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Abstract. Single-writer k-quorum protocols achieve high availability without
incurring the risk of read operations returning arbitrarily stale values: in partic-
ular, they guarantee that, even in the presence of an adversarial scheduler, any
read operation will return the value written by one of the last k£ writes. In this
paper, we expand our understanding of k-quorums in two directions: first, we
present a single-writer k-quorum protocol that tolerates Byzantine server fail-
ures; second, we extend the single-writer k-quorum protocol to a multi-writer
solution that applies to both the benign and Byzantine cases. For a system with
m writers, we prove a lower bound of ((2m — 1)(k — 1) + 1) on the staleness
of any multi-writer protocol built over a single-writer k-quorum system and pro-
pose a multi-writer protocol that provides an almost matching staleness bound of
(@m—1)(k—1) +m).

1 Introduction

Quorum systems have been extensively studied, with applications that include mutual
exclusion, coordination, and data replication in distributed systems [1-4]. systems [1—
4]. A traditional, or strict, quorum system is simply a collection of servers organized
in sets called quorums. Quorums are accessed either to write a new value to a wrife
quorum or to read the values stored in a read quorum: in strict quorums, any read
quorum intersects with a write quorum.

Important quality measures of quorum systems are availability, fault tolerance,
load, and quorum size. lower size have measures are conflicting in strict quorum sys-
tems [5]. For instance, the majority quorum system provides the highest availability of
all strict quorum systems when the failure probability of individual nodes is lower than
0.5, but it also suffers from high load and large quorum size—and this tension holds
true in general [6]. When the failure probability of individual nodes is higher than 0.5,
the quorum system with highest availability is the singleton, in which one node handles
all requests in the system.

Probabilistic [7] and signed [8] quorum systems have been proposed to achieve
high availability while guaranteeing system consistency (non-empty intersection of
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quorums) with high probability. These probabilistic constructions offer much better
availability than the majority system at the cost of providing only probabilistic guar-
antees on quorum intersection. If a probabilistic quorum system is used to implement
a distributed register with read and write operations, then, with high probability, a read
operation will return the value most recently written.

To achieve a high probability of quorum intersection, probabilistic constructions as-
sume, either implicitly (probabilistic quorum systems [7]) or explicitly (signed quorum
systems [8]), that the network scheduler is not adversarial. If the scheduler is adver-
sarial, both constructions can return arbitrarily old values, even if servers fail only by
crashing. If instead servers can also be subject to Byzantine failures, the situation is
a bit more complicated. Signed quorum systems are simply not defined under these
circumstances; probabilistic Byzantine quorum systems [7] must instead be configured
to prevent read operations from returning values fabricated by Byzantine servers. Note
that returning a fabricated value can be much more problematic than returning an ar-
bitrarily old value, especially if readers are required to write back what they read (as
it is common to achieve strong consistency guarantees): in this case, the system can
become contaminated and quickly loose its consistency guarantees>. Fortunately, the
parameters of probabilistic quorums systems can be chosen to eliminate the possibil-
ity of contamination; unfortunately, doing so results in a loss of all the gains made in
availability.

k-quorum systems, which we have recently introduced [9], guarantee that a read
operation will always return one of the last k£ written values — even if the scheduler is
adversarial. If the scheduler is not adversarial and read quorums are chosen randomly,
as is the case with probabilistic systems, k-quorums can guarantee a high probabil-
ity of intersection with the quorum used by the latest write. In a sense, k-quorums
have some of the best features of both strict systems and probabilistic constructions
and they can be thought of as a middle ground between them. Like probabilistic con-
structions, they achieve high availability by performing their writes to small quorums,
(called partial-write-quorums), and therefore weaken the intersection property of tra-
ditional strict quorum systems; unlike probabilistic constructions, however, k-quorums
can still provide deterministic intersection guarantees: in particular, they require the
set of servers contacted during k consecutive writes—the union of the corresponding
partial write quorums—to form a traditional strict write quorum. Using this combina-
tion, k-quorum systems can bound the staleness of the value returned by a read, even in
the presence of an adversarial scheduler: a read operations that contacts a random read
quorum of servers is guaranteed to return one of the values written by the last & preced-
ing writes; furthermore, during periods of synchrony the returned value will, with high
probability, be the one written by the last preceding write.

In the absence of an adversarial scheduler, probabilistic systems can have higher
availability than k-quorum systems. k-quorums make a tradeoff between safety and
liveness. By allowing for lower availability than probabilistic systems, they guaran-

3 This is not a problem if the returned values are simply old values because in that case times-
tamps can be used to prevent old values from overwriting newer values. Timestamps cannot
be used with fabricated values because the timestamps of the fabricated values can themselves
be fabricated.



tee a bound on the staleness of returned values even in the presence of an adversarial
scheduler. In the absence of an adversarial scheduler, k-quorum systems have higher
availability than strict quorum systems when the frequency of write operations is not
high (in a sense well defined in [9]). In the same paper, we also propose k-consistency
semantics and provide a single-writer implementation of k-atomic registers over servers
subject to crash failures.

Our previous paper left several important questions unanswered —in particular, it
did not discuss how to handle Byzantine failures, nor how to provide a multi-writer/multi-
reader construction with k-atomic semantics. The first question is particularly important
in light of the contamination problem that can affect probabilistic Byzantine quorum
systems. Answering these questions is harder than in strict quorum systems because the
basic guarantees provided by k-quorum systems are relatively weak and hard to lever-
age. For example, in the presence of multiple writers it is hard for any single writer to
guarantee that k& consecutive writes (possibly performed by other writers) will constitute
a quorum: because of the weaker k consistency semantics, a writer cannot accurately
determine the set of servers to which the other writers are writing.

