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Dispersability and Vulnerability Analysisof Certi�ate SystemsPubliation No.Eunjin Jung, Ph.D.The University of Texas at Austin, 2006Supervisor: Mohamed G. GoudaA erti�ate is a way to distribute publi keys of users in a distributed system.For example, in the urrent Internet, erti�ates are heavily used in SSL/TLS forseuring e-ommere. In this thesis, we desribe the three phases of a erti�ate,how a erti�ate is issued, used, and revoked/expired. In partiular, we propose anew way of distributing erti�ates, alled erti�ate dispersal. Certi�ate dispersalassigns erti�ates to users suh that when a user u wants to seurely ommuniatewith another user v in a system, users u and v may �nd out the publi key ofuser v based on the erti�ates stored in u or v. In other words, users u and vhave no need to ontat any other user in the system. We de�ne dispersal in twovii



environments, a erti�ate graph and a erti�ate hain set and the osts of dispersal.In the environment of erti�ate hain set, omputing an optimal dispersal is NP-omplete. However, we identify several lasses of hain sets and erti�ate graphsfor whih optimal dispersal an be omputed in polynomial-time. For eah lasswe present an algorithm that omputes an optimal dispersal. We also analyze thevulnerability of erti�ate systems. Any erti�ate system su�er from impersonationattaks when a private key of a user is revealed to an adversary. We de�ne the metrialled vulnerability that measures the sope of damage when some private keys arerevealed, and show how di�erent erti�ate systems have di�erent vulnerabilities.These results an be used to design a good erti�ate system that satis�es systemrequirements of dispersal ost and vulnerability.
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Chapter 1
Introdution
The onept of publi key ryptography (also known as asymmetri key ryptog-raphy) was �rst introdued by DiÆe and Hellman in [14℄. The main idea is thattwo keys work as a pair: one that is known to the publi and the other that isonly known to one user. If a message is enrypted with one key, then the enryptedmessage an be only derypted by the other key.If a user u enrypts a none with the publi key of another user v and thenreeives the same none from user v, then user u an be assured that user v ownsthe orresponding private key and authentiate user v. If a user u sends a messageto another user v with the hash of this message enrypted with the private key of u,and then user v omputes the same hash of the reeived message as the deryptedhash with the publi key of user u, then user v an be assured that user u generatedthis message. This enrypted hash of a message is alled digital signature.Many distributed protools and seurity protools, both in researh and pra-tie, utilizes authentiation and digital signature provided by publi key ryptog-raphy. For example, e-ommere on the Internet operates on Seure Soket Layer(SSL), and SSL authentiates websites using publi key ryptography. In the dis-tributed omputing literature, some repliated state mahine protools [10℄, use1



publi key ryptography, as well as some quorum protools [29℄.Protools that use authentiation and digital signatures based on publi keyryptography require an underlying publi key infrastruture (PKI). PKI inludesthe issuane, distribution, and revoation of publi keys: how to issue the publiand private key for users, how to distribute (and store) the publi keys of users, andhow to revoke the publi keys when the orresponding private keys are revealed toadversaries. In one of the simplest form of PKI, every user stores the publi keys ofall other users. This PKI does not sale very well when the number of users growsto millions, as in the Internet. Instead, SSL relies on a handful of publi keys thatare well-known to eah user to introdue more publi keys. This introdution isdone by a digitally signed statement, whih is alled a \erti�ate".A erti�ate an be understood as an eletroni identi�ation. A traveler whowants to pass the seurity hek at any airport in the States needs to provide a photoidenti�ation along with a boarding pass. The name on the boarding pass needs tomath the name on the photo identi�ation, and the photo in the identi�ation mustmath the traveler. In other words, the photo identi�ation states the relationshipbetween the name and the fae of the traveler.In the ontext of PKI, a erti�ate states a relationship between a user andits orresponding publi key, and it is signed by a private key of another user. Weall the user who signed the erti�ate with its private key the \issuer" and the userwhose publi key is stated in the erti�ate the \subjet" of this erti�ate. Anyuser who knows the publi key of the issuer an verify the erti�ate to make surethat it is indeed signed by the issuer. When the erti�ate is suessfully veri�ed,than the user may use the key written in the erti�ate as the publi key of thesubjet. In other words, the issuer introdues the publi key of the subjet to thisuser. In SSL, most web browsers have publi keys of Certi�ate Authorities (CA).2



When a lient wants to authentiate a website, then the website provides a erti�ateto the lient that is signed by a well-known CA. The lient uses the publi key ofthe CA in the web browser to verify the erti�ate, and then uses the publi key inthe erti�ate for the subsequent authentiation protool. In other words, the CAintrodues the publi key of the website to the lient. In the example of a travelerat the airport, a government (or the ageny that issues a state identi�ation) isa CA. A seurity personnel an trust the government and trust the photo in theidenti�ation to be the orret photo for the name. A lient an trust the CA andtrust that the publi key in the erti�ate is the orret publi key for the website.Certi�ates in PKI help with salability. One the government issues a photoidenti�ation, a traveler may use the identi�ation for many trips. Similarly, onethe CA issues a erti�ate for a website, a website may use the erti�ate for manylients. In the example of SSL, a handful of publi keys are stored in eah webbrowser, and millions of lients an authentiate thousands of websites with veri�ableerti�ates.Users may use more than one erti�ate to learn publi keys of other users.For example, if a user u issues a erti�ate for another user v and user v issues aerti�ate for a user w, then user u an learn the publi key of user w using thetwo erti�ates issued by users u and v. Pretty Good Privay (PGP) is an examplesystem where more than one erti�ate an be used. The series of erti�ates isalled a erti�ate hain.In a distributed system, when a user u wants to �nd the publi key of user v,user u may need to use more than one erti�ate. If there is a entral repository oferti�ates, user u may query the repository for erti�ates. However, it is hard tomaintain suh a repository for a large sale distributed system. In partiular, if thatsystem operates on an ad-ho network, the reahability of the erti�ate repositorybeomes non-trivial. We propose a novel way of distributing erti�ates so that the3



users u and v an �nd all the neessary erti�ates without ontating any otheruser. We all this distribution mehanism erti�ate dispersal. Certi�ate disper-sal minimizes the ommuniation overhead in �nding erti�ates. We prove thatomputing a erti�ate dispersal that minimizes the average number of erti�atesstored in a user is NP-Complete in general. The erti�ate dispersal is optimal ifthe average number of erti�ates stored in a user is minimum. We identify severallasses of erti�ate systems and present algorithms that ompute optimal erti�atedispersals for suh systems in polynomial time.A erti�ate system may su�er from impersonation attaks. An imperson-ation attak ours when an adversary gets hold of the private key of a user u, andpretends to be user u by derypting messages enrypted with the publi key of useru. The adversary an also impersonate another user v using the private key of useru as follows. The adversary may reate a new publi and private key pair, and issuea erti�ate with this new publi key as if this publi key belonged to user v. Whena user w is not aware that the private key of user u is revealed to the adversary,user w may use the erti�ate issued by the adversary and learn the wrong publikey. When user w sends any message to user v that is enrypted with the wrongpubli key, the adversary an interept the message and learn its ontent.In Chapter 4, we de�ne a metri alled \vulnerability" of a erti�ate systemwhih measure the potential damage from impersonation attaks. We also identifywhat properties of the erti�ate system a�et vulnerability. The analysis of theinteration between these properties gives guidelines on designing a good erti�atesystem.A erti�ate has a lifetime in a PKI. It is reated by the issuer, is used byusers who know the publi key of the issuer, and dies when it is revoked or expires.In the next hapter, we de�ne a erti�ate and a erti�ate system more formallyin the order of these events. In Chapter 3.1, we de�ne erti�ate dispersal and4



explain how a dispersal an be omputed for any erti�ate system, and how toompute an optimal dispersal for some lasses of erti�ate systems. In Chapter 4,we ontinue by analyzing potential vulnerabilities of erti�ate systems. Finally wedisuss related work and onlude with future diretions.
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Chapter 2
Certi�ates and Certi�ateSystems
We onsider a system where users would like to send messages seurely to otherusers. A user who would like to send a seure message is alled a soure and a userwho is intended to reeive suh a message is alled a destination.In the Internet, it is ommon that one soure may wish to send messages tomany destinations. For example, a soure Alie may wish to send her redit ardnumber seurely to several destination shopping sites, say Amazon.om, eBay.om,and prieline.om. The seure ommuniation between a soure and a destinationis proteted by enrypting eah exhanged message with a shared key only knownto the soure and destination.In this system, eah user u, whether soure or destination, has a privatekey rku and a publi key bku. In order for a soure u to share a key sk with adestination v, u enrypts key sk using the publi key bkv of v and send the result,denoted bkvfskg, to v. Only v an derypt this message and obtain key sk sharedwith u. This senario neessitates that u knows the publi key bkv of v. In the aboveexample, Alie needs to know the publi keys of Amazon, eBay, and prieline.6



If a user u knows the publi key bkv of another user v in the network, then uan issue a erti�ate, alled a erti�ate from u to v, that identi�es the publi keybkv of v. This erti�ate an be used by any user that knows the publi key of u tofurther aquire the publi key of v.A erti�ate from u to v is of the following form:< u; v; bkv > rkuThis erti�ate is signed using the private key rku of u, and it inludes three items:the identity of the erti�ate issuer u, the identity of the erti�ate subjet v, andthe publi key of the erti�ate subjet bkv. Any user that knows the publi keybku of u an use bku to obtain the publi key bkv of v from the erti�ate from u tov. Note that when a user obtains the publi key bkv of user v from the erti�ate,the user not only �nds out what bkv is, but also aquires a proof that bkv is indeedthe publi key of user v.A erti�ate has a lifetime. The issuer issues this erti�ate, users use thiserti�ate to �nd the publi key of the subjet, and the issuer may revoke thiserti�ate or the erti�ate may expire. We will disuss the �rst two phases in moredetails below. (The revoation step will be disussed in Setion 3.6.)2.1 Certi�ate IssuaneTo issue a erti�ate < u; v; bkv > rku, the issuer u must take the following threesteps.i. Find the publi key bkv of user v: In this step, user u needs to make sure thatthe key bkv is the orret publi key of user v.ii. Compute the hash (message digest): In this step, user u assembles all theinformation that will be inluded in the erti�ate, in addition to the identity7



of the issuer u, the identity of the subjet v, and the publi key bkv of user v.For example, the erti�ate may inlude the expiration date of this erti�ate,and the name of the hash funtion that is used to ompute this hash.iii. Enrypt the omputed hash with the private key rku: In this step, user uenrypts the omputed hash with the private key so that any user who knowsthe publi key of user u an verify that no adversary tampered with thiserti�ate.Among these three steps the hardest step is the �rst one, to �nd the publikey of another user in the system. Two di�erent types of users may take thishallenge.i. Certi�ate Authority: A Certi�ate Authority (CA) in a system �nds theorret publi key of other users and issues erti�ates for them. In someases, a CA even generates the publi and private key for other users andassigns private keys to them. There an be multiple CAs in the system, andeah user may have multiple CAs issue erti�ates for the same publi key.ii. Any user: Any user in a system �nds the orret publi key of other usersand issues erti�ates for them. Most times suh �nding relies on veri�ationon an o�ine hannel, for example soial ontats. A user may issue as manyerti�ates as he or she wishes, so every user may have di�erent number oferti�ates issued for himself or herself.Note that �nding the orret publi key of a user is more than �nding thepubli key that mathes a given private key. More importantly, the identity inthe erti�ate issued for a ertain publi key should math the real owner of theorresponding private key. For example, reently there was a erti�ate issued forMountain Ameria Credit Union in Utah by Equifax Seure In., whih is a divi-sion of the well-known redit reporting bureau Equifax, now part of the ompany8



Geotrust. Geotrust urrently holds around 25% of the market share in SSL er-ti�ate issuane business. It turned out that the publi key in this erti�ate didnot belong to the laimed Mountain Ameria redit union, but to an attaker whoolleted redit ard numbers from Mountain Ameria redit union aount holders.(The details an be found in [26℄.) Reiter and Stubblebine [34℄ noted that thereshould be o�ine veri�ation in erti�ate issuane.2.2 Certi�ates to �nd publi keysThe erti�ates issued by di�erent users in a network an be represented by a di-reted graph, alled the erti�ate graph of the network. Eah node in the erti�ategraph represents a user in the network. Eah direted edge from node u to node vin the erti�ate graph represents a erti�ate from u to v in the network.
Figure 2.1: A erti�ate graph of Alie and BobFig. 2.1 shows a erti�ate graph for a network with two soures, Alie andBob, and six destinations, Amazon, eBay, prieline, Amex, Visa, and Disover.Aording to this graph,Alie issues three erti�ates(Alie, Amazon), (Alie, eBay), and (Alie, prieline), andBob issues three erti�ates(Bob, Amex),(Bob, V isa), and (Bob, Disover)A more eÆient way to support seure ommuniation between the soures9



and the destinations is to introdue some intermediaries between the soures andthe destinations. The number of introdued intermediaries is muh smaller than thenumber of soures and the number of destinations. Eah intermediary has its ownpubli and private key pair. The soures know the publi keys of intermediaries andthe intermediaries issue erti�ates of the publi keys of the destinations. For exam-ple, two intermediaries, namely VeriSign and CertPlus, an be introdued betweenthe two soures and the six destinations in Fig. 2.1. The result is the erti�ategraph in Fig. 2.2.
Visa Discover

CertPlus

Amazon eBay priceline Amex

VeriSign

BobAlice Carol sources

intermediaries

destinationsFigure 2.2: A erti�ate graph with intermediariesAording to the erti�ate graph in Fig. 2.2, Alie needs to issue only oneerti�ate to VeriSign and Bob needs to issue only one erti�ate to CertPlus. Aliean then use the two erti�ates (Alie, V eriSign) and (V eriSign; Amazon) toobtain the publi key bkAmazon, and so an seurely send messages to Amazon.Also, Bob an use the two erti�ates (Bob;CertP lus) and (CertP lus; V isa) toobtain the publi key bkV isa, and then an seurely send messages to Visa.For Alie to use the erti�ate (V eriSign;Amazon), Alie needs to verifythe erti�ate �rst through the following four steps.i. Find the publi key of VeriSign: In this example, Alie already has a key thatshe believes to be the orret publi key of VeriSign, in erti�ate (Alie; V eriSign).ii. Compute the hash (message digest): Alie omputes the hash of all the infor-mation inluded in erti�ate (V eriSign;Amazon).iii. Derypt the inluded hash with the publi key of VeriSign: Alie derypts10



the inluded hash in erti�ate (V eriSign;Amazon) with the publi key ofVeriSign in erti�ate (Alie; V eriSign).iv. Compare the two hashes: Alie ompares the two hashes from the seond andthird steps. If these two hashes math, this erti�ate (V eriSign;Amazon) issuessfully veri�ed.As far as the veri�ation is onerned, the issuer ould enrypt the whole er-ti�ate with its private key. However, the publi key deryption is omputationallyexpensive, so it is easier to ompute the hash of a erti�ate and derypt just theinluded hash rather than derypting the whole erti�ate. Moreover, sine hashfuntions are one way, users an be assured that using the hash instead of the wholeerti�ate does not ompromise the veri�ation.As disussed above, the erti�ate issuane is not omputationally expensive,but �nding the orret publi key of a subjet may be diÆult. The intermediariesin Fig. 2.2 redue the number of erti�ates that Alie needs to issue. InsteadAlie needs to verify erti�ates issued by intermediaries (erti�ate authorities) byomputing hashes and derypting hashes. After verifying the erti�ates, Alie anlearn the publi keys of websites and use the keys for ommuniating seurely withthe websites.In general, for users u and v in a erti�ate graph G, if u wishes to sendmessages seurely to v, then there must be a \hain" from u to v in G. Certi�atehains are de�ned as follows:A simple path from a soure u to a destination v in a erti�ate graph G isalled a hain from u to v in G. u is the soure of the hain and v is the destinationof the hain. When soure u wishes to ommuniate seurely with destination v,soure u needs to �nd a hain from u to v.1 One u �nds a hain, it needs to verify1There are erti�ate systems where u needs to �nd more than a hain from u to v, but weassume the minimum requirement of one hain here. More ompliated systems will be disussedin Chapter 4. 11



all the erti�ates in the hain to �nd the publi key of destination v. The hainfrom u to v through v0 � � � vk onsists of erti�ates (u; v0), (v0; v1), � � � , (vk�1; vk),(vk; v). The veri�ation of eah erti�ate (vi; vi+1), 0 � i � k is done as follows:i. Find the publi key of vi: By the time user u gets to erti�ate (vi; vi+1), useru must have veri�ed all the erti�ates in the hain from u to vi. From theerti�ate (vi�1; vi), user u an obtain the publi key of vi.ii. Compute the hash (message digest): User u omputes the hash of all theinformation inluded in erti�ate (vi; vi+1).iii. Derypt the inluded hash with bkvi : User u derypts the inluded hash in theerti�ate with bkvi found in the �rst step.iv. Compare the two hashes: User u ompares the two hashes from the seondand third steps. If they math, this erti�ate is suessfully veri�ed.When erti�ate (vi; vi+1) is suessfully veri�ed, user umoves on to (vi+1; vi+2).One all the erti�ates in the hain are veri�ed suessfully, soure u an obtainthe publi key of destination v from the last erti�ate of the hain.For users u and v in a erti�ate graph G, if u wishes to seurely sendmessages to v, then there must be a hain from u to v in G. On the other hand,there may be a hain from u to v even though u does not need to seurely sendmessages to v. Fig. 2.3 shows the six hains that are needed to support the seureommuniations between the two soures and the six destinations in Fig. 2.1. Notethat there is a erti�ate (V eriSign, Amex) in the erti�ate graph in Fig. 2.2that is not needed to support seure ommuniation between any soure and anydestination in Fig. 2.1. Sine Alie does not need to seurely ommuniate withAmex, the erti�ate hain (Alie, V eriSign),(V eriSign, Amex) in the erti�ategraph in Fig. 2.2 is not inluded in Fig. 2.3.12



