therefore, for the 
hainfrom x to y, (u; v) is stored in D:x or D:y. This is true for all the 
erti�
ates in the
hain from x to y, for any 
hain in CS. Hen
e, D satis�es the dispersal 
onditionin Se
tion 2, so D is a dispersal of CS.Proof of Se
ond Part:By Theorem 3, if we 
an �nd a dispersal D where D(u; v) of every 
erti�
ate(u; v) in CS is optimal, then D is an optimal dispersal of CS. So we only need toprove that a dispersal 
omputed by Algorithm 6 produ
es an optimal lo
ation setof ea
h 
erti�
ate in CS. The proof is by 
ontradi
tion. Assume there is anotherdispersal D0 of CS, where 
ost:D0 < 
ost:D. There must be at least one 
erti�
ate54



(u; v) where jD0(u; v)j < jD(u; v)j. For every 
hain from a node x to a node ythat 
ontains (u; v), D0(u; v) should 
ontain x or y. Therefore, D0(u; v) is a vertex
over of the bipartite graph G0 
onstru
ted for (u; v), where jD0(u; v)j < jD(u; v)j.This 
ontradi
ts that D(u; v) is the vertex 
over of minimum size of G0 by line 7in Algorithm 6. Therefore, D(u; v) is an optimal lo
ation set of (u; v) for every
erti�
ate (u; v) in CS. By Theorem 3, D is optimal.For ea
h 
erti�
ate (u; v), the graph G0 
onstru
ted for (u; v) is a bipartitegraph. It is be
ause the set of sour
e nodes of the 
hains that 
ontain (u; v) andthe set of the destination nodes of the 
hains that 
ontain (u; v) are disjoint by thede�nition of dis
onne
ted 
hain set. Finding a vertex 
over in a bipartite graph isa well known problem in graph theory, whi
h takes O(n0e0) steps where n0 is thenumber on nodes in G0 and e0 is the number of edges in G0. In the worst 
ase n0 = nand e0 = p, where n is the number of nodes in CS, and p is the number of 
hains inCS. Therefore, the time 
omplexity of Algorithm 6 is O(e� np)=O(enp), where eis the number of 
erti�
ates in CS.3.5.3 Optimal Dispersal of k-long Chain SetsIn Se
tion 3.2, we showed that 
omputing an optimal dispersal of any 
hain set,whi
h in
ludes 
hains of length 3 or more, is NP-
omplete. If all the 
hains in a
hain set are of length at most 2, i.e. if the 
hain set is short, then we 
an useAlgorithm 5 in Se
tion 3.5.1 to 
ompute an optimal dispersal of the short 
hain set.In this se
tion, we 
onsider a more general 
lass of 
hain sets where there are a �xednumber k, k � 1, of 
hains of length greater than 2. Consideration of su
h 
hainsets is motivated, for instan
e, by the following example. Consider a hierar
hi
alnetwork made of a number of autonomous systems. Certi�
ate 
hains within anysingle autonomous system are expe
ted to be short, whereas 
erti�
ate 
hains thatspan multiple autonomous systems are expe
ted to be long. The 
hain set of these55



autonomous systems 
ontain mostly short intra-
hains, but may 
ontain a �xednumber of long inter -
hains. Our main result here is a polynomial-time algorithmthat 
omputes an optimal dispersal for su
h 
hain set for �xed k.In this se
tion, we present Algorithm 7 that 
omputes an optimal dispersalof a 
hain set where there are k 
hains of length greater than 2 for some 
onstantk. We 
all su
h sets k-long 
hain sets. Roughly speaking, our general strategy isto 
onsider all possible ways of assigning 
erti�
ates that appear in long 
hains tothe relevant sour
e and destination nodes, and then handling the remaining short
hains with the aid of Algorithm 5. To develop some initial intuition, �rst we showhow to 
ompute an optimal dispersal of an example 1-long 
hain set in Fig. 3.12(b),and then we show how to generalize for k-long 
hain sets.
a

b c

d (a)
f (a; b)(b; 
),(b; 
)(
; a),(
; a)(a; b),(
; a)(a; b)(b; d) g(b)Figure 3.12: An Example of 1-Long Chain SetLet CS be the 1-long 
hain set in Fig. 3.12(b), whi
h is a 
hain set of the
erti�
ate graph in Fig. 3.12(a). There is one long 
hain (
; a)(a; b)(b; d) and threeother short 
hains. There are three types of 
erti�
ates in this 
hain set.i. Certi�
ates used only in long 
hains: for example, (b; d).A 
erti�
ate of this type 
an be dispersed either to the sour
e or to the desti-nation of ea
h long 
hain that 
ontains this 
erti�
ate. For example, 
erti�
ate(b; d) in CS is used only in the long 
hain and needs to be dispersed either to
 or to d. This 
erti�
ate is not used in any other 
hains, so it does not 
hange56



the 
ost of dispersal whether it is dispersed to 
 or d.ii. Certi�
ates used only in short 
hains: for example, (b; 
).For 
erti�
ates of the se
ond type, we 
an use Algorithm 5 in Se
tion 3.5.1 todisperse su
h 
erti�
ates. For example, 
erti�
ate (b; 
) is dispersed to node aby Algorithm 5.iii. Certi�
ates used in both long and short 
hains: for example, (a; b), (
; a).Dispersing a 
erti�
ate of the third type needs to 
onsider every possible as-signment of this 
erti�
ate among sour
es and destinations of long 
hains. Forexample, 
erti�
ate (a; b) is used in three 
hains, (a; b)(b; 
), (
; a)(a; b) and(
; a)(a; b)(b; d). If we 
hoose to disperse (a; b) to the sour
e 
 of long 
hain,then we do not need to disperse (a; b) to any other node in CS, sin
e 
 hap-pens to be sour
e or destination of all the short 
hains that 
ontain (a; b).By 
ontrast, if we 
hoose to disperse (a; b) to the destination d of long 
hain,then we need to disperse (a; b) to other nodes than d sin
e d is neither sour
enor destination of two short 
hains (a; b)(b; 
) and (
; a)(a; b). In other words,D(a; b) 
ould be either f
g or fa; b; dg, depending on whether (a; b) is assignedto the sour
e or the destination of the long 
hain. This shows that for ea
h
erti�
ate of the third type that is used in both long and short 
hains, in ea
hassignment of this 
erti�
ate in sour
es and destinations of long 
hains, weneed to 
he
k whi
h short 
hains still needs dispersal of this 
erti�
ate.After 
onsidering all three types of 
erti�
ates in CS, the resulting optimaldispersal of CS in Fig. 3.12(b) be
omes as follows:f D:a = f(b; 
)g, D:b = f(
; a)g,D:
 = f(
; a); (a; b)g, D:d = f(b; d)g g57



To extend this solution for 1-long 
hain set to k-long 
hain set, we need tode�ne a terminal set of a 
hain set. A terminal set of a 
hain set CS is a subsetof nodes in CS that 
onsists of the sour
e or destination of ea
h 
hain in CS. Forexample, the four nodes a; b; 
; 
 are the sour
es of all four 
hains in the 
hain setin Fig. 3.12(b), so fa; b; 
g is a terminal set of this 
hain set. Algorithm 7 
omputesan optimal dispersal of k-long 
hain sets using this terminal set.ALGORITHM 7 : optimal dispersal of k-long 
hain setsINPUT: a k-long 
hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for ea
h node u in CS, D:u := fg2: for ea
h 
erti�
ate (u; v) in CS do3: 
ompute the 
hain set LS of all long 
hains that 
ontain (u; v) in CS4: for ea
h possible terminal set X of LS5: for ea
h node w in CS,6: if w 2 X then DX :w := f(u; v)g else DX :w := fg7: 
ompute the 
hain set S of all the 
hains that 
ontain (u; v)and their sour
es and destinations are not in X8: run Algorithm 5 on S and add the resulting lo
ation set of (u; v) to DX9: �nd DX with the minimal 
ost10: for ea
h node u in CS, add DX :u to D:uConsider (
; a) in the example 
hain set in Fig. 3.12(b). The set of all long
hains that 
ontain (
; a), denoted LS in Algorithm 7, is f(
; a)(a; b)(b; d)g. For aterminal set f
g, (
; a) is dispersed to node 
 and the set of remaining short 
hains,denoted S in Algorithm 7, be
omes f(b; 
)(
; a)g. There is node b that is the sour
eof every 
hain in S, so (
; a) is dispersed to node b. The resulting dispersal of (
; a),fb; 
g, is an optimal lo
ation set of (
; a). After 
onsidering every 
erti�
ate, thedispersal of the example 
hain set in Fig. 3.12(b) 
omputed by Algorithm 7 be
omesthe same with the dispersal above, and this dispersal is optimal. Theorem 12 shows58



that Algorithm 7 
omputes an optimal dispersal of a given k-long 
hain sets.Theorem 12 Given a k-long 
hain set CS, the dispersal D of the 
hain set CS
omputed by Algorithm 7 is optimal.Proof: We divide the proof into two parts. First, we show that Algorithm 7
omputes a dispersal D. Se
ond, we show that D is optimal.Proof of First Part:We show that the 
erti�
ate subsets D:u, 
omputed by Algorithm 7 for everynode u in CS, satisfy the 
ondition of dispersal in Se
tion 2.Consider a 
erti�
ate (u; v). Algorithm 7 
omputes the 
hain set LS of forall the long 
hains that 
ontain (u; v). Algorithm 7 stores (u; v) in every node ina terminal set of LS. By the de�nition of a terminal set, (u; v) is stored in eithersour
e or destination of ea
h long 
hain in LS. For all the remaining short 
hainsthat 
ontain (u; v) inCS, by line 7-9 in Algorithm 7 (same as line 3-5 in Algorithm 5),(u; v) is stored either in D:w for some node w or in D:u and D:v. (The rest of proofis same with the optimality proof of Algorithm 5.) For ea
h remaining short 
hain,the 
hain that 
ontains (u; v) starts at u or ends at v. Hen
e if (u; v) is stored inboth D:u and D:v then 
erti�
ate (u; v) is stored in the sour
e or destination nodeof every remaining 
hain that 
ontains (u; v). If (u; v) is stored in node w, thenby Algorithm 7, then w is either the sour
e node or the destination node of everyremaining 
hain. Therefore, (u; v) is stored in the sour
e or the destination node ofevery 
hain that 
ontains (u; v). This is true for any 
erti�
ate (u; v) in CS. Hen
e,D is a dispersal of the 
hain set CS.Proof of Se
ond Part:The proof is by 
ontradi
tion. Let D be the dispersal of a k-long 
hainset CS 
omputed by Algorithm 7 and D0 be another dispersal of CS. Assumethat 
ost:D0 < 
ost:D. There must be at least one 
erti�
ate (u; v) su
h thatjD0(u; v)j < jD(u; v)j. 59