In this paper, we answer both questions. We begin by showing a protocol that im-
plements single-writer k-atomic semantics and tolerates f Byzantine servers and any
number of crash-and-recover failures as long as read and write quorums intersect in at
least 3f + 1 servers. Like its crash-only counterpart, the protocol can provide better
availability than strict quorum systems when writes are infrequent, and unlike prob-
abilistic solutions, can bound the staleness of the values returned by read operations.
Byzantine faults add another dimension to the comparison with probabilistic solutions:
the cost, in terms of loss of availability, of preventing reads from returning a value that
has never been written by a client, but has instead been generated by Byzantine servers
out of thin air. We show that, for equally sized quorums, this cost is considerably higher
for probabilistic constructions than for k-quorum systems.

We then investigate the question of k-atomic semantics in a multi-writer/multi-
reader setting by asking whether it is possible to obtain a multi-writer solution by using
a single writer solution as a building block —that is, by restricting read and write oper-
ations in the multi-writer case to use the read and write partial quorums of the single
writer solution. This approach appears attractive, because, if successful, would result in
a multi-writer system with availability very close to that of a single writer system.

We first show a lower bound on the price that any such system must pay in terms
of consistency: we prove that no m-writer protocol based on a solution that achieves k-
atomic semantics in the single writer case can provide better than ((2m—1)(k—1)+1)-
atomic semantics. We then present an m-writer protocol that provides ((2m — 1)(k —
1) + m) -atomic semantics, using a construction that, through a clever use of vector
timestamps, allows readers and writers to disregard excessively old values.

2 System Model

We consider a system of n servers. Each server (or node) can crash and recover. We
assume that servers have access to a stable storage mechanism that is persistent across
crashes. We place no bound on the number of non-Byzantine failures and, when consid-
ering Byzantine faults, we assume that there are no more than f Byzantine servers—all
remaining servers can crash and recover.



Network model We consider an asynchronous network model that may indefinitely
delay, or drop, messages. We require that the protocols provide staleness guarantees
irrespective of network behavior.

For purposes of availability, we assume there will be periods of synchrony, during
which, if enough servers are available, operations execute in a timely manner.

Access Model A read or write operation needs to access a read or a (partial) write
quorum in order to terminate successfully. If no quorum is available the operation has
two options: it can either abort or remain pending until enough servers become available
(not necessarily all at the same time). The operation can abort unless it has already taken
actions that can potentially become visible to other clients.

Clients operations may have timeliness constraints. This does not contradict the
asynchrony assumption we make about the network but simply reflects the expecta-
tion that operations should execute in a timely manner if the system is to be considered
available. A client considers any operation that does not complete in time to have failed,
independent of whether these operations abort or eventually complete. Note that an op-
eration may be aborted and fail before being actually executed if the operation remains
locally queued for too long after being issued.

We assume for simplicity that clients do not crash in between operations, although
our protocols can be extended to tolerate client crash and recovery by incorporating a
logging protocol.

Finally, we assume that writes are blocking. In other words, a writer will not start
the next write until the current write has finished. While this assumption is not overly
restrictive, we need to make it for a technical reason, as our protocols require a write
operation to know exactly where the previously written values have been written to.

Availability Informally, a system is available at time t if operations started at ¢ execute
in a timely manner. Consider an execution p in a given time interval (possibly infinite)
in which a number of operations are started. The system’s availability for execution p is
the ratio of the number of operations that complete in a timely manner in p to the total
number of operations in p. If the number of operations is infinite, then the system’s
availability is the limit of the ratio, if it exists.

The read and write access patterns are mappings from the natural numbers to the
set of positive real numbers (denoting the duration between the requests). The failure
pattern of a given node is a mapping from the positive real numbers (denoting global
time) to {up, down}; the system’s failure pattern is a set of failure patterns, one for
each node.

Given probability distributions on the access patterns (read or write) and failure
patterns, the system’s availability is the expected availability for all pairs of access
patterns and failure patterns.

For the purposes of estimating availability, we assume that nodes crash and recover
independently, with mean time to recover (MTTR) a and mean time between failures
(MTBF) 3. We also assume the periods between two consecutive reads or writes to
be random variables with means MTBR and MTBW respectively and that MTBW is
large compared to MTBF; in other words, writes are infrequent. We define the sys-
tem’s availability in periods in which the network is responsive; i.e. in periods in which
the roundtrip delay is negligible compared to MTBF and MTTR. In other words, the



availability we are interested in depends on whether nodes are up or down, and not on
how slow is the network: indeed, in the presence of an adversarial network scheduler
measuring availability becomes meaningless, since the scheduler could always cause it
to be equal to zero. We assume that the time allowed for successful completion of an
operation is negligible compared to MTBF and MTTR.

Relaxed consistency semantics The semantics of shared objects that are implemented
with quorum systems can be classified as safe, regular or atomic [10]. For applications
that can tolerate some staleness, these notions of consistency are too strong and one can
use define relaxed consistency semantics as follows [9]:

1. k-safe: A read that does not overlap with a write returns the result of one of the

latest k£ completed writes. The result of a read overlapping a write is unspecified.
2. k-regular: A read that does not overlap with a write returns the result of one of

the latest k£ completed writes. A read that overlaps with a write returns either the
result of one of the latest k& completed writes or the eventual result of one of the

overlapping writes.
3. k-atomic: A read operation returns one of the values written by the last k£ preceding

writes in an order consistent with real time (assuming there are & initial writes with
the same initial value).

3 K-quorums for Byzantine Faults

We define a k-quorum construction that tolerates f Byzantine servers, while providing
k-atomic semantics, as a triple (W, R, k:), where W is the set of write quorums, R is
the set of read quorums, and & is a staleness parameter such that, for any R € R, and
WeW,|RNW|>3f+1and |R|,|W| < (n— f).

Server side protocol Figure 1 shows the server-side protocol. Each server s maintains in
the structure current_data information about the last write the server knows of, as well
as the k — 1 writes that preceded it. READ REQUEST messages are handled using
a “listeners” pattern [11]. The sender is added to s’s Reading set, which contains the
identities of the clients with active read operations at s. A read operation r is active at
s from when s receives r’s READ_REQUEST to when it receives the corresponding
STOP_READ. On receipt of a WRITE message, s acknowledges the writer. Then, if
the received information is more recent than the one stored in current data, s updates
current_data and forwards the update to all the clients in Reading; otherwise, it does
nothing.