Figure 2.3: Certi�ate hains from Fig. 2.2The erti�ates in eah hain need to be \dispersed" between the soure anddestination of the hain suh that if a soure u wishes to seurely send a messageto a destination v then u an obtain the publi key of v from the set of erti�atesstored in u and v. (Note that to \store a erti�ate in a user" does not neessarilymean that the user has a loal opy of the erti�ate. Rather, it means that theuser only needs to know where to �nd the erti�ate, if a need for that erti�atearises, either in its loal storage or in a remote loation.)For example, assume that eah soure in Fig. 2.3 stores its erti�ate tothe orresponding intermediary, and that eah destination in Fig. 2.3 stores theerti�ate from its orresponding intermediary to itself. Thus,Alie stores the erti�ate (Alie, V eriSign),Bob stores the erti�ate (Bob, CertP lus),Amazon stores the erti�ate (V eriSign, Amazon),eBay stores the erti�ate (V eriSign, eBay),prieline stores the erti�ate (V eriSign, prieline),Amex stores the erti�ate (CertP lus, Amex),Visa stores the erti�ate (CertP lus, V isa), andDisover stores the erti�ate (CertP lus, Disover)In this ase, if Alie wishes to seurely send messages to prieline, then Alie anuse the two erti�ates stored in Alie's omputer and prieline website to obtainthe publi key of prieline and seurely send the messages to prieline. Certi�ates13



that are not part of any hain are not stored beause they are not needed. Thisis illustrated by the erti�ate (V eriSign, Amex), whih appears in Fig. 2.2 but isnot stored in Amex.Note that the intermediary, in this ase VeriSign, needs to ommuniatewith Alie or prieline for them to seurely ommuniate with eah other. In thispartiular example there is only one intermediary, VeriSign, so it may not be toohard for Alie to ontat VeriSign. However, one an imagine that the hain ouldbe arbitrarily longer than 2, and in a suh ase, it would be rather ineÆient if thesoure of the hain need to ontat all the users appearing in the hain. Certi�atedispersal, de�ned in Chapter 3.1 more formally, assigns erti�ates to users suhthat soure and destination of a hain ould �nd all the erti�ates in the hainwithout ontating any other user.2.3 Certi�ate Expiration or RevoationCerti�ates' lifetime ends when a erti�ate is either expired or revoked. If theissuer of a erti�ate had a spei� expiration date in mind, then the expirationdate beomes part of the erti�ate. Other users may verify that the erti�ate hasnot expired using this expiration date. If the urrent time is after the expirationdate, then other users may hoose not to use the erti�ate nor the publi keyintrodued by the erti�ate. The issuer an have some ontrol over the usage of aerti�ate it issued by ontrolling the expiration date. The later the expiration dateis, the longer the erti�ate may be used.For a erti�ate system to be able to ontrol usage with expiration dates,the users' loks must be synhronized. Imagine a erti�ate whose expiration dateof June 30, 2006. However, if a user has set a wrong time to its system lok, thenthis user may ontinue using the erti�ate even after all other users stop using thiserti�ate. Therefore, for a erti�ate system to rely on an expiration, some form14



of lok synhronization is required.Certi�ate revoation is neessary when a erti�ate beomes invalid beforeits expiration date omes. There are two reasons of revoation:i. Inorret publi key of the subjet: The issuer intentionally or aidentallysigned a erti�ate with an inorret publi key of the subjet.ii. Revealed private key of the issuer: The private key of the issuer was revealedto an adversary and the erti�ate may have been issued by the adversary, notby the spei�ed issuer in the erti�ate.Certi�ate revoation in both ases is neessary not only for the issuer butfor other users as well. Other users who know the publi key of the issuer may learnan inorret publi key of the subjet in either ase. In the ase of revealed privatekey, the legitimate owner of the private key may revoke the orresponding publikey altogether instead of revoking eah erti�ate signed by the revealed private key.If there is a Certi�ate Authority (CA) in the system, the Certi�ate Au-thority may publish a Certi�ate Revoation List (CRL). This list ontains all theerti�ates that need to be revoked but have not expired. The list is signed by theCA's private key so that the users in the system may verify the integrity of the list.The delivery of the list may be part of a periodi update sent by CA to all the usersin the system. For example, Mirosoft Windows updates ontains the update on thekeys used by Mirosoft to sign third party devie driver software. The list may alsobe published in a well-known loation, for example the CA's homepage, so that theusers may download the list between periodi updates.If there is no CA in the system, then any issuer in the system may publishits own \revoation erti�ate". This erti�ate is signed by the private key ofthe issuer, and ontains either the publi key of the issuer or information on apartiular erti�ate. If the publi key of the issuer is inluded, then other users15



may stop using the inluded publi key of the issuer, whih e�etively revoke allthe erti�ates signed by the mathing private key of the issuer. (The issuer mayget a new pair of publi and private key and publish erti�ates if it wishes.) Ifthe revoation erti�ate inludes information on a partiular erti�ate, it mayontain a erti�ate identi�ation number if it exists, or any unique information ofthe erti�ate to be revoked.This revoation erti�ate an be dispersed as a regular erti�ate. If adispersal is omputed periodially by a spei� user, then any issuer who issues arevoation erti�ate send the revoation erti�ate to the spei� user. Then theuser an simply ignore the erti�ate(s) to be revoked aording to the revoationerti�ate. If the revoation erti�ate ontains a publi key of an issuer, then allthe erti�ates issued by the orresponding private key will not be dispersed to anyuser. If the revoation erti�ate is for a partiular erti�ate, then the revokederti�ate will not be dispersed to any user. If the dispersal is not omputed byany spei� user, then revoation erti�ates an be dispersed using the dynamidispersal protool in Setion 3.6, as a regular erti�ate.Dispersal of erti�ate hains and its ost are de�ned in Chapter 3.1. InSetion 3.2, we show that �nding an optimal dispersal of any set of hains is NP-omplete. Thus it beomes of interest to haraterize the speial ases of pratialinterest where the problem an be solved eÆiently, as well as e�etive heuristialgorithms to solve general instanes of problems. Subsequently, we identify spe-ial lasses of hain sets that are of pratial interests and devise polynomial-timealgorithms that ompute optimal dispersals for eah lass. For instane, the exam-ple dispersal above reets the erti�ate dispersal in Seure Soket Layer (SSL).Suh hain sets are de�ned as \short" hain sets in Setion 3.5, and we present analgorithm that omputes an optimal dispersal of any given short hain set.
16



Chapter 3
Certi�ate Dispersal
3.1 Certi�ate DispersalIn this setion, we introdue de�nitions and notations to desribe the optimal dis-persal and prove four theorems of the properties of a erti�ate dispersal.A erti�ate graph G is a direted graph in whih eah direted edge, alleda erti�ate, is a pair (u, v), where u and v are distint nodes in G. Note thataording to this de�nition no erti�ate has the same node as both its issuer andsubjet.A simple direted path of erti�ates (v0, v1), (v1, v2), � � � , (vk�1, vk) ina erti�ate graph G, where the nodes v0, v1, � � � , vk are all distint, is alled aerti�ate hain from v0 to vk in G.A dispersal D of a erti�ate graph G assigns a set of erti�ates in G to eahnode in G suh that the following ondition holds. The erti�ates in eah hainfrom a node u to a node v in G are in the set D:u [D:v, where D:u and D:v arethe two sets of erti�ates assigned by dispersal D to nodes u and v, respetively.LetD be a dispersal of a erti�ate graphG. The ost of dispersalD, denotedost:D, is the average number of erti�ates assigned by dispersal D to eah node17



in G: ost:D = 1n(Xv inG jD:vj);where n is the number of nodes in G.A dispersal D of a erti�ate graph G is optimal if and only if for any otherdispersal D0 of the same erti�ate graph G, ost:D � ost:D0.
Figure 3.1: A star erti�ate graphFor example, onsider the star erti�ate graph in Fig. 3.1. This graphan be dispersed as follows. If v is the enter node, then D:v = fg. Otherwise,D:v = f(v; enter node); (enter node; v)g. The ost of this erti�ate dispersal is2(n�1)n , where n is the number of nodes in this graph.Theorem 1 (Upper Bound on Dispersability Cost) For any erti�ate disper-sal D of a erti�ate graph G with n nodes,ost:D � n� 1Proof: In Setion 3.4, we present a erti�ate dispersal algorithm Ffull that as-signs to every node v in a erti�ate graph G, the erti�ates in a outgoing spanningtree rooted at v. Let Dfull be the dispersal of G omputed by Ffull. Beause eahoutgoing spanning tree in a erti�ate graph G has at most n� 1 erti�ates, wheren is the number of nodes in G, for any node u in G, jDfull:uj � n� 1.ost:Dfull = 1n(Xv inG jDfull:vj) � 1nn(n� 1) = n� 118



For an optimal dispersal D of G,ost:D � ost:Dfull � n� 1ost:D � n� 1For strongly-onneted graphs and direted graphs, Zheng, Omura, Uhida,and Wada presented algorithms that ompute optimal dispersals in [38℄. The sameauthors also showed the tight upper bounds in these two lasses of erti�ate graphs.For a strongly onneted graph G, the upper bound is O(d + e=n), where d is thediameter of G, e is the number of edges in G, and n is the number of nodes in G.For a direted graph G0, the upper bound on ost:G0 is O(p � d0 + e0=n0), where pis the number of strongly onneted omponents of G0, d0 is the maximum diameterof strongly onneted omponents of G0, e0 is the number of edges in G0, and n0 isthe number of nodes in G0.A dispersal may be de�ned on the set of hains that are atually in use, whihis a subset of all the hains in a erti�ate graph. A set of hains in a erti�ategraph G is alled a hain set of G. For a hain from node v0 to another node vk,node v0 is alled the soure of the hain and node vk is alled the destination of thehain. A dispersal D of a hain set CS assigns a set of erti�ates in CS to eahsoure node and eah destination node in CS suh that the following onditionholds. The erti�ates in eah hain from a soure node u to a destination node vin CS are in the set D:u [D:v, where D:u and D:v are the two sets of erti�atesassigned by dispersal D to nodes u and v, respetively. Thus, given a hain in CS,the soure node u and the destination node v of the hain an �nd all the erti�atesin the hain in the set D:u[D:v. When the soure node u and the destination node19



v need to searh for a hain from u to v, then they an simply merge D:u and D:vto onstrut a erti�ate graph Gu;v, and searh for a simple path from u to v inGu;v. If there is a simple path from u to v in Gu;v, then this path is a erti�atehain from u to v. On the other hand, if there is no path from u to v in Gu;v, thennodes u and v reognize that there was no erti�ate hain in the given CS.Dispersal of a hain set is useful for many types of systems. We disuss threeexample types of systems here.i. Deployed systems: In a deployed system, all the erti�ates are dispersedamong the nodes in the system before the nodes start on a partiular mis-sion. For example, onsider mobile units partiipating in a military operation.Chains that an be used for authentiation are arefully hosen and dispersed.Eah unit stores the assigned set of erti�ates by a dispersal of hosen hains.The units are deployed in mission and when a unit needs to authentiate an-other unit, they do not have guarantee that any other unit will be available.Thanks to dispersal, these two nodes an use the erti�ates stored in eah unitto �nd a erti�ate hain from one to the other. Many military appliations�t in this type of systems.ii. Client-Server systems: In a lient-server system, there are only a limitednumber of erti�ate authorities that issue erti�ates. In suh systems, itis not neessary to ollet all the erti�ates to optimally disperse them.For example, in Seure Soket Layer (SSL) systems, VeriSign is one of thefew erti�ate authorities. A server, for example Amazon.om, does notneed to know all the erti�ates in the system but only stores the erti�-ate (Amazon:om; V eriSign). This is an optimal dispersal (more details arein Setion 3.5) of this SSL system.iii. Evolving systems: In an evolving system where erti�ates may be issued20



and revoked during the exeution of the system, the system an start withan optimal dispersal of suh system and gradually diverge from the dispersal.Even when the system diverges from its dispersal, it is still bene�ial to startwith an optimal dispersal as long as the hanges in erti�ates are not a majorportion of erti�ates in the system. Moreover, the dynami dispersal protoolin [20℄ disperses newly issued erti�ates and revoation erti�ates so thatthe system stabilizes bak to dispersal.The de�nitions of the ost of a dispersal of a hain set and its optimality arede�ned similarly to those in a erti�ate graph.Let D be a dispersal of a hain set CS. The ost of dispersal D, denotedost:D, is the sum of the number of erti�ates in the sets assigned by dispersal Dto every soure or destination node in CS.ost:D = Xv is a soure or destination node inCS jD:vjA dispersalD of a hain set CS is optimal if and only if for any other dispersalD0 of the same hain set CS, ost:D � ost:D0In other words, an optimal dispersal D of a hain set CS minimizes the averagenumber of erti�ates stored in eah node.Let (u; v) be a erti�ate that appears in one or more hains in a hain setCS, and let D be a dispersal of CS. The loation set of erti�ate (u; v) assignedby D, denoted D(u; v), is de�ned as a set of all nodes x suh that (u; v) is in the setof erti�ates D:x. It is straightforward to show that the ost of dispersal D equalsP(u;v)2CS jD(u; v)j.The loation set D(u; v) of a erti�ate (u; v) assigned by a dispersal D of a21



hain set CS is optimal if and only if for any other dispersal D0 of CS, jD(u; v)j �jD0(u; v)j.Theorem 2 Let D be a dispersal of a hain set CS. If D is optimal, then for everyerti�ate (u; v) in CS the loation set D(u; v) is optimal.Proof: The proof is by ontradition. Assume that D is optimal, and thereexists another dispersal D0 of CS where for some erti�ate (u; v) in CS, jD(u; v)j >jD0(u; v)j.Now onsider the following assignment of erti�ates to eah node in CS.D00(x; y) := 8><>:D0(x; y) if (x; y) = (u; v);D(x; y) if (x; y) 6= (u; v)Note that D00 is a dispersal of CS. This is true beause for any hain from anode i to another node j in CS, all the erti�ates in the hain are in D00:i [D00:j.Consider a erti�ate (x; y) in the hain from i to j in CS, where (x; y) 6= (u; v).D(x; y) ontains node i or node j by the de�nition of dispersal, so D00(x; y) ontainsnode i or node j. In other words, any erti�ate (x; y) in a hain from node i tonode j in CS, where (x; y) 6= (u; v), is in D00:i [ D00:j. Similarly, for erti�ate(u; v), if (u; v) is in a hain from i to j in CS, D0(u; v) ontains node i or nodej by the de�nition of dispersal, so D00(u; v) ontains node i or node j. In otherwords, if erti�ate (u; v) is in a hain from node i to j in CS, then (u; v) is inD00:i[D00:j. Therefore, for any given hain from a node i to another node j in CS,all the erti�ates in the hain are in D00:i [D00:j. Thus, D00 is a dispersal of CS.The ost of dispersal D00 is omputed as follows.ost:D00 = Xv2CS jD00:vj = � X(x;y)2CS;(x;y)6=(u;v) jD(x; y)j�+ jD0(u; v)j22



By the assumption jD0(u; v)j < jD(u; v)j,ost:D00 = � X(x;y)2CS;(x;y) 6=(u;v) jD(x; y)j�+ jD0(u; v)j< � X(x;y)2CS;(x;y) 6=(u;v) jD(x; y)j�+ jD(u; v)j = ost:DThus, the ost of dispersal D00 is less than the ost of dispersal D ontraditing theassumption that D is an optimal dispersal.Therefore, the loation set D(u; v) assigned by an optimal dispersal D isoptimal for every erti�ate (u; v) in CS.Theorem 3 Let D be a dispersal of a hain set CS. If for every erti�ate (u; v)in CS the loation set D(u; v) is optimal, then D is an optimal dispersal of CS.Proof: The proof is by ontradition. Let D be a dispersal for a hain set CSand for every erti�ate (u; v) in CS the loation set D(u; v) is optimal. Also, letD0 be another dispersal of CS where ost:D0 < ost:D. By the de�nition of the ostof dispersal, X(u;v)2CS jD0(u; v)j = ost:D0 < ost:D = X(u;v)2CS jD(u; v)jThus, there must be at least one erti�ate (u; v) in CS suh that jD0(u; v)j <jD(u; v)j. This ontradits the de�nition of an optimal loation set of (u; v).Therefore, if D(u; v) is optimal for every erti�ate (u; v) in a hain set CS,then D is an optimal dispersal of CS.
23



3.2 NP-Completeness ProofIn this setion, we show that the hain dispersal problem is NP-Complete by aredution from the vertex over problem. For onveniene, these two problems aredesribed below.� The Vertex Cover (VC) Problem: Given a onneted graph G and a positiveinteger k, we ask if there exists a vertex over of size � k. Any instane of thisproblem an be represented by the pair (G; k). For direted graphs, the VCproblem an be de�ned similarly by ignoring the diretions assoiated withthe ars; the resulting problem on direted graphs remains NP-omplete.� The Certi�ate Dispersal (CD) Problem: Given a hain set CS and a positiveinteger m, we ask if there exists a dispersal D of CS suh that ost:D � m.Any instane of this problem an be represented by the pair (CS;m).Theorem 4 CD is NP-Complete.Proof: First, we show that CD is in NP. Given an instane (CS;m) of CD,and a dispersal D of CS with ost:D � m, one an verify in polynomial-time thatindeed D is a dispersal of CS and ost:D � m. To verify that D is a dispersalof CS, one heks that all the erti�ates in eah hain from a node u to anothernode v in CS are in D:u[D:v. One D is veri�ed as dispersal, ost:D is omputedas the sum of jD:uj for eah node u in CS and an be ompared to m. The timeomplexity of this veri�ation step is O(p� n), where p is the number of hains inthe hain set and n is the length of the longest hain in CS.Seond, we show that VC redues to CD in polynomial-time. Given aninstane (G; k) of VC, we onstrut an instane (CS;m) of CD suh that the CDinstane has a yes answer if and only if the given VC has a yes answer. Theonstrution is as follows: 24



i. For eah edge (u; v) in G, CS has a hain (u; x)(x; y)(y; v) of length 3.ii. Let n+ be the number of nodes that have outgoing edges in G, and n� be thenumber of nodes that have inoming edges in G. Set m = n+ + n� + k.(CD ( VC) We now show that if the instane (G; k) of VC has a yesanswer, then the orresponding instane (CS;m) of CD has a yes answer. Let Xbe a vertex over of G, where jX j � k. For eah node u in the over X , assignerti�ate (x; y) in CS to D:u. For eah node u in G, if there exists (u; x) in CS,then assign erti�ate (u; x) to D:u. For eah node v in G, if there exists (y; v) inCS, then assign erti�ate (y; v) to D:v. In the following two steps, we prove thatD is a dispersal of CS whose ost is at most m.i. D is a dispersal of CS: For any hain in CS from a node u to a node v, thehain onsists of three erti�ates (u; x), (x; y), and (y; v). Certi�ate (u; x)is stored in D:u and erti�ate (y; v) is stored in D:v. For erti�ate (x; y),(x; y) is stored in every node in the vertex over of G. By the de�nition ofthe vertex over, for eah edge (u; v) in G, the vertex over ontains node uor node v. Certi�ate (x; y) is assigned to every node in the vertex over ofG, so (x; y) is stored in D:u or D:v. Thus, every erti�ate in the hain fromu to v is stored in D:u [D:v, as required by the de�nition of dispersal.ii. ost:D � m: For eah node u in G that has any outgoing edges, there iserti�ate (u; x) in CS that is assigned only to node u by D. Similarly, foreah node v in G that has any inoming edges, there is erti�ate (y; v) in CSthat is assigned only to node v by D. For erti�ate (x; y), (x; y) is assignedto all the nodes in the vertex over, so (x; y) is assigned to at most k nodes.In total, ost:D is at most m = (k + n+ + n�).The above argument shows that D is a dispersal of onstruted CS andost:D � m. This proves that if an instane of VC (G; k) has a yes answer, then25



the orresponding instane of CD (CS;m) has a yes answer.(CD ) VC) We now show that if the onstruted instane (CS;m) of CDhas a yes answer, then the given instane (G; k) of VC has a yes answer. Let D bea dispersal of CS, where ost:D � m. For every edge (u; v) in G, there is hain(u; x)(x; y)(y; v) in CS. For erti�ates (u; x) and (y; v), they will be assigned toat least one node, so jD(u; x)j � 1 and jD(y; v)j � 1. The number of suh (u; x)erti�ates is n+ and the number of suh (y; v) erti�ates is n�. So erti�ate(x; y) is assigned to at most k nodes, where k is m � n+ � n�. In other words,jD(x; y)j � k.Now, for eah edge (u; v) in G, there is hain (u; x)(x; y)(y; v) in CS, and(x; y) is stored in D:u[D:v. In other words, for eah edge (u; v) in G, the loationset of D(x; y) ontains node u or node v. Therefore, the loation set of D(x; y) is avertex over of G. The size of the loation set D(x; y) is at most k, so the size ofthe vertex over is at most k, and the instane (G; k) of VC has a yes answer.In onlusion, the above proof shows that CD is in NP and VC redues toCD in polynomial-time. Therefore, CD is NP-Complete.In the light of the above omplexity result, it beomes of importane toidentify speial lasses of hain sets of pratial interest for whih the problem anbe solved eÆiently. This diretion is pursued in the following ases.i. Short hain sets: In Setion 3.5, we start by investigating the lass of hainsets, where eah hain is of length at most 2. This lass of hain sets is theone urrently being used in the Seure Soket Layer (SSL) protool.ii. Disonneted hain sets : In Setion 3.5, we investigate the lass of hain setswhere for a given erti�ate, no node an be both the soure and the destina-tion of any hain that ontains this erti�ate. This reets a system wherethe authentiation is needed in an asymmetri manner. For example, whenthere are lients and servers in the system, one an imagine that lients would26



use erti�ates to authentiate servers, while servers would use passwords toauthentiate lients. Suh asymmetri systems an be represented as this lassof hain sets.iii. Conise graphs : In Setion 3.4, we investigate the lass of hain sets where thehains are derived from ayli erti�ate graphs. This lass reets systemswhere the need for authentiation is uni-diretional. For example, any hierar-hial system where a lower level user is authentiated by a higher level user,but not the other way around, would be represented by an ayli erti�ategraph.For all these three lasses of hain sets, we present polynomial-time algorithms thatompute optimal dispersals of hain sets in eah lass and prove their optimality.Also in Setion 3.5, we identify two lasses of parameterized hain sets thatare de�ned using an integer parameter k. In the �rst lass, eah hain set has atmost k hains with 3 or more erti�ates. In the seond lass, eah hain set has atmost k nodes that may at both as soures and destinations. For both lasses, weobtain polynomial-time algorithms that ompute optimal dispersals when k is �xed.
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3.3 Heuristi Dispersal Algorithms3.3.1 Full Tree Algorithm for Certi�ate DispersalBefore we introdue our �rst erti�ate dispersal algorithm, we need to introduethe following de�nition of ompat hain sets.Let G be a erti�ate graph and v be a node in G. A ompat hain set forv, denoted S:v, is a set of hains in G that satis�es the following three onditions.i. If G has no hains that starts at v, then S:v is empty.ii. If G has a hain from v to w, then S:v has exatly one shortest hain from vto w.iii. If S:v has a hain, then S:v also has every nonempty pre�x of this hain.
a

b c

d

e fFigure 3.2: The diamond erti�ate graphAs an example, onsider the diamond erti�ate graph in Fig. 3.2. In thisgraph, there are no erti�ate hains that start at node e or f , and the ompathain sets for node e and f are both empty:S:e = fg; S:f = fgThe ompat hain set for node d has two hains:S:d = f< (d; e) >;< (d; f) >g28



