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Abstract— Reliability is critical to a variety of network appli-
cations. Unfortunately, due to lack of QoS support across ISP
boundaries, it is difficult to achieve even two 9s (99%) reliability
in today’s Internet. In this paper, we propose SmartTunnel, an
end-to-end approach to achieving reliability. A SmartTunnel is a
logical point-to-point tunnel between two end points that spans
multiple physical network paths. It achieves reliability by strate-
gically allocating traffic onto multiple paths and performing FEC
coding. Such an end-to-end approach requires no explicit QoS
support from intermediate ISPs, and is therefore easy to deploy
in today’s Internet. To fully realize the potential of SmartTunnel,
we analytically derive the near-optimal traffic allocation schemes
that minimize loss rates. We extensively evaluate our approach
using trace-driven simulations, ns-2 simulations, and experiments
on PlanetLab. Our results clearly demonstrate that SmartTunnel
is effective in achieving high reliability.

I. I NTRODUCTION

Many applications, such as Voice over IP (VoIP), video
conferencing, streaming media, gaming, and online trading
have stringent requirements on end-to-end reliability. Unfor-
tunately, today’s Internet does not even provide two 9s (99%)
reliability [27], [9], [21], [15]. This is considerably lower than
what the public switched telephone network (PSTN) offers
today (three to four 9s).

Achieving end-to-end reliability is hard in the Internet for
several reasons. First, there lack both incentives and mech-
anisms for ISPs to cooperate. This implies that it is hard
to provide reliability guarantees across ISP boundaries. As
a result, while it may be possible to achieve high reliability
within an individual ISP, the reliability of end-to-end paths,
spanning over multiple ISPs, is significantly lower. Second,
numerous measurement studies [38], [32], [5], [6], [20], [39]
have shown that Internet packet loss often exhibits burstiness
(or temporal dependency). Bursty losses pose significant chal-
lenges to protect against. While forward error correction (FEC)
coding is useful to protect against random losses, bursty packet
losses significantly affect the effectiveness of FEC.

To address these challenges, we proposeSmartTunnelto
achieve reliability in today’s Internet. A SmartTunnel is a
logical point-to-point tunnel between two communicating end
points that may physically span multiple Internet paths. It
achieves reliability by properly allocating traffic across dif-
ferent paths and applying FEC coding. Such an end-to-end
approach requires no explicit QoS support from intermediate
ISPs, and can be directly applied to end hosts or Internet
gateways. Therefore it is easy to deploy in today’s Internet.
Moreover, the simple tunnel abstraction can be naturally

incorporated into applications and services such as virtual
private networks to improve reliability.

To realize the potential of SmartTunnel, we analytically
derive near-optimal traffic allocation schemes that optimize
end-to-end loss rates under bursty loss.

Our key contributions can be summarized as follows:
• We propose SmartTunnel abstraction to provide end-to-end

reliability. It serves as a thin waist at the network layer.
This abstraction immediately supports diverse upper and
lower network layer technologies without modification. It
can also be easily incorporated into VPN services. Therefore
SmartTunnel is easy to deploy in today’s Internet.

• We analytically develop near-optimal traffic allocation
schemes to optimize end-to-end loss rate in the presence
of bursty packet losses. We further implement SmartTunnel
using the click modular router [24].

• We extensively evaluate the effectiveness of SmartTun-
nel using trace-driven simulation, ns-2 simulations, and
PlanetLab experiments. Our results show that SmartTunnel
is effective in achieving high end-to-end reliability and
multiple SmartTunnels can co-exist well.
The rest of the paper is organized as follows. In Section II,

we survey related work. In Section III, we describe Smart-
Tunnel architecture. In Section IV, we present algorithms
that determine optimal traffic allocation. We describe our
evaluation methodology and results in Section V. Finally we
conclude in Section VI.

II. RELATED WORK

We broadly classify the related work into the following
three areas: (i) measurement of Internet reliability, (ii) overlay
routing and multihoming, and (iii) FEC based loss recovery.

Measurement of Internet reliability: Several measurement
studies have reported that Internet reliability is quite limited.
In particular, Paxson observed a routing pathology arises 1.5%
- 5% during 1994-1995. Dahlin [9], Jiang et al. [21], and
Gummadi [15] conducted large-scale measurement studies of
Internet path failures, and reported that Internet reliability is
often below two 9s (99%).