Writer’s protocol Figure 2 shows the client-side write protocol. Each write operation
affects only a small set of servers, called a partial write quorum, chosen by the writer
so that the set of its last k& partial write quorums forms a complete write quorum. The
information sent to the servers contains not just a new value and timestamp, but also ad-
ditional data that will help readers distinguish legitimate updates from values fabricated
by Byzantine servers. Specifically, the writer sends to each server in the partial write
quorum, k tuples —one for each of its last k£ writes. The tuple for the ¢-th of these writes
includes: i) the value v;; ii) the corresponding timestamp fs;; iii) the set E; of servers
that were not written to in the last £ — 1 writes preceding 7; and iv) a hash of the tuples
of the £ — 1 writes preceding ¢. The write ends once the set of servers from which the



writer has received an acknowledgment during the last £ writes forms a complete write
quorum®,

Thus, the value, timestamp, E, and hash information for write 7 are not only written
to ¢’s partial write quorum, but will also be written to the partial write quorums used for
the next k£ — 1 writes. By the end of these k writes this information will be written to
a complete write quorum which is guaranteed to intersect any read quorum in at least
3f + 1 servers.

Reader’s protocol The reader contacts a read quorum of servers and collects from each
of them the k tuples they are storing. The goal of the read operation is twofold: first, to
identify a tuple ¢; representing one of the last k writes, call it ¢, and return to the reader
the corresponding value v;; second, to write back to an appropriate partial write quorum
(one comprised of servers not in ;) both ¢; and the k — 1 tuples representing the writes
that preceded 7 —this second step is necessary to achieve k-atomicity.

The read protocol computes three sets based on the received tuples. The Valid set
contains, of the most recent tuples returned by each server in the read quorum, only
those that are also returned by at least f other servers. The tuples in this set are legiti-
mate: they cannot have been fabricated by Byzantine servers.

The Consistent set also contains a subset of the most recent tuples returned by each
server s in the read quorum. For each tuple ¢ 5 in this set, the reader has verified that the
hash of the k — 1 preceding tuples returned by s is equal to the value of A stored in ¢ .

The Fresh set contains the 2 f + 1 most recent tuples that come from distinct servers.
Since a complete write quorum intersects a read quorum in at least 2f + 1 correct
servers, legitimate tuples in this set can only correspond to recent (i.e. not older than &
latest) writes.

The intersection of these three sets includes only legitimate and recent tuples that
can be safely written back, together with the & — 1 tuples that precede them, to any
appropriate partial write quorum. The reader can choose any of the tuples in this in-
tersection: to minimize staleness, it is convenient to choose the one with the highest
timestamp.

3.1 Protocol Correctness

We first prove the read protocol for single-writer Byzantine k-quorums, shown in Fig-
ure 3, only returns values that are :

— actually written by the writer (as opposed to an arbitrary value generated by a
Byzantine server), and
— are not more than k writes old.

Lemma 1. If the algorithm, in Figure 3 returns a value, Tuplelts, . ..,ts—k+1], then
the writer must have written Tuplelts, ..., ts — k + 1].

Proof: The algorithm returns a value, Tuple[ts,. .., ts — k + 1], only if it belongs to
Valid N Consistent. For Tuple([ts, ..., ts — k + 1] to be present in Valid, the latest of the

4 Byzantine servers may never respond. The writer can address this problem by simply contact-
ing f extra nodes for each write while still only waiting for a partial quorum of replies. For
simplicity, we abstract from these details in giving the protocol’s pseudocode.



1 static Reading = 0 1 static ts := 0;
2 static current.data[1..k]; 2 static Tuple[];
3 while ( true ) { 3 void Write(value v)
4 (msg, sender) = recieveMessage(): 4 begin
5 5 ts 1= ts 4+ 1;
6 if ( msg instanceof READREQUEST) 6 h = hash( Tuple[ts —1,...,ts —k+1]);
7 Reading U = {sender}: 7 // E is the set of servers NOT used for the
8 send current-data to sender. previous k — 1 writes
9 else if ( msg instance of STOP.READ ) _ j=ts—1 .
10 Reading = Reading \ {sender}: 8 BE=P\Uj_; k41 W
1 else if ( msg instance of WRITE ) 9 Tuplelts] = (v, ts, E, h);
12 // say msg is WRITE 10 delete Tuple[ts — k] to save space
(Tuple[tspmews - -»tsnew — k + 1]) 11
13 if ( tspew-ts > current_data[1].ts ) 12 Find a set PW . such that :
14 current.data[l..k] = Jj=ts—1 -
Tupleltonew, - - -1 tsmew — k + 11 13 IPW UV s peg1 Wil = Qu
15 send ACK(tspew ) to sender: 14 send WRITE(Tuple[ts,...,ts — k + 1]) to all
16 forward current_data to all in Reading. servers in PW .
17 else 15
18 send ACK(tspew ) to sender; 16 /1 wait for acknowledgements
19 3} 17 Wis =0
18 do
19 recv ACK (ts) from serv
20 Wis = Wig U {serv}
Fig. 1. K-quorum protocol for non-Byzantine 21 wntil (JUIZES L W2 Qu - )
22 return
Servers. 3 end

Fig. 2. K-quorum write protocol tolerating up
to f Byzantine servers.

k + 1 values — Tuple[ts] — has to be reported by at least f + 1 different servers. Since at
least one of these servers is correct, it follows that Tuple[ts] was written by the writer.
Moreover, since Tuple[ts, .. .,ts — k + 1] also belongs to Consistent, the the hash
in Tuple[ts] has to matches hash( Tuple[ts — 1, ...,ts — k + 1]). Therefore the history
of the previous k — 1 writes — Tuple[ts — 1, ...,ts — k + 1]—is also correct and should
have been written by the writer. O