Also the ompat hain set for eah of the two nodes b and  has three hains:S:b = f< (b; d) >;< (b; d); (d; e) >;< (b; d); (d; f) >gS: = f< (; d) >;< (; d); (d; e) >;< (; d); (d; f) >gThe ompat hain set for node a has �ve hains:S:a = f < (a; b) >;< (a; ) >;< (a; ); (; d) >;< (a; ); (; d); (d; e) >;< (a; ); (; d); (d; f) >gThe following two omments are in order. First, eah ompat hain set S:v fora node v de�nes a maximal, shortest-path, outgoing tree rooted at node v in theerti�ate graph. Seond, it is possible to have two or more distint ompat hainsets for a node. For example, a seond ompat hain set for node a in the erti�ategraph in Figure 4 is as follows:f < (a; b) >;< (a; ) >;< (a; b); (b; d) >;< (a; b); (b; d); (d; e) >;< (a; b); (b; d); (d; f) >gUsing the above de�nition of a ompat hain set, we are now ready to present our�rst erti�ate dispersal algorithm, alled the full tree algorithm and denoted Ffull.This algorithm assigns to every node v all the erti�ates in a ompat hain setS:v for v. In other words,Ffull:(G; v) = the set of all erti�ates that exist in a ompat hain set S:vfor v.Lemma 1 Ffull is a erti�ate dispersal algorithm.Proof: We show that Ffull satis�es the two onditions of a erti�ate dispersal29



algorithm, onnetivity and ompleteness. First, if there is a hain from u to v inG, then at least one of the shortest hains from u to v is in S:u by ondition ii inthe de�nition of ompat hain set. Seond, any erti�ate (u, v) in G is in S:usine it is the shortest hain from u to v. By the de�nition of Ffull, the erti�ate(u, v) is in Ffull:(G;u). Therefore, Ffull satis�es two properties of onnetivity andompleteness.Next, we show that the dispersal algorithm Ffull is far from being eÆient.First, we show in Lemma 5 that the ost of applying Ffull to any strongly onnetederti�ate graph meets the upper bound on dispersability ost. Seond, we show inLemma 6 that the ost of applying Ffull to any hourglass erti�ate graph is withina fator of four from the upper bound on dispersability ost. A erti�ate graph inFig. 3.3 is an example hourglass erti�ate graph. This graph has n nodes and n�1erti�ates, where n is odd, arranged in an hourglass shape with one enter node,(n� 1)=2 input nodes, and (n� 1)=2 output nodes.
Figure 3.3: An hourglass erti�ate graphLemma 2 For any strongly onneted erti�ate graph G with n nodes,:(Ffull; G) = n� 1

Proof: The erti�ate dispersal algorithm Ffull assigns, to every node v in aerti�ate graph G, the erti�ates in a maximal outgoing tree rooted at v. If G is30



strongly onneted, then any maximal outgoing tree is in fat a spanning tree with(n � 1) erti�ates, where n is the number of nodes in G. Therefore, for any nodev in G, jFfull:(G; v)j = n� 1:(Ffull; G) = 1n(Xv inGjFfull:(G; v)j) = n� 1
Lemma 3 For any hourglass erti�ate graph G with n nodes (see Fig. 3.3),:(Ffull; G) = n2 + 2n� 34n � n4Proof: Reall that any hourglass erti�ate graph G has one enter node, n�12input nodes, and n�12 output nodes.jFfull:(G; enter)j = n� 12For every input node v, jFfull:(G; v)j = n� 12 + 1 = n+ 12For every output node v, jFfull:(G; v)j = 0Thus, :(Ffull; G) = 1n(n� 12 + (n� 12 )(n+ 12 ))= n2 + 2n� 34n � n431



3.3.2 Half Tree Algorithm for Certi�ate DispersalBefore we introdue our seond heuristi dispersal algorithm, we need to introduethe following de�nition of onsistent ompat hain sets.Let S:u and S:v be two ompat hain sets for nodes u and v, respetively, ina erti�ate graph G. S:u and S:v are onsistent if and only if for every two nodesx and y in G, if S:u has a subhain that starts at x and ends at y and S:v also hasa subhain that starts at x and ends at y then these two subhains are idential.A olletion of ompat hain sets fS:vjv is a node in Gg is onsistent if andonly if any two ompat hain sets in the olletion are onsistent.We are now ready to present our seond erti�ate dispersal algorithm, alledthe half tree algorithm and denoted Fhalf . This algorithm takes as input a onsistentolletion of ompat hain sets fS:vjv is a node in a erti�ate graph Gg andomputes a set of erti�ates Fhalf :(G; v) for every node v in G. Algorithm Fhalf isde�ned in Algorithm 1.Lemma 4 Fhalf is a erti�ate dispersal algorithm.Proof: First, if there is a hain between nodes u and v, then at least one of theshortest hains from u to v is stored in S:u. All the erti�ates in the hain fromu to v will be stored in u and v by the de�nition of Fhalf . Seond, any erti�ate(u, v) in G will be stored in S:u sine it will be the shortest hain from u to v. Bythe de�nition of Fhalf , the erti�ate (u, v) is stored either in u or in v. Therefore,Fhalf satis�es two properties of erti�ate dispersal algorithm.Next, we show in Theorem 5 that in the important ase of strongly onnetederti�ate graphs, Fhalf is not less eÆient than Ffull, and in some instanes, Fhalf isin fat more eÆient than Ffull. Then in Theorem 6, we show that in the important32



ase of tree erti�ate graphs, Fhalf is not less eÆient than Ffull, and in someinstanes, Fhalf is in fat more eÆient than Ffull. In Lemma 5, we show that inthe ase of the hourglass erti�ate graphs Fhalf ahieves muh less dispersal ostthan what Ffull ahieves.Theorem 5 For any strongly onneted erti�ate graph G,:(Fhalf ; G) � :(Ffull; G)For some strongly onneted erti�ate graph G,:(Fhalf ; G) < :(Ffull; G)
Proof: Let G be any strongly onneted erti�ate graph, and v be any node inG. The erti�ates in the set Fhalf :(G; v) de�ne a graph G0, whih is a subgraph ofthe original graph G. In G0, there an be at most one path from any node to nodev, and at most one path from node v to any other node. Graph G0 satis�es exatlyone of the following two onditions.i. G0 has no yle.ii. G0 has a yle, but it has at most n� 1 nodes.In the �rst ase, the number of erti�ates in G0 is at most n� 1, sine thereis no yle in G0. In the seond ase, the number of erti�ates in G0 is also at mostn � 1, whih is the number of erti�ates if all the n � 1 nodes partiipate in theyle. Therefore, jFhalf :(G; v)j � n� 1.:(Fhalf ; G) = 1n Xv in G jFhalf :(G; v)j � n(n� 1)n = n� 133



Beause G is strongly onneted, :(Ffull; G) = n� 1 by Lemma 2. Therefore,:(Fhalf ; G) � :(Ffull; G)This ompletes our proof of the �rst part of the theorem.
u v wFigure 3.4: The two-ring erti�ate graphTo prove the seond part of the theorem, onsider the two-ring erti�ategraph G00 in Fig. 3.4. This graph is strongly onneted and has three nodes. Thenby Lemma 2, :(Ffull; G00) = n� 1 = 2By applying Fhalf to G00, we getFhalf :(G00; u) = f(u; v); (v; u)gFhalf :(G00; v) = f gFhalf :(G00; w) = f(v; w); (w; v)gTherefore, :(Fhalf ; G00) = 13(2 + 0 + 2) = 43 < :(Ffull; G00)

Theorem 6 For every tree erti�ate graph T ,:(Fhalf ; T ) � :(Ffull; T )
34



For any omplete tree erti�ate graph G,:(Fhalf ; G) < :(Ffull; G)
Proof: For any node u in G, the ompat hain set S:u of u onstruts a max-imal shortest-path outgoing tree Tu. Sine we may repeatedly store same inom-ing edges in nodes in Fhalf , :(Fhalf ; G) � Pu2G :(Fhalf ; Tu), while :(Ffull; G) =Pu2G :(Ffull; Tu). If we an prove :(Fhalf ; Tu) � :(Ffull; Tu) for any tree Tu, then:(Fhalf ; G) �Xu2G :(Fhalf ; Tu)�Xu2G :(Ffull; Tu) = :(Ffull; G):(Fhalf ; G) � :(Ffull; G)We an prove :(Fhalf ; Tu) � :(Ffull; Tu) for any tree Tu by indution. Whenthe number of erti�ates is 2 in the maximal tree, there are 2 possible trees. Ifthe tree looks like Figure 8(a), then :(Fhalf ; Tu) = :(Ffull; Tu) = 2. If the treelooks like Figure 8(b), then :(Fhalf ; Tu) = 3, whereas :(Ffull; Tu) = 2. Therefore:(Fhalf ; Tu) � :(Ffull; Tu) holds for any maximal tree Tu with 2 erti�ates.

u

(a)

u

(b)Figure 3.5: Maximal trees with 2 edgesLet's assume that :(Fhalf ; Tu) � :(Ffull; Tu) holds for trees with up to nerti�ates. When n + 1th erti�ate (v, v0) is added at a node v, then it willinrease the hain length from the root node u of the tree to v(This new erti�ate35



has to ome with a new subjet node v0, otherwise it will break the tree property).For a hain from u to a leaf node v0 in the given maximal tree Tu, we show thatPw2u�>v jFhalf (Tu; w)j �Pw2u�>v jFfull(Tu; w)j for any node w on the path fromu to v0. The number of erti�ates stored in the nodes that are not on the pathfrom u to v0 will not be a�eted by this new erti�ate.
v’

v
u

ul−1Let l be the hain length from u to v. By the de�nition of Ffull algorithm,the inrement of :(Ffull; Tu) is l + 1 beause the nodes from u to v will store thenew erti�ate (v, v0) loally.For Fhalf , if a node w is far from v0 by even length of hain, for example ul�1,the node w has to store one more outgoing erti�ates, as the hain length from wto the leaf node v0 inreases. If l = 2k, then the number of suh nodes are k. Also:(Fhalf ; Tu) is inreased by Fhalf :(Tu; v0), whih is k + 1. Therefore, the inrementof :(Fhalf ; Tu) is also l + 1, whih is equal to that of :(Ffull; Tu). If l = 2k + 1,then the nodes whih stores one more outgoing erti�ate are k, and Fhalf :(Tu; v0)is k+1. But in this ase, the erti�ate from kth node to k+1th node on the hainis not going to be stored as inoming erti�ate in any nodes any longer. Therefore,k+1 nodes an redue their Fhalf :(Tu; v0) by 1. In total, the inrement will be k inl = 2k + 1 ase.Sine the inrement of :(Fhalf ; T ) is l+1 or (l�1)=2 when that of :(Ffull; T )is �xed as l + 1 when n + 1th erti�ate is added, :(Fhalf ; T ) � :(Ffull; T ) holdsfor any tree T with n+ 1 number of erti�ates.By indution, it is shown that :(Fhalf ; G) � :(Ffull; G) for any maximaltree Tu for any node u in G. Therefore, :(Fhalf ; G) � :(Ffull; G) for any treeerti�ate graph G. This ompletes our proof of the �rst part of the lemma.To prove the seond part of the lemma, let h be blogd n, whih is the height36



of the tree, where d is the degree of the tree, d � 2.:(Ffull; G) = Xv in G the number of erti�ates that appearin S:v= X1�i�h i � di:(Fhalf ; G) = Xv in G the number of erti�ates that appearin S:v= X1�i�bh2  i � di + Xbh2 +1�i�h di � (h� i)+ Xbh2 +1�i�h di � (h� i+ 1)= X1�i�bh2  i � di + Xbh2 +1�i�h di � (2h� 2i+ 1)
Sine Xb h2 +1�i�h di � (2h� 2i+ 1) < Xb h2 +1�i�h i � diholds when d � 2 and h � 1,:(Fhalf ; G) < :(Ffull; G)
Lemma 5 For any hourglass erti�ate graph G with n nodes and e erti�ates (see37



Figure 3) where n is odd, :(Fhalf ; G) = en < :(Ffull; G)
Proof: Reall that an hourglass erti�ate graph G with n nodes has one enternode, n�12 input nodes, and n�12 output nodes. Applying Fhalf to this erti�ategraph, we getfor every input node u, Fhalf :(G;u) = f(u; )gfor the enter node , Fhalf :(G; ) = f gfor every output node w, Fhalf :(G;w) = f(; w)g Therefore,

:(Fhalf ; G) = n� 1n = en < n4 � :(Ffull; G)

38



ALGORITHM 1 : half tree algorithmINPUT: a erti�ate graph GOUTPUT: the half tree dispersal D of GSTEPS:1: for every nonempty S:v in the onsistent olletionof ompat hain sets do2: let  denote the longest hain < (v0; v1); � � � ;(vk�1; vk) > in S:v: note that v0 = v;3: let x := bk2;4: �nd the largest y, 0 � y � k, suh that allerti�ates in the pre�x < (v0; v1); � � � ;(vy�1; vy) > are already in Fhalf (G; v);5: if x � y6: thenstore the erti�ates in every pre�x ofthe subhain < (vy; vy+1); � � � ; (vk�1; vk) >in Fhalf :(G;w) where w is the node atwhih the pre�x ends;7: else7a: store the erti�ates in the pre�x< (vy; vy+1); � � � ; (vx�1; vx) > in Fhalf (G; v);7b: store the erti�ates in every pre�x ofthe subhain < (vx; vx+1); � � � ; (vk�1; vk) >in Fhalf :(G;w) where w is the node atwhih the pre�x ends;endif ;8: remove hain  from S:v;9: enddo;
39



3.4 Optimal Algorithms for Certi�ate Graphs3.4.1 Optimal Dispersal of Reexive GraphsIn this setion we identify a lass of erti�ate graphs alled reexive graphs, andgive an algorithm that omputes an optimal dispersal of these graphs.A erti�ate graph G is alled reexive if and only if the following two on-ditions hold.i. Short Cyles : Every simple direted yle in G is of length 2.ii. Reexivity : If there is a erti�ate from a node u to a node v in G, then Galso has a erti�ate from v to u.
b d e
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a f

cFigure 3.6: An example of a reexive erti�ate graphFig. 3.6 shows an example of a reexive graph that has 7 nodes and 12erti�ates. Note that there are two opposite diretion erti�ates between the twonodes a and d, and there are no erti�ates between the two nodes a and b.A nie feature of reexive graphs is that there is a erti�ate hain from anynode to any other node in the graph. Thus any node an get the publi key of anyother node in the graph and an seurely send messages to it.Let G be a reexive graph. An undireted version of G is obtained fromG by replaing eah pair of opposite diretion erti�ates between two nodes byan undireted edge. For example, an undireted version of the reexive graph inFig. 3.6 is shown in Fig. 3.7.Next we desribe an algorithm for optimal dispersal of any reexive graphG. Note that this algorithm operates on an undireted version G0 of G.40



b d e
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a f

cFigure 3.7: An undireted version of the reexive erti�ate graph in Fig. 3.6ALGORITHM 2 : optimal dispersal of a reexive erti�ate graphINPUT: a reexive erti�ate graph GOUTPUT: an optimal dispersal D of GSTEPS:1: onstrut an undireted version G0 of G.2: for eah node u in G0, D:u := fg3: for eah undireted edge fu; vg in G0 do4: ompute the set R:u that ontains u and every node xwhere there is a simple path between x and u in G0and this path does not ontain the edge fu; vg5: ompute the set R:v that ontains v and every node xwhere there is a simple path between x and v in G0and this path does not ontain the edge fu; vg6: if jR:uj � jR:vj7: then for every node x in R:u, D:x := D:x [ f(u; v); (v; u)g8: else for every node x in R:v, D:x := D:x [ f(u; v); (v; u)gAlgorithm 2 an be applied to the reexive erti�ate graph in Fig. 3.6 asfollows. First, the undireted version of the erti�ate graph is onstruted as shownin Fig. 3.7. For the edge fa; dg, the two sets R:a and R:d are omputed as follows:R:a = fag; R:d = fb; ; d; e; f; ggSine jR:aj = 1 < 6 = jR:dj, the two erti�ates (a, d) and (d; a) are stored inD:a. Similarly, the two erti�ates (b, d) and (d, b) are stored in D:b and the twoerti�ates (, d) and (d, ) are stored in D:.41



