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Abstract— Reliability is critical to a variety of network appli-  incorporated into applications and services such as virtual
cations. Unfortunately, due to lack of QoS support across ISP private networks to improve reliability.
boundaries, it is difficult to achieve even two 9s (99%) reliability To realize the potential of SmartTunnel, we analytically

in today’s Internet. In this paper, we propose SmartTunne| an deri timal traffic allocati h that optimi
end-to-end approach to achieving reliability. A SmartTunnel is a erive near-optimal traflic aflocation schemes that optimize

logical point-to-point tunnel between two end points that spans €nd-to-end loss rates under bursty loss.
multiple physical network paths. It achieves reliability by strate- Our key contributions can be summarized as follows:
gically allocating traffic onto multiple paths and performing FEC 4 \\e propose SmartTunnel abstraction to provide end-to-end

coding. Such an end-to-end approach requires no explicit QoS L - .
support from intermediate ISPs, and is therefore easy to deploy reliability. It serves as a thin waist at the network layer.

in today’s Internet. To fully realize the potential of SmartTunnel, This abstraction immediately supports diverse_ ‘upper and
we analytically derive the near-optimal traffic allocation schemes  lower network layer technologies without modification. It

that minimize loss rates. We extensively evaluate our approach  can also be easily incorporated into VPN services. Therefore
using trace-driven simulations, ns-2 simulations, and experiments  gmartTunnel is easy to deploy in today’s Internet.
ic;ne'?flggt?\:léaig. iﬁ;\?ﬁgtf‘igﬁ"’;gﬁa%?l?y‘?nsuate that SmartTunnel - -y, analytically develop near-optimal traffic allocation
schemes to optimize end-to-end loss rate in the presence
of bursty packet losses. We further implement SmartTunnel
. INTRODUCTION using the click modular router [24].

Many applications, such as Voice over IP (VoIP), videe We extensively evaluate the effectiveness of SmartTun-
conferencing, streaming media, gaming, and online tradingnel using trace-driven simulation, ns-2 simulations, and
have stringent requirements on end-to-end reliability. Unfor- PlanetLab experiments. Our results show that SmartTunnel
tunately, today’s Internet does not even provide two 9s (99%)is effective in achieving high end-to-end reliability and
reliability [27], [9], [21], [15]. This is considerably lower than multiple SmartTunnels can co-exist well.
what the public switched telephone network (PSTN) offers The rest of the paper is organized as follows. In Section I,
today (three to four 9s). we survey related work. In Section Ill, we describe Smart-

Achieving end-to-end reliability is hard in the Internet fofrynnel architecture. In Section IV, we present algorithms
several reasons. First, there lack both incentives and meghyt determine optimal traffic allocation. We describe our

anisms for ISPs to cooperate. This implies that it is hagajyation methodology and results in Section V. Finally we
to provide reliability guarantees across ISP boundaries. Asnclude in Section VI.

a result, while it may be possible to achieve high reliability
within an individual ISP, the reliability of end-to-end paths, Il. RELATED WORK

spanning over multiple ISPs, is significantly lower. Second, We broadly classify the related work into the following

numerous measurement studies [38], [32], [5], [6], 20, [Sgllwree areas: (i) measurement of Internet reliability, (ii) overla
have shown that Internet packet loss often exhibits burstiness ' Y, y

(or tem ld d - rqgting and multihoming, and (iii) FEC based loss recovery.
poral dependency). Bursty losses pose significant cha S
lenges to protect against. While forward error correction (FE®jeasurement of Intemet reliability: Several measurement
coding is useful to protect against random losses, bursty packétdies have reported that Internet reliability is quite limited.
losses significantly affect the effectiveness of FEC. In particular, Paxson observed a routing pathology arises 1.5%
To address these challenges, we propSseartTunnelto - 5% during 1994-1995. Dahlin [9], Jiang et al. [21], and
achieve reliability in today’s Internet. A SmartTunnel is &ummadi [15] conducted large-scale measurement studies of
logical point-to-point tunnel between two communicating enpternet path failures, and reported that Internet reliability is
points that may physically span multiple Internet paths. fften below two 9s (99%).
achieves reliability by properly allocating traffic across difOverlay routing and multihoming: Several studies, such
ferent paths and applying FEC coding. Such an end-to-easl [33], [36], [30], have shown that the default routing path
approach requires no explicit QoS support from intermediate often suboptimal in terms of latency, loss rate, and TCP
ISPs, and can be directly applied to end hosts or Interrtatoughput. To address these issues, a variety of overlay-
gateways. Therefore it is easy to deploy in today’s Internddtased techniques have been proposed to improve network
Moreover, the simple tunnel abstraction can be naturalperformance and resilience. For example, RON [30] allows



distributed applications to recover network path failures byork on this subject. It is also the work closest to ours.
routing through alternative overlay paths. Harrison et al. [1T}ifferent from our work, [19] targets delay tolerant networks,
uses edge-to-edge congestion control in an overlay framewaoakd the proposed approach is based on very different loss
It requires modifications to edge routers, which is hard tmodels from the Internet. In particular, they do not consider
achieve in practice. Duan et al. [10] provides QoS guarantdmgsty loss. As a result, their approach does not work well
by buying bandwidth with certain SLAs from ISPs. As a resulfor Internet paths, as we will show in Section V. Note that
its quality is highly dependent on the underlying networkh order to cope with bursty loss, it is necessary to develop a
provider. OverQoS [35] uses a controlled loss virtual linkompletely different traffic allocation scheme (as opposed to a
abstraction to bound the loss rate. Since OverQos uses onlyiraple extension to [19]). We will further elaborate this point
single path, it cannot protect against highly bursty losses inraad compare SmartTunnel with [19] in Section IV-A.

timely fashion.

More recently, scalable one hop source routing (SOSR) [15]
proposes that upon path failures the source node randomly
chooses four nodes as relay nodes to re-route traffic. TheilSmartTunnel is a logical point-to-point tunnel between two
results show that it can recover 20-56% failures. SOSR iscammunicating end points that may physically span multiple
reactive approach and requires failure indications. Therefdrgernet paths. It sits at network-layer, and is transparent to ap-
it is suitable for recovering long-term failures, but not foplications. As shown in Figure 1, a tunnel source continuously
recovering bursty loss, which is our main focus. monitors the network paths, and provides the performance of

There are quite a few research studies on the design aredwork paths to the controller. The controller applies the traf-
evaluation of route control schemes for multihomed useif#; allocation algorithm, described in Section IV, to distribute
For example, Cao et al. [8] propose using hash functions tr@ffic onto multiple physical paths. On the data plane, data is
achieve load balancing among multiple links. In [16], thérst delivered to FEC encoder, which generates redundancy
authors compare several route selection schemes in a Iquatkets and hands over the resulting data and redundancy
area network and show that hashing can achieve performapeekets to the traffic distributor that stripes packets according
comparable to load-sensitive route selection. Akella et al. [&) the controller’s specification. The tunnel destination decodes
guantify the potential performance benefits of multihomingnd buffers data. Buffering is necessary to reduce packet re-
using real Internet traces. Their results show that smart routiatglering, which can degrade TCP [18] performance. A packet
has the potential to achieve an average performance improigedelivered to uppper layers either when all the packets before
ment of 25% or more for a 2-multihomed user in most casdthave been received (or recovered) or when buffer is full.
and that most of the benefit can be achieved using 4 providers.