Lemma 2. The set Fresh never contains a value that is more than k writes old.
Proof: The intersection between a read and a write quorum consists of at least 3f + 1
servers. Hence, among the servers responding there are at least 3f + 1 servers who
have ”seen” one of the latest & writes. At least 2f + 1 of these are correct and have
a timestamp greater than or equal to the k-th latest write that occurred before the read
has begun. Since the timestamp at a correct server monotonically increases, the correct
servers in the intersection will never return a value that is more than k writes old.
Since there are at least 2f + 1 correct servers who never report a value more than
k writes old. The 2 f + 1 latest values received from different servers, Fresh, will never
contain a value that is more than k writes old. O

Theorem 1. The single-writer Byzantine k-quorum read protocol in Figure 3 never
returns a value that is has not been written by the writer.
Proof: Follows from Lemma 1 O

Theorem 2. The single-writer Byzantine k-quorum read protocol in Figure 3 never
returns a value that is more than k-writes old

Proof: The read in Figure 3 only returns a value that belongs to ValidN Consistent N
Fresh. From lemma 2, we know that the set Fresh can never contain a value that is



1 /I protocol for a reader

2 received [] // stores the responses from servers

3 CandidateValues // holds the set of candidate values
4 Read ()

5 begin

6 choose a read quorum R.

7 send READREQUEST to servers in R.

8

9 received[i] = null, 1 < i < |R|

10 CandidateValues = @

11 // receive values from all the servers in R

12 while ( |[{i: received[i] # null}| < |R| );

13 begin

14 receive Tuple[tsg,...,tss — k 4+ 1] from server s;

15 received[s] = Tuple[tsg,...,tsg — k +1];

16 if ( isValid( Tuple[tss,...,tss —k+1]1) )

17 add Tuple[tsg] to the set CandidateValues

18 end

19

20 /I try to choose a value

21 // if unsuccessful , wait for more responses.

2 tshighest = LargestTimestamp ( received );

23 tryChoosing( )

24 while ( value_chosen == null )

25 begin

26 receive Tuple[tsg,...,tss — k 4+ 1] from server s;

27 if (tss < tspighest )

28 received[s] = Tuple[tsg,...,tss — k + 1]:

29 tryChoosing( );

30 end

31

32 send STOP.READ to servers in R.

33

34 // write back the chosen value to a partial—write—quorum

35 Find a partial —write—quorum, PW, suitable for value_chosen.

36 send WRITE(chosenqyalue) to PW

37 — wait for acks from PW

38

39 return value_chosen

40 end

41

42 void tryChoosing ( )

43 begin

44 (1) Fresh = { Tuple[tss,...,tss — k] € Received | tsg is one of the 2f+l largest time—stamped
entries in Received received from different servers }

45 (2) Valid = { Tuple[tsg,...,tss — k] € Received | Tuple[tsg] occurs in the responses of at least
f+1 servers }

46 (3) Consistent = { Tuple[tsg,...,tss — k] € Received | the hash, h, in Tuple[tsg] matches

47 hash ( Tuple[tsg — 1,...,tsg — k] ) }

48 (4) if ( Valid N Fresh N Consistent # 0 )

49 value.chosen = v € Valid N Fresh N Consistent, with the largest timestamp.

50 end

Fig. 3. K-quorum read protocol tolerating up to f Byzantine servers.

more than k£ writes old. Hence, a read will never return a value that is more than &
writes old. O

In an asynchronous environment where there is no bound on the number of nodes
failing no protocol can provide liveness guarantees always. If the network is behaving
asynchronously, or if the required number of servers are not available then our protocols
will just stall until the systems comes to a good configuration. We will now argue that if
the required number of servers are accessible, and the network behaves synchronously
then our protocols will eventually terminate.

Theorem 3. If the network behaves synchronously and all non-Byzantine nodes re-
cover and stay accessible, then the Byzantine k-quorum protocol for the writer in Fig-
ure 2 eventually terminates

Proof: If network is synchronous, and the non-Byzantine nodes recover, then the writer
will be able to get find an accessible partial-write-quorum. On receiving the acknowl-
edgements from all the servers in the partial-write-quorum, the writer terminates. O



Theorem 4. If the network behaves synchronously and all non-Byzantine nodes re-
cover and stay accessible, then the Byzantine k-quorum protocol for the reader in Fig-
ure 3 eventually terminates

Proof: New values from a server are allowed to overwrite old values only as long as the
time stamp of the new value is <= t;gnes¢- Therefore values cannot get overwritten
indefinitely.

Consider the situation, after the writer completes the latest write before ¢ ignest: Say
tiatest >

When this happens all correct servers in the intersection of the read and write quo-
rum will have a timestamp ¢s such that  tsjgest — k + 1 < ts < tsjatest - The
correct servers will forward the values and, these values will not be overwritten by any
other value®.

Since the intersection between a read and a write quorum contains at least 2f +
1 correct servers, eventually the reader will receive at least 2f + 1 values that have
their timestamp in the range [tSqtest — k + 1, tSiatest]- Consider the (f + 1)-th largest
timestamped value, v, received from the correct servers.

v, 1s reported by a correct server, so its hashes match and v, will be present in
Consistent. Since there are no more than f faulty servers, who may report higher times-
tamps, v, will be present in F'resh. Also, since all the 2f + 1 highest timestamped
values from correct servers lie in the range [tSiatest — k + 1, tSiatest], it follows that
the (f + 1)-th value from a correct server will be contained in the history of the first
f highest timestamped values from correct servers. Hence v, is also present in Valid.
Therefore tryChoosing will set value hosen to a non-null value and the algorithm will
terminate. a

K-Atomic Semantics To prove that the protocols achieve k-atomic semantics, we show
a linearized schedule of reads and writes such that every read returns one of the k
previously written values. We define

Definition 1. Written-time: Let written-time denote the global time instance, when a
value that is being written reaches a partial-write-quorum.
‘We will order the reads and writes in a manner similar to [9].

— All writes are ordered as if they instantaneously take place at their written-time.
— A read which returns a value (v, ts, E, h), which was written at time-stamp ¢, can
be scheduled any time between
1. The written-time, 7; of the value returned, (v, ¢, E, h).
2. and, before the written-time of the next k** write, (v',t + k, E', h'). i.e. before

Tt+k-

It is easy to see that, such an ordering satisfies the requirements of k-atomic seman-
tics. We need to show that such a ordering can be done in a manner consistent with local
history.