There are three 
ases of (u; v):i. (u; v) is a 
erti�
ate used only in long 
hains.ii. (u; v) is a 
erti�
ate used only in short 
hains.iii. (u; v) is a 
erti�
ate used in both long and short 
hains.For 
ase i), Algorithm 7 
onsiders every possible terminal set X of the long
hains that 
ontain (u; v). Therefore, the resulting jD(u; v)j = minX jDX(u; v)j.By the de�nition of the terminal set, D0(u; v) has to be a terminal set of the long
hains that 
ontain (u; v). In other words, jD0(u; v)j � minX jDX(u; v)j = jD(u; v)j.Therefore, jD(u; v)j � jD0(u; v)jFor 
ase ii), Algorithm 7 
omputes an optimal dispersal of the short 
hains
ontaining (u; v). The proof is same as the optimality proof of Algorithm 5 for short
hain sets. Therefore, jD(u; v)j � jD0(u; v)j.For 
ase iii), �nd a terminal set X of the long 
hains that 
ontain (u; v), su
hthat X � D0(u; v). Sin
e Algorithm 7 
onsiders every possible terminal set of thelong 
hains that 
ontain (u; v), it also 
omputes DX(u; v) for the found terminal setX, where X � DX(u; v). For the remaining short 
hains in S, sin
e the sour
es anddestinations of the short 
hains in S are not in X , so D0(u; v) n X should 
ontainsour
e or destination of ea
h 
hain in S. Also, Algorithm 5 
omputes an optimallo
ation set of (u; v) in S. Therefore, jDX(u; v) n X j � jD0(u; v) n Xj. Sin
e X �D0(u; v) and X � DX(u; v), jDX(u; v)j � jD0(u; v)j. jD(u; v)j = minX jDX(u; v)j,so jD(u; v)j � jD0(u; v)j.In all three 
ases, jD(u; v)j � jD0(u; v)j, whi
h 
ontradi
ts the assumption ofjD(u; v)j > jD0(u; v)j. Therefore, dispersal D 
omputed by Algorithm 7 is optimal.The time 
omplexity of this algorithm is O(2k � ep), where k is the numberof long 
hains in CS, e is the number of 
erti�
ates in CS, and p is the number of60




hains in CS. This 
omplexity is 
omputed as follows: the number of terminal setsfor k long 
hains is O(2k), and for ea
h terminal set, the number of short 
hains to
onsider is O(p). We repeat this pro
edure for e 
erti�
ates. Sin
e k is a 
onstant,the time 
omplexity be
omes O(ep).3.5.4 Optimal Dispersal of k-Conne
ted Chain SetsIn Se
tion 3.5.2, we presented Algorithm 6 that 
omputes an optimal dispersalof a dis
onne
ted 
hain set. In this se
tion, we investigate more general 
lass of
hain sets where there are at most k nodes in the interse
tion of the sour
e setand the destination set of ea
h 
erti�
ate in a 
hain set. We 
all su
h 
hain setsk-
onne
ted 
hain sets. This 
lass of 
hain sets models a 
lient-server system thatuses two di�erent authenti
ation methods. As dis
ussed in Se
tion 3.5.2, in some
lient-server systems, 
lients authenti
ate servers via 
erti�
ates, whereas serversauthenti
ate 
lients via other means, e.g. passwords. However, there may be a fewmutual authenti
ations via 
erti�
ates between servers. These 
erti�
ates used byservers may have non-empty interse
tion of the sour
e and destination sets. Su
h
lient-server systems 
an be represented as k-
onne
ted 
hain sets.Fig. 3.13(b) shows an example of 1-
onne
ted 
hain set, whi
h is a 
hainset of the 
erti�
ate graph in Fig. 3.13(a). For 
erti�
ate (a; b), the sour
es of the
hains that 
ontain (a; b) are fa; 
g and the destinations of su
h 
hains are fb; 
; dg.The interse
tion of two sets is f
g. Similarly, the 
ardinality of the interse
tion setis at most 1 for every 
erti�
ate in this 
hain set, so the 
hain set in Fig. 3.13(b) is1-
onne
ted.Assume that (a; b) is stored in D:
 in some dispersal D of this 
hain set. Theremaining 
hain to be dispersed is (a; b)(b; 
)(
; d). Certi�
ate (a; b) 
an be storedeither in D:a or in D:d, either of whi
h makes no di�eren
e in the dispersal 
ost.Or, assume that (a; b) is not stored in D0:
 in some dispersal D0 of this 
hain set.61
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(a)
f (a; b)(b; 
),(a; b)(b; 
)(
; d),(b; 
)(
; d)(d; a),(
; d)(d; a)(a; b) g(b)Figure 3.13: An Example of 1-Conne
ted Chain SetCerti�
ate (a; b) needs to be stored in D0:a and D0:b. We 
an repeat this pro
essfor ea
h 
erti�
ate to �nd the dispersal as follows:fD:a = f(a; b); (b; 
)g, D:b = f(
; d); (d; a)g,D:
 = f(a; b)g, D:d = f(
; d)g gThis is also an optimal dispersal of this 1-
onne
ted 
hain set.To extend this solution for 1-
onne
ted 
hain set to k-
onne
ted 
hain set, weneed to de�ne an interse
tion set of a 
erti�
ate. An interse
tion set of a 
erti�
ate(u; v) in a 
hain set CS is a set of nodes that appear both in the set of sour
esand the set of destinations of the 
hains that 
ontain (u; v). For 
erti�
ate (a; b)in Fig. 3.13(b), the sour
es of the 
hains that 
ontain (a; b) are fa; 
g and thedestinations of su
h 
hains are fb; 
; dg. The interse
tion of two sets is f
g, sof
g is the interse
tion set of (a; b). Algorithm 8 
omputes an optimal dispersal ofk-
onne
ted 
hain sets using this interse
tion set.The proof of the optimality of this algorithm is straightforward. Sin
e thisalgorithm 
onsiders every possible subset of the interse
tion set, it is guaranteedto �nd the optimal lo
ation set of ea
h 
erti�
ate. By Theorem 3, the dispersal
omputed by this algorithm is optimal.The time 
omplexity of this algorithm is O(2k � enp), where k is the tight62



ALGORITHM 8 : optimal dispersal of k-
onne
ted 
hain setsINPUT: a k-
onne
ted 
hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for ea
h node u in CS, D:u := fg2: for ea
h 
erti�
ate (u; v) in CS do3: 
ompute the interse
tion set IS of (u; v)4: for ea
h subset X of IS5: for ea
h node w in CS, if w 2 X then DX :w := f(u; v)g else DX :w := fg6: 
ompute the 
hain set S of all the 
hains that 
ontain (u; v)and their sour
es and destinations are not in X7: for ea
h 
hain from y to z in S8: if y 2 IS nX then add (u; v) to DX :z and remove the 
hain from S9: if z 2 IS nX then add (u; v) to DX :y and remove the 
hain from S10: run Algorithm 6 on S and add the resulting lo
ation set of (u; v) to DX11: �nd DX with the minimal 
ost12: for ea
h node u in CS, add DX :u to D:uupper bound of the number of nodes in interse
tion sets of all the 
erti�
ates inCS, n is the number of nodes in CS, e is the number of 
erti�
ates in CS, and pis the number of 
hains in CS. Sin
e there are at most k nodes in the interse
tionset of ea
h 
erti�
ate, there are at most 2k subsets of the interse
tion set. For ea
hsubset, we run Algorithm 6, whose 
omplexity is O(enp). Therefore, the total time
omplexity be
omes O(2kenp). Sin
e k is a 
onstant, the time 
omplexity be
omesO(enp).
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3.6 Dynami
 DispersalIn the previous se
tions, we dis
ussed the 
on
ept of 
erti�
ate dispersal. Algo-rithms in Se
tions 3.4 show how to 
ompute a 
erti�
ate dispersal for a \stati
"
erti�
ate graph, i.e. the topology of the 
erti�
ate graph does not 
hange overtime. However, in many 
erti�
ate systems, 
erti�
ate graphs do 
hange due toissuing new 
erti�
ates, adding new users, revoking old 
erti�
ates, and removingold users. To maintain the 
erti�
ate dispersal of a dynami
 
erti�
ate graph, the
hanges in the graph need to be propagated to the appropriate users.
BACK/FORE

Certificate issuing/revocation

Dynamic Dispersal

CERTFigure 3.14: Inputs and Output of Dynami
 Dispersal Proto
olFig. 3.14 shows the inputs and output of our dynami
 dispersal proto
ol.The dynami
 dispersal proto
ol running at ea
h user has two inputs FORE and BACK.FORE in user u is the set of the 
erti�
ates that have been issued by user u, andBACK in user u is the set of users that have issued 
erti�
ates for u. Note that thetwo inputs FORE and BACK in all users de�ne the 
erti�
ate graph of the system. Weassume that FORE and BACK are maintained by an outside proto
ol that issues new
erti�
ates and revokes old ones. We also assume that FORE and BACK are always
orre
t and so they are always 
onsistent. For example, if at any time a 
erti�
ate(u; v) is in FORE.u of user u, then u is in BACK.v of user v at the same time.The dynami
 dispersal proto
ol maintains a variable CERT.u at ea
h user u.64



At stabilization, the value of CERT.u is a outgoing spanning tree rooted at user u.Thus, by Lemma 1, values of CERTs at stabilization 
onstitute a 
erti�
ate dispersalof the system.The dynami
 dispersal proto
ol in user u is shown in Proto
ol 1 below.Proto
ol 1 
onsists of three a
tions.In the �rst a
tion, when the timer of user u expires, user u uses its inputFORE.u to update the variable CERT.u and sends a 
opy of CERT.u to ea
h user v inBACK.u. Then u updates its timer to expire after ltime time units, and the 
y
lerepeats. For 
onvenien
e, we refer to CERT.u messages that user u has sent in thisa
tion as a round of gossip. If user u does not 
hange its CERT.u and does notobserve any 
hange in its inputs FORE.u and BACK.u, then the time period betweentwo 
onse
utive rounds of gossip by u is ltime time units. The value ltime isexpe
ted to be in the range of days or months.In the se
ond a
tion, user u re
eives a 
erti�
ate tree sent by a user v (whereu is in BACK.v). In this 
ase, u updates its CERT.u using its input FORE.u, andthen merges its CERT.u with the re
eived 
erti�
ate tree. If the update or mergeoperations 
hange CERT.u then u redu
es the value of its timer to at most stimetime units. Note that the value stime is in the range of minutes or hours so it ismu
h less than the value ltime. In other words, any 
hange in the variable CERT.u
auses u to initiate its next round of gossip after no more than stime time units.In the third a
tion, when user u observes that its inputs BACK.u or FORE.uhas 
hanged, then user u sets its timer to be at most stime time units. This 
hange
auses u to initiate its next round of gossip after no more than stime time units.3.6.1 Issuing 
erti�
atesWhen a user u issues a 
erti�
ate (u; v), there are two events that need to o

ur.(Note that these two events o

ur outside the dynami
 dispersal proto
ol.) The �rst65



PROTOCOL 1 dynami
 dispersaluser u
onst stime, ltime //stime is a short time period//ltime is a long time period//ltime is greater than stimeinput BACK : {x| x has issued a 
ertifi
ate (x,u)}FORE : {(u,x) | u has issued a 
ertifi
ate (u,x)}var CERT : a 
ertifi
ate tree rooted at utree : a 
ertifi
ate treetimer : 0..ltimev : any user other than ubegintimer=0 -> update(CERT, FORE);for ea
h user v in BACK, send CERT to v;timer:=ltime[℄ r
v tree from v -> update(CERT, FORE);merge(CERT, tree);if CERT has 
hanged, timer:=min(timer, stime)[℄ BACK or FORE has 
hanged -> timer:=min(timer,stime)endevent is to add (u; v) to FORE.u, and the se
ond event is to add u to BACK.v. Theseevents 
ause users u and v to exe
ute the third a
tion in the proto
ol and to redu
etheir timers to be at most stime time units. In stime time units, the timers inboth users u and v will expire and then users u and v will exe
ute the �rst a
tionand update their CERTs and send a 
opy of the updated CERT to ea
h user in theirBACKs.
66



3.6.2 Revoking Certi�
atesWhen a user u wants to revoke a 
erti�
ate (u; v) it has issued before, two eventsneed to o

ur in users u and v. (Note that these two events o

ur outside thedynami
 dispersal proto
ol.) The �rst event is to remove (u; v) from FORE.u, andthe se
ond event is to remove u from BACK.v.When user u observes the 
hange in FORE.u, u exe
utes the third a
tion andset its timer to be at most stime. When the timer expires, u will update CERT.uand send it to users in BACK.u. When user x in BACK.u re
eives the newly updatedCERT.u from user u, x will merge it with its own CERT.x. During this merge, therevoked 
erti�
ate (u; v) and any path using that 
erti�
ate will be removed fromCERT.x.3.6.3 update Pro
edurePro
edure update(CERT,FORE) is de�ned as follows.PROCEDURE 1 update(CERT, FORE)INPUT: a 
ertifi
ate tree CERT rooted at u anda set of 
ertifi
ates FORE issued by uOUTPUT: a 
ertifi
ate tree CERT rooted at uvar tmp: a 
ertifi
ate tree rooted at ubeginadd all the valid 
ertifi
ates in FORE to tmp;while there is a valid 
ertifi
ate (x,y) in CERT wherex != u,x is in tmp, andy is not in tmpdo add (x,y) to tmp;CERT:=tmp;end 67