Overlay routing and multihoming: Several studies, such
as [33], [36], [30], have shown that the default routing path
is often suboptimal in terms of latency, loss rate, and TCP
throughput. To address these issues, a variety of overlay-
based techniques have been proposed to improve network
performance and resilience. For example, RON [30] allows



distributed applications to recover network path failures by
routing through alternative overlay paths. Harrison et al. [17]
uses edge-to-edge congestion control in an overlay framework.
It requires modifications to edge routers, which is hard to
achieve in practice. Duan et al. [10] provides QoS guarantees
by buying bandwidth with certain SLAs from ISPs. As a result,
its quality is highly dependent on the underlying network
provider. OverQoS [35] uses a controlled loss virtual link
abstraction to bound the loss rate. Since OverQos uses only a
single path, it cannot protect against highly bursty losses in a
timely fashion.

More recently, scalable one hop source routing (SOSR) [15]
proposes that upon path failures the source node randomly
chooses four nodes as relay nodes to re-route traffic. Their
results show that it can recover 20-56% failures. SOSR is a
reactive approach and requires failure indications. Therefore
it is suitable for recovering long-term failures, but not for
recovering bursty loss, which is our main focus.

There are quite a few research studies on the design and
evaluation of route control schemes for multihomed users.
For example, Cao et al. [8] propose using hash functions to
achieve load balancing among multiple links. In [16], the
authors compare several route selection schemes in a local
area network and show that hashing can achieve performance
comparable to load-sensitive route selection. Akella et al. [2]
quantify the potential performance benefits of multihoming
using real Internet traces. Their results show that smart routing
has the potential to achieve an average performance improve-
ment of 25% or more for a 2-multihomed user in most cases,
and that most of the benefit can be achieved using 4 providers.
In their follow-up work, the authors implement a Linux-based
route control based on either passive or active monitoring
schemes. Their experimental evaluation show that the route
control schemes offer 15% to 25% performance improvement.
The authors in [14] develop novel smart routing algorithms to
simultaneously optimize cost and performance for multihomed
users, and study the interactions between multihomed and
single-homed users.

SmartTunnel can be applied to both overlay paths and
multihoming paths. One of the fundamental differences be-
tween SmartTunnel and the previous work is that the previous
work uses only a single path (e.g., send traffic along the best
performing path). Due to bursty packet losses in the Internet,
using a single path yields limited reliability. In comparison,
SmartTunnel can achieve high reliability by simultaneously
using multiple paths.
FEC based loss recovery:Significant research work has
been done on the design and evaluation of forward error
correcting code, such as [29], [26]. Our work is orthogonal to
the development of FEC coding algorithms, and can directly
apply the existing systematic FEC coding schemes (i.e., FEC
codes that include unmodified original data packets in the FEC
group).

FEC coding has also been applied to multicast transmis-
sion [7], [25]. In these studies, only a single network path is
used for sending data to each destination.

Jainet al. [19] study the problem of traffic allocation onto
multiple paths to achieve high reliability. This is a pioneering

work on this subject. It is also the work closest to ours.
Different from our work, [19] targets delay tolerant networks,
and the proposed approach is based on very different loss
models from the Internet. In particular, they do not consider
bursty loss. As a result, their approach does not work well
for Internet paths, as we will show in Section V. Note that
in order to cope with bursty loss, it is necessary to develop a
completely different traffic allocation scheme (as opposed to a
simple extension to [19]). We will further elaborate this point
and compare SmartTunnel with [19] in Section IV-A.

III. SMARTTUNNEL ARCHITECTURE

SmartTunnel is a logical point-to-point tunnel between two
communicating end points that may physically span multiple
Internet paths. It sits at network-layer, and is transparent to ap-
plications. As shown in Figure 1, a tunnel source continuously
monitors the network paths, and provides the performance of
network paths to the controller. The controller applies the traf-
fic allocation algorithm, described in Section IV, to distribute
traffic onto multiple physical paths. On the data plane, data is
first delivered to FEC encoder, which generates redundancy
packets and hands over the resulting data and redundancy
packets to the traffic distributor that stripes packets according
to the controller’s specification. The tunnel destination decodes
and buffers data. Buffering is necessary to reduce packet re-
ordering, which can degrade TCP [18] performance. A packet
is delivered to uppper layers either when all the packets before
it have been received (or recovered) or when buffer is full.

Raw data
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Fig. 1. SmartTunnel architecture.

SmartTunnel can be deployed either at the two communicat-
ing end-points or at their Internet gateways. SmartTunnel can
also be easily integrated with current VPNs. Today’s VPNs
only provide reachability and security, but no reliability. By
running SmartTunnel sender and receiver at the VPN servers
of the two communicating points, network providers can offer
value-added services.