For the edge fe; fg, the two sets R:e and R:f are omputed as follows:R:e = fa; b; ; d; e; gg; R:f = ffgSine jR:ej = 6 > 1 = jR:f j, the two erti�ates (e, f) and (f , e) are stored in D:f .Similarly, the two erti�ates (e, g) and (g; e) are stored in D:g.For the edge fd; eg, the two sets R:d and R:e are omputed as follows:R:d = fa; b; ; dg; R:e = fe; f; ggSine jR:dj = 4 > 3 = jR:ej, the two erti�ates (d, e) and (e; d) are stored in D:e,D:f , and D:g.The resulting erti�ate dispersal of the graph is as follows:D:a = f(a; d); (d; a)g;D:b = f(b; d); (d; b)g;D: = f(; d); (d; )g;D:d = fg;D:e = f(d; e); (e; d)g;D:f = f(d; e); (e; d); (e; f); (f; e)g;D:g = f(d; e); (e; d); (e; g); (g; e)gThe ost of this dispersal is (2 + 2 + 2 + 0 + 2 + 4 + 4)=7 = 16=7 � 2:3 erti�atesper node.Theorem 7 Given a reexive erti�ate graph G, the dispersal D of G omputedby Algorithm 2 is optimal.Proof: We divide the proof into two parts. First, we show that Algorithm 242



omputes a dispersal. Seond, we show that D is optimal.Proof of First Part: By the de�nition of dispersal in Setion 3.1, if all theerti�ates in eah hain from a node u to a node v in G are in set D:u[D:v, thenD is a dispersal of G.Consider a pair of nodes v0 and vk, where there is a erti�ate hain (v0, v1),(v1, v2), � � � , (vk�1, vk) from v0 to vk in G. For eah erti�ate (vi; vi+1) in thishain, the two sets R:vi and R:vi+1 are omputed by Algorithm 2 for the undiretededge fvi; vi+1g. Sine there is a hain from v0 to vi in G, there is a simple pathbetween v0 and vi in G0. Thus, R:vi ontains v0. Similarly, sine there is a simpledireted hain from vi+1 to vk in G, there is a simple path between vi+1 and vkin G0. Thus, R:vi+1 ontains vk. By steps in line 6-8 in Algorithm 2, (vi; vi+1) isstored either in all nodes in R:vi or in all nodes in R:vi+1. Beause R:vi ontainsv0 and R:vi+1 ontains vk, erti�ate (vi; vi+1) is stored either in D:v0 or in D:vk.Thus, every erti�ate (vi; vi+1) in the hain, is stored in D:v0 [D:vk. Therefore,the hain from v0 to vk is stored in the set D:v0 [D:vk. D is a dispersal of G.For every pair of erti�ates (u; v) and (v; u) in G, an undireted edge fu; vgis onstruted in G0. The two erti�ates (u; v) and (v; u) are stored either in allnodes in R:u or in all nodes in R:v, where R:u and R:v are the two sets omputed byAlgorithm 1 for the undireted edge fu; vg. By the de�nition of R:u and R:v, R:uontains u and R:v ontains v. Thus, by step iii in Algorithm 2, the two erti�ates(u; v) and (v; u) are either stored in D:u or in D:v. Therefore, for every erti�atein G, there is a node x in G suh that this erti�ate is in D:x. The ompletenessondition holds.Proof of Seond Part:Let D0 be any other dispersal of a reexive erti�ate graph G and let (u; v)be any direted erti�ate in G. The erti�ate (u; v) is on every direted hain froma node in R:u to a node in R:v, where R:u and R:v are the two sets omputed by43



Algorithm 2 for the undireted edge fu; vg. Therefore, D0 needs to assign erti�ate(u; v) to every node in R:u or to every node in R:v. In either ase, D0 yields adispersal ost that is no less than the dispersal ost of D omputed by Algorithm 2.The omplexity of Algorithm 2 is O(en), where e is the number of edges inthe undireted version of the input reexive graph and n is the number of nodes inthe reexive graph. Sine e = n� 1, the omplexity of this algorithm is O(n2).Note that the star erti�ate graph in Fig. 3.1 in Setion 3.1 is reexiveand so Algorithm 2 an be used to ompute an optimal dispersal of this graph.Using Algorithm 2, we obtain the following erti�ate dispersal for this graph:D:v = fg if v is the enter nodeD:v = f(v, enter node),(enter node, v)g otherwiseThe ost of this erti�ate dispersal = (0 + 2(n � 1))=n. From Theorem 7,we onlude that this ost is the smallest possible ost of erti�ate dispersal for thestar erti�ate graph.3.4.2 Optimal Dispersal of Biased GraphsIn this setion, we present an algorithm that omputes an optimal dispersal foranother lass of erti�ate graphs, alled biased graphs. As disussed below, thelass of biased graphs is for all pratial purposes mutually exlusive from the lassof reexive graphs disussed in the previous setion.A erti�ate graph G is alled biased if and only if it satis�es the followingtwo onditions.i. Ayliity : G has no direted yles.ii. Nonredundany : G has at most one erti�ate hain from any node to any44



other node.From the de�nitions of reexive and biased graphs, it follows that everyreexive graph that has one or more erti�ates is not biased and every biasedgraph that has one or more erti�ates is not reexive. Biased erti�ate graphsrepresent many useful erti�ate systems. For example, a hierarhial erti�atesystem would typially generate a tree-shaped erti�ate graph. Any direted tree-shaped erti�ate graph is a biased erti�ate graph.Note that a reexive graph supports seure two-way ommuniation betweenevery two nodes in the graph, whereas a biased graph supports seure one-wayommuniation between some two nodes in the graph. For example, onsider thebiased graph in Fig. 3.8. This graph supports seure one-way ommuniation fromnode a to node b and from node a to node , but it does not support any seureommuniation between the two nodes b and .
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cFigure 3.8: A biased erti�ate graphNext, we present an algorithm whih omputes optimal dispersals for thelass of biased graphs.As an example, let us onsider the appliation of the steps in lines 5{7 inAlgorithm 3 on the erti�ate (a; d) in the biased graph in Fig. 3.8. In this ase,the two sets R:a and R:d are omputed as follows:R:a = fag; R:d = fd; b; gThus, jR:aj = 1 < 3 = jR:dj and so erti�ate (a; d) is added only to D:a.45



ALGORITHM 3 : optimal algorithm of a biased erti�ate graphINPUT: a biased erti�ate graph GOUTPUT: an optimal dispersal D of GSTEPS:1: for eah node u in G, D:u := fg2: for eah erti�ate (u; v) in G do3: ompute the set R:u that ontains u and every node xwhere there is a hain from x to u in G4: ompute the set R:v that ontains v and every node xwhere there is a hain from v to x in G5: if jR:uj � jR:vj6: then for every node x in R:u, D:x := D:x [ f(u; v)g7: else for every node x in R:v, D:x := D:x [ f(u; v)gAs a seond example, onsider the appliation of the steps in lines 5{7 inAlgorithm 3 on the erti�ate (e; g) in the biased graph in Fig. 3.8. In this ase, thetwo sets R:e and R:g are omputed as follows:R:e = ff; eg; R:g = fggThus, jR:ej = 2 > 1 = jR:gj and so erti�ate (e; g) is added only to D:g.Theorem 8 Given a biased erti�ate graph G, the dispersal D of G omputed byAlgorithm 3 is optimal.Proof: The proof is similar to that of Theorem 7.3.4.3 Optimal Dispersal of Conise GraphsIn this setion, we present an algorithm that omputes optimal dispersal for hainsets \derivable" from a lass of erti�ate graphs alled onise erti�ate graphs.A erti�ate graph G is alled onise if and only if it satis�es the following two46



onditions.i. Short Cyles : Every simple direted yle in G is of length 2.ii. Non-redundany : G has at most one hain from any node to any other node.Conise erti�ate graphs represent many useful erti�ate systems. For example,a hierarhial erti�ate system would typially generate a tree-shaped erti�ategraph. Any tree-shaped erti�ate graph is a onise erti�ate graph.Fig. 3.9(a) shows an example of a onise erti�ate graph. Note that in aonise graph there an be two opposite diretion erti�ates between two adjaentnodes. We refer to any suh pair of erti�ates as twins, and we refer to eah oneof those erti�ates as the twin erti�ate of the other. In the onise graph in Fig.3.9(a), the two erti�ates (b; ) and (; b) are twins.
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(a)
f (a; b), (b; ), (; b), (b; d),(a; b)(b; ),(a; b)(b; d),(; b)(b; d) g(b)Figure 3.9: An Example of Conise Certi�ate Graph and Derivable Chain SetA hain set is derivable from some erti�ate graph G if and only if the hainset onsists of all the erti�ate hains in G. For example, the hain set in Fig. 3.9(b)is derivable from the erti�ate graph in Fig. 3.9(a).Algorithm 4 omputes an optimal dispersal of a onise erti�ate graph.Consider erti�ate (b; ) in the example onise erti�ate graph in Fig. 3.9(a).Algorithm 4 omputes the set of nodes from whih there is a hain to b, denotedR:b, as fa; bg. Also, Algorithm 4 omputes the set of nodes to whih there is a hain47



ALGORITHM 4 : optimal dispersal of onise erti�ate graphsINPUT: a onise erti�ate graph GOUTPUT: a dispersal D of the hain set CS derivable from GSTEPS:1: for eah node u in G, D:u := fg2: for eah erti�ate (u; v) in G do3: ompute the set R:u that ontains u and every node x from whih there isa hain to u in G and this hain does not ontain the twin erti�ate (v; u)4: ompute the set R:v that ontains v and every node x to whih there isa hain from v in G and this hain does not ontain the twin erti�ate (v; u)5: if jR:uj � jR:vj6: then for every node x in R:u, add (u; v) to D:x7: else for every node y in R:v, add (u; v) to D:yfrom , denoted R: as fg. jR:bj > jR:j, so (b; ) is stored in . After onsideringall the erti�ates in the graph, the example onise erti�ate graph is optimallydispersed by Algorithm 4 as follows:f D:a = f(a; b)g, D:b = f(; b)g,D: = f(b; )g, D:d = f(b; d)g gTheorem 9 Given a onise erti�ate graph G, the dispersal D of the hain setCS derivable from G omputed by Algorithm 4 is optimal.Proof: We divide the proof into two parts. First, we show that Algorithm 4omputes a dispersal D. Seond, we show that D is optimal.Proof of First Part:We show that the erti�ate subsets D:x, omputed by Algorithm 4 for everynode x in G, satisfy the ondition of dispersal in Setion 2.48



Consider a pair of nodes v0 and vk, where there is a hain (v0, v1), (v1, v2),� � � , (vk�1, vk) from v0 to vk in G. By the de�nition of the derivable hain set, thehain from v0 to vk is in CS. For eah erti�ate (vi; vi+1) in this hain, the twosets R:vi and R:vi+1 are omputed by Algorithm 4. Sine there is a hain from v0to vi in G, R:vi ontains v0. Similarly, sine there is a simple direted hain fromvi+1 to vk in G, R:vi+1 ontains vk. By line 5-7 in Algorithm 4, (vi; vi+1) is storedeither in all nodes in R:vi or in all nodes in R:vi+1. Beause R:vi ontains v0 andR:vi+1 ontains vk, erti�ate (vi; vi+1) is stored either in D:v0 or in D:vk. Thus,every erti�ate (vi; vi+1) in the hain from v0 to vk is stored in D:v0[D:vk. Hene,D is a dispersal of the hain set CS derivable from G.Proof of Seond Part: The proof is by ontradition. Let D0 be anotherdispersal of CS where ost:D0 < ost:D. Then there must be suh a erti�ate(u; v) that jD0(u; v)j < jD(u; v)j. By the de�nition of dispersal, (u; v) needs to bestored inD0:x[D0:y for every hain from x to y that ontains (u; v). By the de�nitionof derivable hain set, erti�ate (u; v) is used in every direted hain from any nodex in R:u to any node y in R:v, where R:u and R:v are the two sets omputed byAlgorithm 4 for erti�ate (u; v). In other words, jD0(u; v)j � min(jR:uj; jR:vj).Sine jD(u; v)j = min(jR:uj; jR:vj), jD0(u; v)j � jD(u; v)j. This ontradits theassumption of jD0(u; v)j < jD(u; v)j.Therefore, D omputed by Algorithm 4 is optimal.The omplexity of Algorithm 4 is O(en), where e is the number of erti�atesin the input onise erti�ate graph and n is the number of nodes in the oniseerti�ate graph.
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3.5 Optimal Algorithms for Chain Sets3.5.1 Optimal Dispersal of Short Chain SetsIn the previous setion, we proved that omputing an optimal dispersal of anyhain set, whih inludes hains whose length is 3 or more, is NP-omplete. Inthis setion, we show that there is a polynomial-time algorithm that omputes anoptimal dispersal of any hain set whose hains are all of length at most 2. Thislass of hain sets is urrently in use in the Internet in Seure Soket Layer (SSL).A hain set CS is short if and only if the length of the longest hain in CSis at most 2. For example, onsider the star erti�ate graph in Fig. 3.10(a). Inthis erti�ate graph, assume that eah satellite node, b, , or d, wishes to seurelyommuniate with every other satellite node. Fig. 3.10(b) shows the resulting shorthain set.
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(a) f (b; a)(a; ), (d; a)(a; b),(; a)(a; b), (; a)(a; d),(b; a)(a; d), (d; a)(a; )g(b)Figure 3.10: An Example of Short Chain SetAlgorithm 5 omputes an optimal dispersal of a short hain set. Considerthe erti�ate (b; a) in the example short hain set in Fig. 3.10. Chains that have(b; a) are (b; a)(a; ) and (b; a)(a; d). So b is the soure of every hain that has (b; a).Therefore, Algorithm 5 assigns (b; a) to D:b. After onsidering all the erti�ates inthe short hain set, the optimal dispersal omputed by Algorithm 5 as follows:
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ALGORITHM 5 : optimal dispersal of short hain setsINPUT: a short hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for eah node u in CS, D:u := fg2: for eah erti�ate (u; v) in CS do3: if there is a node x suh thatthe soure or destination of every hain that has (u; v) is x4: then add (u; v) to D:x5: else add (u; v) to both D:u and D:v
fD:a = fg, D:b = f(a; b); (b; a)g,D: = f(a; ); (; a)g, D:d = f(a; d); (d; a)ggTheorem 10 Given a short hain set CS, the dispersal D of CS omputed byAlgorithm 5 is optimal.Proof: The proof onsists of two parts. First, we show that Algorithm 5omputes a dispersal D. Seond, we show that D is optimal.Proof of First Part :By the de�nition of dispersal in Setion 2, if all the erti�ates in eah hainfrom a soure node u to a destination node v in CS are in set D:u [D:v, then Dis a dispersal of CS. In other words, if a erti�ate (u; v) is stored in the soure ordestination nodes of every hain that ontains (u; v), then D is a dispersal.By Algorithm 5, every erti�ate (u; v) is stored either in D:x of some nodex, or both D:u and D:v. Sine the maximum length of a hain in CS is 2, everyhain that ontains (u; v) starts at u or ends at v. Hene if (u; v) is stored in bothD:u and D:v then erti�ate (u; v) is stored in the soure or destination node of51



every hain that ontains (u; v). If (u; v) is stored in node x, then by Algorithm 5 xis either the soure node or the destination node of every hain that ontains (u; v).Therefore, (u; v) is stored in the soure or the destination node of every hain thatontains (u; v).Proof of Seond Part :The proof is by ontradition. Let D be the dispersal of a short hain set CSomputed by Algorithm 5 andD0 be another dispersal of CS. Assume that ost:D0 <ost:D. There must be at least one erti�ate (u; v) suh that jD0(u; v)j < jD(u; v)j.Let (u; v) be suh a erti�ate, jD0(u; v)j < jD(u; v)j. By Algorithm 5,jD(u; v)j is either 1 (if there exists some node x that is the soure or destinationnode of every hain that has (u; v)) or 2 (otherwise). Therefore, jD0(u; v)j = 1 andjD(u; v)j = 2, and there exists no node x in CS that is the soure or destinationnode of every hain that has (u; v). By the de�nition of dispersal, the node w inD0(u; v) should be the soure or a destination of every hain that ontains (u; v) inCS. This ontradits that there exists no node x in CS suh that x is the soure ordestination node of every hain that has (u; v).Therefore, ost:D � ost:D0 for any dispersal D0 of CS. Algorithm 5 om-putes an optimal dispersal of a short hain set CS.The time omplexity of Algorithm 5 is O(ep), where e is the number oferti�ates in the input short hain set and p is the number of hains in the hainset.3.5.2 Optimal Dispersal of Disonneted Chain SetsIn this setion, we identify a speial lass of hain sets and present an algorithmthat omputes an optimal dispersal for this lass of hain sets in polynomial-time.A hain set CS is disonneted if and only if for every erti�ate (u; v) in CS,the set of soure nodes of the hains that ontain (u; v) and the set of destination52



nodes of the hains that ontain (u; v) are disjoint. This reets a system where theauthentiation is performed in an asymmetri manner. For example, when there arelients and servers in the system, one an imagine that lients would use erti�atesto authentiate servers, while servers would use passwords to authentiate lients.Suh asymmetri systems an be represented as disonneted hain sets. Fig. 3.11shows an example of a disonneted hain set.f (d; a),(a; b)(b; ),(a; )(; d),(a; b)(b; )(; d)(d; e)gFigure 3.11: An Example of Disonneted Chain Set(d; a) has the set of soure nodes fdg and the set of destination nodes feg,whih are disjoint. (a; b) has the set of soure nodes fag and the set of destinationnodes f; eg, whih are disjoint. Every erti�ate in this hain set has disjoint setsof soure and destination nodes.ALGORITHM 6 : optimal dispersal of disonneted hain setsINPUT: a disonneted hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for eah node u in G, D:u := fg2: for eah erti�ate (u; v) in G do3: G0=(V 0; E0) where V 0 = fg and E0 = fg4: for eah hain from node x to node y that ontains (u; v) do5: add nodes x and y to V 06: add (x; y) to E07: ompute a minimal vertex over of the bipartite graph G08: add (u; v) to eah node in the vertex overAlgorithm 6 omputes an optimal dispersal of a disonneted hain set. Con-sider erti�ate (a; b) in the example disonneted hain set in Fig. 3.11. Algo-53



rithm 6 onstruts a bipartite graph G0 for erti�ate (a; b), where G0 = (V 0; E0),V 0=fa; ; eg, and E 0=f(a; ); (a; e)g. The vertex over of minimum size of G0 is fag.Thus, (a; b) is stored in D:a. After onsidering all erti�ates in the hain set, theexample disonneted hain set is optimally dispersed by Algorithm 6 as follows:fD:a = f(a; b); (b; ); (; d)g, D:b = fg, D: = fg,D:d = f(a; ); (d; a)g, D:e = f(d; e)ggTheorem 11 Given a disonneted hain set CS, the dispersal D of CS omputedby Algorithm 6 is optimal.Proof: The proof onsists of two parts. First, we show that Algorithm 6 pro-dues a dispersal. Seond, we show that the resulting dispersal is optimal.Proof of First Part:Let D:u be the set of erti�ates assigned to a node u in CS by Algorithm 6.Consider any erti�ate (u; v) in a hain from a soure node x to a destination nodey in CS. By Algorithm 6, sine there is a hain from x to y that goes through(u; v), there is an edge (x; y) in G0 for (u; v). By the de�nition of vertex over, foredge (x; y) in G0, node x or node y is in the vertex over. Therefore, for the hainfrom x to y, (u; v) is stored in D:x or D:y. This is true for all the erti�ates in thehain from x to y, for any hain in CS. Hene, D satis�es the dispersal onditionin Setion 2, so D is a dispersal of CS.Proof of Seond Part:By Theorem 3, if we an �nd a dispersal D where D(u; v) of every erti�ate(u; v) in CS is optimal, then D is an optimal dispersal of CS. So we only need toprove that a dispersal omputed by Algorithm 6 produes an optimal loation setof eah erti�ate in CS. The proof is by ontradition. Assume there is anotherdispersal D0 of CS, where ost:D0 < ost:D. There must be at least one erti�ate54