It is 
onvenient to explain this pro
edure by an example. Consider user awhere FORE.a in user a 
ontains one 
erti�
ate (a; b) and CERT.a 
ontains two 
er-ti�
ates (a; b); (b; 
) as shown in Fig. 3.15(a). When user a issues a new 
erti�
ate(a; 
), FORE.a 
hanges into f(a; b); (a; 
)g. This 
hange 
auses user a to exe
ute itsthird a
tion and then after stime time units to exe
ute its �rst a
tion. In the �rsta
tion, pro
edure update(CERT.a,FORE.a) is exe
uted. First, all the 
erti�
ates inFORE.a are added to a 
erti�
ate tree tmp and tmp be
omes f(a; b); (a; 
)g. Certi�-
ate (b; 
) 
annot be added to tmp be
ause user 
 is already in tmp. In the last step,tmp is 
opied to CERT.a, and CERT.a be
omes f(a; b); (a; 
)g as shown in Fig. 3.15(b).
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FORE.a CERT.a FORE.a CERT.aFigure 3.15: update of CERT.a due to 
hange in FORE.a3.6.4 merge Pro
edurePro
edure merge(CERT,tree) is de�ned as follows.It is 
onvenient to explain this pro
edure by an example. Consider user awhere FORE.a 
ontains two 
erti�
ate (a; b); (a; 
) and CERT.a 
ontains three 
erti�-
ates (a; b); (a; 
); (b; d) as shown in Fig. 3.16(a). When user b revokes 
erti�
ate(b; d), FORE.b 
hanges into f(b; 
)g. This 
hange 
auses user b to exe
ute its thirda
tion and after stime time units to exe
ute its �rst a
tion. In the �rst a
tion, userb updates its CERT.b to be f(b; 
)g. User a still does not know about this revo
ation,so CERT.a remains the same as shown in Fig. 3.16(a). After stime time units, user bsends a 
opy of its CERT.b to user a. When user a re
eives the 
erti�
ate tree f(b; 
)g,user a exe
utes its se
ond a
tion, and pro
edure merge(CERT.a,tree) is exe
utedwith CERT.a and the re
eived tree f(b; 
)g. Pro
edure merge(CERT.a,tree) �rst68



PROCEDURE 2 merge(CERT, tree)INPUT: a 
ertifi
ate tree CERT rooted at u anda 
ertifi
ate tree ``tree'' rooted at t, wheret != uOUTPUT: a 
ertifi
ate tree CERTbeginif CERT has a 
ertifi
ate (u,t) ->remove from CERT the subtree rooted at t, if any;remove from tree every subtree rooted at a node, other than t,that o

urs in CERT;while tree has a valid 
ertifi
ate (x,y) wherex is in CERT andy is not in CERTdo add y and 
ertifi
ate (x,y) to CERT;[℄ CERT has no 
ertifi
ate (u,t) ->skipfiend
he
ks if there is 
erti�
ate (a; b) in CERT.a. There is 
erti�
ate (a; b), so the subtreerooted at user b, (b; d) in CERT.a is removed from CERT.a. Then, 
erti�
ate (b; 
) is
onsidered, but is not added to CERT.a be
ause 
 is already in CERT.a. In result,CERT.a be
omes f(a; b); (a; 
)g as shown in Fig. 3.16(b).
d

c

a

b

d

cb cb c

a

b

(a)

CERT.b

(b)

CERT.b CERT.aCERT.aFigure 3.16: merge of CERT.a due to 
hange in CERT.b
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3.6.5 Stabilization of Dynami
 DispersalThe dynami
 dispersal algorithm in Se
tion 3.6 is based on a message passing model.In [21℄, it is shown to be hard to design stabilizing proto
ols in the traditionalmessage passing model where there are 
hannels between users. In this paper, weuse a non-
onventional model of 
ommuni
ation. A state 
onsists of the values oftimer and CERT of all the users in the system. As mentioned in above, we assumethat FORE and BACK of ea
h user remain 
orre
t and 
onsistent in every state. In onestate transition, only one user 
an exe
ute its �rst a
tion. Furthermore, in the sametransition, ea
h user v in BACK.u re
eives the same 
opy of this message and exe
utesits se
ond a
tion. In other words, we have no messages in transit, so there is noneed for 
hannels in the state des
ription. There are two reasons that we adoptedthis model. First, this model allows the proofs to be easier to follow. Se
ond, thismodel is sensible, given that the time it takes for the timer in ea
h user to expire isvery large 
ompared to the time ea
h state transition takes. stime is in the rangeof minutes and hours, and ea
h state transition takes only millise
onds, so we 
anassume that no two timers expire at the same time.For the proofs of 
onvergen
e and 
losure, we de�ne a 
omputation to be asequen
e of states of the system where along with this 
omputation FORE and BACKof all the users remain un
hanged. In the following theorems, we show that thedynami
 dispersal proto
ol eventually stabilizes into a legitimate state, where thevalues of CERTs of all users 
onstitute a 
erti�
ate dispersal of the 
erti�
ate graphof the system. Following the proof te
hnique in [4℄, we show the 
onvergen
e andthe 
losure of this proto
ol to prove its stabilization.Theorem 13 (Convergen
e) Ea
h 
omputation of the dynami
 dispersal proto
olhas a state where the value of ea
h CERT.u in the proto
ol is an outgoing spanningtree rooted at u in the 
erti�
ate graph of the proto
ol (as de�ned by the two inputsFORE and BACK of all users in the proto
ol).70



Proof sket
h To prove that CERT.u eventually be
omes an outgoing spanning treerooted at node u of the 
erti�
ate graph G, we �rst prove that CERT.u eventuallybe
omes a tree rooted at u, and then prove that every node that is rea
hable fromu in G is rea
hable in CERT.u.There are two pro
edures, update(CERT.u,FORE.u) and merge(CERT.u,tree),that 
an 
hange CERT.u. The pro
edure update(CERT.u,FORE.u) 
onstru
ts a treeby starting from the 
erti�
ates in FORE.u. All the 
erti�
ates in FORE.u are is-sued by user u, so the resulting tree from update(CERT.u,FORE.u) is rooted atu. Similarly, the pro
edure merge(CERT.u,tree) adds 
erti�
ates in the re
eivedtree to CERT.u, a 
erti�
ate tree rooted at u. Therefore, the resulting tree frommerge(CERT.u,tree) is also rooted at u. Based on these observations, after a statetransition in this 
omputation, CERT.u in user u be
omes a tree rooted at u.Now we prove that CERT.u is an outgoing spanning tree, i.e. any node thatis rea
hable from node u in G is also CERT.u. Assume that there is a path fromu to another node v in G, (u; u1)(u1; u2) � � � (uk; v). Node uk has the 
erti�
ate(uk; v) in its FORE, so the 
erti�
ate (uk; v) is in its CERT. Node uk sends its CERTperiodi
ally to node uk�1, so node uk�1 will have a path from itself to node v in itsCERT. Repeatedly, ea
h node on the path will send its CERT to the previous node inthe path and node u will have a path from itself to node v in its CERT. Therefore,every node v that is rea
hable from node u in G is also rea
hable in CERT.u. �Note that our dynami
 dispersal proto
ol is di�erent from stabilizing span-ning tree algorithms. The spanning tree algorithms in [15, 3, 11℄ build a singlespanning tree for the whole system that 
overs every pro
ess in the system, andbuild one tree rooted at a spe
ial pro
ess (usually referred as a leader). Ea
h pro-
ess in these algorithms stores the parent node identi�er, the distan
e from the root,and possibly the root identi�er. On the other hand, our dynami
 dispersal proto
olstores an outgoing spanning tree in ea
h user, whi
h does not ne
essarily 
over every71



user in the system. Also, in our dynami
 dispersal proto
ol, there is no leader, andea
h user u maintains an outgoing spanning tree rooted at u.Theorem 14 (Closure) Exe
uting any step of the dynami
 dispersal proto
ol start-ing from a state, where the value of ea
h variable CERT.u in the proto
ol is an out-going spanning tree rooted at u, leaves the values of all CERT variables un
hanged.Proof sket
h In a 
omputation, the inputs BACK and FORE remain un
hanged.Therefore, only two types of steps 
an be exe
uted: time propagation and the �rsta
tion. Time propagation 
annot 
hange the value of CERT. When the time propa-gation 
auses the timer in user u to expire, the �rst a
tion in the dynami
 dispersalproto
ol will be exe
uted. When the timer expires, user u updates its CERT.u withFORE.u, but CERT.u remains the same sin
e FORE.u remains un
hanged. Now useru sends a 
opy of its CERT.u to ea
h user v in BACK.u. User v re
eives a tree andmerge it with its own CERT.v. Sin
e CERT.u is the same, merge(CERT,tree) will not
hange CERT.v. Therefore, when the 
erti�
ate graph of the system does not 
hange,CERT.u in ea
h user u, an outgoing spanning tree rooted at u, remains un
hanged.�3.6.6 Time ComplexityIn this se
tion, we 
ompute the time that takes to bring the system to stabilizationin terms of the timer ltime. Note that ea
h state transition is triggered by a timerexpiration in a user, so any user will exe
ute the �rst a
tion of dynami
 dispersalalgorithm at least on
e in ltime time units. Also, the time that takes for a statetransition is very small 
ompared to ltime. Therefore, in ltime time units, we 
anassume that all users have exe
uted the �rst a
tion at least on
e.Theorem 15 In ea
h 
omputation of the dynami
 dispersal proto
ol, the proto
ol72



rea
hes a legitimate state in at most T time units, whereT = ltime� (2p� 1), where p is the length of the longest path in the 
erti�
ate graph.Proof sket
h A legitimate state of the dynami
 dispersal proto
ol is one wherethe value of CERT.u of every user u in the system is an outgoing spanning tree rootedat u. Consider a 
erti�
ate (x; y) that is not in the 
erti�
ate graph, but in someCERT.u of user u in the beginning of the 
omputation. This 
erti�
ate disappearsfrom CERT of any user in the system in ltime� p. After the �rst ltime time unitsin the 
omputation, user x updates CERT.x with FORE.x and remove the 
erti�
ate(x; y) from CERT.x, if there was (x; y) in CERT.x. After the se
ond ltime time units,any user in BACK.x re
eives CERT.x and removes the 
erti�
ate (x; y) from its CERT,if there was (x; y) in its CERT. In other words, any user that had (x; y) in the se
ondlevel of the tree in CERT removes (x; y) from its CERT. The 
y
le repeats, and after(ltime� p), any user that had (x; y) in its CERT removes (x; y) from its CERT.Consider a 
erti�
ate (v; w) that is in every possible rea
h tree rooted atsome user u in the 
erti�
ate graph, but not in CERT.u in the beginning of the
omputation. After the �rst ltime time units in the 
omputation, user v updatesCERT.v with FORE.v and add the 
erti�
ate (v; w) to CERT.v if it was not in CERT.valready. For the next (ltime�(p�1)) time units, a user in BACK.v may have node win its CERT through a in
orre
t 
erti�
ate and not add (v; w) to its CERT. However,any in
orre
t 
erti�
ate will be removed from CERT of any user in (ltime � p)time units as shown above. Therefore, after (ltime � (p + 1)) time units sin
ethe beginning of the 
omputation, any user in BACK.v adds (v; w) to its CERT, ifit was not there already. In other words, any user that should have (v; w) in the73



se
ond level of the tree in CERT adds (v; w) to its CERT. The 
y
le repeats, and after(ltime � (2p � 1)) time units, any user that should have (v; w) in its CERT adds(v; w) to its CERT.As shown above, in (ltime�(2p�1)) time units, any 
erti�
ate that is not inthe 
erti�
ate graph disappears from CERT of every user, and any 
erti�
ate that is inevery possible rea
h tree of user u appears in CERT.u. Therefore, in (ltime�(2p�1)),CERT.u be
omes an outgoing spanning tree rooted at u. �We believe that the upper bound on the 
onvergen
e span des
ribed in The-orem 15 is quite loose. It is an interesting problem to 
ompute a tight upper boundof the 
onvergen
e span.3.6.7 Dispersal in Client/Server SystemsThis dynami
 dispersal proto
ol is useful in any dynami
 