II. SMARTTUNNEL ARCHITECTURE

In their follow-up work, the authors implement a Linux-based ; Sender o don ; } Receiver

route control based on either passive or active monitoring: ; b | Raw data

schemes. Their experimental evaluation show that the route l : ;

control schemes offer 15% to 25% performance improvement.: Fec | | ; I .

The authors in [14] develop novel smart routing algorithms to | | convoter p~ L% | Po| Packet

simultaneously optimize cost and performance for multihomed: T l : : i ;

users, and study the interactions between multihomed and Monitor Traffic | : FEC vonitor |1

Slngle homed Users. distributor i E decoder E
SmartTunnel can be applied to both overlay paths and:-‘ ----- R o I Hm._‘_

multihoming paths. One of the fundamental differences be- '} T

tween SmartTunnel and the previous work is that the previous Logical Tunnel over Multiple Physical Paths

work uses only a single path (e.g., send traffic along the b&& 1. SmartTunnel architecture.

performing path). Due to bursty packet losses in the Internet.smartTunnel can be deployed either at the two communicat-
using a single path yields limited reliability. In comparisonyg end-points or at their Internet gateways. SmartTunnel can
SmartTunnel can achieve high reliability by simultaneouslylsg pe easily integrated with current VPNs. Today’s VPNs
using multiple paths. only provide reachability and security, but no reliability. By
FEC based loss recovery:Significant research work hasrunning SmartTunnel sender and receiver at the VPN servers
been done on the design and evaluation of forward errefthe two communicating points, network providers can offer
correcting code, such as [29], [26]. Our work is orthogonal tealue-added services.
the development of FEC coding algorithms, and can directly
apply the existing systematic FEC coding schemes (i.e., FEC
codes that include unmodified original data packets in the FEC
group). To fully realize the potential of SmartTunnel, we need to
FEC coding has also been applied to multicast transmaddress the following issues: (i) how to allocate traffic onto
sion [7], [25]. In these studies, only a single network path imultiple paths to minimize loss rates under realistic Internet
used for sending data to each destination. loss models, and (ii) how to measure path properties which
Jainet al. [19] study the problem of traffic allocation ontocan be used for the allocation schemes. In this section, we
multiple paths to achieve high reliability. This is a pioneeringxamine these issues in turn.

IV. SMARTTUNNEL ALGORITHMS



A. Allocation Problem Formulation as follows.

Definition 1 (Optimal Allocation Problem)Let d; and r;
be the number of data packets and redundant packets allocated
on pathi. Let random variables; andy; be the number of

First we formulate the traffic allocation problem for mini-
mizing packet loss rate. Table | summarizes our notations.

N | number of physical paths data packets a_nd redundar}\} packets that are lost onipath
D number of data packets per FEC group Let random variablesX = > ;" , z; andY = ." | y; be the
? Elégberfogf fgg‘g}gﬂ“gfkg)ts per FEC group total number of lost data packets and lost redundant packets,
d] numb%r mP allocated data packets on path respectivgly. The optimal aIIocqtion problem is to determine
7 number of allocated redundant packets on path an allocation{(d;,r;)} under which the expected number of
@; | number of lost data packets on path lost data packets after applying FEC is minimized. That is,
Yi number of lost redundant packets on path
X total number of lost data packets = SN | z; B D
Y total number of lost redundant packéts= >N | y; minimize Xppc = Z€ -Pri X =¢(ANX+Y >R] (1)
Xrec | expected number of lost data packets after applying FEC: =1
B Xrrc =S8, 0 - PrlX =(AX +Y > R) ) )
X | continuous approximation akpc (see Section IV-B.1) wherel = 1, --- , D enumerates all possible values for(i.e.,
TABLE | the total number of lost data packets), and the summation gives
NOTATIONS the expected number of lost data packets when FEC cannot

reconstruct the entire FEC groupe(, whenX +Y > R).

Consider a SmartTunnel from nodeto noded. Traffic Modeling Temporal Loss Dependency in the Intemet:
from node s to noded can take several differemphysical To solve the above optimization problem, we first need to
paths which can be provided by either multihoming or Ove”a)t)nderstand the behawor of Internet packet loss. Numerous
routing. LetN denote the number of physical paths availapi@€asurement studies [38], [32], [5], [6], [20], [39] have shown
to the SmartTunnel. When a packet is transmitted a|0ngtr(1§tt Internet packet loss often exhibits burstiness. Burstiness
physical path, it can get lost due to a variety of reasons, suiects the performance of FEC because when a large burst
as routing loops, failures, and network congestion. To achie@bPackets are lost in an FEC group, FEC cannot recover the
reliability, nodes applies forward error correction (FEC) codd®St data packets. It is therefore important to explicitly model
to protect data packets that enter the SmartTunnel. Specificaly/Sty 10Ss in SmartTunnel.
for every D data packets, nodecreatesk redundant packets, A variety of models have been proposed to capture temporal

which together with all the data packets form an FEC grodg_ss dependency, including the Gilbert Model, the Extended
of size G = D + R. The FEC code is designed to recove ilbert Model, and the Markov Chain Model [38], [32], [5],