5 If the writer does not write a value with a timestamp > thighest, then tiq¢es¢ Would be the
timestamp of the last write written. Otherwise ¢i4¢es¢ can be taken as tpighest-

O if tatest <= thighest then writer has not written any value with a time stamp > t4¢es¢, SO
these values never get overwritten. Otherwise, if tiqtest == thighest, then the values do not
get overwritten because we discard values with timestamps > tpighest.



The scheduling of writes is trivial, because written-time of a write occurs between
the time a write has begun and before the write ends.

We now show, by contradiction, that reads can also be scheduled. Assume, if pos-
sible, that the read interval does not overlap with the interval [T, T¢ 1 k) There are two
cases:

1. Read finishes before 7;: This scenario is not possible, because a read has to write-
back the value. Therefore a read can end only after the written-time of the value it

returns.
2. Read begins after ¢ ;: From Lemma 2, any read that starts after 7 ;, cannot return
a value as old as 7, which is a contradiction. =><&

3.2 Comparison to Probabilistic Quorum Systems

In the Byzantine version of probabilistic quorum systems — ( f, €)-masking quorum sys-
tems [7]—write operations remain virtually unchanged: values are simply written to
a write quorum chosen according to a given access strategy. Read operations contact
a read quorum, also chosen according to the access strategy, and return the highest
timestamped value that is reported by more than p servers, where p is a safety pa-
rameter’. Choosing any value of p lower than f + 1 can be hazardous as, under these
circumstances, read operations may return a value that was never written by a client,
but instead fabricated by Byzantine nodes. While the probability of an individual read
operation returning a fabricated value can be low, if enough reads occur in the system,
the probability that one of them will do so becomes significant, even in the absence
of an adversarial scheduler. Byzantine k-quorums are immune from such dangers: read
operations may return slightly stale values, but never fabricated values. This property
allows for the safe use of write backs to achieve stronger consistency guarantees.

Availability Although it is possible to tune probabilistic Byzantine quorum systems
by choosing p > f so that they never return fabricated values, such a choice of p

cannot guarantee that the read availability always increases with n: if p > %, then read
availability actually tends to 0 as n increases, because even a reader able to contact a
read-quorum is highly unlikely to receive at least p identical responses [7]. To ensure
that, with high probability, there are at least f + 1 identical responses in a read quorum,
probabilistic Byzantine quorum systems would have to choose large quorum sets—
requiring the size of the quorum g to be significantly larger than \/nf. Thus, if the
number of Byzantine failures f is large, then the quorum size for probabilistic quorum
systems needs to be large in order to avoid fabricated values.

In summary, if probabilistic Byzantine systems are to have high availability when
the scheduler is not adversarial, they run the risk of returning fabricated values, and
if a value that is dependent on a fabricated value is written to the system, the system
becomes contaminated. Also, if they are designed for high availability and the sched-
uler happens to be adversarial, probabilistic Byzantine systems can always be forced to
return fabricated values.

7 The original paper [7] uses k to denote this safety parameter. We use p to avoid confusion
with the staleness parameter of k-quorum systems. We also use f to denote the threshold on
Byzantine faults instead of the original b.



Our system provides high availability for both reads and writes while guaranteeing
that we always return one of the latest k£ values written to the system. There are two main
reasons for the higher availability of k-quorums. First, each of their write operations
also writes tuples for the preceding k£ — 1 writes, causing a write to become visible at
more locations than in a probabilistic quorum system with similar quorum sizes and
load. Second, k-quorums reads are content to return one of the last k£ writes, not just
the latest one. Read operations will therefore be likely to yield Valid, Consistent, and
Fresh sets with a non-empty intersection. In ( f, €)-masking quorums a read can return a
legitimate value only if the read quorum intersects with a single write-quorum in more
than p nodes. This is a much rarer case and the availability of probabilistic quorum
systems is consequently lower.

Probability of returning the latest value The definition of k-atomicity only bounds the
worst-case staleness of a read. However, since the choice of read quorums is not de-
pendent on any other quorums chosen earlier, k-quorums can also use a random access
strategy to choose read quorums, as in [7]. A random access strategy guarantees that,
when the network is not adversarial, a read which does not overlap with a write returns,
with high probability, the latest written value.

We now try to bound the probability that during times when the network is not
adversarial, a read returns the latest value. For these calculations, we assume that the
write operations do not overlap with any other operations.

From our optimized protocol, it is clear that if the read quorum intersects with the
partial-write-quorum used for the latest write in at least f + 1 correct nodes, then the
read will return the latest write.

We now use Chernoff bounds to bound the probability that the read does not return
the latest value. Let r and w,, denote the size of the read quorum and the size of partial-
write-quorums used.

Theorem 5. [f the read quorum is chosen uniformly at random, the probability that a
read does not return the latest written value is

wp(r—1f) (F+1)n 2
- 2n (liwp(r—f))

<e

Proof: If the reader receives the latest written value from at least f+ 1 different servers,
then the read will return that value. Hence the probability that the read returns the latest
value is no less than the probability that the read quorum intersects with the partial-
write-quorum used for the latest write in at least f + 1 correct servers.

The number of correct servers in the read quorum is at least r — f. If these servers
are chosen at random, then the number of servers in the intersection of the partial write
quorum of size w,, and these r — f servers follows a hypergeometric distribution with

a mean of
wy(r — f)
n
[12] shows that the tail bounds for hypergeometric distribution is no more than the
tail bounds for a sum of independent Bernoulli variables with the same mean. Hence, we
can use Chernoff bounds to provide an upper bound on the probability that the number
of servers in the intersection is less than or equal to f.



Therefore
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4 Multi Writer k-quorums

We now study the problem of building a multi-writer k-quorum system using single-

writer k-quorum systems. This problem is interesting because the resulting multi-writer

system will have almost the same availability as the underlying single-writer systems.
A single-writer multi-reader k-quorum system implements two operations.