erti�
ate systems. Con-sider a 
lient/server system, where there are mu
h fewer servers than 
lients in thesystem. We 
an run the dynami
 dispersal proto
ol among the servers and let anyserver issue a 
erti�
ate for a 
lient. Ea
h server will have an outgoing spanningtree in its CERT, so ea
h server will be able to �nd a 
erti�
ate 
hain from itself toany 
lient that has a 
erti�
ate issued by an authenti
ated server.For example, many 
o�ee shops o�er free Internet 
onne
tion for their 
us-tomers. To prevent free-riders that are not 
ustomers, 
o�ee shops may require the
ustomers to register. For 
onvenien
e, a 
ustomer needs to register only on
e atany 
o�ee shop (the 
o�ee shop issues a 
erti�
ate for the 
ustomer), and the 
us-tomer 
an use the free 
onne
tion at all 
o�ee shops that are parti
ipating in thismembership without logging in or getting temporary authorization ea
h time he orshe goes to a 
o�ee shop, sin
e any 
o�ee shop has a 
erti�
ate 
hain from itselfto the 
ustomer. The authenti
ation using the 
erti�
ate 
hain does not require74



any intera
tion with the 
ustomer, so on
e the 
ustomer registers to get a 
erti�-
ate from one 
o�ee shop, the 
ustomer does not need to know how he or she getsauthenti
ated and authorized for the Internet 
onne
tion.Also, this 
lient/server system 
an help two 
lients authenti
ate ea
h other.A 
lient 
1 has issued a 
erti�
ate for a server s1 and s1 issued a 
erti�
ate for
1. A 
lient 
2 has issued a 
erti�
ate for a server s2 and s2 issued a 
erti�
ate for
2. When 
lient 
1 wants to se
urely 
ommuni
ate with 
lient 
2, 
lient 
1 
an askserver s1 for a 
erti�
ate 
hain from s1 to s2 and use the 
hain and the 
erti�
ates(
1; s1) and (s2; 
2) to �nd the publi
 key of 
lient 
2.A hierar
hi
al 
erti�
ate authorities used in Lotus Notes [32℄ is a spe
ial 
aseof su
h 
lient/server system. In a system with a hierar
hi
al 
erti�
ate authorities,the 
erti�
ate graph between 
erti�
ate authorities 
onstitutes a star graph, wherethe root 
erti�
ate authority has issued a 
erti�
ate for ea
h non-root 
erti�
ateauthority and ea
h non-root 
erti�
ate authority has issued a 
erti�
ate for the root
erti�
ate authority. In su
h a system, when a 
lient 
1 who has issued a 
erti�
atefor a 
erti�
ate authority 
a1 wants to se
urely 
ommuni
ate with another 
lient 
2who has issued a 
erti�
ate for a 
erti�
ate authority 
a2, 
1 
an 
onta
t 
a1 for 
er-ti�
ates (
a1; root)(root; 
a2). In Lotus Notes, 
a1 also �nds the 
erti�
ate (
a2; 
2)from 
a2 so that 
1 
an use the publi
 key of 
2 safely without 
ommuni
ating with
2.
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Chapter 4
Vulnerability Analysis
The 
erti�
ates issued by di�erent users in a system 
an be represented by a dire
tedgraph, 
alled the 
erti�
ate graph of the system. Ea
h node u in the 
erti�
ate graphrepresents a user u with the 
orresponding publi
 key b:u and private key r:u in thesystem. If a user has more than one publi
 key, then the user will be representedby several nodes in the graph, one node for ea
h publi
 and private key pair. Ea
hdire
ted edge from node u to node v in the 
erti�
ate graph represents a 
erti�
atehu; v; b:vir:u. A 
erti�
ate 
hain from a node u to a node v is a simple path fromnode u to node v in a 
erti�
ate graph. For nodes u and v in a 
erti�
ate graph G,if u wishes to se
urely send messages to v, then u seeks a path from u to v in G.(There are systems where u seeks a set of paths from u to v, whi
h will be dis
ussedin Se
tion 4.7.)In a 
erti�
ate graph, two types of damage 
an o

ur when the private key r:uof a node u is revealed to an adversary: expli
it and impli
it. The expli
it damageis that the adversary 
an impersonate node u to other nodes until it is known toother nodes that the private key r:u of u is revealed to the adversary. The impli
itdamage is that the adversary 
an impersonate nodes other than u to other nodes inthe system by signing forged 
erti�
ates with the revealed private key r:u of node76



u. As an example, 
onsider the 
erti�
ate graph in Fig. 4.1. If node a wishesto send a se
ure message to node g in this 
erti�
ate graph, then node a needs to�nd a 
erti�
ate 
hain from node a to node g. In the 
erti�
ate graph in Fig. 4.1,there is one 
erti�
ate 
hain from node a to node g, (a; d); (d; e); (e; g).
b d e

g

a f

cFigure 4.1: An example of a 
erti�
ate graphAssume that the private key r:d of node d is revealed to an adversary. Theadversary 
an en
rypt and de
rypt messages using r:d to impersonate node d to anyother node in the graph. This impersonation of node d is expli
it damage. Assumethat node a does not know that r:d is revealed. The adversary 
an 
reate a newpubli
 and private key pair, b:g0 and r:g0, and sign a forged 
erti�
ate hd; g;b:g0ir:dwith the revealed private key r:d of node d. Node g0 in Fig. 4.1 denotes the im-personated user g with the publi
 and private key pair b:g0 and r:g0 
reated by theadversary, and the dotted edge (d; g0) denotes the forged 
erti�
ate hd; g; b:g0ir:d.The 
erti�
ate 
hain (a; d); (d; g0) presents to node a the publi
 key b:g0 
reated bythe adversary as if it belonged to user g. This impersonation of node g is impli
itdamage.The expli
it and impli
it damage that 
an be brought into a 
erti�
ate graphwhen the private key of a node u is revealed to an adversary is 
alled the vulnerabilityof node u. For example, if the private key r:d of node d in Fig. 4.1 is revealed to anadversary, then the adversary 
an impersonate node d to all other nodes in the graphwithout forging any 
erti�
ates. In addition to impersonating node d, the adversary
an impersonate nodes a, b, 
 to nodes e, f , g by signing forged 
erti�
ates (d; a0),77



(d; b0), and (d; 
0) with the revealed private key r:d of node d. Also, the adversary
an impersonate nodes e, f , g to nodes a, b, 
 by forging 
erti�
ates (d; e0), (e0; f 0),and (e0; g0).We have identi�ed a metri
 to quantify the damage from this type of atta
ks.We 
all this metri
 \vulnerability" of 
erti�
ate graphs. As dis
ussed in detail inthis 
hapter, a metri
 of the vulnerability of 
erti�
ate graphs is useful in answeringseveral questions. First, how to determine whi
h 
erti�
ate graphs are less vulner-able and whi
h ones are more vulnerable. Se
ond, how to determine whi
h 
riteriafor a

epting publi
 keys from 
erti�
ate 
hains are better. Third, how to bal-an
e between the resilien
e against impersonation atta
ks and storage 
ost. Therehave been intuitive answers to these questions, su
h as short 
erti�
ate 
hains andmany independent 
erti�
ate 
hains are preferable than long and dependent ones.The vulnerability metri
 quanti�es how e�e
tively these intuitive answers work toredu
e vulnerability.In the following se
tions, we formally de�ne the vulnerability metri
s of nodesand of 
erti�
ate graphs, and present theorems that show vulnerabilities of several
erti�
ate graphs with di�erent requirements. Also, we present three algorithms to
ompute the vulnerability of an arbitrary 
erti�
ate graph. Using these algorithms,we investigate the e�e
t of graph topology, 
erti�
ate dispersal, and a

eptan
e
riteria on the vulnerability of 
erti�
ate graphs. Then we dis
uss the vulnerabilitywhen many private keys are revealed to an adversary. We present a brief summaryof related work and end with 
on
luding remarks.4.1 Vulnerability of Certi�
ate GraphsLet G be a 
erti�
ate graph and d be a node in G. We assume that ea
h node in Gstores the 
erti�
ates it issues, and ea
h node a

epts all publi
 keys in a 
erti�
ate
hain as long as ea
h 
erti�
ate in the 
hain is veri�ed. (We will dis
uss in Se
tion 4.678



about the 
ase when ea
h node requires more than one 
hain to a

ept the publi
key.) Assume that the private key r:d of node d is revealed to an adversary. Theadversary 
an use the revealed private key to en
rypt and de
rypt any messages asif the adversary were node d, and so it 
an impersonate node d to all other nodesfrom whi
h there are 
erti�
ate 
hains to d. Also, the adversary 
an use r:d toimpersonate a node dst, other than d, to another node sr
, also other than d in G,by performing the following three steps.i. The adversary 
reates a private key r:dst0 and its 
orresponding publi
 keyb:dst0. Later, the adversary will pretend that these keys are the publi
 andprivate keys of node dst.ii. The adversary uses the revealed private key r:d of node d to issue a forged
erti�
ate hd; dst; b:dst0ir:d. This forged 
erti�
ate is denoted (d; dst0).iii. The adversary provides node sr
 with the 
erti�
ate 
hain that 
onsists of a
hain of 
orre
t 
erti�
ates from sr
 to d and the forged 
erti�
ate (d; dst0).From this 
hain, node sr
 
an wrongly dedu
e that the publi
 key b:dst0 
re-ated by the adversary is the publi
 key of node dst. Any message sent bythe adversary that is en
rypted with the mat
hing private key r:dst0 will beauthenti
ated by node sr
 as if it were sent by node dst.Note that this s
enario of the adversary would work only if G has a 
erti�
ate 
hainfrom sr
 to d that does not 
ontain any 
erti�
ate issued by dst and G has no
erti�
ate (sr
; dst).The next theorem states a ne
essary and suÆ
ient 
ondition for an adversaryto impersonate node dst to another node sr
 in a 
erti�
ate graph where the privatekey r:d of some node d is revealed to an adversary.Theorem 16 Let G be a 
erti�
ate graph and sr
 and dst be any two distin
t nodesin G. Let d be a node in G whose private key r:d is revealed to an adversary. The79



adversary 
an impersonate node dst to node sr
 if and only if sr
 6= d, G has a
erti�
ate 
hain from sr
 to d that does not 
ontain any 
erti�
ates issued by nodedst, and one of the following two 
onditions holds.i. dst = d, orii. G has no 
erti�
ate (sr
; dst)Proof:Proof for if If dst = d, then the adversary 
an use the revealed privatekey r:d of node d to en
rypt and de
rypt any message as if it were node d andimpersonate node dst to node sr
. If dst 6= d, then G has no 
erti�
ate (sr
; dst), sosr
 does not know the 
orre
t publi
 key of dst. Now the adversary 
an sign a forged
erti�
ate (d; dst0) with the revealed private key r:d of d. There is a 
erti�
ate 
hainfrom sr
 to d that does not 
ontain any 
erti�
ates issued by dst, so the adversary
an add the forged 
erti�
ate (d; dst0) to the 
orre
t 
erti�
ate 
hain from sr
 to dand present the 
erti�
ate 
hain from sr
 to dst0 to node sr
. If node sr
 does notknow that the private key of node d is revealed to the adversary, then sr
 will notnoti
e that the 
erti�
ate (d; dst0) is forged and a

ept the publi
 key in (d; dst0) asthe valid publi
 key of dst.Proof for only if In order to prove the only if part, we prove the 
ontra-position. If any of the following three 
onditions holds, then the adversary 
annotimpersonate dst to sr
:i. sr
 = dii. G has no 
erti�
ate 
hain from sr
 to d that does not 
ontain any 
erti�
ateissued by dst.iii. dst 6= d and G has 
erti�
ate (sr
; dst).80