(u; v) where jD0(u; v)j < jD(u; v)j. For every hain from a node x to a node ythat ontains (u; v), D0(u; v) should ontain x or y. Therefore, D0(u; v) is a vertexover of the bipartite graph G0 onstruted for (u; v), where jD0(u; v)j < jD(u; v)j.This ontradits that D(u; v) is the vertex over of minimum size of G0 by line 7in Algorithm 6. Therefore, D(u; v) is an optimal loation set of (u; v) for everyerti�ate (u; v) in CS. By Theorem 3, D is optimal.For eah erti�ate (u; v), the graph G0 onstruted for (u; v) is a bipartitegraph. It is beause the set of soure nodes of the hains that ontain (u; v) andthe set of the destination nodes of the hains that ontain (u; v) are disjoint by thede�nition of disonneted hain set. Finding a vertex over in a bipartite graph isa well known problem in graph theory, whih takes O(n0e0) steps where n0 is thenumber on nodes in G0 and e0 is the number of edges in G0. In the worst ase n0 = nand e0 = p, where n is the number of nodes in CS, and p is the number of hains inCS. Therefore, the time omplexity of Algorithm 6 is O(e� np)=O(enp), where eis the number of erti�ates in CS.3.5.3 Optimal Dispersal of k-long Chain SetsIn Setion 3.2, we showed that omputing an optimal dispersal of any hain set,whih inludes hains of length 3 or more, is NP-omplete. If all the hains in ahain set are of length at most 2, i.e. if the hain set is short, then we an useAlgorithm 5 in Setion 3.5.1 to ompute an optimal dispersal of the short hain set.In this setion, we onsider a more general lass of hain sets where there are a �xednumber k, k � 1, of hains of length greater than 2. Consideration of suh hainsets is motivated, for instane, by the following example. Consider a hierarhialnetwork made of a number of autonomous systems. Certi�ate hains within anysingle autonomous system are expeted to be short, whereas erti�ate hains thatspan multiple autonomous systems are expeted to be long. The hain set of these55



autonomous systems ontain mostly short intra-hains, but may ontain a �xednumber of long inter -hains. Our main result here is a polynomial-time algorithmthat omputes an optimal dispersal for suh hain set for �xed k.In this setion, we present Algorithm 7 that omputes an optimal dispersalof a hain set where there are k hains of length greater than 2 for some onstantk. We all suh sets k-long hain sets. Roughly speaking, our general strategy isto onsider all possible ways of assigning erti�ates that appear in long hains tothe relevant soure and destination nodes, and then handling the remaining shorthains with the aid of Algorithm 5. To develop some initial intuition, �rst we showhow to ompute an optimal dispersal of an example 1-long hain set in Fig. 3.12(b),and then we show how to generalize for k-long hain sets.
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f (a; b)(b; ),(b; )(; a),(; a)(a; b),(; a)(a; b)(b; d) g(b)Figure 3.12: An Example of 1-Long Chain SetLet CS be the 1-long hain set in Fig. 3.12(b), whih is a hain set of theerti�ate graph in Fig. 3.12(a). There is one long hain (; a)(a; b)(b; d) and threeother short hains. There are three types of erti�ates in this hain set.i. Certi�ates used only in long hains: for example, (b; d).A erti�ate of this type an be dispersed either to the soure or to the desti-nation of eah long hain that ontains this erti�ate. For example, erti�ate(b; d) in CS is used only in the long hain and needs to be dispersed either to or to d. This erti�ate is not used in any other hains, so it does not hange56



the ost of dispersal whether it is dispersed to  or d.ii. Certi�ates used only in short hains: for example, (b; ).For erti�ates of the seond type, we an use Algorithm 5 in Setion 3.5.1 todisperse suh erti�ates. For example, erti�ate (b; ) is dispersed to node aby Algorithm 5.iii. Certi�ates used in both long and short hains: for example, (a; b), (; a).Dispersing a erti�ate of the third type needs to onsider every possible as-signment of this erti�ate among soures and destinations of long hains. Forexample, erti�ate (a; b) is used in three hains, (a; b)(b; ), (; a)(a; b) and(; a)(a; b)(b; d). If we hoose to disperse (a; b) to the soure  of long hain,then we do not need to disperse (a; b) to any other node in CS, sine  hap-pens to be soure or destination of all the short hains that ontain (a; b).By ontrast, if we hoose to disperse (a; b) to the destination d of long hain,then we need to disperse (a; b) to other nodes than d sine d is neither sourenor destination of two short hains (a; b)(b; ) and (; a)(a; b). In other words,D(a; b) ould be either fg or fa; b; dg, depending on whether (a; b) is assignedto the soure or the destination of the long hain. This shows that for eaherti�ate of the third type that is used in both long and short hains, in eahassignment of this erti�ate in soures and destinations of long hains, weneed to hek whih short hains still needs dispersal of this erti�ate.After onsidering all three types of erti�ates in CS, the resulting optimaldispersal of CS in Fig. 3.12(b) beomes as follows:f D:a = f(b; )g, D:b = f(; a)g,D: = f(; a); (a; b)g, D:d = f(b; d)g g57



To extend this solution for 1-long hain set to k-long hain set, we need tode�ne a terminal set of a hain set. A terminal set of a hain set CS is a subsetof nodes in CS that onsists of the soure or destination of eah hain in CS. Forexample, the four nodes a; b; ;  are the soures of all four hains in the hain setin Fig. 3.12(b), so fa; b; g is a terminal set of this hain set. Algorithm 7 omputesan optimal dispersal of k-long hain sets using this terminal set.ALGORITHM 7 : optimal dispersal of k-long hain setsINPUT: a k-long hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for eah node u in CS, D:u := fg2: for eah erti�ate (u; v) in CS do3: ompute the hain set LS of all long hains that ontain (u; v) in CS4: for eah possible terminal set X of LS5: for eah node w in CS,6: if w 2 X then DX :w := f(u; v)g else DX :w := fg7: ompute the hain set S of all the hains that ontain (u; v)and their soures and destinations are not in X8: run Algorithm 5 on S and add the resulting loation set of (u; v) to DX9: �nd DX with the minimal ost10: for eah node u in CS, add DX :u to D:uConsider (; a) in the example hain set in Fig. 3.12(b). The set of all longhains that ontain (; a), denoted LS in Algorithm 7, is f(; a)(a; b)(b; d)g. For aterminal set fg, (; a) is dispersed to node  and the set of remaining short hains,denoted S in Algorithm 7, beomes f(b; )(; a)g. There is node b that is the soureof every hain in S, so (; a) is dispersed to node b. The resulting dispersal of (; a),fb; g, is an optimal loation set of (; a). After onsidering every erti�ate, thedispersal of the example hain set in Fig. 3.12(b) omputed by Algorithm 7 beomesthe same with the dispersal above, and this dispersal is optimal. Theorem 12 shows58



that Algorithm 7 omputes an optimal dispersal of a given k-long hain sets.Theorem 12 Given a k-long hain set CS, the dispersal D of the hain set CSomputed by Algorithm 7 is optimal.Proof: We divide the proof into two parts. First, we show that Algorithm 7omputes a dispersal D. Seond, we show that D is optimal.Proof of First Part:We show that the erti�ate subsets D:u, omputed by Algorithm 7 for everynode u in CS, satisfy the ondition of dispersal in Setion 2.Consider a erti�ate (u; v). Algorithm 7 omputes the hain set LS of forall the long hains that ontain (u; v). Algorithm 7 stores (u; v) in every node ina terminal set of LS. By the de�nition of a terminal set, (u; v) is stored in eithersoure or destination of eah long hain in LS. For all the remaining short hainsthat ontain (u; v) inCS, by line 7-9 in Algorithm 7 (same as line 3-5 in Algorithm 5),(u; v) is stored either in D:w for some node w or in D:u and D:v. (The rest of proofis same with the optimality proof of Algorithm 5.) For eah remaining short hain,the hain that ontains (u; v) starts at u or ends at v. Hene if (u; v) is stored inboth D:u and D:v then erti�ate (u; v) is stored in the soure or destination nodeof every remaining hain that ontains (u; v). If (u; v) is stored in node w, thenby Algorithm 7, then w is either the soure node or the destination node of everyremaining hain. Therefore, (u; v) is stored in the soure or the destination node ofevery hain that ontains (u; v). This is true for any erti�ate (u; v) in CS. Hene,D is a dispersal of the hain set CS.Proof of Seond Part:The proof is by ontradition. Let D be the dispersal of a k-long hainset CS omputed by Algorithm 7 and D0 be another dispersal of CS. Assumethat ost:D0 < ost:D. There must be at least one erti�ate (u; v) suh thatjD0(u; v)j < jD(u; v)j. 59



There are three ases of (u; v):i. (u; v) is a erti�ate used only in long hains.ii. (u; v) is a erti�ate used only in short hains.iii. (u; v) is a erti�ate used in both long and short hains.For ase i), Algorithm 7 onsiders every possible terminal set X of the longhains that ontain (u; v). Therefore, the resulting jD(u; v)j = minX jDX(u; v)j.By the de�nition of the terminal set, D0(u; v) has to be a terminal set of the longhains that ontain (u; v). In other words, jD0(u; v)j � minX jDX(u; v)j = jD(u; v)j.Therefore, jD(u; v)j � jD0(u; v)jFor ase ii), Algorithm 7 omputes an optimal dispersal of the short hainsontaining (u; v). The proof is same as the optimality proof of Algorithm 5 for shorthain sets. Therefore, jD(u; v)j � jD0(u; v)j.For ase iii), �nd a terminal set X of the long hains that ontain (u; v), suhthat X � D0(u; v). Sine Algorithm 7 onsiders every possible terminal set of thelong hains that ontain (u; v), it also omputes DX(u; v) for the found terminal setX, where X � DX(u; v). For the remaining short hains in S, sine the soures anddestinations of the short hains in S are not in X , so D0(u; v) n X should ontainsoure or destination of eah hain in S. Also, Algorithm 5 omputes an optimalloation set of (u; v) in S. Therefore, jDX(u; v) n X j � jD0(u; v) n Xj. Sine X �D0(u; v) and X � DX(u; v), jDX(u; v)j � jD0(u; v)j. jD(u; v)j = minX jDX(u; v)j,so jD(u; v)j � jD0(u; v)j.In all three ases, jD(u; v)j � jD0(u; v)j, whih ontradits the assumption ofjD(u; v)j > jD0(u; v)j. Therefore, dispersal D omputed by Algorithm 7 is optimal.The time omplexity of this algorithm is O(2k � ep), where k is the numberof long hains in CS, e is the number of erti�ates in CS, and p is the number of60



hains in CS. This omplexity is omputed as follows: the number of terminal setsfor k long hains is O(2k), and for eah terminal set, the number of short hains toonsider is O(p). We repeat this proedure for e erti�ates. Sine k is a onstant,the time omplexity beomes O(ep).3.5.4 Optimal Dispersal of k-Conneted Chain SetsIn Setion 3.5.2, we presented Algorithm 6 that omputes an optimal dispersalof a disonneted hain set. In this setion, we investigate more general lass ofhain sets where there are at most k nodes in the intersetion of the soure setand the destination set of eah erti�ate in a hain set. We all suh hain setsk-onneted hain sets. This lass of hain sets models a lient-server system thatuses two di�erent authentiation methods. As disussed in Setion 3.5.2, in somelient-server systems, lients authentiate servers via erti�ates, whereas serversauthentiate lients via other means, e.g. passwords. However, there may be a fewmutual authentiations via erti�ates between servers. These erti�ates used byservers may have non-empty intersetion of the soure and destination sets. Suhlient-server systems an be represented as k-onneted hain sets.Fig. 3.13(b) shows an example of 1-onneted hain set, whih is a hainset of the erti�ate graph in Fig. 3.13(a). For erti�ate (a; b), the soures of thehains that ontain (a; b) are fa; g and the destinations of suh hains are fb; ; dg.The intersetion of two sets is fg. Similarly, the ardinality of the intersetion setis at most 1 for every erti�ate in this hain set, so the hain set in Fig. 3.13(b) is1-onneted.Assume that (a; b) is stored in D: in some dispersal D of this hain set. Theremaining hain to be dispersed is (a; b)(b; )(; d). Certi�ate (a; b) an be storedeither in D:a or in D:d, either of whih makes no di�erene in the dispersal ost.Or, assume that (a; b) is not stored in D0: in some dispersal D0 of this hain set.61
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f (a; b)(b; ),(a; b)(b; )(; d),(b; )(; d)(d; a),(; d)(d; a)(a; b) g(b)Figure 3.13: An Example of 1-Conneted Chain SetCerti�ate (a; b) needs to be stored in D0:a and D0:b. We an repeat this proessfor eah erti�ate to �nd the dispersal as follows:fD:a = f(a; b); (b; )g, D:b = f(; d); (d; a)g,D: = f(a; b)g, D:d = f(; d)g gThis is also an optimal dispersal of this 1-onneted hain set.To extend this solution for 1-onneted hain set to k-onneted hain set, weneed to de�ne an intersetion set of a erti�ate. An intersetion set of a erti�ate(u; v) in a hain set CS is a set of nodes that appear both in the set of souresand the set of destinations of the hains that ontain (u; v). For erti�ate (a; b)in Fig. 3.13(b), the soures of the hains that ontain (a; b) are fa; g and thedestinations of suh hains are fb; ; dg. The intersetion of two sets is fg, sofg is the intersetion set of (a; b). Algorithm 8 omputes an optimal dispersal ofk-onneted hain sets using this intersetion set.The proof of the optimality of this algorithm is straightforward. Sine thisalgorithm onsiders every possible subset of the intersetion set, it is guaranteedto �nd the optimal loation set of eah erti�ate. By Theorem 3, the dispersalomputed by this algorithm is optimal.The time omplexity of this algorithm is O(2k � enp), where k is the tight62



ALGORITHM 8 : optimal dispersal of k-onneted hain setsINPUT: a k-onneted hain set CSOUTPUT: a dispersal D of CSSTEPS:1: for eah node u in CS, D:u := fg2: for eah erti�ate (u; v) in CS do3: ompute the intersetion set IS of (u; v)4: for eah subset X of IS5: for eah node w in CS, if w 2 X then DX :w := f(u; v)g else DX :w := fg6: ompute the hain set S of all the hains that ontain (u; v)and their soures and destinations are not in X7: for eah hain from y to z in S8: if y 2 IS nX then add (u; v) to DX :z and remove the hain from S9: if z 2 IS nX then add (u; v) to DX :y and remove the hain from S10: run Algorithm 6 on S and add the resulting loation set of (u; v) to DX11: �nd DX with the minimal ost12: for eah node u in CS, add DX :u to D:uupper bound of the number of nodes in intersetion sets of all the erti�ates inCS, n is the number of nodes in CS, e is the number of erti�ates in CS, and pis the number of hains in CS. Sine there are at most k nodes in the intersetionset of eah erti�ate, there are at most 2k subsets of the intersetion set. For eahsubset, we run Algorithm 6, whose omplexity is O(enp). Therefore, the total timeomplexity beomes O(2kenp). Sine k is a onstant, the time omplexity beomesO(enp).
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3.6 Dynami DispersalIn the previous setions, we disussed the onept of erti�ate dispersal. Algo-rithms in Setions 3.4 show how to ompute a erti�ate dispersal for a \stati"erti�ate graph, i.e. the topology of the erti�ate graph does not hange overtime. However, in many erti�ate systems, erti�ate graphs do hange due toissuing new erti�ates, adding new users, revoking old erti�ates, and removingold users. To maintain the erti�ate dispersal of a dynami erti�ate graph, thehanges in the graph need to be propagated to the appropriate users.
BACK/FORE

Certificate issuing/revocation

Dynamic Dispersal

CERTFigure 3.14: Inputs and Output of Dynami Dispersal ProtoolFig. 3.14 shows the inputs and output of our dynami dispersal protool.The dynami dispersal protool running at eah user has two inputs FORE and BACK.FORE in user u is the set of the erti�ates that have been issued by user u, andBACK in user u is the set of users that have issued erti�ates for u. Note that thetwo inputs FORE and BACK in all users de�ne the erti�ate graph of the system. Weassume that FORE and BACK are maintained by an outside protool that issues newerti�ates and revokes old ones. We also assume that FORE and BACK are alwaysorret and so they are always onsistent. For example, if at any time a erti�ate(u; v) is in FORE.u of user u, then u is in BACK.v of user v at the same time.The dynami dispersal protool maintains a variable CERT.u at eah user u.64



At stabilization, the value of CERT.u is a outgoing spanning tree rooted at user u.Thus, by Lemma 1, values of CERTs at stabilization onstitute a erti�ate dispersalof the system.The dynami dispersal protool in user u is shown in Protool 1 below.Protool 1 onsists of three ations.In the �rst ation, when the timer of user u expires, user u uses its inputFORE.u to update the variable CERT.u and sends a opy of CERT.u to eah user v inBACK.u. Then u updates its timer to expire after ltime time units, and the ylerepeats. For onveniene, we refer to CERT.u messages that user u has sent in thisation as a round of gossip. If user u does not hange its CERT.u and does notobserve any hange in its inputs FORE.u and BACK.u, then the time period betweentwo onseutive rounds of gossip by u is ltime time units. The value ltime isexpeted to be in the range of days or months.In the seond ation, user u reeives a erti�ate tree sent by a user v (whereu is in BACK.v). In this ase, u updates its CERT.u using its input FORE.u, andthen merges its CERT.u with the reeived erti�ate tree. If the update or mergeoperations hange CERT.u then u redues the value of its timer to at most stimetime units. Note that the value stime is in the range of minutes or hours so it ismuh less than the value ltime. In other words, any hange in the variable CERT.uauses u to initiate its next round of gossip after no more than stime time units.In the third ation, when user u observes that its inputs BACK.u or FORE.uhas hanged, then user u sets its timer to be at most stime time units. This hangeauses u to initiate its next round of gossip after no more than stime time units.3.6.1 Issuing erti�atesWhen a user u issues a erti�ate (u; v), there are two events that need to our.(Note that these two events our outside the dynami dispersal protool.) The �rst65



PROTOCOL 1 dynami dispersaluser uonst stime, ltime //stime is a short time period//ltime is a long time period//ltime is greater than stimeinput BACK : {x| x has issued a ertifiate (x,u)}FORE : {(u,x) | u has issued a ertifiate (u,x)}var CERT : a ertifiate tree rooted at utree : a ertifiate treetimer : 0..ltimev : any user other than ubegintimer=0 -> update(CERT, FORE);for eah user v in BACK, send CERT to v;timer:=ltime[℄ rv tree from v -> update(CERT, FORE);merge(CERT, tree);if CERT has hanged, timer:=min(timer, stime)[℄ BACK or FORE has hanged -> timer:=min(timer,stime)endevent is to add (u; v) to FORE.u, and the seond event is to add u to BACK.v. Theseevents ause users u and v to exeute the third ation in the protool and to reduetheir timers to be at most stime time units. In stime time units, the timers inboth users u and v will expire and then users u and v will exeute the �rst ationand update their CERTs and send a opy of the updated CERT to eah user in theirBACKs.
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3.6.2 Revoking Certi�atesWhen a user u wants to revoke a erti�ate (u; v) it has issued before, two eventsneed to our in users u and v. (Note that these two events our outside thedynami dispersal protool.) The �rst event is to remove (u; v) from FORE.u, andthe seond event is to remove u from BACK.v.When user u observes the hange in FORE.u, u exeutes the third ation andset its timer to be at most stime. When the timer expires, u will update CERT.uand send it to users in BACK.u. When user x in BACK.u reeives the newly updatedCERT.u from user u, x will merge it with its own CERT.x. During this merge, therevoked erti�ate (u; v) and any path using that erti�ate will be removed fromCERT.x.3.6.3 update ProedureProedure update(CERT,FORE) is de�ned as follows.PROCEDURE 1 update(CERT, FORE)INPUT: a ertifiate tree CERT rooted at u anda set of ertifiates FORE issued by uOUTPUT: a ertifiate tree CERT rooted at uvar tmp: a ertifiate tree rooted at ubeginadd all the valid ertifiates in FORE to tmp;while there is a valid ertifiate (x,y) in CERT wherex != u,x is in tmp, andy is not in tmpdo add (x,y) to tmp;CERT:=tmp;end 67