1. val sw-kread( wtr ): returns one of the £ latest written values, by the writer wir.
2. sw-kwrite( wtr, val ): writes the value val to the k-quorum system. It can only be
invoked by the writer wtr

We assume that the read and write availability of the single-writer k-quorum system is
asr = 1 — €4 and agy, = 1 — €4y, respectively.

4.1 A Lower Bound

We show that using k-atomic single-writer systems as primitives for a multi-writer sys-
tem with m writers, one cannot achieve more than ((2m — 1)(k — 1) + 1)-atomic
guarantees.

We assume that the the multi-writer solution uses the single writer solution through
the sw-kread and sw-kwrite functions. We use these functions as black boxes, and we
assume that an invocation of sw-kread on a given register will return any one of the last
k writes to that register.

Since we are interested in a multi-writer solution that has the same availability as the
underlying single writer system, we should rule out solutions that require a write in the
multi-writer system to invoke multiple write operations of the single writer system. In
other words, a write operation in the multi-writer system should be able to successfully
terminate if a read quorum and a partial write quorum of the single writer system are
available. We require that a read quorum be available because otherwise writers would
be forced to write independently of each other with no possibility for one writer to see
other writes. We do not require that a read and a write quorum be available at the same
time. So, without loss of generality, we assume that the implementation uses only m
single-writer registers, one for each writer. The implementation of a write operation of
a the multi-writer register can issue a write operation to the issuing writer’s register
but not to the other writers’ registers; it can also issue read operations to any of the m
registers. The read operations on the multi-writer register can only issue read operations
on the single-writer registers.

In our lower bound proof, we assume that writers execute a full-information proto-
col in which every write includes all the history of the writer, including all the values
it ever wrote and all the values it read from other writers. If the lower bound applies to
a full-information protocol, then it will definitely apply to any other protocol, because
a full-information protocol can simulate any other protocol by ignoring portions of the
data read. Also, we assume that a reader and a writer read all single-reader registers in



every operation, possibly multiple times; a protocol that does not read some registers
can simply ignore the results of such read operations.

For a writer wtr, we denote with v, ; the ¢’th value written by wtr. If a client reads
Vg4, then it will also read v, j, 7 < 7. We denote with £s,,:, a vector timestamp that
captures the writer’s knowledge of values written to the system. £8 ,,¢-[u] is the largest
for which wtr has read a value v,, ;. In what follows, we will simply denote values with
their indices. So, we will say that a writer writes a vector timestamp instead of writing
values whose indices are less than or equal to the indices in the vector timestamp.

We now describe a scenario where a reader would return a value that happens to be
((2m —1)(k — 1) + 1) writes old.

Consider a multi-writer read operation, where the timestamps for all the m values
that the reader receives are similar— specifically, the timestamps

(k —1,0,0,...,0),

(0,k —1,0,..., 0y,

0,0,k —1,..., 0y,
Rcvd =

(0,0,0,...,k—1)

where the timestamp for the value received from the ¢-th writer contains information up
to the (k — 1)-th write by that writer, but only contains information about the 0-th write
for all remaining writers.

Since all the m timestamp values are similar, the reader would have no reason to
choose one value over the other. Let us assume, without loss of generality, that the
reader who reads such a set of timestamp returns the value with the timestamp

(k—1,0,0,...,0)

written by the first writer.

We now show a set of writes to the system wherein the value returned would be
((2m — 1)(k — 1) + 1) writes old. The writes to the system occur in 4 phases.

In phase 0, each of the m writers performs a write operation such that the writer’s
entry in the corresponding timestamp reads 0. For the sake of this discussion, the non-
positive values stored in the other entries of the timestamp are irrelevant. We refer to
this write as the 0-th write.

In phase 1, writer 1 — whose value is being returned by the read — performs (k — 1)
writes. During each of these writes, the reads of the k-atomic register of other writers
returns their 0-th write. The timestamp vector associated with each of these writes is
shown in Figure 4.

In phase 2, each of the remaining (m — 1) writers perform (k — 1) writes. Since
the underlying single-writer system only provides k-atomic semantics, also during this
phase all reads to the underlying single-writer system returns the O-th write for that
writer. Hence the timestamp vector associated with these writes would be as shown in
Figure 4.

At the end of phase 2, each writer has performed k& — 1 writes. The total number of
writes performed in this phase is (m — 1)(k — 1).

Finally, in phase 3, each writer performs another ¥ — 1 writes. There are a total of
m(k — 1) writes in this phase. The exact timestamps associated with these writes are
not important.



Writer 1 Writer 2 Writer m
P‘:)"“C <02.%...,7> [<20,%...,7> <22,%,....0>
<1,0,0,...,0>
Phase | <2,0,0,...,0>
1 <3,0,0,...,0>
<k-1,0,0,...,0
<0,1,0,...,0>
<0,2,0,...,0>
<0,3,0,...,0>
Phase .
2 <0,k-1,0,..., 0
=
2
B
<0,0,0,...,1>
<0,0,0,...,2>
<0,0,0,...,3>
<0,0,0,...,k-1>
Phase | k-1 k-1 k-1 k-1
3 more writes more writes more writes | more writes

Read Occurs Now

Fig. 4. Write ordering in the multi-writer k£ quorum system

At the end of phase 3, the multi-writer read takes place. Since the underlying single-
writer system only provides k-atomic semantics, all the reads to the underlying single-
writer system during the read are only guaranteed to return a value which is not any
older than the (k — 1)-th write. Thus Rcvd could be the set of values received by the
reader where the reader chooses

(k—1,0,0,...,0)

which is (14 (m — 1)(k — 1) + m(k — 1)) writes old.
4.2 Multiple writer construction

We present a construction for a m-writer, multi-reader register with relaxed atomic se-
mantics using single-writer, multi-reader registers with relaxed atomic semantics. Using
k-atomic registers, our construction provides ((2m —1)(k — 1) +m)-atomic semantics,
which is almost optimal.