First, assume sr
 = d. In this 
ase, sr
 will not a

ept any forged 
erti�-
ate in
luding a new publi
 key 
reated by the adversary, sin
e sr
 stores all the
erti�
ates it issued.Se
ond, assume that G has no 
erti�
ate 
hain from sr
 to d that does not
ontain any 
erti�
ate issued by dst. If G has no 
erti�
ate 
hain from sr
 to dthat does not 
ontain any 
erti�
ate issued by dst, there are two possible 
ases to
onsider. In the �rst 
ase, G has no 
erti�
ate 
hain from sr
 to d. In the se
ond
ase, G has at least one 
erti�
ate 
hain from sr
 to d, but every su
h 
hain fromsr
 to d 
ontains a 
erti�
ate issued by dst. In the �rst 
ase, the adversary 
annot
reate a 
erti�
ate 
hain from sr
 to dst0, be
ause G has no 
erti�
ate 
hain from sr
to d to whi
h the adversary 
an add a forged 
erti�
ate (d; dst0). So the adversary
annot impersonate dst to sr
. In the se
ond 
ase, sr
 will verify the publi
 keyof node dst in the pro
ess of validating the 
erti�
ate 
hain from sr
 to d, and willnoti
e that the identity of dst is repeated twi
e in the 
erti�
ate 
hain and reje
tthe publi
 key of dst0. In both 
ases, the adversary 
annot impersonate dst to sr
.Third, assume d 6= dst and G has 
erti�
ate (sr
; dst). If sr
 has issued the
erti�
ate (sr
; dst), then sr
 already knows the 
orre
t publi
 key of dst, so it willnot a

ept any other publi
 key 
reated by the adversary as a valid publi
 key ofdst. Hen
e, the adversary 
annot impersonate dst to sr
. This 
ompletes the prooffor the only if part.Let G be a 
erti�
ate graph and d be a node in G. Assume that the privatekey r:d of node d is revealed to an adversary. The vulnerability of node d, denotedV (d), is the number of node pairs (sr
; dst) where the adversary 
an impersonatenode dst to node sr
 divided by the number of node pairs (sr
; dst) where sr
 6= dstand sr
 6= d in G. More formally,V (d) = jIMP (d)j(n� 1)2 ;81



where IMP (d) = f(sr
; dst)j the adversary 
an impersonate dst to sr
 using r:dgand n is the number of nodes in G.The following theorem gives tight upper and lower bounds on the vulnera-bility of a node in a 
erti�
ate graph.Theorem 17 For a node d in any 
erti�
ate graph G, we have1 � V (d) �jfsr
jG has a 
erti�
ate 
hain from sr
 to dgj(n� 1)2Proof: The most number of node pairs (sr
; dst) where the adversary 
an im-personate dst to sr
 is the total number of node pairs (sr
; dst) where sr
 6= dst andsr
 6= d, whi
h is (n� 1)2. Therefore, the upper bound of V (d) is 1. Also, sin
e theadversary knows r:d, the adversary 
an always impersonate node d to every nodethat has a 
erti�
ate 
hain from itself to d. (This is the s
ope of expli
it damage.)Therefore, the number of node pairs (sr
; d) where G has a 
erti�
ate 
hain fromsr
 to d divided by (n� 1)2 is the lower bound.The following lemmas show that the bounds shown in the above theorem aretight.Lemma 6 There exists node d in some 
erti�
ate graph G, whereV (d) = 1Proof: Consider the 
erti�
ate graph in Fig. 4.2. When the private key of the
enter node is revealed to an adversary, the adversary 
an impersonate any nodedst to any other node sr
, where sr
 is not the 
enter node. There are 8 nodesthat 
an be sr
, and for ea
h sr
 node among them, there are 8 other nodes that
an be impersonated to sr
. Therefore, the number of node pairs (sr
; dst) where82



the adversary 
an impersonate dst to sr
 is 8 � 8 = 64, and n = 9. Therefore, thevulnerability of the 
enter node is 1.
Figure 4.2: The (8; 1)-star 
erti�
ate graphLemma 7 There exists node d in some 
erti�
ate graph G, whereV (d) = jfsr
jG has a 
erti�
ate 
hain from sr
 to dgj(n� 1)2Proof: In the 
erti�
ate graph in Fig. 4.3, every node has issued 
erti�
ates toall other nodes in the graph. If the private key of node 
 is revealed to an adversary,the adversary 
an impersonate only node 
 to nodes a and b, sin
e node a alreadyknows the 
orre
t publi
 key of node b in the 
erti�
ate (a; b) and node b knows the
orre
t publi
 key of node a in the 
erti�
ate (b; a). So the vulnerability of node 
is 222=12 , whi
h meets the lower bound. In fa
t, the vulnerability of any node in afully 
onne
ted 
erti�
ate graph meets the lower bound.

Figure 4.3: An example of fully 
onne
ted 
erti�
ate graphLet G be a 
erti�
ate graph, then the vulnerability of graph G, denotedV (G), is de�ned as follows: V (G) = maxd2G V (d)83



4.2 Vulnerability of Spe
ial Certi�
ate GraphsIn this se
tion, we give three theorems that show the vulnerability of three spe
ial
lasses of 
erti�
ate graphs: n-loops, (m; k)-stars, and (d; h)-trees. In many 
erti�-
ate systems, for example PGP, 
erti�
ate graphs are not planned in advan
e and
ertainly not designed. Rather, they are developed in an ad-ho
 manner dependingon whi
h users de
ide to issue 
erti�
ates for whi
h other users. However, if we dohave the luxury of planning and designing 
erti�
ate graphs, then we 
an 
hoose thebest among these spe
ial 
lasses a

ording to the system requirements. n-loop 
er-ti�
ate graphs are useful when the 
erti�
ate graph needs to be strongly-
onne
tedbut the number of 
erti�
ates needs to be minimized. (m; k)-star 
erti�
ate graphsare useful when a trusted 
erti�
ate authority (
enter node) is available. (d; h)-tree
erti�
ate graphs are useful in hierar
hi
al systems.The following three theorems 
ompute the vulnerabilities of three spe
ial
lasses of 
erti�
ate graphs. The theorems show that n-loop 
erti�
ate graphs areless vulnerable than (m; 2)-star 
erti�
ate graphs for n � 4. On the other hand,(2; h)-tree 
erti�
ate graphs are less vulnerable than n-loop 
erti�
ate graphs forn > 10. The 
omparison results are dis
ussed in more detail in the end of thisse
tion.An n-loop 
erti�
ate graph is a 
erti�
ate graph that has n nodes arrangedin a unidire
tional ring. Fig. 4.4 shows the 8-loop 
erti�
ate graph.
Figure 4.4: The 8-loop 
erti�
ate graphTheorem 18 The vulnerability of an n-loop 
erti�
ate graph is 1� n�22(n�1) .84



Figure 4.5: The (4; 2)-star 
erti�
ate graphProof: Label ea
h node 0 � � �n � 1. Assume that the private key of node j isrevealed to an adversary. The adversary 
an impersonate node k to node i if k = j,or if �(i; k) and there is a path from node i to node j that does not 
ontain node k.Therefore, to node j�1, the adversary 
an impersonate nodes j; j+n1; � � � ; j+n(n�2). To node j � 2, the adversary 
an impersonate nodes j; j +n 1; � � � ; j +n (n� 3).After 
onsidering ea
h node, the number of (sr
; dst) pairs in whi
h the adversary
an impersonate node dst to node sr
 is n(n�1)2 . The vulnerability of node j isn(n�1)2(n�1)(n�1)=1� n�22(n�1) . This holds for any node j in this graph, so the vulnerabilityof an n-loop 
erti�
ate graph is 1� n�22(n�1) .An (m; k)-star 
erti�
ate graph is a 
erti�
ate graph that 
onsists of m uni-dire
tional rings that share one 
enter node and ea
h ring has k unshared nodes.Fig. 4.5 shows the (4; 2)-star 
erti�
ate graph.Theorem 19 The vulnerability of an (m; k)-star 
erti�
ate graph is 1� k�12mk .Proof: The vulnerability of a graph is the maximum vulnerability of every nodein the graph. In an (m; k)-star 
erti�
ate graph, the 
enter node has the highestvulnerability. Now let us 
ompute the vulnerability of the 
enter node. Label the knodes in a satellite ring from 1 � � � k and the 
enter node as node 0. There is an edgefrom node i to node i+k+1 1, where 0 � i � k. When the private key of the 
enternode is revealed to an adversary, the adversary 
an impersonate to node 1 any nodein the graph ex
ept for the nodes 2 � � � k in the same satellite ring. To node 2, theadversary 
an impersonate any node in the graph ex
ept for the nodes 3 � � � k in thesame satellite ring. As a result, the adversary 
an impersonate Pki=1(mk� (k� i))85



pairs for ea
h satellite ring. So the vulnerability of the 
enter node isV (
enter) = 1(mk)2 (m kXi=1(mk � (k � i)))= 1(mk)2�mk(mk � k) + mk(k + 1)2 �= 1mk�(mk � k) + k + 12 �= 2mk � 2k + k + 12mk= 2mk � k + 12mk= 1� k � 12mkTherefore, the vulnerability of an (m; k)-star 
erti�
ate graph is 1� k�12mk .A (d; h)-tree 
erti�
ate graph is a 
omplete tree 
erti�
ate graph with degreed and height h, where there is an edge from ea
h parent node to ea
h of its 
hildrennodes and an edge from ea
h 
hild node to its parent node. Fig. 4.6 is an exampleof a (d; h)-tree 
erti�
ate graph, where d = 3 and h = 2.Theorem 20 The vulnerability of a (d; h)-tree 
erti�
ate graph is 1� dh+1+hdh+1(d�1)(n�1)2 �d(d�1)(n�1) � d2(d�1)(n�1)2 , approximately 1� hdh .Proof: The vulnerability of a graph is the maximum of vulnerability of all nodesin the graph. In a (d; h)-tree 
erti�
ate graph, the root node has the highest vulner-ability. The vulnerability of the root node 
an be 
omputed as follows. Consider anode i in level h. When the private key of the root node is revealed to an adversary,the adversary 
an impersonate any node to node i ex
ept the (h� 1) nodes on the
erti�
ate 
hain from node i to the root node. On the other hand, for a node j inlevel h� 1, the adversary 
an impersonate any node to node j ex
ept its d 
hildrennodes and the (h� 2) nodes on the 
erti�
ate 
hain from node j to the root node.So, the adversary 
an impersonate (n� 1� (h� 2 + d)) nodes to node j. Similarly,86



for a node in level l, where l < h, the adversary 
an impersonate (n�1� (l�1+d))nodes to the node. As a result, the vulnerability of the root node is :V (root) = 1(n� 1)2�h�1Xi=1 di(n� 1� (i� 1 + d)) + dh(n� 1� (h� 1))�= 1(n� 1)2�(n� d) h�1Xi=1 di � h�1Xi=1 idi + (n� h)dh�= 1(n� 1)2�n hXi=1 di � h�1Xi=1 di+1 � hXi=1 idi�= 1(n� 1)2�n(n� 1)� d2(dh�1 � 1)d� 1 � hdh+1 � n+ 1d� 1 �= nn� 1 � dh+1 � d2 + hdh+1 � n+ 1(d� 1)(n� 1)2= 1� 1n� 1 � dh+1 � d2 + hdh+1 � n+ 1(d� 1)(n� 1)2= 1� dh+1 + hdh+1(d� 1)(n� 1)2 � 1n� 1 � d2(d� 1)(n� 1)2 � 1(d� 1)(n� 1)= 1� dh+1 + hdh+1(d� 1)(n� 1)2 � d� 1 + 1(d� 1)(n� 1) � d2(d� 1)(n� 1)2= 1� dh+1 + hdh+1(d� 1)(n� 1)2 � d(d� 1)(n� 1) � d2(d� 1)(n� 1)2' fsin
e n is largeg 1� dh+1 + hdh+1(d� 1)(n� 1)2' fsin
e n = dh+1 � 1d� 1 ' dhg 1� dh+1(1 + h)(d� 1)(dh)2' fsin
e h+ 1d� 1 ' hdg 1� hdh+1d(dh)2= 1� hdhTherefore, the vulnerability of a (d; h)-tree 
erti�
ate graph is approximately 1� hdh .Fig. 4.7 shows the vulnerabilities of three spe
ial 
erti�
ate graphs, n-loops,87