It is onvenient to explain this proedure by an example. Consider user awhere FORE.a in user a ontains one erti�ate (a; b) and CERT.a ontains two er-ti�ates (a; b); (b; ) as shown in Fig. 3.15(a). When user a issues a new erti�ate(a; ), FORE.a hanges into f(a; b); (a; )g. This hange auses user a to exeute itsthird ation and then after stime time units to exeute its �rst ation. In the �rstation, proedure update(CERT.a,FORE.a) is exeuted. First, all the erti�ates inFORE.a are added to a erti�ate tree tmp and tmp beomes f(a; b); (a; )g. Certi�-ate (b; ) annot be added to tmp beause user  is already in tmp. In the last step,tmp is opied to CERT.a, and CERT.a beomes f(a; b); (a; )g as shown in Fig. 3.15(b).
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FORE.a CERT.a FORE.a CERT.aFigure 3.15: update of CERT.a due to hange in FORE.a3.6.4 merge ProedureProedure merge(CERT,tree) is de�ned as follows.It is onvenient to explain this proedure by an example. Consider user awhere FORE.a ontains two erti�ate (a; b); (a; ) and CERT.a ontains three erti�-ates (a; b); (a; ); (b; d) as shown in Fig. 3.16(a). When user b revokes erti�ate(b; d), FORE.b hanges into f(b; )g. This hange auses user b to exeute its thirdation and after stime time units to exeute its �rst ation. In the �rst ation, userb updates its CERT.b to be f(b; )g. User a still does not know about this revoation,so CERT.a remains the same as shown in Fig. 3.16(a). After stime time units, user bsends a opy of its CERT.b to user a. When user a reeives the erti�ate tree f(b; )g,user a exeutes its seond ation, and proedure merge(CERT.a,tree) is exeutedwith CERT.a and the reeived tree f(b; )g. Proedure merge(CERT.a,tree) �rst68



PROCEDURE 2 merge(CERT, tree)INPUT: a ertifiate tree CERT rooted at u anda ertifiate tree ``tree'' rooted at t, wheret != uOUTPUT: a ertifiate tree CERTbeginif CERT has a ertifiate (u,t) ->remove from CERT the subtree rooted at t, if any;remove from tree every subtree rooted at a node, other than t,that ours in CERT;while tree has a valid ertifiate (x,y) wherex is in CERT andy is not in CERTdo add y and ertifiate (x,y) to CERT;[℄ CERT has no ertifiate (u,t) ->skipfiendheks if there is erti�ate (a; b) in CERT.a. There is erti�ate (a; b), so the subtreerooted at user b, (b; d) in CERT.a is removed from CERT.a. Then, erti�ate (b; ) isonsidered, but is not added to CERT.a beause  is already in CERT.a. In result,CERT.a beomes f(a; b); (a; )g as shown in Fig. 3.16(b).
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69



3.6.5 Stabilization of Dynami DispersalThe dynami dispersal algorithm in Setion 3.6 is based on a message passing model.In [21℄, it is shown to be hard to design stabilizing protools in the traditionalmessage passing model where there are hannels between users. In this paper, weuse a non-onventional model of ommuniation. A state onsists of the values oftimer and CERT of all the users in the system. As mentioned in above, we assumethat FORE and BACK of eah user remain orret and onsistent in every state. In onestate transition, only one user an exeute its �rst ation. Furthermore, in the sametransition, eah user v in BACK.u reeives the same opy of this message and exeutesits seond ation. In other words, we have no messages in transit, so there is noneed for hannels in the state desription. There are two reasons that we adoptedthis model. First, this model allows the proofs to be easier to follow. Seond, thismodel is sensible, given that the time it takes for the timer in eah user to expire isvery large ompared to the time eah state transition takes. stime is in the rangeof minutes and hours, and eah state transition takes only milliseonds, so we anassume that no two timers expire at the same time.For the proofs of onvergene and losure, we de�ne a omputation to be asequene of states of the system where along with this omputation FORE and BACKof all the users remain unhanged. In the following theorems, we show that thedynami dispersal protool eventually stabilizes into a legitimate state, where thevalues of CERTs of all users onstitute a erti�ate dispersal of the erti�ate graphof the system. Following the proof tehnique in [4℄, we show the onvergene andthe losure of this protool to prove its stabilization.Theorem 13 (Convergene) Eah omputation of the dynami dispersal protoolhas a state where the value of eah CERT.u in the protool is an outgoing spanningtree rooted at u in the erti�ate graph of the protool (as de�ned by the two inputsFORE and BACK of all users in the protool).70



Proof sketh To prove that CERT.u eventually beomes an outgoing spanning treerooted at node u of the erti�ate graph G, we �rst prove that CERT.u eventuallybeomes a tree rooted at u, and then prove that every node that is reahable fromu in G is reahable in CERT.u.There are two proedures, update(CERT.u,FORE.u) and merge(CERT.u,tree),that an hange CERT.u. The proedure update(CERT.u,FORE.u) onstruts a treeby starting from the erti�ates in FORE.u. All the erti�ates in FORE.u are is-sued by user u, so the resulting tree from update(CERT.u,FORE.u) is rooted atu. Similarly, the proedure merge(CERT.u,tree) adds erti�ates in the reeivedtree to CERT.u, a erti�ate tree rooted at u. Therefore, the resulting tree frommerge(CERT.u,tree) is also rooted at u. Based on these observations, after a statetransition in this omputation, CERT.u in user u beomes a tree rooted at u.Now we prove that CERT.u is an outgoing spanning tree, i.e. any node thatis reahable from node u in G is also CERT.u. Assume that there is a path fromu to another node v in G, (u; u1)(u1; u2) � � � (uk; v). Node uk has the erti�ate(uk; v) in its FORE, so the erti�ate (uk; v) is in its CERT. Node uk sends its CERTperiodially to node uk�1, so node uk�1 will have a path from itself to node v in itsCERT. Repeatedly, eah node on the path will send its CERT to the previous node inthe path and node u will have a path from itself to node v in its CERT. Therefore,every node v that is reahable from node u in G is also reahable in CERT.u. �Note that our dynami dispersal protool is di�erent from stabilizing span-ning tree algorithms. The spanning tree algorithms in [15, 3, 11℄ build a singlespanning tree for the whole system that overs every proess in the system, andbuild one tree rooted at a speial proess (usually referred as a leader). Eah pro-ess in these algorithms stores the parent node identi�er, the distane from the root,and possibly the root identi�er. On the other hand, our dynami dispersal protoolstores an outgoing spanning tree in eah user, whih does not neessarily over every71



user in the system. Also, in our dynami dispersal protool, there is no leader, andeah user u maintains an outgoing spanning tree rooted at u.Theorem 14 (Closure) Exeuting any step of the dynami dispersal protool start-ing from a state, where the value of eah variable CERT.u in the protool is an out-going spanning tree rooted at u, leaves the values of all CERT variables unhanged.Proof sketh In a omputation, the inputs BACK and FORE remain unhanged.Therefore, only two types of steps an be exeuted: time propagation and the �rstation. Time propagation annot hange the value of CERT. When the time propa-gation auses the timer in user u to expire, the �rst ation in the dynami dispersalprotool will be exeuted. When the timer expires, user u updates its CERT.u withFORE.u, but CERT.u remains the same sine FORE.u remains unhanged. Now useru sends a opy of its CERT.u to eah user v in BACK.u. User v reeives a tree andmerge it with its own CERT.v. Sine CERT.u is the same, merge(CERT,tree) will nothange CERT.v. Therefore, when the erti�ate graph of the system does not hange,CERT.u in eah user u, an outgoing spanning tree rooted at u, remains unhanged.�3.6.6 Time ComplexityIn this setion, we ompute the time that takes to bring the system to stabilizationin terms of the timer ltime. Note that eah state transition is triggered by a timerexpiration in a user, so any user will exeute the �rst ation of dynami dispersalalgorithm at least one in ltime time units. Also, the time that takes for a statetransition is very small ompared to ltime. Therefore, in ltime time units, we anassume that all users have exeuted the �rst ation at least one.Theorem 15 In eah omputation of the dynami dispersal protool, the protool72



reahes a legitimate state in at most T time units, whereT = ltime� (2p� 1), where p is the length of the longest path in the erti�ate graph.Proof sketh A legitimate state of the dynami dispersal protool is one wherethe value of CERT.u of every user u in the system is an outgoing spanning tree rootedat u. Consider a erti�ate (x; y) that is not in the erti�ate graph, but in someCERT.u of user u in the beginning of the omputation. This erti�ate disappearsfrom CERT of any user in the system in ltime� p. After the �rst ltime time unitsin the omputation, user x updates CERT.x with FORE.x and remove the erti�ate(x; y) from CERT.x, if there was (x; y) in CERT.x. After the seond ltime time units,any user in BACK.x reeives CERT.x and removes the erti�ate (x; y) from its CERT,if there was (x; y) in its CERT. In other words, any user that had (x; y) in the seondlevel of the tree in CERT removes (x; y) from its CERT. The yle repeats, and after(ltime� p), any user that had (x; y) in its CERT removes (x; y) from its CERT.Consider a erti�ate (v; w) that is in every possible reah tree rooted atsome user u in the erti�ate graph, but not in CERT.u in the beginning of theomputation. After the �rst ltime time units in the omputation, user v updatesCERT.v with FORE.v and add the erti�ate (v; w) to CERT.v if it was not in CERT.valready. For the next (ltime�(p�1)) time units, a user in BACK.v may have node win its CERT through a inorret erti�ate and not add (v; w) to its CERT. However,any inorret erti�ate will be removed from CERT of any user in (ltime � p)time units as shown above. Therefore, after (ltime � (p + 1)) time units sinethe beginning of the omputation, any user in BACK.v adds (v; w) to its CERT, ifit was not there already. In other words, any user that should have (v; w) in the73



seond level of the tree in CERT adds (v; w) to its CERT. The yle repeats, and after(ltime � (2p � 1)) time units, any user that should have (v; w) in its CERT adds(v; w) to its CERT.As shown above, in (ltime�(2p�1)) time units, any erti�ate that is not inthe erti�ate graph disappears from CERT of every user, and any erti�ate that is inevery possible reah tree of user u appears in CERT.u. Therefore, in (ltime�(2p�1)),CERT.u beomes an outgoing spanning tree rooted at u. �We believe that the upper bound on the onvergene span desribed in The-orem 15 is quite loose. It is an interesting problem to ompute a tight upper boundof the onvergene span.3.6.7 Dispersal in Client/Server SystemsThis dynami dispersal protool is useful in any dynami erti�ate systems. Con-sider a lient/server system, where there are muh fewer servers than lients in thesystem. We an run the dynami dispersal protool among the servers and let anyserver issue a erti�ate for a lient. Eah server will have an outgoing spanningtree in its CERT, so eah server will be able to �nd a erti�ate hain from itself toany lient that has a erti�ate issued by an authentiated server.For example, many o�ee shops o�er free Internet onnetion for their us-tomers. To prevent free-riders that are not ustomers, o�ee shops may require theustomers to register. For onveniene, a ustomer needs to register only one atany o�ee shop (the o�ee shop issues a erti�ate for the ustomer), and the us-tomer an use the free onnetion at all o�ee shops that are partiipating in thismembership without logging in or getting temporary authorization eah time he orshe goes to a o�ee shop, sine any o�ee shop has a erti�ate hain from itselfto the ustomer. The authentiation using the erti�ate hain does not require74



any interation with the ustomer, so one the ustomer registers to get a erti�-ate from one o�ee shop, the ustomer does not need to know how he or she getsauthentiated and authorized for the Internet onnetion.Also, this lient/server system an help two lients authentiate eah other.A lient 1 has issued a erti�ate for a server s1 and s1 issued a erti�ate for1. A lient 2 has issued a erti�ate for a server s2 and s2 issued a erti�ate for2. When lient 1 wants to seurely ommuniate with lient 2, lient 1 an askserver s1 for a erti�ate hain from s1 to s2 and use the hain and the erti�ates(1; s1) and (s2; 2) to �nd the publi key of lient 2.A hierarhial erti�ate authorities used in Lotus Notes [32℄ is a speial aseof suh lient/server system. In a system with a hierarhial erti�ate authorities,the erti�ate graph between erti�ate authorities onstitutes a star graph, wherethe root erti�ate authority has issued a erti�ate for eah non-root erti�ateauthority and eah non-root erti�ate authority has issued a erti�ate for the rooterti�ate authority. In suh a system, when a lient 1 who has issued a erti�atefor a erti�ate authority a1 wants to seurely ommuniate with another lient 2who has issued a erti�ate for a erti�ate authority a2, 1 an ontat a1 for er-ti�ates (a1; root)(root; a2). In Lotus Notes, a1 also �nds the erti�ate (a2; 2)from a2 so that 1 an use the publi key of 2 safely without ommuniating with2.
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Chapter 4
Vulnerability Analysis
The erti�ates issued by di�erent users in a system an be represented by a diretedgraph, alled the erti�ate graph of the system. Eah node u in the erti�ate graphrepresents a user u with the orresponding publi key b:u and private key r:u in thesystem. If a user has more than one publi key, then the user will be representedby several nodes in the graph, one node for eah publi and private key pair. Eahdireted edge from node u to node v in the erti�ate graph represents a erti�atehu; v; b:vir:u. A erti�ate hain from a node u to a node v is a simple path fromnode u to node v in a erti�ate graph. For nodes u and v in a erti�ate graph G,if u wishes to seurely send messages to v, then u seeks a path from u to v in G.(There are systems where u seeks a set of paths from u to v, whih will be disussedin Setion 4.7.)In a erti�ate graph, two types of damage an our when the private key r:uof a node u is revealed to an adversary: expliit and impliit. The expliit damageis that the adversary an impersonate node u to other nodes until it is known toother nodes that the private key r:u of u is revealed to the adversary. The impliitdamage is that the adversary an impersonate nodes other than u to other nodes inthe system by signing forged erti�ates with the revealed private key r:u of node76



u. As an example, onsider the erti�ate graph in Fig. 4.1. If node a wishesto send a seure message to node g in this erti�ate graph, then node a needs to�nd a erti�ate hain from node a to node g. In the erti�ate graph in Fig. 4.1,there is one erti�ate hain from node a to node g, (a; d); (d; e); (e; g).
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cFigure 4.1: An example of a erti�ate graphAssume that the private key r:d of node d is revealed to an adversary. Theadversary an enrypt and derypt messages using r:d to impersonate node d to anyother node in the graph. This impersonation of node d is expliit damage. Assumethat node a does not know that r:d is revealed. The adversary an reate a newpubli and private key pair, b:g0 and r:g0, and sign a forged erti�ate hd; g;b:g0ir:dwith the revealed private key r:d of node d. Node g0 in Fig. 4.1 denotes the im-personated user g with the publi and private key pair b:g0 and r:g0 reated by theadversary, and the dotted edge (d; g0) denotes the forged erti�ate hd; g; b:g0ir:d.The erti�ate hain (a; d); (d; g0) presents to node a the publi key b:g0 reated bythe adversary as if it belonged to user g. This impersonation of node g is impliitdamage.The expliit and impliit damage that an be brought into a erti�ate graphwhen the private key of a node u is revealed to an adversary is alled the vulnerabilityof node u. For example, if the private key r:d of node d in Fig. 4.1 is revealed to anadversary, then the adversary an impersonate node d to all other nodes in the graphwithout forging any erti�ates. In addition to impersonating node d, the adversaryan impersonate nodes a, b,  to nodes e, f , g by signing forged erti�ates (d; a0),77



(d; b0), and (d; 0) with the revealed private key r:d of node d. Also, the adversaryan impersonate nodes e, f , g to nodes a, b,  by forging erti�ates (d; e0), (e0; f 0),and (e0; g0).We have identi�ed a metri to quantify the damage from this type of attaks.We all this metri \vulnerability" of erti�ate graphs. As disussed in detail inthis hapter, a metri of the vulnerability of erti�ate graphs is useful in answeringseveral questions. First, how to determine whih erti�ate graphs are less vulner-able and whih ones are more vulnerable. Seond, how to determine whih riteriafor aepting publi keys from erti�ate hains are better. Third, how to bal-ane between the resiliene against impersonation attaks and storage ost. Therehave been intuitive answers to these questions, suh as short erti�ate hains andmany independent erti�ate hains are preferable than long and dependent ones.The vulnerability metri quanti�es how e�etively these intuitive answers work toredue vulnerability.In the following setions, we formally de�ne the vulnerability metris of nodesand of erti�ate graphs, and present theorems that show vulnerabilities of severalerti�ate graphs with di�erent requirements. Also, we present three algorithms toompute the vulnerability of an arbitrary erti�ate graph. Using these algorithms,we investigate the e�et of graph topology, erti�ate dispersal, and aeptaneriteria on the vulnerability of erti�ate graphs. Then we disuss the vulnerabilitywhen many private keys are revealed to an adversary. We present a brief summaryof related work and end with onluding remarks.4.1 Vulnerability of Certi�ate GraphsLet G be a erti�ate graph and d be a node in G. We assume that eah node in Gstores the erti�ates it issues, and eah node aepts all publi keys in a erti�atehain as long as eah erti�ate in the hain is veri�ed. (We will disuss in Setion 4.678



about the ase when eah node requires more than one hain to aept the publikey.) Assume that the private key r:d of node d is revealed to an adversary. Theadversary an use the revealed private key to enrypt and derypt any messages asif the adversary were node d, and so it an impersonate node d to all other nodesfrom whih there are erti�ate hains to d. Also, the adversary an use r:d toimpersonate a node dst, other than d, to another node sr, also other than d in G,by performing the following three steps.i. The adversary reates a private key r:dst0 and its orresponding publi keyb:dst0. Later, the adversary will pretend that these keys are the publi andprivate keys of node dst.ii. The adversary uses the revealed private key r:d of node d to issue a forgederti�ate hd; dst; b:dst0ir:d. This forged erti�ate is denoted (d; dst0).iii. The adversary provides node sr with the erti�ate hain that onsists of ahain of orret erti�ates from sr to d and the forged erti�ate (d; dst0).From this hain, node sr an wrongly dedue that the publi key b:dst0 re-ated by the adversary is the publi key of node dst. Any message sent bythe adversary that is enrypted with the mathing private key r:dst0 will beauthentiated by node sr as if it were sent by node dst.Note that this senario of the adversary would work only if G has a erti�ate hainfrom sr to d that does not ontain any erti�ate issued by dst and G has noerti�ate (sr; dst).The next theorem states a neessary and suÆient ondition for an adversaryto impersonate node dst to another node sr in a erti�ate graph where the privatekey r:d of some node d is revealed to an adversary.Theorem 16 Let G be a erti�ate graph and sr and dst be any two distint nodesin G. Let d be a node in G whose private key r:d is revealed to an adversary. The79



adversary an impersonate node dst to node sr if and only if sr 6= d, G has aerti�ate hain from sr to d that does not ontain any erti�ates issued by nodedst, and one of the following two onditions holds.i. dst = d, orii. G has no erti�ate (sr; dst)Proof:Proof for if If dst = d, then the adversary an use the revealed privatekey r:d of node d to enrypt and derypt any message as if it were node d andimpersonate node dst to node sr. If dst 6= d, then G has no erti�ate (sr; dst), sosr does not know the orret publi key of dst. Now the adversary an sign a forgederti�ate (d; dst0) with the revealed private key r:d of d. There is a erti�ate hainfrom sr to d that does not ontain any erti�ates issued by dst, so the adversaryan add the forged erti�ate (d; dst0) to the orret erti�ate hain from sr to dand present the erti�ate hain from sr to dst0 to node sr. If node sr does notknow that the private key of node d is revealed to the adversary, then sr will notnotie that the erti�ate (d; dst0) is forged and aept the publi key in (d; dst0) asthe valid publi key of dst.Proof for only if In order to prove the only if part, we prove the ontra-position. If any of the following three onditions holds, then the adversary annotimpersonate dst to sr:i. sr = dii. G has no erti�ate hain from sr to d that does not ontain any erti�ateissued by dst.iii. dst 6= d and G has erti�ate (sr; dst).80