from R packet losses. That is, when nodeeceives anyD [6], [20]. In_ this paper, we use the following General Markov
out of G packets in the group, it can reconstruct the entifd@del, which generalizes all the above models.
FEC group. If more tharR packets are lost, however, node A General Markov Model has the following parameters:
can only deliver those successfully received data packets and States0,1,---,n — 1.
cannot recover the lost data packets. e A length+ loss probability vectorL = [lo, -, l_1],
Note that in this paper we only considsystematiccFEC where/; denotes the packet loss probability in state
codes, which include the unmodified input data packets A 7 x n transition matrixP = [p;;lnxn (0 < i,j <n—1),
the FEC group. Compared with non-systematic FEC codeswherep;; denotes the probability for the next state tojbe
that alter the input data packets, one major advantage ofProvided that the current state is
systematic FEC codes is that even if more thampackets Suppose the current stateiisA newly transmitted packet
are lost in an FEC group, all the received data packets cfiist results in a state transition — the probability for the next
still be delivered, whereas with non-systematic FEC codétate to becomg is given by p;;. The loss probability/;
the entire group is lost. Another advantage of systematic FESsociated with the new stajethen determines whether this
codes is that no decoding is needed when no data packepasket gets lost. Temporal loss dependency is captured by
lost. As a result, most FEC codes in practice are systematiee different state transition probabilities; and the different
One of the most famous systematic FEC codes is the Re@écket loss rates in different states. To better illustrate the
Solomon code [29], which we will use in our SmartTunneiodel, below we consider two important special cases.
prototype implementation. Our experience suggests that highlyGilbert Model. The Gilbert Model [13] is a special case
optimized software implementation [28] of the Reed-Solomon of the General Markov Model that is simple to understand
code can achieve an encoding/decoding rate of dv&bps and to implement in monitoring applications. It has been
on a 2.4 GHz Pentium IV processor. analyzed in [32], [38], [6]. As illustrated in Figure 2, a
Given an FEC group witlD data packets an® redundant  Gilbert Model has two stated) for “no-loss” and1 for
packets, there ar& P+ different ways of allocating packets *“loss”. The corresponding loss probabilities adg: = 0
in an FEC group ontaV physical paths. Different allocations and ¢; = 1. Normally, p;; > pg1. So a packet is more
can result in different numbers of packet losses after applyinglikely to get lost if the previous packet is already lost. When
FEC. The goal of the SmartTunnel is to derive an optimal p1; = po1, the Gilbert Model further reduces to a Bernoulli
allocation that minimizes the expected number of packet lossesnodel, which has no temporal dependency. Note that it is
after applying FEC. This problem can be formally specified also possible to use non-binary loss probabilities ¢g <



{1 < 1. The resulted model is often termed a Gilbert-Elliotto directly apply the techniques developed in [19] to the
Model [13], [11]. Internet. Unfortunately, several important reasons prevent us
from applying these techniques to achieve high reliability in
Py the Internet. Therefore, we have to develop new algorithms
p,=1-p, and techniques for use in SmartTunnel.

P, =1R
e Burstiness in Internet packet losBvo different loss models
are considered in [19]: independent packet loss (which
exhibits no temporal loss dependency) and complete path

failure (where a path delivers either all packets successfully
P, or no packet at all). While these models may be useful in a
DTN, neither model captures the commonly observed bursty
o Extended Gilbert ModelSannecket al. [32] proposes loss behavior in the Internet. Since the goal of SmartTunnel
an Extended Gilbert Model, which generalizes the sim-is to minimize loss in the Internet context, it is essential
ple Gilbert Model. The Extended Gilbert Model captures to use models that capture the Internet loss behavior more
changes in the loss burst length, as shown in Figure 3.accurately.
Specifically, in ann-state Extended Gilbert Model, staie e The use of different performance metridgin et al. [19]
(¢ =0,1,...,n—2) means that there are exactlgonsecutive  try to minimize the expected FE@rouploss probability (as
losses since the beginning of the current loss burst, whereagspposed to th@acketloss probability), which is defined as
staten — 1 means that: — 1 or more consecutive losses the probability for FEC to be unable to recover an entire
have occurred. The corresponding loss probability vector iSFEC group ie, Pr[X + Y > R]). While this metric
L =10,1,---,1] (i.e, o = 0 and forVi > 0,¢; = 1). captures the performance of non-systematic FEC codes, it is
Suppose the current loss burst lengthiisFor a newly  too conservative for systematic FEC codes. As noted above,
transmitted packet, it will either get lost with probability a major advantage of systematic FEC codes is that even if
Pi(i+1) and cause the burst length to increment by one, orthe entire group cannot be recoverée( X + Y > R),

Fig. 2. The Gilbert Model

get through successfully with probabilipo = 1 — p;(i+1) all the unmodified data packets that arrive successfully are
and reset the burst length @o No other state transitions are still available. To capture the performance of systematic
allowed. So the model is fully specified yparameterg;, FEC codes, we use a new metri&ggc), which is more
and the corresponding transition matrix has o2ty non- difficult to optimize and calls for the development of new
zero entries. optimization algorithms (in Section 1V-B).

Poo Pio P20 - P(n—2)0 P(n—1)0 Later in Section V, we will thoroughly compare our algorithms

por 0 0 .- 0 0 with the algorithms proposed in [19] along with several other
P=1 0 p2 0 - 0 0 baseline algorithms, and show that our algorithms significantly

out-perform the existing ones under bursty losses.
0 0 0 - pPm-—2)(n-1) Pr-1)(n-1)
(2

Note that all our analytical results in this paper apply to thg Allocation Algorithms

General Markov Model (thus also to the other modefyr.

practical implementation purposes, however, we only focusWe decompose the original optimal allocation problem into
on the Extended Gilbert ModeRs shown in [32], [20], the the following two sub-problems:

Extended Gilbert Model achieves a good balance betwq(?rbiven an allocation{(d
model accuracy and simplicity — it is much more accurate than
the 2-state Gilbert Model, while only requires parameters to This is challenging because random variabfsand Y
be estimated (as opposed in the General Markov Model). are convolutions of random variables and y; (i.e. the

Why are new algorithms and techniques required?The  numbers of lost data and redundant packets on fasimd
problem of using redundancy to cope with failures has recentlyhave no close form in general. In Section IV-B.1, we address
been considered in the context of Delay Tolerant Networksthe challenge by approximating the joint distribution Xf
(DTNs) by Jainet al. [19]. They use a similar problem andY as a bivariate normal distribution.
formulation to optimally allocate packets in an FEC group ono How to find an allocation{(d;,r;)} that minimizesXrgc?
different paths. Given such similarity, one may be tempted The key challenge here is the enormous search space. Given
D data packets an® redundant packets, there afe’+%
different ways of allocating them onty different physical
P.es Paths. For even moderate FEC group sizes, this is already
a too big search space for a brute-force approach to work
(e.g., 20-packet FEC group using 3 paths has 3486784401
combinations!). To address the issue, we develop an effi-
cient dynamic programming algorithm to find an optimal
allocation in Section IV-B.2.

i, 7:)}, how to computeXggc, the
expected number of lost data packets after applying FEC?