Figure 4.6: The (3; 2)-tree 
erti�
ate graph(m; 2)-stars, and (2; h)-trees as fun
tions of the number of nodes in ea
h graph.From this graph, it is 
lear that n-loops are less vulnerable than (m; 2)-stars and(2; h)-trees. This metri
 of vulnerability 
an be used to show whi
h 
erti�
ate graphis less vulnerable.
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Figure 4.7: Comparison of three spe
ial graphs4.3 Vulnerability of Arbitrary Certi�
ate GraphsIn the previous se
tion we 
omputed the vulnerability of three spe
ial 
lasses of
erti�
ate graphs. We now present Algorithm 9 that 
omputes the vulnerability ofan arbitrary 
erti�
ate graph.By Theorem 16, if G has a path from node sr
 to node d that does not
ontain node dst, then the adversary 
an impersonate dst to sr
 when the privatekey of node d is revealed to it (and G has no 
erti�
ate (sr
; dst)). As mentioned88



in Se
tion 4.1, we assume that ea
h node only stores the 
erti�
ates it issued anda

epts all the publi
 keys in the presented 
erti�
ate 
hain as long as ea
h 
erti�
atein the 
hain is veri�ed. To �nd every node sr
 that has a path to node d that doesnot 
ontain node dst, Algorithm 9 removes node dst and its in
oming and outgoingedges from G and sees whi
h nodes are still 
onne
ted to d. Consider the example
erti�
ate graph G in Fig. 4.1. In Fig. 4.8(a), node a and its in
oming and outgoingedges are removed from G. There are paths from nodes b; 
; e; f; g to node d inFig. 4.8(a). Therefore, if the private key of node d is revealed to an adversary,then the adversary 
an impersonate node a to nodes b; 
; e; f; g. On the other hand,without node e and its in
oming and outgoing edges, there are no paths from nodesf; g to node d as shown in Fig. 4.8(b). Therefore, when the private key of d isrevealed to an adversary, the adversary 
annot impersonate node e to nodes f; g.
(a) without node a

b d

g

a f

c
(b) without node e

c

b d e

g

f

Figure 4.8: Computing vulnerability of the example graphFor a given 
erti�
ate graph G, Algorithm 9 
omputes a transitive 
losureCdst without using any in
oming and outgoing edges of node dst for ea
h node dstin G (lines 3-4). Cdst 
ontains an edge (sr
; d) if and only if there is a path from sr
to d that does not 
ontain dst and G has no 
erti�
ate (sr
; dst) (line 5). In otherwords, if there is an edge (sr
; d) in Cdst, then an adversary 
an impersonate dst tosr
 when the private key of node d is revealed to the adversary.89



ALGORITHM 9 : Vulnerability of a 
erti�
ate graphINPUT: a 
erti�
ate graph G with n nodesOUTPUT: vulnerability of GSTEPS:1: for dst = 0 to n� 12: Cdst := G3: remove all the in
oming and outgoing edges ofnode dst from Cdst4: Cdst := transitive 
losure of Cdst5: if G has an edge (sr
; dst) for any node sr
,then remove (sr
; dst) from Cdst6: endfor7: C := transitive 
losure of G8: for d = 0 to n� 19: V (d) := Pdst2G(the in-degree of node d in Cdst)+ the in-degree of node d in C10: endfor11: return maxd2G V (d)(n�1)2To 
ompute the vulnerability of a node d in G, Algorithm 9 �nds all the nodepairs (sr
; dst) in G su
h that G has a path from sr
 to d that does not 
ontain dstand has no 
erti�
ate (sr
; dst). For ea
h node dst in G, the in-degree of node d inthe transitive 
losure Cdst is the number of node pairs (sr
; dst) in G that satis�esthe 
ondition. So the sum of the in-degree of node d in the transitive 
losure Cdst forea
h node dst in G shows the s
ope of the impli
it damage of the revealed privatekey of node d.In the example 
erti�
ate graph G in Fig. 4.1, when the private key of dis revealed to an adversary, the adversary 
an impersonate node d to any otheruser in G. To 
ompute this expli
it damage of the revealed private key of node d,Algorithm 9 also 
omputes a transitive 
losure C of G (line 7). C 
ontains an edge(sr
; d) if and only if there is a path from sr
 to d in G. In other words, if there is an90



edge (sr
; d) in C, then the adversary 
an impersonate d to sr
 using the revealedprivate key of node d. Therefore, the in-degree of node d in the transitive 
losure Cof G shows the s
ope of the expli
it damage of the revealed private key of node d.Using these transitive 
losures, Algorithm 9 
omputes the vulnerability ofea
h node d in a given 
erti�
ate graph G, and then returns the maximum as thevulnerability of the 
erti�
ate graph.In this algorithm, the most expensive step is line 4. The 
ost of 
omputinga transitive 
losure of a 
erti�
ate graph with n nodes is O(n3), and we need to
ompute (n+ 1) transitive 
losures. Therefore, the 
omplexity of this algorithm isO(n4).4.4 E�e
t of Topology on VulnerabilityThe vulnerability of a 
erti�
ate graph is a�e
ted by the topology of the graph. Forexample, the (4; 2)-star 
erti�
ate graph in Fig. 4.5 has vulnerability 1516 , whereasthe (8; 1)-star 
erti�
ate graph has vulnerability 1. Therefore, these two 
erti�
ategraphs, despite having the same number of nodes and the same 
onne
tivity, havedi�erent vulnerabilities.In Fig. 4.9, we show the e�e
t of topology on vulnerability of star 
erti�
ategraphs. Theorem 19 gives the vulnerability of (m; k)-star 
erti�
ate graphs. How-ever, if we keep the same number of nodes in the star 
erti�
ate graph but 
hangethe value of k, not every satellite ring 
an have exa
tly k nodes. We put k nodes inas many rings as possible, and leave the remaining nodes in the last ring. We ranAlgorithm 9 on the star 
erti�
ate graphs with 100 nodes where k, the maximumnumber of nodes in ea
h satellite ring, 
hanges from 1 to 99. Fig. 4.9 shows thatthe vulnerability de
reases as k in
reases.In Fig. 4.10, we show the e�e
t of topologies on vulnerability of tree 
erti�
ategraphs. Theorem 20 gives the vulnerability of (d; h)-tree 
erti�
ate graphs. However,91
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4.5 E�e
t of Dispersal on VulnerabilityIn a 
erti�
ate graph where 
erti�
ate 
hains are used to �nd a publi
 key, nodesmay store a few 
erti�
ates in their lo
al storage to expedite the sear
h for a publi
key [22, 23, 38℄. In parti
ular, 
erti�
ate dispersal D of a 
erti�
ate graph G inChapter 3.6 assigns a set of 
erti�
ates D:u to ea
h node u so that if G has a
erti�
ate 
hain from node u to node v, then D:u[D:v 
ontains all the 
erti�
atesin the 
erti�
ate 
hain. If 
erti�
ate dispersal is applied, then when a node u wishesto se
urely 
ommuni
ate with a node v, then node u will look for a publi
 key of nodev in D:u �rst before it sends out a query to node v for more 
erti�
ates. Therefore,if node u already has a 
erti�
ate that has node v as the subje
t of the 
erti�
ate,the adversary 
annot impersonate node v to node u by issuing forged 
erti�
ates.In other words, the vulnerability of a 
erti�
ate graph is not only determined by thetopology of the 
erti�
ate graph, but also a�e
ted by the dispersal of the 
erti�
ategraph. As mentioned in Se
tion 4.3, when no dispersal is deployed, if the private keyof node d is revealed to an adversary, then the adversary 
an impersonate nodes d,e, f , g to nodes a, b, 
, and impersonate nodes a, b, 
, d to nodes e, f , g. However,when we assign all the 
erti�
ates in an outgoing spanning tree rooted at node xto the set D:x, if the private key of node d is revealed to an adversary, then theadversary 
an impersonate only node d to all other nodes, so there 
an be no impli
itdamage to the graph. Theorem 16 is modi�ed here to take the e�e
t of dispersalinto 
onsideration.Theorem 21 Let G be a 
erti�
ate graph and sr
 and dst be any two distin
t nodesin G. Let D be any dispersal of G and d be a node in G whose private key r:d isrevealed to an adversary. The adversary 
an impersonate node dst to node sr
 ifand only if sr
 6= d, G has a 
erti�
ate 
hain from sr
 to d that does not 
ontainany 
erti�
ate issued by node dst, and one of the following two 
onditions holds.93



i. dst = d, orii. D:sr
 63 (k; dst); k 2 GProof:Proof for if If dst = d, then the adversary 
an use the revealed privatekey r:d of node d to en
rypt and de
rypt any message as if it were node d andimpersonate node dst to node sr
. If dst 6= d, then D:sr
 has no 
erti�
ate (k; dst),for any node k in G, so sr
 does not know the 
orre
t publi
 key of dst. Now theadversary 
an sign a forged 
erti�
ate (d; dst0) with the revealed private key r:d ofd. There is a 
erti�
ate 
hain from sr
 to d that does not 
ontain any 
erti�
atesissued by dst, so the adversary 
an add the forged 
erti�
ate (d; dst0) to the 
orre
t
erti�
ate 
hain from sr
 to d and present the 
erti�
ate 
hain from sr
 to dst0 tonode sr
. If node sr
 does not know that the private key of node d is revealed to theadversary, then sr
 will not noti
e that the 
erti�
ate (d; dst0) is forged and a

eptthe publi
 key in (d; dst0) as the valid publi
 key of dst.Proof for only if In order to prove the only if part, we prove the 
ontra-position. If any of the following three 
onditions holds, then the adversary 
annotimpersonate dst to sr
:i. sr
 = dii. G has no 
erti�
ate 
hain from sr
 to d that does not 
ontain any 
erti�
ateissued by dst.iii. dst 6= d and D:sr
 has 
erti�
ate (k; dst), for some node k in G.First, assume sr
 = d. In this 
ase, sr
 will not a

ept any forged 
erti�-
ate in
luding a new publi
 key 
reated by the adversary, sin
e sr
 stores all the
erti�
ates it issued.Se
ond, assume that G has no 
erti�
ate 
hain from sr
 to d that does not
ontain any 
erti�
ate issued by dst. If G has no 
erti�
ate 
hain from sr
 to d94



that does not 
ontain any 
erti�
ate issued by dst, there are two possible 
ases to
onsider. In the �rst 
ase, G has no 
erti�
ate 
hain from sr
 to d. In the se
ond
ase, G has at least one 
erti�
ate 
hain from sr
 to d, but every su
h 
hain fromsr
 to d 
ontains a 
erti�
ate issued by dst. In the �rst 
ase, the adversary 
annot
reate a 
erti�
ate 
hain from sr
 to dst0, be
ause G has no 
erti�
ate 
hain from sr
to d to whi
h the adversary 
an add a forged 
erti�
ate (d; dst0). So the adversary
annot impersonate dst to sr
. In the se
ond 
ase, sr
 will verify the publi
 keyof node dst in the pro
ess of validating the 
erti�
ate 
hain from sr
 to d, and willnoti
e that the identity of dst is repeated twi
e in the 
erti�
ate 
hain and reje
tthe publi
 key of dst0. In both 
ases, the adversary 
annot impersonate dst to sr
.Third, assume d 6= dst and D:sr
 has 
erti�
ate (k; dst) for some node k inG. Based on 
erti�
ate (k; dst), sr
 already knows the 
orre
t publi
 key of dst, soit will not a

ept any other publi
 key 
reated by the adversary as a valid publi
key of dst. Hen
e, the adversary 
annot impersonate dst to sr
. This 
ompletes theproof for the only if part.Algorithm 10 shown below is modi�ed from Algorithm 9 to in
lude the e�e
tof dispersal in the evaluation of vulnerability. If node sr
 has a 
erti�
ate (x; dst)due to dispersal for any user x, then no adversary 
an impersonate dst to x withthe revealed private key of any user y. Spe
i�
ally, after line 4 in Algorithm 9, thefollowing line is added: if any D:sr
 has an edge (x; dst), then remove all the edges(sr
; y) from Cdst.The graph in Fig. 4.11 shows how mu
h vulnerability is redu
ed by theoptimal 
erti�
ate dispersal of tree 
erti�
ate graphs. In the 
ase of \No Dispersal",ea
h node knows only the publi
 keys in the 
erti�
ates it issued. In the 
ase of\With Dispersal", ea
h node stores 
erti�
ates assigned by an optimal dispersal ofthe 
erti�
ate graph and knows the publi
 keys in the stored 
erti�
ates. The 
ostof 
erti�
ate dispersal is de�ned as the average number of 
erti�
ates stored in ea
h95