IV. SMARTTUNNEL ALGORITHMS

To fully realize the potential of SmartTunnel, we need to
address the following issues: (i) how to allocate traffic onto
multiple paths to minimize loss rates under realistic Internet
loss models, and (ii) how to measure path properties which
can be used for the allocation schemes. In this section, we
examine these issues in turn.
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A. Allocation Problem Formulation

First we formulate the traffic allocation problem for mini-
mizing packet loss rate. Table I summarizes our notations.

N number of physical paths
D number of data packets per FEC group
R number of redundant packets per FEC group
G FEC group size (G = D + R)
di number of allocated data packets on pathi
ri number of allocated redundant packets on pathi
xi number of lost data packets on pathi
yi number of lost redundant packets on pathi

X total number of lost data packetsX =
PN

i=1 xi

Y total number of lost redundant packetsY =
PN

i=1 yi

X̄FEC expected number of lost data packets after applying FEC:
X̄FEC =

PD
`=1 ` · Pr[X = ` ∧X + Y > R]

X̄≈
FEC continuous approximation of̄XFEC (see Section IV-B.1)

TABLE I

NOTATIONS

Consider a SmartTunnel from nodes to node d. Traffic
from node s to node d can take several differentphysical
paths, which can be provided by either multihoming or overlay
routing. LetN denote the number of physical paths available
to the SmartTunnel. When a packet is transmitted along a
physical path, it can get lost due to a variety of reasons, such
as routing loops, failures, and network congestion. To achieve
reliability, nodes applies forward error correction (FEC) code
to protect data packets that enter the SmartTunnel. Specifically,
for everyD data packets, nodes createsR redundant packets,
which together with all the data packets form an FEC group
of size G = D + R. The FEC code is designed to recover
from R packet losses. That is, when noded receives anyD
out of G packets in the group, it can reconstruct the entire
FEC group. If more thanR packets are lost, however, noded
can only deliver those successfully received data packets and
cannot recover the lost data packets.

Note that in this paper we only considersystematicFEC
codes, which include the unmodified input data packets in
the FEC group. Compared with non-systematic FEC codes
that alter the input data packets, one major advantage of
systematic FEC codes is that even if more thanR packets
are lost in an FEC group, all the received data packets can
still be delivered, whereas with non-systematic FEC codes
the entire group is lost. Another advantage of systematic FEC
codes is that no decoding is needed when no data packet is
lost. As a result, most FEC codes in practice are systematic.
One of the most famous systematic FEC codes is the Reed-
Solomon code [29], which we will use in our SmartTunnel
prototype implementation. Our experience suggests that highly
optimized software implementation [28] of the Reed-Solomon
code can achieve an encoding/decoding rate of over4 Gbps
on a 2.4 GHz Pentium IV processor.

Given an FEC group withD data packets andR redundant
packets, there areND+R different ways of allocating packets
in an FEC group ontoN physical paths. Different allocations
can result in different numbers of packet losses after applying
FEC. The goal of the SmartTunnel is to derive an optimal
allocation that minimizes the expected number of packet losses
after applying FEC. This problem can be formally specified

as follows.
Definition 1 (Optimal Allocation Problem):Let di and ri

be the number of data packets and redundant packets allocated
on pathi. Let random variablesxi and yi be the number of
data packets and redundant packets that are lost on pathi.
Let random variablesX =

∑N
i=1 xi andY =

∑N
i=1 yi be the

total number of lost data packets and lost redundant packets,
respectively. The optimal allocation problem is to determine
an allocation{(di, ri)} under which the expected number of
lost data packets after applying FEC is minimized. That is,

minimize X̄FEC ≡
D∑

`=1

` · Pr[X = ` ∧X + Y > R] (1)

where` = 1, · · · , D enumerates all possible values forX (i.e.,
the total number of lost data packets), and the summation gives
the expected number of lost data packets when FEC cannot
reconstruct the entire FEC group (i.e., whenX + Y > R).

Modeling Temporal Loss Dependency in the Internet:
To solve the above optimization problem, we first need to
understand the behavior of Internet packet loss. Numerous
measurement studies [38], [32], [5], [6], [20], [39] have shown
that Internet packet loss often exhibits burstiness. Burstiness
affects the performance of FEC because when a large burst
of packets are lost in an FEC group, FEC cannot recover the
lost data packets. It is therefore important to explicitly model
bursty loss in SmartTunnel.

A variety of models have been proposed to capture temporal
loss dependency, including the Gilbert Model, the Extended
Gilbert Model, and the Markov Chain Model [38], [32], [5],
[6], [20]. In this paper, we use the following General Markov
Model, which generalizes all the above models.