Po: P Pn-20-1)

consecutive
loss losses
plO

Pz

Poo :1_':31

Fig. 3. The Extended Gilbert Mode



1) Approximating Xrpc: Our first task is to estimate In the special case whep = 0 (i.e, X and Y are
Xrrc, the expected number of lost data packets after applyiimglependent), (3) can be further simplified into

FEC under a given allocatiof(d;,r;)}. As noted above, our ] onx)?  (ypiy)?
basic strategy is to approximate the joint distributionoind P(z,y) = —e % % | (4)
Y with a bivariate normal distribution. Such normal approxi- 2roxoy

mation is reasonable when the number of independent paths i©ur experience through extensive simulations suggests that
large and the allocatiofi;, ;) on each path is relatively smallthe correlation of X and Y (i.e, p) is often very small
compared to(D, R). In addition, our experience suggestgvhen multiple paths and sufficiently large FEC group size are
that even when these conditions do not hold, the allocatibsed. For practical purposes, its effect can be safely ignored
obtained using the normal approximation tends to work wetpmpared to the effects ofy, ox, 1y, andoy. We therefore

in practice. Similar positive experience has been reported Wil use (4) in the rest of the paper in the interest of simplicity

[19]. By replacing the discrete summation in (1) with a continu-
As shown in the Appendix , we can derivg[z;], E[y;], OUsS integral, we can then approximaterc by
Vzi], V]y:], andcov[z;, y;] as functions of a given allocation D oo
{(d;,r;)}. Our analysis takes into account the fact that dif- Xfrc = / / x P(z,y) dy dx 5)
ferent values ofd;, ;) can affect the burstiness of the packet Dﬂ”zo y=R-o ) )
loss observed on a pathThis phenomenon has been reported ~ _ / /°C x e—%— (y;:zYY) dy dx(6)
by several recent studies. For example, the authors in [34], 2=0 Jy=R—z 2TOXOY
[4] show that burstiness of probing traffic significantly affect _@—nx)?
the burstiness in the observed loss rates. As the inter-arrival Pe Xk 1+ erf| Y +z—R dz (7)
of probing packets increases, the observed loss burstiness /.'10:0 2020 x s\ V20y *
decreases. h g oz )
Based onE[z,], Ely, Viz], Vv, and covlzs, ], we where erfz) = == [“e " dt is the error function [37]. We

then compute the statistics of the total numbers of lost d#t@" then numerically evaluat€gy, . using standard software
and redundancy packets as follows. k&t andox denote the Package such as Matlab. _

mean and standard deviation &, respectively. Lefuy and ~ 2) Dynamic Programming Based SolutiorOur second
oy denote the mean and standard deviatiol pfespectively. Major task is to find an optimal allocatiof(d;,r;)} that
Letoxy = cov[X, Y] be the covariance ok andY'. In order MiNIMizes Xy, as defined in (7). The main challenge here
to deriveux, ox, py, oy, andoxy as functions of a given S that X7, does not have close-form and cannot be easily

allocation {(d;,;)}, we will assume thatosses on different transformed into simple objective functions. Fortunately, from
paths are independent from each otheater in Section Iv- (7) We can show thak &, is monotonically decreasing with
E, we will discuss technigues that can be used to detect df§Pect o botlrx andoy.

remove paths with shared congestion. Under the independenc@Yr high-level approach to traffic allocation under no ca-
assumption, we have pacity constraints is as follows. We enumerate all possible

values ofux, and use dynamic programming to find the data

N N allocation that results in the minimumy for each given
px = ZE[%‘]» 0% = ZV[%‘] wx. Similarly, for all possible values ofiy, we determine

i i the allocation of redundancy packets that minimizgs for

N 5 N each givenpuy. Then we plug all(ux,uy,ox,0y) into
Hy = Z Elys], Iy = Z Viy:) Equation 7, and find the allocation that minimiz&§%,. The

monotonicity of X5, with respect toox and oy ensures
that the final solution gives the best possiBig;.. Later we
will extend the idea to handle capacity constraints.

Below we first describe how to determine the allocation that
minimizesox andoy givenuy anduy. Then we show how
to use these solutions to solve the original allocation problem.

Subproblem: Variance Minimization. Let E{x;|d; = k}

N
oxy = Y covlz;,yi]
i

We can then approximate the joint distributionX¥fandY
by a bivariate normal distribution with probability function

Plo.y) = 1 exp [_ z ] (3) andV{zild; = k} denote the average and variance of data
’ 2roxoy /1 — p? 2(1—-p%) ]’ losses on path when pathi is allocatedd; = k data packets.
To apply dynamic programming, we need integer values of
where E{z;|d; = k} andV{x;|d; = k}. So we scale them bj. Let
_(@—px)? (- px)y—py) | (y—py)?  edli k] = [B{wild; = k}| andudli, k] = [V{wild; = k}A|
Z= 0% N oxOy + o2 be the scaled, discretized mean and variance; pfvhere |- |
is the floor function (i.e., taking the largest integer no larger
and than the input). We can pre-computd|i, k] andvd[i, k] for
p=corlX,Y] = IxY V1l < k <D andVl <7< N as shown in Appendix .
Ox9Y Define a data loss variance minimizationproblem
is the correlation ofX andY'. dlvmm(d, p, e, c) as the problem of allocating data packets



onto the firstp paths to minimize the total variance whileintroducing a new capacity constraint to ensure that the
satisfying capacity constraints and the constraint that therate for sending redundancy packets on patannot exceed

total mean ise. Formally, the residual capacity of path(after sending its allocated data
p packetd;).
dlvm(d, p, e, ¢) : minimize Zvd[i7di] The solution to the allocation problem with capacity con-
i=1 straints can be sub-optimal. Due to capacity constraints, the
b di=d allocation of data packets is now coupled with the allocation of
subject to P_edli,d;] =e redundancy packets. Such coupling further increases the search
d; < cli],Vi space. For efficiency, we decouple the data and redundancy

llocation by first optimizing data allocation (while ignoring
he capacity consumed by redundancy packets), and then
optimizing redundancy packet allocation based on remaining
opt(d, p, e, c) =min {vd[p, k| +opt(d—k,p—1,e—ed[p,k],c)} capacity. Such decoupling may result in sub-optimal solution.