The single-writer registers can be constructed using the k-quorum protocols from [9],
if servers are subject to crash and recover failures, or using the construction from Sec-
tion 3 if servers are subject to Byzantine failures. In particular, using the single-writer
k-atomic register implementation for Byzantine failures described in Section 3, we ob-
tain an m-writer ((2m — 1)(k — 1) + m)-atomic register for Byzantine failures.

The Construction The multi-write construction uses m instances of the single-writer
k-atomic registers, one for each writer w;.

It uses approximate vector timestamps to compare writes from different writers.
Each writer w;, 1 < ¢ < m, maintains a local virtual clock [ts;, which is incremented
by 1 for each write so that its value equals the number of writes performed by writer
w;.



14 (val, ts) mw-read ( )
1 static Its; = 0; 15 begin
2 void mw-write ( writer; , val ) 16 for j =1 tom
3 begin 17 (val]-,tSj) = sw—read ( writer; )
4 for j =1 tom 18
5 (valj, tsj) = sw—read (writer; ) 19 Reject = 0
6 20 for i =1 tom
7 // Estimate the approx time—stamp 21 for j =1 tom
8 Vi #_1 :ats[j] = maxp { tsp[j] } 2 if(ts; < ts; || (tsjli] < tsglil — k) )
13 ats[i] = ++lts; 23 Reject = Reject U {(valj, ts;)}
1 sw—write ( writer; , (val,ats) ) 24 .
12 end 25 return any ('ualj,te]-) Z Reject
26 end

Fig. 5. Multi-writer K-quorum protocols

At a given time, let gts be defined by
Vi : gts[i] = lts;

where the equality holds at the time of interest. The vector gts represents the global
vector timestamp and it may not be known to any of the clients or servers in the system.
The read and write protocols are shown in Figure 5.

Write Operation To perform a write operation, the writer first performs a read to obtain
the timestamp information about all the writers (lines 4-5). Since the registers used are
k-atomic, each of the received timestamp information is guaranteed to be no more than
k writes old for any writer.

A writer witr; executing a write would calculate (lines 8-9) an approximate vector
timestamp ats, whose ¢-th entry is equal to [ts; and whose remaining entries can be
at most k older than the local time stamps of the entries at the time the write operation
was started. Let g¢s®®9 and gts®™< denote the global timestamps at the start and end
of the write. Then,

ats[i] = gts®™[i]

ats[j] > gts*?[j] - k
gtsend Z gtsbeg

The writer then writes the value, val, along with the timestamp ats to the single-
writer k-atomic system for the writer.

Read operation To perform a multi-writer read operation, a reader reads from all the m
single-writer k-quorum systems. Because of the k-atomicity of the underlying single-
writer implementation, each of these m responses is guaranteed to be one of the k latest
values written by each writer. However, if some writer has not written for a long time,
then the value could be very old when considering all the writes in the system. Finding
the latest value among these m values is difficult because the approximate timestamps
are not totally ordered.

The reader uses elimination rules (lines 19-23) to reject values that can be inferred
to be older than other values. This elimination is guaranteed to reject any value that is
more than ((2m — 1)(k — 1) + m) writes old. Finally, after rejecting old values, the
reader returns any value that has not been rejected.



Protocol Correctness We now analyze the protocol in Figure 5 to give a bound on the
staleness.

Lemma 3. If a writer w; performs a write, beginning at the (global) time gts®®9 and
ending at gts®™®, with a (approximate) timestamp t, then

t < gts°"?;  t[i] = gts*™?i]; and
Vi :tj] > gts" o[ — k+ 1

Proof: k-quorum implementation of the single-writer system for writer j, guarantees
that any sw-read for writer j will return one of the k latest values written by the writer
j. Thus, during the initial read phase, the writer will read one of the last k& timestamp
values used by writer j. Hence gtse™2[j] > t[j] > gts®®9[j] — k + 1 for all j.
Moreover, the writer w; always sets the i** coordinate of the computed vector times-
tamp to his local virtual timestamp [ts; (line 9). Therefore ¢[i] = gts°™?[i]. O

Lemma 4. Let (val;,ts;) be one of the m values read in lines 16-17. If a writer, say s,
has performed 2k writes after (valj,ts;) has been written (and before the read starts)
then (val;,ts;) will be rejected in lines 19-23.

?89 end
] 3
ginning and end of the writes for (val j, ts;) and (val,, ts,). Also, let gts>? | be the
timestamp when the read is started.

Since writer s has performed at least 2k — 1 writes after writing (val ;, £s;) we have

Proof: Let gts 7 ,gts and gts’s’eg ,gtsi”d denote the global timestamp at the be-

gtsPed [s] > gts;’t”d[s] + 2k

read

Also, from the k-atomic properties of the single writer system, we know that

tss[s] = gtse™d[s] > gtst9 [s] — k

read

= ts;[s] < gts§"4[s] < gtsP®9 [s] — 2k

read
< gts®™s] — k = tss[s] — k
Hence (val;,ts;) will be added to Reject in line 23. O

Theorem 6. The multi-writer read protocol never returns a value that is more than
((2m — 1)(k — 1) + m) writes old.

Proof: Let (val;, ts;) be the value returned by the read protocol.

The writer j cannot have written more than k — 1 writes after (val ;,ts;) (and before
the read begins). From Lemma 4 it follows that each of the remaining (m — 1) writers
could have written no more than 2k — 1 writes after the write for (val ;, ts;) (and before
the read begins).

Hence, (val;, ts;) can be at most (14 (k—1) + (m — 1)(2k — 1)) writesold. O

Lemma 5. At least one of the m received values remains un-rejected.



Proof: There are two rules that we apply for rejecting a value (val ;,ts;)

1. rule (i): 3 : ts; < ts;
2. rule (ii): Ji : (ts;[i] < ts;[i] — k)

To show that at least one value remains un-rejected by both, we first show a value
that is not rejected by rule (ii). Then we argue that for any value that survives rule (ii),
but gets rejected by rule (i) we have another value that survives rule (ii). Thus we have
at least one value that remains un-rejected, because just applying rule (i) cannot reject
all values.