First, assume sr = d. In this ase, sr will not aept any forged erti�-ate inluding a new publi key reated by the adversary, sine sr stores all theerti�ates it issued.Seond, assume that G has no erti�ate hain from sr to d that does notontain any erti�ate issued by dst. If G has no erti�ate hain from sr to dthat does not ontain any erti�ate issued by dst, there are two possible ases toonsider. In the �rst ase, G has no erti�ate hain from sr to d. In the seondase, G has at least one erti�ate hain from sr to d, but every suh hain fromsr to d ontains a erti�ate issued by dst. In the �rst ase, the adversary annotreate a erti�ate hain from sr to dst0, beause G has no erti�ate hain from srto d to whih the adversary an add a forged erti�ate (d; dst0). So the adversaryannot impersonate dst to sr. In the seond ase, sr will verify the publi keyof node dst in the proess of validating the erti�ate hain from sr to d, and willnotie that the identity of dst is repeated twie in the erti�ate hain and rejetthe publi key of dst0. In both ases, the adversary annot impersonate dst to sr.Third, assume d 6= dst and G has erti�ate (sr; dst). If sr has issued theerti�ate (sr; dst), then sr already knows the orret publi key of dst, so it willnot aept any other publi key reated by the adversary as a valid publi key ofdst. Hene, the adversary annot impersonate dst to sr. This ompletes the prooffor the only if part.Let G be a erti�ate graph and d be a node in G. Assume that the privatekey r:d of node d is revealed to an adversary. The vulnerability of node d, denotedV (d), is the number of node pairs (sr; dst) where the adversary an impersonatenode dst to node sr divided by the number of node pairs (sr; dst) where sr 6= dstand sr 6= d in G. More formally,V (d) = jIMP (d)j(n� 1)2 ;81



where IMP (d) = f(sr; dst)j the adversary an impersonate dst to sr using r:dgand n is the number of nodes in G.The following theorem gives tight upper and lower bounds on the vulnera-bility of a node in a erti�ate graph.Theorem 17 For a node d in any erti�ate graph G, we have1 � V (d) �jfsrjG has a erti�ate hain from sr to dgj(n� 1)2Proof: The most number of node pairs (sr; dst) where the adversary an im-personate dst to sr is the total number of node pairs (sr; dst) where sr 6= dst andsr 6= d, whih is (n� 1)2. Therefore, the upper bound of V (d) is 1. Also, sine theadversary knows r:d, the adversary an always impersonate node d to every nodethat has a erti�ate hain from itself to d. (This is the sope of expliit damage.)Therefore, the number of node pairs (sr; d) where G has a erti�ate hain fromsr to d divided by (n� 1)2 is the lower bound.The following lemmas show that the bounds shown in the above theorem aretight.Lemma 6 There exists node d in some erti�ate graph G, whereV (d) = 1Proof: Consider the erti�ate graph in Fig. 4.2. When the private key of theenter node is revealed to an adversary, the adversary an impersonate any nodedst to any other node sr, where sr is not the enter node. There are 8 nodesthat an be sr, and for eah sr node among them, there are 8 other nodes thatan be impersonated to sr. Therefore, the number of node pairs (sr; dst) where82



the adversary an impersonate dst to sr is 8 � 8 = 64, and n = 9. Therefore, thevulnerability of the enter node is 1.
Figure 4.2: The (8; 1)-star erti�ate graphLemma 7 There exists node d in some erti�ate graph G, whereV (d) = jfsrjG has a erti�ate hain from sr to dgj(n� 1)2Proof: In the erti�ate graph in Fig. 4.3, every node has issued erti�ates toall other nodes in the graph. If the private key of node  is revealed to an adversary,the adversary an impersonate only node  to nodes a and b, sine node a alreadyknows the orret publi key of node b in the erti�ate (a; b) and node b knows theorret publi key of node a in the erti�ate (b; a). So the vulnerability of node is 222=12 , whih meets the lower bound. In fat, the vulnerability of any node in afully onneted erti�ate graph meets the lower bound.

Figure 4.3: An example of fully onneted erti�ate graphLet G be a erti�ate graph, then the vulnerability of graph G, denotedV (G), is de�ned as follows: V (G) = maxd2G V (d)83



4.2 Vulnerability of Speial Certi�ate GraphsIn this setion, we give three theorems that show the vulnerability of three speiallasses of erti�ate graphs: n-loops, (m; k)-stars, and (d; h)-trees. In many erti�-ate systems, for example PGP, erti�ate graphs are not planned in advane andertainly not designed. Rather, they are developed in an ad-ho manner dependingon whih users deide to issue erti�ates for whih other users. However, if we dohave the luxury of planning and designing erti�ate graphs, then we an hoose thebest among these speial lasses aording to the system requirements. n-loop er-ti�ate graphs are useful when the erti�ate graph needs to be strongly-onnetedbut the number of erti�ates needs to be minimized. (m; k)-star erti�ate graphsare useful when a trusted erti�ate authority (enter node) is available. (d; h)-treeerti�ate graphs are useful in hierarhial systems.The following three theorems ompute the vulnerabilities of three speiallasses of erti�ate graphs. The theorems show that n-loop erti�ate graphs areless vulnerable than (m; 2)-star erti�ate graphs for n � 4. On the other hand,(2; h)-tree erti�ate graphs are less vulnerable than n-loop erti�ate graphs forn > 10. The omparison results are disussed in more detail in the end of thissetion.An n-loop erti�ate graph is a erti�ate graph that has n nodes arrangedin a unidiretional ring. Fig. 4.4 shows the 8-loop erti�ate graph.
Figure 4.4: The 8-loop erti�ate graphTheorem 18 The vulnerability of an n-loop erti�ate graph is 1� n�22(n�1) .84



Figure 4.5: The (4; 2)-star erti�ate graphProof: Label eah node 0 � � �n � 1. Assume that the private key of node j isrevealed to an adversary. The adversary an impersonate node k to node i if k = j,or if �(i; k) and there is a path from node i to node j that does not ontain node k.Therefore, to node j�1, the adversary an impersonate nodes j; j+n1; � � � ; j+n(n�2). To node j � 2, the adversary an impersonate nodes j; j +n 1; � � � ; j +n (n� 3).After onsidering eah node, the number of (sr; dst) pairs in whih the adversaryan impersonate node dst to node sr is n(n�1)2 . The vulnerability of node j isn(n�1)2(n�1)(n�1)=1� n�22(n�1) . This holds for any node j in this graph, so the vulnerabilityof an n-loop erti�ate graph is 1� n�22(n�1) .An (m; k)-star erti�ate graph is a erti�ate graph that onsists of m uni-diretional rings that share one enter node and eah ring has k unshared nodes.Fig. 4.5 shows the (4; 2)-star erti�ate graph.Theorem 19 The vulnerability of an (m; k)-star erti�ate graph is 1� k�12mk .Proof: The vulnerability of a graph is the maximum vulnerability of every nodein the graph. In an (m; k)-star erti�ate graph, the enter node has the highestvulnerability. Now let us ompute the vulnerability of the enter node. Label the knodes in a satellite ring from 1 � � � k and the enter node as node 0. There is an edgefrom node i to node i+k+1 1, where 0 � i � k. When the private key of the enternode is revealed to an adversary, the adversary an impersonate to node 1 any nodein the graph exept for the nodes 2 � � � k in the same satellite ring. To node 2, theadversary an impersonate any node in the graph exept for the nodes 3 � � � k in thesame satellite ring. As a result, the adversary an impersonate Pki=1(mk� (k� i))85



pairs for eah satellite ring. So the vulnerability of the enter node isV (enter) = 1(mk)2 (m kXi=1(mk � (k � i)))= 1(mk)2�mk(mk � k) + mk(k + 1)2 �= 1mk�(mk � k) + k + 12 �= 2mk � 2k + k + 12mk= 2mk � k + 12mk= 1� k � 12mkTherefore, the vulnerability of an (m; k)-star erti�ate graph is 1� k�12mk .A (d; h)-tree erti�ate graph is a omplete tree erti�ate graph with degreed and height h, where there is an edge from eah parent node to eah of its hildrennodes and an edge from eah hild node to its parent node. Fig. 4.6 is an exampleof a (d; h)-tree erti�ate graph, where d = 3 and h = 2.Theorem 20 The vulnerability of a (d; h)-tree erti�ate graph is 1� dh+1+hdh+1(d�1)(n�1)2 �d(d�1)(n�1) � d2(d�1)(n�1)2 , approximately 1� hdh .Proof: The vulnerability of a graph is the maximum of vulnerability of all nodesin the graph. In a (d; h)-tree erti�ate graph, the root node has the highest vulner-ability. The vulnerability of the root node an be omputed as follows. Consider anode i in level h. When the private key of the root node is revealed to an adversary,the adversary an impersonate any node to node i exept the (h� 1) nodes on theerti�ate hain from node i to the root node. On the other hand, for a node j inlevel h� 1, the adversary an impersonate any node to node j exept its d hildrennodes and the (h� 2) nodes on the erti�ate hain from node j to the root node.So, the adversary an impersonate (n� 1� (h� 2 + d)) nodes to node j. Similarly,86



for a node in level l, where l < h, the adversary an impersonate (n�1� (l�1+d))nodes to the node. As a result, the vulnerability of the root node is :V (root) = 1(n� 1)2�h�1Xi=1 di(n� 1� (i� 1 + d)) + dh(n� 1� (h� 1))�= 1(n� 1)2�(n� d) h�1Xi=1 di � h�1Xi=1 idi + (n� h)dh�= 1(n� 1)2�n hXi=1 di � h�1Xi=1 di+1 � hXi=1 idi�= 1(n� 1)2�n(n� 1)� d2(dh�1 � 1)d� 1 � hdh+1 � n+ 1d� 1 �= nn� 1 � dh+1 � d2 + hdh+1 � n+ 1(d� 1)(n� 1)2= 1� 1n� 1 � dh+1 � d2 + hdh+1 � n+ 1(d� 1)(n� 1)2= 1� dh+1 + hdh+1(d� 1)(n� 1)2 � 1n� 1 � d2(d� 1)(n� 1)2 � 1(d� 1)(n� 1)= 1� dh+1 + hdh+1(d� 1)(n� 1)2 � d� 1 + 1(d� 1)(n� 1) � d2(d� 1)(n� 1)2= 1� dh+1 + hdh+1(d� 1)(n� 1)2 � d(d� 1)(n� 1) � d2(d� 1)(n� 1)2' fsine n is largeg 1� dh+1 + hdh+1(d� 1)(n� 1)2' fsine n = dh+1 � 1d� 1 ' dhg 1� dh+1(1 + h)(d� 1)(dh)2' fsine h+ 1d� 1 ' hdg 1� hdh+1d(dh)2= 1� hdhTherefore, the vulnerability of a (d; h)-tree erti�ate graph is approximately 1� hdh .Fig. 4.7 shows the vulnerabilities of three speial erti�ate graphs, n-loops,87



Figure 4.6: The (3; 2)-tree erti�ate graph(m; 2)-stars, and (2; h)-trees as funtions of the number of nodes in eah graph.From this graph, it is lear that n-loops are less vulnerable than (m; 2)-stars and(2; h)-trees. This metri of vulnerability an be used to show whih erti�ate graphis less vulnerable.
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Figure 4.7: Comparison of three speial graphs4.3 Vulnerability of Arbitrary Certi�ate GraphsIn the previous setion we omputed the vulnerability of three speial lasses oferti�ate graphs. We now present Algorithm 9 that omputes the vulnerability ofan arbitrary erti�ate graph.By Theorem 16, if G has a path from node sr to node d that does notontain node dst, then the adversary an impersonate dst to sr when the privatekey of node d is revealed to it (and G has no erti�ate (sr; dst)). As mentioned88



in Setion 4.1, we assume that eah node only stores the erti�ates it issued andaepts all the publi keys in the presented erti�ate hain as long as eah erti�atein the hain is veri�ed. To �nd every node sr that has a path to node d that doesnot ontain node dst, Algorithm 9 removes node dst and its inoming and outgoingedges from G and sees whih nodes are still onneted to d. Consider the exampleerti�ate graph G in Fig. 4.1. In Fig. 4.8(a), node a and its inoming and outgoingedges are removed from G. There are paths from nodes b; ; e; f; g to node d inFig. 4.8(a). Therefore, if the private key of node d is revealed to an adversary,then the adversary an impersonate node a to nodes b; ; e; f; g. On the other hand,without node e and its inoming and outgoing edges, there are no paths from nodesf; g to node d as shown in Fig. 4.8(b). Therefore, when the private key of d isrevealed to an adversary, the adversary annot impersonate node e to nodes f; g.
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Figure 4.8: Computing vulnerability of the example graphFor a given erti�ate graph G, Algorithm 9 omputes a transitive losureCdst without using any inoming and outgoing edges of node dst for eah node dstin G (lines 3-4). Cdst ontains an edge (sr; d) if and only if there is a path from srto d that does not ontain dst and G has no erti�ate (sr; dst) (line 5). In otherwords, if there is an edge (sr; d) in Cdst, then an adversary an impersonate dst tosr when the private key of node d is revealed to the adversary.89



ALGORITHM 9 : Vulnerability of a erti�ate graphINPUT: a erti�ate graph G with n nodesOUTPUT: vulnerability of GSTEPS:1: for dst = 0 to n� 12: Cdst := G3: remove all the inoming and outgoing edges ofnode dst from Cdst4: Cdst := transitive losure of Cdst5: if G has an edge (sr; dst) for any node sr,then remove (sr; dst) from Cdst6: endfor7: C := transitive losure of G8: for d = 0 to n� 19: V (d) := Pdst2G(the in-degree of node d in Cdst)+ the in-degree of node d in C10: endfor11: return maxd2G V (d)(n�1)2To ompute the vulnerability of a node d in G, Algorithm 9 �nds all the nodepairs (sr; dst) in G suh that G has a path from sr to d that does not ontain dstand has no erti�ate (sr; dst). For eah node dst in G, the in-degree of node d inthe transitive losure Cdst is the number of node pairs (sr; dst) in G that satis�esthe ondition. So the sum of the in-degree of node d in the transitive losure Cdst foreah node dst in G shows the sope of the impliit damage of the revealed privatekey of node d.In the example erti�ate graph G in Fig. 4.1, when the private key of dis revealed to an adversary, the adversary an impersonate node d to any otheruser in G. To ompute this expliit damage of the revealed private key of node d,Algorithm 9 also omputes a transitive losure C of G (line 7). C ontains an edge(sr; d) if and only if there is a path from sr to d in G. In other words, if there is an90



edge (sr; d) in C, then the adversary an impersonate d to sr using the revealedprivate key of node d. Therefore, the in-degree of node d in the transitive losure Cof G shows the sope of the expliit damage of the revealed private key of node d.Using these transitive losures, Algorithm 9 omputes the vulnerability ofeah node d in a given erti�ate graph G, and then returns the maximum as thevulnerability of the erti�ate graph.In this algorithm, the most expensive step is line 4. The ost of omputinga transitive losure of a erti�ate graph with n nodes is O(n3), and we need toompute (n+ 1) transitive losures. Therefore, the omplexity of this algorithm isO(n4).4.4 E�et of Topology on VulnerabilityThe vulnerability of a erti�ate graph is a�eted by the topology of the graph. Forexample, the (4; 2)-star erti�ate graph in Fig. 4.5 has vulnerability 1516 , whereasthe (8; 1)-star erti�ate graph has vulnerability 1. Therefore, these two erti�ategraphs, despite having the same number of nodes and the same onnetivity, havedi�erent vulnerabilities.In Fig. 4.9, we show the e�et of topology on vulnerability of star erti�ategraphs. Theorem 19 gives the vulnerability of (m; k)-star erti�ate graphs. How-ever, if we keep the same number of nodes in the star erti�ate graph but hangethe value of k, not every satellite ring an have exatly k nodes. We put k nodes inas many rings as possible, and leave the remaining nodes in the last ring. We ranAlgorithm 9 on the star erti�ate graphs with 100 nodes where k, the maximumnumber of nodes in eah satellite ring, hanges from 1 to 99. Fig. 4.9 shows thatthe vulnerability dereases as k inreases.In Fig. 4.10, we show the e�et of topologies on vulnerability of tree erti�ategraphs. Theorem 20 gives the vulnerability of (d; h)-tree erti�ate graphs. However,91
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4.5 E�et of Dispersal on VulnerabilityIn a erti�ate graph where erti�ate hains are used to �nd a publi key, nodesmay store a few erti�ates in their loal storage to expedite the searh for a publikey [22, 23, 38℄. In partiular, erti�ate dispersal D of a erti�ate graph G inChapter 3.6 assigns a set of erti�ates D:u to eah node u so that if G has aerti�ate hain from node u to node v, then D:u[D:v ontains all the erti�atesin the erti�ate hain. If erti�ate dispersal is applied, then when a node u wishesto seurely ommuniate with a node v, then node u will look for a publi key of nodev in D:u �rst before it sends out a query to node v for more erti�ates. Therefore,if node u already has a erti�ate that has node v as the subjet of the erti�ate,the adversary annot impersonate node v to node u by issuing forged erti�ates.In other words, the vulnerability of a erti�ate graph is not only determined by thetopology of the erti�ate graph, but also a�eted by the dispersal of the erti�ategraph. As mentioned in Setion 4.3, when no dispersal is deployed, if the private keyof node d is revealed to an adversary, then the adversary an impersonate nodes d,e, f , g to nodes a, b, , and impersonate nodes a, b, , d to nodes e, f , g. However,when we assign all the erti�ates in an outgoing spanning tree rooted at node xto the set D:x, if the private key of node d is revealed to an adversary, then theadversary an impersonate only node d to all other nodes, so there an be no impliitdamage to the graph. Theorem 16 is modi�ed here to take the e�et of dispersalinto onsideration.Theorem 21 Let G be a erti�ate graph and sr and dst be any two distint nodesin G. Let D be any dispersal of G and d be a node in G whose private key r:d isrevealed to an adversary. The adversary an impersonate node dst to node sr ifand only if sr 6= d, G has a erti�ate hain from sr to d that does not ontainany erti�ate issued by node dst, and one of the following two onditions holds.93



i. dst = d, orii. D:sr 63 (k; dst); k 2 GProof:Proof for if If dst = d, then the adversary an use the revealed privatekey r:d of node d to enrypt and derypt any message as if it were node d andimpersonate node dst to node sr. If dst 6= d, then D:sr has no erti�ate (k; dst),for any node k in G, so sr does not know the orret publi key of dst. Now theadversary an sign a forged erti�ate (d; dst0) with the revealed private key r:d ofd. There is a erti�ate hain from sr to d that does not ontain any erti�atesissued by dst, so the adversary an add the forged erti�ate (d; dst0) to the orreterti�ate hain from sr to d and present the erti�ate hain from sr to dst0 tonode sr. If node sr does not know that the private key of node d is revealed to theadversary, then sr will not notie that the erti�ate (d; dst0) is forged and aeptthe publi key in (d; dst0) as the valid publi key of dst.Proof for only if In order to prove the only if part, we prove the ontra-position. If any of the following three onditions holds, then the adversary annotimpersonate dst to sr:i. sr = dii. G has no erti�ate hain from sr to d that does not ontain any erti�ateissued by dst.iii. dst 6= d and D:sr has erti�ate (k; dst), for some node k in G.First, assume sr = d. In this ase, sr will not aept any forged erti�-ate inluding a new publi key reated by the adversary, sine sr stores all theerti�ates it issued.Seond, assume that G has no erti�ate hain from sr to d that does notontain any erti�ate issued by dst. If G has no erti�ate hain from sr to d94



that does not ontain any erti�ate issued by dst, there are two possible ases toonsider. In the �rst ase, G has no erti�ate hain from sr to d. In the seondase, G has at least one erti�ate hain from sr to d, but every suh hain fromsr to d ontains a erti�ate issued by dst. In the �rst ase, the adversary annotreate a erti�ate hain from sr to dst0, beause G has no erti�ate hain from srto d to whih the adversary an add a forged erti�ate (d; dst0). So the adversaryannot impersonate dst to sr. In the seond ase, sr will verify the publi keyof node dst in the proess of validating the erti�ate hain from sr to d, and willnotie that the identity of dst is repeated twie in the erti�ate hain and rejetthe publi key of dst0. In both ases, the adversary annot impersonate dst to sr.Third, assume d 6= dst and D:sr has erti�ate (k; dst) for some node k inG. Based on erti�ate (k; dst), sr already knows the orret publi key of dst, soit will not aept any other publi key reated by the adversary as a valid publikey of dst. Hene, the adversary annot impersonate dst to sr. This ompletes theproof for the only if part.Algorithm 10 shown below is modi�ed from Algorithm 9 to inlude the e�etof dispersal in the evaluation of vulnerability. If node sr has a erti�ate (x; dst)due to dispersal for any user x, then no adversary an impersonate dst to x withthe revealed private key of any user y. Spei�ally, after line 4 in Algorithm 9, thefollowing line is added: if any D:sr has an edge (x; dst), then remove all the edges(sr; y) from Cdst.The graph in Fig. 4.11 shows how muh vulnerability is redued by theoptimal erti�ate dispersal of tree erti�ate graphs. In the ase of \No Dispersal",eah node knows only the publi keys in the erti�ates it issued. In the ase of\With Dispersal", eah node stores erti�ates assigned by an optimal dispersal ofthe erti�ate graph and knows the publi keys in the stored erti�ates. The ostof erti�ate dispersal is de�ned as the average number of erti�ates stored in eah95