Ea In practice, however, we find through extensive simulations

So we can apply a dynamic programming algorithm to soifgat the solution we obtain tends to perform close to optimal.
dlvim(d,p,e,c) forall 0 <d < D, 1 <p< N,0<e<
Erax, Where E,, ... controls the granularity of the solutions. 1
The complexity for this algorithm i€ (D?N E,.x)- 2. for e =110 Fpax

Similarly, we can define aedundancy loss variance mini- 3 {d;} = an optimal solution ofllvin(D, N, ey, ¢)
mizationproblemrlvm(r, p, e, ¢) as the problem of allocating 4. di=¢;—d;,V1<i<N
5
6
7
8

Let opt(d,p,e,c) be the variance achieved by an optim
solution todlvm(d, p, e, ¢). We have

solve alldlvm(d, p, e, ¢) via dynamic programming

r redundant packets onto the figspaths to minimize the total solve allrlvm(r, p, e, ) via D.P.
variance subject to the constraint that the total mean We for es =1 t0 Epax

can solverlvm(r, p, e, ¢c) again using dynamic programming. {r;} = an optimal solution oflvm(R, N, e, ¢)
Traffic allocation under no capacity constraints. We are computeyx, py, ox, oy under{(d;, )}
now ready to solve the original allocation problem. Let us first| computeXppe

consider the unconstrained allocation problem, whgre co. 10. store{(d;,r;)} if it is the best so far

In this case, data packets can be allocated independently 11. end

from redundancy packets. So the final allocation is to allocate 12.end ) . .
data packets such thdlvm(D, N, e1, c0) is minimized, and 13.return {(di,r;)} that gives the minimunX ;.
allocate redundancy packets such thhtm(R, N, ez, 00) is  Fig. 5. Traffic allocation problem under capacity constraints.
minimized. The algorithm is illustrated in Figure 4. It searches

through all possible values @fy anduy, and determines the 3) Packet Spreading Algorithmin Section IV-B.1 and
allocation that minimizesx and oy for each givenux and Section IV-B.2, we derive the traffic allocation (i.¢(d;,r;)}

uy. Note that the discretization may introduce some errdor each pathi). For the same allocation, different ways of
However, our experience from extensive simulations suggeassigning packets onto paths can result in different observed
that with sufficiently largeFE,,.x (e.g, 500), the algorithm loss burstiness. The burstiness in the observed loss increases

tends to perform close to optimal. with the burstiness in traffic. So we should try to spread the

packets allocated on the same path as evenly as possible. This

1. solve alldlvm(d,p, e, c0) andrlvm(r, p, e, 00). reduces burstiness in experienced packet losses, and enhances

using dynamic programming effectiveness of FEC. To achieve this goal, we develop a

2. for e = 11t0 Fpax simple packet spreading algorithm, as described in Appendix .

3. {d;} = an optimal solution ofllvm(D, N,e;,0oq) For a given allocation{(d;, r;)}, it determines exactly which

4.  for es =11t0 Fhax packets in an FEC group should be allocated onto which paths

5. {r;} = an optimal solution oflvm(R, N, e,, po) SO that the final loss rate is minimized.

6. computeuy, py, ox, oy under{(d;,r;)}

/. computeXppc C. Estimating Parameters for the Loss Model

8. store{(d;,r;)} if it is the best so far ) i )

9. end The effectiveness of the above traffic allocation scheme

10.end depends on the accuracy of the loss model estimation. In our

11.return {(d;, )} that gives the minimuniz, . evaluation, we use extended Gilbert loss model, and estimate

, _ : , , its transition matrix (in Equation 2), as shown in [32].
Fig. 4. Traffic allocation under no capacity constraints.

n—1
Traffic allocation under capacity constraints. When net- DPo1 = (Z m;)/mo
work paths have capacity constraints, allocation of redundancy i=1
packets is dependent on the allocation of data packets to n—1 n—1l
ensure the capacity constraints are satisfied. To incorporate Plh—1)k = (Z mi)/( Z m;)
capacity constraints, we modify the previous algorithm by i—k i



where m; denotes the number of loss bursts with length B. Trace-driven Simulation

where i = 1,2,..,n — 1 and mo denote the number of e collect Internet traces by sending 16-byte ICMP echo
delivered packets. packets from 57 hosts on PlanetLab to 55 popular Web sites,
Since network path properties change over time, we predigdlected from the 100 popular websites listed at [1]. We
future network performance using previous intervals. run zing and tcpdump concurrently on each PlanetLab host.
To capture bursty loss behavior, zing is modified to generate

ICMP echo packets with an inter-packet arrival of 2 ms.
Tcpdump is used to captured ICMP echo-reply packets. In
We derive the allocation scheme given the number @fder to avoid PlanetLab hosts to drop packets when the
redundant packets R per FEC group. In practice, we can g@blng traffic are too bUfSty. We introduce 1 second idle time
greedy search to find the minmum R value which can satisByery 1 second bursty traffic. Each measurement experiment
target loss rate (e_g_,]_e-G)_ As a result, we can reduce {ﬂ@ts at least 800 seconds. Figure 6 shows the CDF of raw loss
bandwidth overhead. rates. About 78.5% of paths have loss rates below 2%. The

mean loss rates of these paths is 0.0175.

Each trace is divided into 20 intervals, so each interval is a

E. Handling Shared Congestion 40-second trace. We apply different traffic allocation schemes
n each 40-second interval. For all the evaluation, we use
. . . Ec group size of 40 packets (including data and redundancy
physical paths are independent. In practice, we may h gckets), and adapt traffic allocation every interval. Two kinds

some paths that share a common bottleneck. In this ca evaluation results are shown. One is oracle result in which

the loss rates on these paths are highly correlated. To ha !E,?assume current network path performance can be known
such cases, we can apply an existing technique to det{er

hared i A b f techni h b 8511 Oracle and there is no prediction errors. The other one is
shared congesfion. A number ol techniques have been p|r5?édiction result in which current network path performance is
posed for this purpose, such as cross-correlation-based

proach [31], entropy-based approach [22], and wavelet-ba : dicted from previous intevals. Table |l shows probabilities
approach [23]. We then treat the set of paths that sh of SmartTunnel to achieve loss free reliability. When there is

: : . prediction error, SmartTunnel can achieve loss free with
congestion as one path, and apply our traffic allocation SCheB}(?)bability up to 0.9991 if it uses 6 paths. It can also achieve
to the merged paths. around loss free with probability 0.94 even with only 2 paths.
If we consider prediction errors, SmartTunnel can also achieve

D. FEC redundancy adaptation

In the previous discussion, we consider loss rates on tE

V. PERFORMANCEEVALUATION loss free with probablllty from 0.85 to 0.93.
In this section, we first introduce our evaluation methodol- 2Path| 3Path | 4Path | 6Path
; . Oracle | 0.94 | 0.9852| 0.996 | 0.9991
ogy and then describe evaluation results. Prediction | 085 | 088 | 0.91 | 09267
TABLE II