ALGORITHM 10 : Vulnerability with 
erti�
ate dispersalINPUT: a 
erti�
ate graph G with n nodes and a dispersal D of GOUTPUT: vulnerability of GSTEPS:1: for dst = 0 to n� 12: Cdst := G3: remove all the in
oming and outgoing edgesof node dst from Cdst4: Cdst := transitive 
losure of Cdst5: if any D:sr
 has an edge (x; dst),then remove all the edges (sr
; y) from Cdst6: endfor7: C := transitive 
losure of G8: for d = 0 to n� 19: V (d) := Pdst2G(the in-degree of node d in Cdst)+ the number of edges (sr
; d) in Cfor any node sr
 in G10: endfor11: return maxd2G V (d)(n�1)2node. An optimal dispersal of a 
erti�
ate graph is a dispersal whose 
ost is lessthan or equal to the 
ost of any other dispersal of the same 
erti�
ate graph. Thetree 
erti�
ate graphs have 100 nodes and the degree 
hanges from 2 to 99. Theresult without dispersal is the same as Fig. 4.10.Note that the 
ost of the optimal dispersal of tree 
erti�
ate graphs de
reases,as shown in Fig. 4.12, whereas the vulnerability in
reases, as the degree of the treein
reases. The x-axis of the graph in Fig. 4.12 is same as Fig. 4.11, and the y-axisshows the optimal dispersal 
ost. There is a 
lear trade-o� between the vulnerabilityand the optimal dispersal 
ost of tree 
erti�
ate graphs.The trade-o� between the dispersal 
ost and the vulnerability in general isfairly straightforward, sin
e a higher dispersal 
ost means that nodes know more
orre
t publi
 keys, 
orresponding to more nodes that the adversary will not be96
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Figure 4.12: Optimal Dispersal Cost of Tree Graphsable to impersonate. However, the trade-o� between the dispersal 
ost of the opti-mal dispersal and the vulnerability shown here suggests that the 
erti�
ate graphtopology and the 
erti�
ate dispersal algorithm must be 
arefully 
hosen to rea
hthe right balan
e between the performan
e overhead (i.e. the size of lo
al storagefor dispersed 
erti�
ates) and the resilien
e against atta
ks (i.e. the vulnerability).A graph with little vulnerability may be resour
e-intensive to a

ommodate higherdispersal 
ost, whi
h is suitable for high assuran
e networks. On the other hand,a graph with limited storage may prefer a 
erti�
ate graph topology with smalldispersal 
ost and su�er a higher exposure to impersonation atta
ks.97



4.6 E�e
t of A

eptan
e Criteria on VulnerabilityTo redu
e the impli
it damage of a revealed private key of a node, many resear
hersproposed to use some a

eptan
e 
riteria to verify the validity of the publi
 key ofthe destination node of the 
erti�
ate 
hain [5, 24, 27, 30, 33, 34, 36, 40℄. Some ofthe results are des
ribed in Chapter 5. Most of these 
riteria 
an be modeled asa fun
tion that takes a set of 
erti�
ate 
hains as an input and outputs a yes/noanswer. A node u, who wants to �nd the publi
 key of another node v, will �nd aset of 
erti�
ate 
hains from u to v. Node u 
an give this set as an input to thea

eptan
e 
riteria fun
tion, and if the output answer is yes, then the publi
 key ofnode v in the 
erti�
ate 
hain will be a

epted by node u as valid. Theorem 16 ismodi�ed here to take the a

eptan
e 
riteria into 
onsideration.Theorem 22 Let G be a 
erti�
ate graph and sr
 and dst be any two distin
t nodesin G. Let d be a node in G whose private key r:d is revealed to an adversary. Theadversary 
an impersonate node dst to node sr
 if and only if sr
 6= d and one ofthe following two 
onditions holds.i. d = dst and G has a set of 
erti�
ate 
hains from sr
 to dst that satis�es thea

eptan
e 
riteria of G, orii. �(sr
; dst) and the set of 
erti�
ate 
hains where ea
h 
hain in the set 
onsistsof a 
orre
t 
erti�
ate 
hain from sr
 to d, that does not 
ontain any 
erti�
ateissued by node dst, and a forged 
erti�
ate (d; dst0), satis�es the a

eptan
e
riteria of G.A simple a

eptan
e 
riteria is to limit the length of 
erti�
ate 
hains that
an be used. For example, a node might set the value of this limit to be 6 anda

ept only 
hains that 
onsist of 6 or fewer 
erti�
ates. In fa
t, this a

eptan
e
riteria is implemented in the 
urrent PGP system as the parameter CERT DEPTH.98



Algorithm 11 shown below 
omputes vulnerability of 
erti�
ate graphs in the 
asewhere this a

eptan
e 
riteria is used. To explain Algorithm 11, we need to de�nethe 
on
ept of k-
losure.A k-
losure of a graph G is a dire
ted graph that has the same number ofnodes in G, and this graph has an edge (sr
; dst) if and only if there is a dire
tedpath of length at most k from sr
 to dst in G. Note that 1-
losure of G is G itself,and 0-
losure of G is a graph with the same nodes in G but does not 
ontain anyedges. Algorithm 11 takes a 
erti�
ate graph G and the limit k(=CERT DEPTH) on
hain length as input and 
ompute (k-1)-
losures for ea
h node dst, so that theadversary 
an add a forged 
erti�
ate to the existing 
hain and the resulting 
hainwill satisfy the limit k on 
hain length.ALGORITHM 11 : Vulnerability with limit k on 
hain lengthINPUT: a 
erti�
ate graph G with n nodes anda limit k(=CERT DEPTH) on 
hain lengthOUTPUT: vulnerability of GSTEPS:1: for dst = 0 to n� 12: Cdst := G3: remove all the in
oming and outgoing edges ofnode dst from Cdst4: Cdst := (k � 1)-
losure of Cdst5: if G has an edge (sr
; dst),then remove (sr
; dst) from Cdst6: endfor7: C := k-
losure of G8: for d = 0 to n� 19: V (d) := Pdst2G(the in-degree of node d in Cdst)+ the in-degree of node d in C10: endfor11: return maxd2G V (d)(n�1)2 99



The graphs in Figs. 4.13-4.14 show how vulnerability 
hanges as we applydi�erent CERT DEPTH as the limit on 
hain length. As CERT DEPTH in
reases, a node
an a

ept longer 
hains, and the vulnerability in
reases. In Fig. 4.13, ea
h star
erti�
ate graph has 100 nodes and 10 satellite rings, and the maximum numberof nodes in a satellite ring is 10. We 
hanged the value of CERT DEPTH from 1 to11, sin
e the longest 
hain that the adversary will use from the original 
erti�
ategraph is 10. (The longest 
hain from a node in a satellite ring to the 
enter node is10.) After 10, the vulnerability is same as that in Fig. 4.9. For 
omparison, we showthe vulnerability of the graph without applying CERT DEPTH shown as a dotted linehere. In Fig. 4.14, ea
h tree 
erti�
ate graph has 100 nodes and the degree is2. Sin
e the root node has the maximum vulnerability, the longest 
hain that anadversary will use from the original 
erti�
ate graph is from the leaf node to theroot node, whi
h has length 6. Hen
e, we 
hanged the value of CERT DEPTH from 1to 7. After 6, the vulnerability is the same as Fig. 4.10, shown as a dotted line here.
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hain length on vulnerabilityAs another example of a

eptan
e 
riteria, we 
an use \path independen
e"proposed in [33℄. This a

eptan
e 
riteria requires k independent paths from sr
 todst for node sr
 to be able to use the publi
 key of dst in the 
erti�
ate graph. To100



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7

vu
ln

er
ab

ili
ty

CERT_DEPTH

with CERT_DEPTH
without CERT_DEPTHFigure 4.14: E�e
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hain length on vulnerability�nd independent paths, the authors propose to use the min-
ut size of a 
erti�
ategraph from sr
 to dst. Sin
e sr
 only uses the publi
 key of dst if the min-
ut sizeof a 
erti�
ate graph from sr
 to dst is at least k, the adversary needs to know atleast k private keys.In the 
urrent Internet, SSL/TLS [13℄ is one of the most 
ommonly used pro-to
ols based on 
erti�
ates. In SSL/TLS, most of the websites that have 
erti�
atessigned by a CA, su
h as VeriSign, do not have alternate 
erti�
ates signed by otherCA. In other words, there is only one 
hain from one node to another. For this typeof 
erti�
ate graphs, path independen
e 
annot be used.The other 
ommonly used proto
ol based on 
erti�
ates is PGP [40℄. PGP
erti�
ate graphs have the properties of small world [37℄. The 
erti�
ate graph inFig. 4.15 is an example of small world graphs. Fig. 4.16 shows how vulnerabil-ity 
hanges as k 
hanges for this example 
erti�
ate graph. As k in
reases, thevulnerability de
reases.In both examples of a

eptan
e 
riteria, the graphs in Fig. 4.13 and Fig. 4.16show that a stri
ter a

eptan
e 
riteria redu
es the vulnerability of 
erti�
ate graphs.However, it also in
reases the number of valid publi
 keys that 
annot satisfy thestri
ter a

eptan
e 
riteria. For example, in Fig. 4.13, the "avg usable keys" is the101



average number of publi
 keys a node 
an use. This in
reases as the depth limitin
reases. For the 
erti�
ate graph in Fig. 4.15, the average number of publi
 keysa node 
an use de
reases from 5 to 146 � 2:7 as k in
reases from 2 to 3.Also, a

ording to the analysis in [8℄, the degrees of nodes in a self-organized
erti�
ate graph follow Zipf's distribution. In other words, most nodes in a self-organized 
erti�
ate systems have a very small number of outgoing edges. In theFig. 9 in [8℄, about half of the nodes in the largest strongly 
onne
ted 
omponentof the 2001 PGP graph have fewer than three outgoing edges, and about 30% ofthe nodes have only one outgoing edge. Therefore, when the path independen
e isapplied as the a

eptan
e 
riteria, a large k may 
ause many publi
 keys to be
omeunusable by other nodes. In the previous example of the 2001 PGP graph, k � 3will 
ause half of the nodes not to be able to use any publi
 keys in 
erti�
ate 
hainsof length at least 2.Clearly, there is a trade-o� between the vulnerability of a 
erti�
ate graphand the usability of the publi
 keys in the 
erti�
ate graph. Hen
e, a

eptan
e
riteria needs to be 
hosen and 
on�gured very 
arefully. This metri
 of vulnerability
an help system administrators balan
e the resilien
e against impersonation atta
ksand the usability of the publi
 keys in 
erti�
ate graphs.4.7 Vulnerability of Many Revealed KeysAs shown in the previous se
tion, when an a

eptan
e 
riteria requires more thanone 
erti�
ate 
hain from a node sr
 to a node dst for node sr
 to a