Among all the m values received, consider the value whose write started last. Let
the value be (valy, ts;).

Consider the write for any other value (val j, £s;). Since this write has started before
gtsi’eg, it follows that

be . be . .
gts;“?[j] > gts;*[j] = ts;[j] — 1

Since, when writer [ performs a read to estimate ¢s;[J] it is guaranteed to receive a value
no older than £ writes,

tsi[j] > gtsto[j] -k +1
= tsifj] > ts;[j] —k+1

Thus (val;, ts;) will not be rejected by rule (ii).

If (val;, ts;) is a value that is not rejected by rule (ii) but is rejected because ts; >
ts; then (val;, ts;) cannot be rejected by rule (ii).

Hence at least one value remains un-rejected. O

Theorem 7. The multi-writer protocol described in Figure 5 provides ((2m — 1)(k —
1) + m)-atomic semantics.

Proof: To prove that the multi-writer protocols achieve ((2m —1)(k — 1) +m)-atomic
semantics, we show a serialized schedule of reads and writes where each read returns
one of the values written by the last ((2m — 1)(k — 1) 4+ m) writes.

Since the underlying single-writer k-quorum system provides k-atomic semantics,
all reads and writes to any such underlying system can be serialized such that all reads
return one of the last £ values written to the system.

For proving ((2m — 1)(k — 1) + m)-atomicity for the multi-writer system, we
schedule the writes to take place at the same instance as it is scheduled to take place in
the single-writer system.

Let 7; denote the time instance when the 7" write is scheduled to occur. We schedule
the reads as follows: Any read that returns a value v, written during the ¢ th write to the

system, would be scheduled to occur some time between 7; and 7 .
i+ ((2m—1)(k—1)+m)

It is easy to see that, such an ordering satisfies the requirements of ((2m — 1)(k —

1) + m) -atomic semantics. We need to show that such a ordering can be done in a
manner consistent with local history.



The scheduling of writes is trivial, because from the k-atomicity property of the un-
derlying single-writer system, it follows that the time instance when the write is sched-
uled to occur lies between the time when the sw-write(line 11) begins and ends.

‘We now show, by contradiction, that reads can also be scheduled. Assume if possible
that the read interval does not overlap with the interval
(74, Tiy ((mel)(k71)+m) ) There are two cases:

1. Read finishes before 7;: Since the mw-read only returns a value that has been read
from sw-read in line 5, if mw-read were to finish before 7; that would contradict the
assumption that the underlying single-writer implementation satisfies k-atomicity.

2. Read begins after 7. : From Lemma ?? any read that starts after
i+ ((2m—1)(k—1)+m)

T ((2m—1)(k=1)+m) cannot return a value which is more than ((2m—1)(k—1)+

m) writes old. Hence the read could not possibly have returned v from the 7 ** write;
this is a contradiction. =><&

a

Availability of a Multi-writer System We now estimate the availability of the multi-
writer system, assuming that the underlying single-writer k-quorum system has a read
and write availability of ag, = 1 — €4, and a5, = 1 — €4, respectively.

Each multi-writer write operation involves reading from all the m single-writer k-
quorum systems and writing to one single-writer system. Hence the write availability
of the multi-writer system, @y, is at least (as,q)masw. This is a conservative estimate
because we are assuming that, when the network is synchronous, we treat finding a read
quorum and finding a partial-write-quorum as independent events. In practice, however,
the fact that a particular number of servers (size of read quorum) are up and accessible
only increases the probability of being able to find an accessible partial-write-quorum.

Moreover, If the m underlying single-writer k-quorum systems are implemented
over the same strict quorum system, then the potential read quorums that can be used for
all the m systems will be the same.® Thus, we can use the same read quorum to perform
all the m read operations. In this case, either all reads are available with probability
asy or all reads fail with probability €,.. Hence the probability of the multi-writer write
succeeding is at least ag, -

Amaw > QsrQsw > 1 — €5p — €5

To perform a multi-writer read, our read protocol performs m reads from the m
single writer k-quorum implementations. Thus, along similar lines, we can argue that
the availability a,,, is at least as,™. Using the same underlying strict quorum system
for all the m single-writer systems, we can achieve an availability of

Qmr = Qgp = 1 — €4

8 The partial-write-quorums could still be different, if the writers have chosen different partial-
write-quorums in the past.



Probabilistic freshness guarantees We now estimate the probability that our multi-
writer implementation of k-quorums provides the latest value, when all the writes that
occur are non-overlapping.

Let d5,, denote the probability that a sw-read does not return the latest value written
to the single-writer system. Let §,,,,, denote the probability that the multi-writer system
does not return the latest value written to the system.

Theorem 8. The probability that the multiple-writer system does not return the latest
value is at most mgy,

Proof: Consider the latest write v. Without loss of generality, assume it was written by
writer-i. The reader may not return the latest values if either (i) the reader does not read
the latest written value or (ii) the reader reads the value, but chooses a value from some
other writer whose timestamp is concurrent with the latest value.

The probability that the reader does not read the latest written value is at most § s,.

For any other writer, writer-j the probability that while writing v, writer-i did not
read the latest write written by writer-j is at most J,,. Hence the probability that there
exists a write, whose timestamp is concurrent with v’s timestamp is at most (m — 1) 5.
Hence the result. O

5 Conclusion and Future Work

In this paper we expand our understanding of k-quorum systems in three key direc-
tions [9].

First, we present a single-writer k-quorum construction that tolerates Byzantine fail-
ures. Second, we prove a lower bound of ((2m — 1)(k — 1) + 1) on the staleness for a
m writer solution built over a single-writer k-quorum solution.

Finally, we demonstrate a technique to build multiple-writer multiple-reader k-
quorum protocols using a single-writer multiple-reader protocol to achieve ((2m —
1)(k — 1) + m)-atomic semantics.

One limitation of our approach is that it improves availability only when writes are
infrequent. Also, we have restricted our study of multi-writer solutions to those that built
over a single-writer k-quorum system; it may be possible that a direct implementation
can achieve a better staleness guarantee.
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