A Evaluation Methodology PROBABILITIES OF SMARTTUNNEL TO ACHIEVE FOUR9S RELIABILITY
We evaluate the performance of SmartTunnels using thel) Oracle results:We compare different traffic allocation
following three ways: (i) Internet trace-driven simulation, (ilschemes by varying the number of available physical paths,
ns-2 simulation, and (iii) experiment on PlanetLab. These thremdundancy level used in FEC, and quality of the paths. For
evaluation methods are complementary to each other. Tragach experiment configuration (e.g., a fixed number of paths
driven evaluation allows us to extensively evaluate the perfao the same website and combination of path property), we
mance of SmartTunnels under realistic Internet performancenduct 20 random runs (i.e., selecting 20 different combina-
characteristics; ns-2 simulation allows us to study the intaiens of traces used for evaluation), and report the summary

actions between multiple tunnels in a controlled environmergtatistics from these runs.

and real experiment allows us to understand the benefit and

overhead of SmartTunnels in a real network. 08
We compare the following traffic allocation schemes: 08

e SmartTunnel: This is the algorithm we describe in Sec-
tion V. 05

e Markowitz numeric (MkwNu): This is the algorithm 04
proposed in [19]. It maximizes the Sharpe-Ratio [3] by 03
solving a series of quadratic optimization problems. o

e Round robin (RR): Traffic is assigned to multiple physical
paths in a round robin fashion.

o Greedy: Traffic is assigned to the path that has the lowe5ig- 6. Path raw loss rates

loss rate.When multiple paths experience the same loss ratefo systematically study the performance, we categorize
one path is selected randomly among them. results into different scenarios based on the number of low

1
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0.1

0
0 0.05

0.1 0.15 0.2 0.25
loss rate



K=7 K=10 K=14
0.0067 | 0.0046 | 0.0031
0.0003 | 0.0002 | 0.0001

loss paths selected. Low loss paths are paths whose loss rates
are below 2%. This classification is used in [39]. Results are

OOOO
I

WNEFO

shown in Table 1lI, Table IV and Table V. Let K denote the 0.0001| O 0
number of redundant packets and G denote the number of 0 0 0
TABLE VII

low loss paths chosen. We make the following observations.
First, in all cases SmartTunel is the best performing algorithm. MEAN LOSS RATES OFSMARTTUNNEL USING 3 PATHS
Second, when all paths are low loss paths, SmartTunel can

achieve loss free relia_bility for 94.47%-99.81% of time. Thirdl‘s statistical significance test for analyzing categorical data

SmartTunnel uses high loss paths much better than othenla ; .

algorithms. For example, when all paths are high loss patlfs, < < sample sizes are small. LBIV[JZL > i} denote the

Sr?lartTunr;el can achFi)ev'e loss freepreliability fo? aroundp6°}o1-LMber of predicted loss runs whose lengths equal or exceed
and AN[RL > i] denote the number of actual loss runs

% more time interval mpar her algorithm. It i .
35% more time intervals compared to other algorit t vs\l’/hose lengths equal or exceedWe use Fisher test to test

interesting that when high loss paths are selected, Gre : _ )
algorithm is almost the second best algorithm. Fourth, ?ﬁg hypothesis thaPN[RL > i] out of PN[RL > ¢ — 1]

those cases with three physical paths selected, the differe{?sgé: onsistent WithAN[RL > i| out of AN[RL > 4 —1].
lle

. : . e computeP-value in the Fisher test. It measures statistical
between various traffic allocation schemes becomes sma

P . N
when the number of redundancy packets increases. This St _mﬁgance. WhenP—vaIue IS abqve 0.01, 't. |nd|catgs that
X . o : {ftere isno evidence that the predicted datanst consistent
gests that the choice of traffic allocation is more mporta%ith the actual data
when there is limited bandwidth. '

1

4
@
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PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY
UNDER 4 PATHS OR 6 PATHS RANDOMLY CHOSEN FROM THE TRACES

4Path, K = 7| 6Path, K=7 T
SmartTunnel 96.99% 98.65% . . ¥
MkwNU 94.73 % 97.13% -
RR 75.45% 90.16% g
Greedy 94.73% 97.19% 200
TABLE V g

+ 40s
+ 80s
x 160s
B v 320s

o
@

0.75
0 1 2 3 4 5 6 7 8 9

Table VI and Table VII show mean loss rates of Smart- i
Tunnel with different number of low loss paths selected arfdy. 7. Fraction of samples that pass the Fisher test for different loss run
different number of redundant packets. We can derive tff@9th values.
expected loss rate of N-Path SmartTunnel as follow. Figure 7 plots the fraction of cases where the hypothesis
Let P denote the probability a selected path has loss rgiasses the Fisher test. We use different length of history traces
lower than 2% and.(G = i, K = j) as the mean loss rate ofto predict current network performance. As it shows, test re-
SmartTunnel wherty =i and K = j. Then we can compute sults are not sensitive to the length of history traces. The main

the expected loss ratey x—; of N-Path SmartTunnel. difference is when = 1. In practice, we prefer to use longer
N history trace to do the prediction because it is more stable.

Ly k=i = ZL(G =i, K =j)* P.(G =) In the following evaluation, we use the loss transition matrix
i=0 of previous 320 second trace (8 intervals) as the prediction of

N the current interval. 76% time intervals pass the Fisher test
ZL(G =i,K=7)*Cy+P'x(1—-P)N"" wheni =1, and over 94% intervals passes Fisher test for a
=0 largeri. This suggests that the temporal dependency between
For example, when N = 2L, 7 = 8x10~%. We find out consecutive loss events is more predictable than the transition
that the expected loss rate of 3-Path SmartTunnel can beff@§n no loss to loss. Overall we observe that the predicted loss
small as5 x 10~° when K is 14. transitions match reasonably well with the actual values. This
suggests that it is possible to apply traffic allocation based on
past performance.

K=7 K=10 K=14
0.0101 | 0.0071 | 0.0054

8;2 0.0009 | 0.0004 | 0.0003 3) Trace-driven evaluation resultsTable VIII, Table IX
G =2 | 0.0001 0 0 and Talbe X show trace-driven results with prediction. Smart-
TABLE VI Tunnel out-performs the other schemes in all senarios except
MEAN LOSS RATES OFSMART TUNNEL USING 2 PATHS one in which there are three low loss rate paths and K is 14.