ept the publi
key in the 
erti�
ate 
hain as the publi
 key of dst, the vulnerability of a 
erti�
ategraph 
an 
hange depending on how many private keys are revealed to an adversary.Theorem 22 is modi�ed here to take the 
ase where many private keys are revealedto an adversary into the 
onsideration.Theorem 23 Let G be a 
erti�
ate graph and sr
 and dst be any two distin
t nodes102



in G. Let D be a set of nodes in G where the private key r:d of ea
h node d in Dis revealed to an adversary. The adversary 
an impersonate node dst to node sr
if and only if sr
 6= d for any node d in D and one of the following two 
onditionsholds.i. d = dst for some node d in D and G has a set of 
erti�
ate 
hains from sr
to dst that satis�es the a

eptan
e 
riteria of G.ii. There is no 
erti�
ate (sr
; dst) and the set of 
erti�
ate 
hains, in whi
hea
h 
hain 
onsists of a 
orre
t 
erti�
ate 
hain from sr
 to some node d in Dthat does not 
ontain any 
erti�
ate issued by node dst and a forged 
erti�
ate(d; dst0), satis�es the a

eptan
e 
riteria of G.The vulnerability of the set D is de�ned as follows:V (D) = jIMP (D)j(n� jDj)� (n� 1) ;where IMP (D) = f(sr
; dst)j the adversary 
an impersonate dst to sr
 using privatekeys of nodes in Dg and n is the number of nodes in G. Let G be a 
erti�
ategraph and there 
an be at most x private keys revealed to an adversary, then thevulnerability of graph G with x revealed keys, denoted V (G;x), is de�ned as follows:V (G;x) = maxD�G;jDj�xV (D)Note that this de�nition generalizes the de�nition of V (G), whi
h is equal to V (G; 1).
a b

c

de

fFigure 4.15: An example of a self-organized 
erti�
ate graph103



For the example 
erti�
ate graph in Fig. 4.15, assume that the a

eptan
e
riteria of path independen
e with k = 2 is applied. Also, assume that the privatekeys of nodes b and d are revealed to an adversary. There is no 
erti�
ate (a; 
), andthere are 
erti�
ates (a; b) and (a; d), so the adversary 
an impersonate node 
 tonode a. Also, there is no 
erti�
ate (f; 
), and there are 
erti�
ate 
hains (f; a)(a; b)and (f; e)(e; d) that do not 
ontain 
, so the adversary 
an impersonate node 
 tonode f . There are 16 node pairs (sr
; dst) su
h that the adversary 
an impersonatedst to sr
 using the private keys of nodes b and d, so the vulnerability of fb; dg is1620 . This is also the maximum vulnerability of the example 
erti�
ate graph whenx = 2, so V (G; 2) = 1620 .Fig. 4.16 shows how the vulnerability of the 
erti�
ate graph in Fig. 4.15
hanges as the number of revealed private keys 
hanges. We applied the a

eptan
e
riteria of path independen
e with the parameter k from 1 to 3, and 
hanged thenumber of revealed private keys x from 1 to 6. As the number of revealed privatekeys in
reases, the vulnerability in
reases. As long as the number of revealed privatekeys is less than k, the vulnerability is limited to expli
it damage.
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Chapter 5
Related Work
Several papers have investigated the use of 
erti�
ates for 
on�dentiality, authenti-
ation, and authorization. We summarize the results of these papers in the followingparagraphs.Ar
hite
tures for issuing, storing, dis
overy, and validating 
erti�
ates innetworks are presented in [35, 7, 31, 18, 6, 12, 16, 19, 28℄. In a large s
ale networksu
h as today's Internet, one 
annot expe
t to have a 
entral authority to issue, store,and validate all the 
erti�
ates. A distributed system, where ea
h user parti
ipatesin issuing, storing, and validating 
erti�
ates is desirable in su
h a network.In [39℄ and [25℄, distributed ar
hite
tures for issuing 
erti�
ates, parti
ularlyin mobile networks, are presented.In [39℄, Zhou and Haas present an ar
hite
ture for issuing 
erti�
ates in anad-ho
 network. A

ording to this ar
hite
ture, the network has k servers. Ea
hserver has a di�erent share of some private key rk. To generate a 
erti�
ate, ea
hserver uses its own share of rk to sign the 
erti�
ate. If no more than t servers havesu�ered from Byzantine failures, where k � 3t + 1, then the resulting 
erti�
ate is
orre
tly signed using the private key rk, thanks to threshold 
ryptography. Theresulting 
erti�
ate 
an be veri�ed using the 
orresponding publi
 key whi
h is105



known to every node in the ad-ho
 network.In [25℄, Kong, Perfos, Luo, Lu and Zhang presented another distributedar
hite
ture for issuing 
erti�
ates. Instead of employing k servers in the ad-ho
network, no spe
ial nodes su
h as servers are in the network and every node inthe network is provided with a di�erent share of the private key rk. For a nodeu to issue a 
erti�
ate, the node u forwards the 
erti�
ate to its neighbors andea
h of them sign the 
erti�
ate using its share of rk. If node u has at least t + 1
orre
t neighbors (i.e. they have not su�ered from any failures), then the resulting
erti�
ate is 
orre
tly signed using the private key rk.In [28℄, Li, Winsborough, and Mit
hell presented a role-based trust manage-ment language RT0 and suggested the use of strongly typed distributed 
erti�
atestorage to solve the problem of 
erti�
ate 
hain dis
overy in distributed storage.However, they do not dis
uss how to eÆ
iently assign 
erti�
ates among the dis-tributed storages. By 
ontrast, our work fo
uses on minimizing storage overheadin 
erti�
ate dispersal among the users while they have enough 
erti�
ates so thatthere is no need for 
erti�
ate 
hain dis
overy.In [2℄, Ajmani, Clarke, Moh, and Ri
hman presented a distributed 
erti�
atestorage using peer-to-peer distributed hash table. This work assumes dedi
atedservers host a SDSI 
erti�
ate dire
tory and fo
uses on fast look-up servi
e andload balan
ing among the servers. By 
ontrast, our work assigns 
erti�
ates tousers su
h that there is no need for look-up and there are no dedi
ated 
erti�
atestorage servers. Our work also fo
uses on eÆ
ient use of storages in all users innetwork.Perhaps the 
losest work to the 
erti�
ate dispersal is [22℄ where the authors,Hubaux, Butty�an, and Capkun, investigated how to disperse 
erti�
ates in a 
erti�-
ate graph among the network nodes under two 
onditions. First, ea
h node storesthe same number of 
erti�
ates. Se
ond, with high probability, if two nodes meet106



then they have enough 
erti�
ates for ea
h of them to obtain the publi
 key of theother. By 
ontrast, our work is based on two di�erent 
onditions. First, di�erentnodes may store di�erent number of 
erti�
ates, but the average number of 
erti�-
ates stored in nodes is minimized. Se
ond, it is guaranteed (i.e. with probability1) that if two nodes meet then they have enough 
erti�
ates for ea
h of them toobtain the publi
 key of the other (if there exists a 
hain between them in the 
hainset). Later, the same authors have showed in [9℄ that a lower bound on the numberof 
erti�
ates to be stored in a node is pn � 1 where n is the number of nodes inthe system. Our work here shows that �nding an optimal dispersal of a given
hain set is NP-
omplete, and presents three polynomial-time algorithms whi
h
ompute optimal dispersal of 
hain sets in three 
lasses of pra
ti
al interests andtwo extensions of these algorithms for more general 
lasses of 
hain sets.Zheng, Omura, U
hida, and Wada presented algorithms that 
ompute opti-mal dispersals for strongly-
onne
ted graphs and dire
ted graphs in [38℄. The sameauthors also showed the tight upper bounds in these two 
lasses of 
erti�
ate graphs.A publi
 key infrastru
ture based on 
erti�
ates is s
alable and eÆ
ient inissuing and validating 
erti�
ates but 
annot tolerate Byzantine failures. In par-ti
ular, if one node su�ers from Byzantine failure, then this node 
an su

essfullyimpersonate any other node that is rea
hable from this node in the 
erti�
ate graphof the network. This vulnerability to Byzantine failures is not unique to our 
erti�-
ate work. In Se
tion 4, we have identi�ed a metri
 to evaluate the damage fromthis type of atta
ks.The metri
 of vulnerability 
an be used in any 
erti�
ate system. For exam-ple, X.509 [1℄, SSL/TLS [13℄, PGP [40℄, and SDSI/SPKI [17, 35℄. In any of these
erti�
ate systems, when a private key of some node is revealed to an adversary,the adversary may su

essfully impersonate nodes to other nodes in the system. In107



other words, the 
erti�
ate systems may be vulnerable to impersonation atta
ks.Many resear
hers proposed me
hanisms to evaluate 
erti�
ate 
hains to mit-igate this vulnerability. Tarah and Huitema [36℄ investigated using the path lengthas a

eptan
e 
riteria. In [33℄, Reiter and Stubblebine investigated how to in
reaseassuran
e on authenti
ation with multiple independent 
erti�
ate 
hains. They in-trodu
e two types of independent 
hains, disjoint paths (no edge is shared by any two
hains) and k-
onne
tive paths (k 
erti�
ates need to be 
ompromised to dis
onne
tall these paths). This paper shows that there are no polynomial-time algorithmsfor lo
ating maximum sets of paths with these properties and presents approxima-tion algorithms. Beth, Bor
herding, and Klein [5℄ and Maurer [30℄ proposed ana

eptan
e 
riteria based on probabilities. In PGP [40℄, users 
an limit the lengthof a

eptable 
erti�
ate 
hains and also require 
ertain number of 
erti�
ate 
hainsto a

ept the publi
 key of destination node. Levien and Aiken [27℄ presented ananalyti
al model of di�erent types of atta
ks and 
ompared the resilien
e of a

ep-tan
e 
riteria in [30℄ and [33℄ based on this model. The same authors also suggestedanother a

eptan
e 
riteria based on the max 
ow algorithm. In [34℄, Reiter andStubblebine suggested a number of guiding prin
iples for the design of a

eptan
e
riteria.
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Chapter 6
Con
lusion
A 
erti�
ate system is a useful publi
 key infrastru
ture for distributed systems.A 
erti�
ate 
an be stored anywhere in the system and 
an be used by any userwho knows the publi
 key of the issuer of the 
erti�
ate. We have proposed a newway of distributing 
erti�
ates that minimizes the 
ommuni
ation overhead on thethird party, 
alled a 
erti�
ate dispersal. Certi�
ate dispersal assigns 
erti�
ates tousers in the system su
h that the two users that want to se
urely 
ommuni
ate withea
h other do not need to 
onta
t any third party for 
erti�
ates. We showed that
omputing an optimal dispersal is NP-Complete when the dispersal 
ost is de�nedas an average number of 
erti�
ates stored in ea
h user, given a 
erti�
ate 
hainset. We also presented several 
lasses of 
erti�
ate graphs and 
hain sets for whi
hoptimal dispersals 
an be 
omputed in polynomial-time. Algorithms for these 
lassesare also shown and proven to 
ompute optimal dispersals. For a dynami
 
erti�
atesystem, we also devised a stabilizing dispersal proto
ol.We have de�ned a metri
 
alled vulnerability that measures the potentials
ope of damage that an adversary with revealed private keys 
ould in
ur to thesystem. We show that the vulnerability of a 
erti�
ate graph is a�e
ted by thegraph topology, dispersal, and a

eptan
e 
riteria. One 
an use the vulnerability109



measure as a design 
riteria of 
erti�
ate systems, given the system requirements ondispersal 
ost and vulnerability.As future work, we would like to build an appli
ation that utilizes the dis-persal and vulnerability. For example, a large-s
ale distributed system where arelatively small number of autonomous systems are 
ooperating 
ould bene�t fromdispersal and vulnerability. Between the 
oordinators of autonomous systems, one
an expe
t that the 
erti�
ate system would not 
hange rapidly. We 
an 
ompute anoptimal dispersal between 
oordinators periodi
ally, or run the dynami
 dispersalproto
ol. At the same time, the vulnerability metri
 
ould be a guideline in whetherto issue 
ertain 
erti�
ates or not, or even in de
iding the pri
e of issuan
e for those
erti�
ates.
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