ALGORITHM 10 : Vulnerability with erti�ate dispersalINPUT: a erti�ate graph G with n nodes and a dispersal D of GOUTPUT: vulnerability of GSTEPS:1: for dst = 0 to n� 12: Cdst := G3: remove all the inoming and outgoing edgesof node dst from Cdst4: Cdst := transitive losure of Cdst5: if any D:sr has an edge (x; dst),then remove all the edges (sr; y) from Cdst6: endfor7: C := transitive losure of G8: for d = 0 to n� 19: V (d) := Pdst2G(the in-degree of node d in Cdst)+ the number of edges (sr; d) in Cfor any node sr in G10: endfor11: return maxd2G V (d)(n�1)2node. An optimal dispersal of a erti�ate graph is a dispersal whose ost is lessthan or equal to the ost of any other dispersal of the same erti�ate graph. Thetree erti�ate graphs have 100 nodes and the degree hanges from 2 to 99. Theresult without dispersal is the same as Fig. 4.10.Note that the ost of the optimal dispersal of tree erti�ate graphs dereases,as shown in Fig. 4.12, whereas the vulnerability inreases, as the degree of the treeinreases. The x-axis of the graph in Fig. 4.12 is same as Fig. 4.11, and the y-axisshows the optimal dispersal ost. There is a lear trade-o� between the vulnerabilityand the optimal dispersal ost of tree erti�ate graphs.The trade-o� between the dispersal ost and the vulnerability in general isfairly straightforward, sine a higher dispersal ost means that nodes know moreorret publi keys, orresponding to more nodes that the adversary will not be96
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4.6 E�et of Aeptane Criteria on VulnerabilityTo redue the impliit damage of a revealed private key of a node, many researhersproposed to use some aeptane riteria to verify the validity of the publi key ofthe destination node of the erti�ate hain [5, 24, 27, 30, 33, 34, 36, 40℄. Some ofthe results are desribed in Chapter 5. Most of these riteria an be modeled asa funtion that takes a set of erti�ate hains as an input and outputs a yes/noanswer. A node u, who wants to �nd the publi key of another node v, will �nd aset of erti�ate hains from u to v. Node u an give this set as an input to theaeptane riteria funtion, and if the output answer is yes, then the publi key ofnode v in the erti�ate hain will be aepted by node u as valid. Theorem 16 ismodi�ed here to take the aeptane riteria into onsideration.Theorem 22 Let G be a erti�ate graph and sr and dst be any two distint nodesin G. Let d be a node in G whose private key r:d is revealed to an adversary. Theadversary an impersonate node dst to node sr if and only if sr 6= d and one ofthe following two onditions holds.i. d = dst and G has a set of erti�ate hains from sr to dst that satis�es theaeptane riteria of G, orii. �(sr; dst) and the set of erti�ate hains where eah hain in the set onsistsof a orret erti�ate hain from sr to d, that does not ontain any erti�ateissued by node dst, and a forged erti�ate (d; dst0), satis�es the aeptaneriteria of G.A simple aeptane riteria is to limit the length of erti�ate hains thatan be used. For example, a node might set the value of this limit to be 6 andaept only hains that onsist of 6 or fewer erti�ates. In fat, this aeptaneriteria is implemented in the urrent PGP system as the parameter CERT DEPTH.98



Algorithm 11 shown below omputes vulnerability of erti�ate graphs in the asewhere this aeptane riteria is used. To explain Algorithm 11, we need to de�nethe onept of k-losure.A k-losure of a graph G is a direted graph that has the same number ofnodes in G, and this graph has an edge (sr; dst) if and only if there is a diretedpath of length at most k from sr to dst in G. Note that 1-losure of G is G itself,and 0-losure of G is a graph with the same nodes in G but does not ontain anyedges. Algorithm 11 takes a erti�ate graph G and the limit k(=CERT DEPTH) onhain length as input and ompute (k-1)-losures for eah node dst, so that theadversary an add a forged erti�ate to the existing hain and the resulting hainwill satisfy the limit k on hain length.ALGORITHM 11 : Vulnerability with limit k on hain lengthINPUT: a erti�ate graph G with n nodes anda limit k(=CERT DEPTH) on hain lengthOUTPUT: vulnerability of GSTEPS:1: for dst = 0 to n� 12: Cdst := G3: remove all the inoming and outgoing edges ofnode dst from Cdst4: Cdst := (k � 1)-losure of Cdst5: if G has an edge (sr; dst),then remove (sr; dst) from Cdst6: endfor7: C := k-losure of G8: for d = 0 to n� 19: V (d) := Pdst2G(the in-degree of node d in Cdst)+ the in-degree of node d in C10: endfor11: return maxd2G V (d)(n�1)2 99



The graphs in Figs. 4.13-4.14 show how vulnerability hanges as we applydi�erent CERT DEPTH as the limit on hain length. As CERT DEPTH inreases, a nodean aept longer hains, and the vulnerability inreases. In Fig. 4.13, eah starerti�ate graph has 100 nodes and 10 satellite rings, and the maximum numberof nodes in a satellite ring is 10. We hanged the value of CERT DEPTH from 1 to11, sine the longest hain that the adversary will use from the original erti�ategraph is 10. (The longest hain from a node in a satellite ring to the enter node is10.) After 10, the vulnerability is same as that in Fig. 4.9. For omparison, we showthe vulnerability of the graph without applying CERT DEPTH shown as a dotted linehere. In Fig. 4.14, eah tree erti�ate graph has 100 nodes and the degree is2. Sine the root node has the maximum vulnerability, the longest hain that anadversary will use from the original erti�ate graph is from the leaf node to theroot node, whih has length 6. Hene, we hanged the value of CERT DEPTH from 1to 7. After 6, the vulnerability is the same as Fig. 4.10, shown as a dotted line here.
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average number of publi keys a node an use. This inreases as the depth limitinreases. For the erti�ate graph in Fig. 4.15, the average number of publi keysa node an use dereases from 5 to 146 � 2:7 as k inreases from 2 to 3.Also, aording to the analysis in [8℄, the degrees of nodes in a self-organizederti�ate graph follow Zipf's distribution. In other words, most nodes in a self-organized erti�ate systems have a very small number of outgoing edges. In theFig. 9 in [8℄, about half of the nodes in the largest strongly onneted omponentof the 2001 PGP graph have fewer than three outgoing edges, and about 30% ofthe nodes have only one outgoing edge. Therefore, when the path independene isapplied as the aeptane riteria, a large k may ause many publi keys to beomeunusable by other nodes. In the previous example of the 2001 PGP graph, k � 3will ause half of the nodes not to be able to use any publi keys in erti�ate hainsof length at least 2.Clearly, there is a trade-o� between the vulnerability of a erti�ate graphand the usability of the publi keys in the erti�ate graph. Hene, aeptaneriteria needs to be hosen and on�gured very arefully. This metri of vulnerabilityan help system administrators balane the resiliene against impersonation attaksand the usability of the publi keys in erti�ate graphs.4.7 Vulnerability of Many Revealed KeysAs shown in the previous setion, when an aeptane riteria requires more thanone erti�ate hain from a node sr to a node dst for node sr to aept the publikey in the erti�ate hain as the publi key of dst, the vulnerability of a erti�ategraph an hange depending on how many private keys are revealed to an adversary.Theorem 22 is modi�ed here to take the ase where many private keys are revealedto an adversary into the onsideration.Theorem 23 Let G be a erti�ate graph and sr and dst be any two distint nodes102



in G. Let D be a set of nodes in G where the private key r:d of eah node d in Dis revealed to an adversary. The adversary an impersonate node dst to node srif and only if sr 6= d for any node d in D and one of the following two onditionsholds.i. d = dst for some node d in D and G has a set of erti�ate hains from srto dst that satis�es the aeptane riteria of G.ii. There is no erti�ate (sr; dst) and the set of erti�ate hains, in whiheah hain onsists of a orret erti�ate hain from sr to some node d in Dthat does not ontain any erti�ate issued by node dst and a forged erti�ate(d; dst0), satis�es the aeptane riteria of G.The vulnerability of the set D is de�ned as follows:V (D) = jIMP (D)j(n� jDj)� (n� 1) ;where IMP (D) = f(sr; dst)j the adversary an impersonate dst to sr using privatekeys of nodes in Dg and n is the number of nodes in G. Let G be a erti�ategraph and there an be at most x private keys revealed to an adversary, then thevulnerability of graph G with x revealed keys, denoted V (G;x), is de�ned as follows:V (G;x) = maxD�G;jDj�xV (D)Note that this de�nition generalizes the de�nition of V (G), whih is equal to V (G; 1).
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For the example erti�ate graph in Fig. 4.15, assume that the aeptaneriteria of path independene with k = 2 is applied. Also, assume that the privatekeys of nodes b and d are revealed to an adversary. There is no erti�ate (a; ), andthere are erti�ates (a; b) and (a; d), so the adversary an impersonate node  tonode a. Also, there is no erti�ate (f; ), and there are erti�ate hains (f; a)(a; b)and (f; e)(e; d) that do not ontain , so the adversary an impersonate node  tonode f . There are 16 node pairs (sr; dst) suh that the adversary an impersonatedst to sr using the private keys of nodes b and d, so the vulnerability of fb; dg is1620 . This is also the maximum vulnerability of the example erti�ate graph whenx = 2, so V (G; 2) = 1620 .Fig. 4.16 shows how the vulnerability of the erti�ate graph in Fig. 4.15hanges as the number of revealed private keys hanges. We applied the aeptaneriteria of path independene with the parameter k from 1 to 3, and hanged thenumber of revealed private keys x from 1 to 6. As the number of revealed privatekeys inreases, the vulnerability inreases. As long as the number of revealed privatekeys is less than k, the vulnerability is limited to expliit damage.
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Chapter 5
Related Work
Several papers have investigated the use of erti�ates for on�dentiality, authenti-ation, and authorization. We summarize the results of these papers in the followingparagraphs.Arhitetures for issuing, storing, disovery, and validating erti�ates innetworks are presented in [35, 7, 31, 18, 6, 12, 16, 19, 28℄. In a large sale networksuh as today's Internet, one annot expet to have a entral authority to issue, store,and validate all the erti�ates. A distributed system, where eah user partiipatesin issuing, storing, and validating erti�ates is desirable in suh a network.In [39℄ and [25℄, distributed arhitetures for issuing erti�ates, partiularlyin mobile networks, are presented.In [39℄, Zhou and Haas present an arhiteture for issuing erti�ates in anad-ho network. Aording to this arhiteture, the network has k servers. Eahserver has a di�erent share of some private key rk. To generate a erti�ate, eahserver uses its own share of rk to sign the erti�ate. If no more than t servers havesu�ered from Byzantine failures, where k � 3t + 1, then the resulting erti�ate isorretly signed using the private key rk, thanks to threshold ryptography. Theresulting erti�ate an be veri�ed using the orresponding publi key whih is105



known to every node in the ad-ho network.In [25℄, Kong, Perfos, Luo, Lu and Zhang presented another distributedarhiteture for issuing erti�ates. Instead of employing k servers in the ad-honetwork, no speial nodes suh as servers are in the network and every node inthe network is provided with a di�erent share of the private key rk. For a nodeu to issue a erti�ate, the node u forwards the erti�ate to its neighbors andeah of them sign the erti�ate using its share of rk. If node u has at least t + 1orret neighbors (i.e. they have not su�ered from any failures), then the resultingerti�ate is orretly signed using the private key rk.In [28℄, Li, Winsborough, and Mithell presented a role-based trust manage-ment language RT0 and suggested the use of strongly typed distributed erti�atestorage to solve the problem of erti�ate hain disovery in distributed storage.However, they do not disuss how to eÆiently assign erti�ates among the dis-tributed storages. By ontrast, our work fouses on minimizing storage overheadin erti�ate dispersal among the users while they have enough erti�ates so thatthere is no need for erti�ate hain disovery.In [2℄, Ajmani, Clarke, Moh, and Rihman presented a distributed erti�atestorage using peer-to-peer distributed hash table. This work assumes dediatedservers host a SDSI erti�ate diretory and fouses on fast look-up servie andload balaning among the servers. By ontrast, our work assigns erti�ates tousers suh that there is no need for look-up and there are no dediated erti�atestorage servers. Our work also fouses on eÆient use of storages in all users innetwork.Perhaps the losest work to the erti�ate dispersal is [22℄ where the authors,Hubaux, Butty�an, and Capkun, investigated how to disperse erti�ates in a erti�-ate graph among the network nodes under two onditions. First, eah node storesthe same number of erti�ates. Seond, with high probability, if two nodes meet106



then they have enough erti�ates for eah of them to obtain the publi key of theother. By ontrast, our work is based on two di�erent onditions. First, di�erentnodes may store di�erent number of erti�ates, but the average number of erti�-ates stored in nodes is minimized. Seond, it is guaranteed (i.e. with probability1) that if two nodes meet then they have enough erti�ates for eah of them toobtain the publi key of the other (if there exists a hain between them in the hainset). Later, the same authors have showed in [9℄ that a lower bound on the numberof erti�ates to be stored in a node is pn � 1 where n is the number of nodes inthe system. Our work here shows that �nding an optimal dispersal of a givenhain set is NP-omplete, and presents three polynomial-time algorithms whihompute optimal dispersal of hain sets in three lasses of pratial interests andtwo extensions of these algorithms for more general lasses of hain sets.Zheng, Omura, Uhida, and Wada presented algorithms that ompute opti-mal dispersals for strongly-onneted graphs and direted graphs in [38℄. The sameauthors also showed the tight upper bounds in these two lasses of erti�ate graphs.A publi key infrastruture based on erti�ates is salable and eÆient inissuing and validating erti�ates but annot tolerate Byzantine failures. In par-tiular, if one node su�ers from Byzantine failure, then this node an suessfullyimpersonate any other node that is reahable from this node in the erti�ate graphof the network. This vulnerability to Byzantine failures is not unique to our erti�-ate work. In Setion 4, we have identi�ed a metri to evaluate the damage fromthis type of attaks.The metri of vulnerability an be used in any erti�ate system. For exam-ple, X.509 [1℄, SSL/TLS [13℄, PGP [40℄, and SDSI/SPKI [17, 35℄. In any of theseerti�ate systems, when a private key of some node is revealed to an adversary,the adversary may suessfully impersonate nodes to other nodes in the system. In107



other words, the erti�ate systems may be vulnerable to impersonation attaks.Many researhers proposed mehanisms to evaluate erti�ate hains to mit-igate this vulnerability. Tarah and Huitema [36℄ investigated using the path lengthas aeptane riteria. In [33℄, Reiter and Stubblebine investigated how to inreaseassurane on authentiation with multiple independent erti�ate hains. They in-trodue two types of independent hains, disjoint paths (no edge is shared by any twohains) and k-onnetive paths (k erti�ates need to be ompromised to disonnetall these paths). This paper shows that there are no polynomial-time algorithmsfor loating maximum sets of paths with these properties and presents approxima-tion algorithms. Beth, Borherding, and Klein [5℄ and Maurer [30℄ proposed anaeptane riteria based on probabilities. In PGP [40℄, users an limit the lengthof aeptable erti�ate hains and also require ertain number of erti�ate hainsto aept the publi key of destination node. Levien and Aiken [27℄ presented ananalytial model of di�erent types of attaks and ompared the resiliene of aep-tane riteria in [30℄ and [33℄ based on this model. The same authors also suggestedanother aeptane riteria based on the max ow algorithm. In [34℄, Reiter andStubblebine suggested a number of guiding priniples for the design of aeptaneriteria.
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Chapter 6
Conlusion
A erti�ate system is a useful publi key infrastruture for distributed systems.A erti�ate an be stored anywhere in the system and an be used by any userwho knows the publi key of the issuer of the erti�ate. We have proposed a newway of distributing erti�ates that minimizes the ommuniation overhead on thethird party, alled a erti�ate dispersal. Certi�ate dispersal assigns erti�ates tousers in the system suh that the two users that want to seurely ommuniate witheah other do not need to ontat any third party for erti�ates. We showed thatomputing an optimal dispersal is NP-Complete when the dispersal ost is de�nedas an average number of erti�ates stored in eah user, given a erti�ate hainset. We also presented several lasses of erti�ate graphs and hain sets for whihoptimal dispersals an be omputed in polynomial-time. Algorithms for these lassesare also shown and proven to ompute optimal dispersals. For a dynami erti�atesystem, we also devised a stabilizing dispersal protool.We have de�ned a metri alled vulnerability that measures the potentialsope of damage that an adversary with revealed private keys ould inur to thesystem. We show that the vulnerability of a erti�ate graph is a�eted by thegraph topology, dispersal, and aeptane riteria. One an use the vulnerability109



measure as a design riteria of erti�ate systems, given the system requirements ondispersal ost and vulnerability.As future work, we would like to build an appliation that utilizes the dis-persal and vulnerability. For example, a large-sale distributed system where arelatively small number of autonomous systems are ooperating ould bene�t fromdispersal and vulnerability. Between the oordinators of autonomous systems, onean expet that the erti�ate system would not hange rapidly. We an ompute anoptimal dispersal between oordinators periodially, or run the dynami dispersalprotool. At the same time, the vulnerability metri ould be a guideline in whetherto issue ertain erti�ates or not, or even in deiding the prie of issuane for thoseerti�ates.
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