This is because the performance of SmartTunnel reduces from

2) Predictability of Path PropertiesFor a traffic allocation 99-81 % to 97.64% due to prediction errors while prediction
to work well, we need to be able to predict future network pafirors do not affect the performance of round robin.
performance. In this section, we study the predictability of loss _ )
rates. C. NS-2 Simulation

We apply Fisher exact probability test [12] to compare the In this section, we study the interactions between multiple
predicted and actual loss transition matrices. The Fisher t&hartTunnels using ns-2 simulations. Figure 8 shows the



K=7 K =10 K=14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0
SmartTunnel| 94.47%  79.45%  31.12% 98.88%  89.62% 52.95% 99.09%  93.81% 63.30%
MkwNU 87.91% 75.40% 25.51% 95.36% 84.58%  40.84% 98.20% 90.93%  53.40%
RR 82.82%  48.09%  16.73% 91.52% 64.51% 40.11% 92.04% 74.80%  49.53%
Greedy 88.86%  77.71%  27.85% 94.79%  85.87% 44.53% 97.80% 90.60% 53.21%
TABLE Il

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER PATHS RANDOMLY CHOSEN FROM THE TRACES

K=7 K =10 K=14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0
SmartTunnel| 98.71 % 96.80 % 88.20 % 48.82 % 99.61 % 98.82 % 93.58 % 65.86 %99.81 % 99.62% 97.25% 77.84 %
MkwNU 96.35% 93.84% 84.96% 33.09 %98.80% 97.26 % 90.76 % 47.73 % 99.67 % 99.02% 94.78% 64.79 %
RR 9053 % 6451 % 35.73% 14.77 %93.84 % 79.05% 55.22% 33.27 %99.78 % 96.93 % 82.88% 61.60 %
Greedy 96.00 % 94.49% 86.08% 42.82%97.73% 96.60 % 90.43% 53.23%98.92% 9844 % 93.94% 61.08 %
TABLE IV
PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER PATHS RANDOMLY CHOSEN FROM THE TRACES
K=7 K =10 K=14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0
SmartTunnel| 90.46 % 77.25% 27.76% 96.18% 87.12% 50.21% 97.35% 91.25%  59.25%
MkwNU 83.66 % 73.53% 20.47% 91.27% 83.30% 37.47% 96.22% 89.25%  49.81%
RR 82.76%  48.19%  17.38% 91.36% 64.41% 39.89% 91.95% 74.45% 48.87%
Greedy 84.85%  76.18% 27.10% 90.82% 85.07% 42.63% 95.15% 89.22% 52.26%
TABLE VIl
PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER PATHS RANDOMLY CHOSEN FROM THE TRACES
K=7 K =10 K= 14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0
SmartTunnel| 94.42 % 92.31 % 8546 % 41.77 %96.39 % 95.39% 90.49 % 58.18 % 97.64% 97.06 % 94.14% 71.08 %
MkwNU 91.32% 8931 % 8261% 2577 %95.03% 93.61% 88.79 % 40.68 %97.22% 96.28% 93.31 % 59.67 %
RR 90.52 % 64.48% 3543 % 1527 %93.84% 7854 % 5490% 33.05%99.76 % 96.92% 8246 % 61.31 %
Greedy 91.37 % 90.62 % 84.69 % 39.36 %93.82% 93.37 % 89.03% 49.23 % 96.09 % 9556 % 9242 % 57.14 %
TABLE IX

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER PATHS RANDOMLY CHOSEN FROM THE TRACES

Path, K= 7] 6Path, K=7 _ . .
smartunnel| oo 4a0n 6 o0 Overall both reliability and fairness are achieved.
MKwNU 90.01 % 93.82%
RR 75.51% 90.73% 5
Greedy 90.64% 93.06%
TABLE X

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY

UNDER 4 PATHS OR 6 PATHS RANDOMLY CHOSEN FROM THE TRACES 10.3ms

S1 10ms  50ms 50ms 10.2ms (T) R1
OMbps  10Mbp! 1Mbps 10Mbp:
A D
1oms %Oﬁ Oro
S2 10Mbps 10Mbps c 1Mbps 10Mbps

Fig. 8. Network topology used in n2-simulation. Two tunnels S1-R1 and S2-
R2 share two physical paths. S1 sends 0.7 Mbps CBR traffic, and S2 sends

network topology used in the evaluation. Both senders ugé Mbps CBR traffic. Low-rate Pareto traffic is introduced as background

ic on links BD and CD. In addition, links BD and CD use Gilbert-loss
3 redundancy paCkets per FEC group, where each FEC grénrﬁc%els to drop traffic, where the loss transition matrix at B is [0.985 0.015;

consists of 13 packets in total. Figure 9 shows the evolution ®ks 0.55), and that at C is [0.99 0.01; 0.35 0.65].

loss rates experienced by 2 SmartTunnels that share physical

paths. To stress test, we initialize their allocation to both ]

use path A-B-D. Due to poor initial allocation, both tunnel®- Experiments on PlanetLab

initially experience high loss rates before and after FEC. ThisWe implement SmartTunnel using click [24] on PlanetLab.
also highlights the importance of appropriate traffic allocatiour implementation is around 2500 lines of C++ code. Click
on end-to-end reliability. Then the two tunnels continuousig a flexible and configurable router architecture. It consists of
adapt their traffic allocation according to their monitoreg@acket processing modules, callelémentsExisting elements
performance every time interval. At interval 7, both tunneli click include queueing, scheduling, and interfacing with net-
converge to low loss rates before FEC, and close to O logsrk devices. We add the following elements to click to pro-
rate after applying FEC. Figure 10 further plots the datdde SmartTunnel functionalities: (i) monitors at both sender
allocation of two tunnels on these paths. As we can see, theayd receiver to cooperatively monitor network performance
converge to an even share of network resources, both allocatirsing either active probing or passive probing, (ii) a traffic
5 data packets on two paths. Similar fair allocation is achievelistributor that stripes traffic according to the controller’s
for redundancy packets (not shown in the interest of spacspecification, (iii) an encoder and decoder that apply FEC
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(a) Loss rates before applying FEC. (a) SmartTunnel S1-R1 data allocation on 2 paths.
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(b) Loss rates after applying FEC. (b) SmartTunnel S2-R2 data allocation on 2 paths.
Fig. 9. Loss rates dynamics of the 2 competing SmartTunnels in ns-2. Fig. 10. Data allocation dynamics of the 2 competing SmartTunnels in ns-2.
Controller Data Data

encoding and decoding using the public FEC software [28]

and add/remove SmartTunnel header, and (iv) packet buffering. e \{ 1mmeee- {----------C-";I;----:
Figure 11 shows the diagram of different components in our i sender o | receiver |
implementation. ToSocket and FromSocket in the figure are ! : b | Packet :
the existing elements in click to provide sending and receiving | ' i
functionalities, and the other elements in the figures are what Monitor gt | decoder Monitor |
we implement. At the sender side, the controller, implemented : i ] ; i i
outside the click, coordinates with different click elements by | . | e ;

specifying monitoring instructions, an FEC coding scheme, a '

traffic allocation scheme. The receiver logic is much simplerig. 11. SmartTunnel implementation in click.

on the data path, it decodes and buffers packets; on the control

path, the monitor responses to active probes from the sendert work well because the loss is too bursty. Every one minute,

and also periodically sends back performance information f8martTunnel computes the new traffic allocation based on its

the paths that carry traffic. observed performance. SmartTunnel is pretty 'smart’. Among
Figure 12 plots the encoding time for different numbers dhese three paths, Path Il has lowest loss rate and smallest loss

redundancy packets for a 40-packet FEC group, where eaeiance. SmartTunnel put around 60 % traffic on it. Instead

packet has 1024 bytes. The encoding time includes time abputting all traffic on the best path, SmartTunnel also uses

generate redundancy packets and time to add SmartTunmertse paths (i.e, put around 13% traffic on Path I). After 4

headers. The number is measured when click is running nainutes, SmartTunnel achieves almost full reliability.

user-level mode on 3.2 GHz desktop. As we would expect,

the encoding time increases with the number of redundanky Summary

packets we need to generate. The data rate we can suppoTio summarize, in this section we evaluate the performance

varies from 0.56 Gbps using 20 redundancy packets to b8 SmartTunnels using trace-driven simulation, ns-2 simu-

Gbps using 2 redundancy packets. Such data rate is sufficigfion, and PlanetLab experiments. Our results show that

for most Internet gateways. Moreover, running at a kerngmartTunnel can achieve high reliability over a diverse set of

mode can further increase the rate. scenarios. Moreover our initial study of interactions between
In the experiment, we construct a SmartTunnel on top eifultiple smart tunnels suggests that they can co-exist well. We

three overlay paths between two hosts. The SmartTunnel up& to further investigate their interactions more thoroughly

10 redundancy packets per FEC group (each group with #0the future.

packets). Figure 13 (a) shows 15 minutes time series of path

loss rates before FEC and SmartTunnel loss rate after FEC. As VI. CONCLUSION

we can see, these three paths experience substantial loss ratés.this paper, we proposS8martTunnelan end-to-end ap-

Figure 13 (b) further shows the traffic allocation on these pathsoach to achieving high reliability. It applies FEC and allo-

over time. Initially all traffic are allocated on Path I. FEC doesates traffic onto multiple physical paths to minimize loss rates
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APPENDIX Covlz,y] = —E[z]Ely] + Elz y]
Consider an FEC group that consists Df data packets a
followed by R redundant packets. Suppose we allocdte = —E[IE]+ Y Y Y kiko®im (ku|d) D), (kalr)
data packets and redundant packets to an individual path. im,j€S k1=1ko=1

Let random variables: and y denote the number of lost The sending rate can have a significant impact on the

data packets and the number of lost redundancy packetshomstiness of packet loss. Specifically, I&5 be the transition

this path, respectively. Our goal here is to derive statistigsatrix for the General Markov Loss Model when we sdnd

for packet loss, including mearE(x], E[y]), variance {'[z], data packets along a given path (at the average data arrival rate

Vy]), and covariance({ov|x, y]). of the SmartTunnel). LeP; be the corresponding transition
We will consider the General Markov Model for packet lossnatrix for the General Markov Loss Model when we only

So our results generalize the analysis by Zatial. [40], sendd data packets along the same path. It is easy to see that

which is based on th&-state Gilbert-Elliott Model. Supposeif we send thesel data packets in an evenly spaced fashion,

the loss model for the data packets is a General Markov ModeE sending rate is reduced by a factoriofd. As a result,

with state sefS, loss probability vectol, = [¢;], and transition we have

matrix P = [p;;]. The loss model for the redundant packets has Py = (Pp)P/? (12)

the sameS and L but a different transition matri®’’ = [p;]. e . .

Note that data packets and redundant packets have differdRich in general is less bursty thay, itself.

transition matrices because they may have different sendingjlme that (11) assumes thétlivides . In a more general

rates. In Appendix we will describe how the sending rafé*>®: letfo = [D/d], f = [D/d], no = D mod d, n =
determines the transition matrix. d — ng. Among thed data packetspg will have transition

: i : . (P
Let @,;(k|n) be the probability for & out of  data packets Matrix (’p)™ andn; will have transition matriXPp)™". So

are lost and the initial state, — i and end state, — ;7. W ¢an approximaté; as their weighted average

Clearly, ®,;(k|n) satisfies P, = o (PD)fn M (PD)fl (12)
d d
ij(kln) :Z[q)“”(—k_””_l)ém + @im (kln—1)(1~Cm)Pmj  Similar results hold for the redundant packets.
mes 8 Therefore, given an allocatiofi(d;,r;)}, we should try to

spread the packets allocated on the same path as evenly as
possible. To achieve this goal, we develop a simple packet
spreading algorithm, shown in Figure 14. The algorithm is
used to offline determine which packets should be allocated
onto which paths within an FEC group. This offline compu-
tation incurs low overhead, and is one-time cost for a given
FEC group size. Then the derived packet spreading strategy is
applied to incoming traffic continuously.

As shown in Figure 14, the algorithm allocates traffic using
®;j(kln) =0, if k<0orn<0 (9) a credit-based scheme. Each path is associated with a credit.

®,,(0/0) :{ 0, ifi#y (10) The path with the largest number of credits is selected to

Here®,,,(k—1|n—1)¢,,p, gives the probability for k-1 out
of the firstn—1 data packets are lost and the initial stage= i
and end state,, = j and penultimate state, ; = m and the
n-th packet is lost”. Similarly®;,, (k|n—1)(1 —{,,)pm; Qives
the probability for 'k out of the firstn—1 packets are lost and
the initial statesy = 7 and end state,, = ;7 and penultimate
states,; = m and then-th packet is not lost”.
In addition, the following initial condition holds:

m, fi=7j transmit the next packet. The credit of a patls updated as
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indi] =d;/D,Vi=1,--- N,
credifi =0,Vi=1,--- ,N;
fort=1to D
credifi]+=incfi], Vi=1,--- | N;
imax = arg max;{credifi};
t-th data packet is sent by path..;
credifimax] ——;
end

©ooaAWNE

N
»

Fig. A simple packet spreading algorithm.

follows. Each time a new data packet is transmitted (regardless
of which path transmits it), pathearnsd; /D credits (so after
seeing allD data packets, it earng credits). Each time path

1 transmits a packet, it consumes 1 credit. We apply the same
strategy for sending redundancy packets but change the credit
increase rate to;/R.
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