A General Markov Model has the following parameters:
• n states:0, 1, · · · , n− 1.
• A length-n loss probability vectorL = [`0, · · · , `n−1],

where`i denotes the packet loss probability in statei.
• A n×n transition matrixP = [pij ]n×n (0 ≤ i, j ≤ n− 1),

wherepij denotes the probability for the next state to bej
provided that the current state isi.
Suppose the current state isi. A newly transmitted packet

first results in a state transition – the probability for the next
state to becomej is given by pij . The loss probabilitỳ j

associated with the new statej then determines whether this
packet gets lost. Temporal loss dependency is captured by
the different state transition probabilitiespij and the different
packet loss rates in different states. To better illustrate the
model, below we consider two important special cases.
• Gilbert Model. The Gilbert Model [13] is a special case

of the General Markov Model that is simple to understand
and to implement in monitoring applications. It has been
analyzed in [32], [38], [6]. As illustrated in Figure 2, a
Gilbert Model has two states:0 for “no-loss” and 1 for
“loss”. The corresponding loss probabilities are:`0 = 0
and `1 = 1. Normally, p11 ≥ p01. So a packet is more
likely to get lost if the previous packet is already lost. When
p11 = p01, the Gilbert Model further reduces to a Bernoulli
model, which has no temporal dependency. Note that it is
also possible to use non-binary loss probabilities0 < `0 <
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`1 < 1. The resulted model is often termed a Gilbert-Elliott
Model [13], [11].

0
(no−loss)

1
(loss)

p  =1−p

p

p  =1−p

p
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11 10

Fig. 2. The Gilbert Model

• Extended Gilbert Model.Sannecket al. [32] proposes
an Extended Gilbert Model, which generalizes the sim-
ple Gilbert Model. The Extended Gilbert Model captures
changes in the loss burst length, as shown in Figure 3.
Specifically, in ann-state Extended Gilbert Model, statei
(i = 0, 1, ..., n−2) means that there are exactlyi consecutive
losses since the beginning of the current loss burst, whereas
staten − 1 means thatn − 1 or more consecutive losses
have occurred. The corresponding loss probability vector is
L = [0, 1, · · · , 1] (i.e., `0 = 0 and for ∀i > 0, `i = 1).
Suppose the current loss burst length isi. For a newly
transmitted packet, it will either get lost with probability
pi(i+1) and cause the burst length to increment by one, or
get through successfully with probabilitypi0 = 1− pi(i+1)

and reset the burst length to0. No other state transitions are
allowed. So the model is fully specified byn parameterspi0,
and the corresponding transition matrix has only2n non-
zero entries.

P =




p00 p10 p20 · · · p(n−2)0 p(n−1)0

p01 0 0 · · · 0 0
0 p12 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · p(n−2)(n−1) p(n−1)(n−1)




(2)

Note that all our analytical results in this paper apply to the
General Markov Model (thus also to the other models).For
practical implementation purposes, however, we only focus
on the Extended Gilbert Model. As shown in [32], [20], the
Extended Gilbert Model achieves a good balance between
model accuracy and simplicity – it is much more accurate than
the2-state Gilbert Model, while only requiresn parameters to
be estimated (as oppose ton2 in the General Markov Model).

Why are new algorithms and techniques required?The
problem of using redundancy to cope with failures has recently
been considered in the context of Delay Tolerant Networks
(DTNs) by Jain et al. [19]. They use a similar problem
formulation to optimally allocate packets in an FEC group onto
different paths. Given such similarity, one may be tempted
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Fig. 3. The Extended Gilbert Model

to directly apply the techniques developed in [19] to the
Internet. Unfortunately, several important reasons prevent us
from applying these techniques to achieve high reliability in
the Internet. Therefore, we have to develop new algorithms
and techniques for use in SmartTunnel.

• Burstiness in Internet packet loss.Two different loss models
are considered in [19]: independent packet loss (which
exhibits no temporal loss dependency) and complete path
failure (where a path delivers either all packets successfully
or no packet at all). While these models may be useful in a
DTN, neither model captures the commonly observed bursty
loss behavior in the Internet. Since the goal of SmartTunnel
is to minimize loss in the Internet context, it is essential
to use models that capture the Internet loss behavior more
accurately.

• The use of different performance metrics.Jain et al. [19]
try to minimize the expected FECgroup loss probability (as
opposed to thepacketloss probability), which is defined as
the probability for FEC to be unable to recover an entire
FEC group (i.e., Pr[X + Y > R]). While this metric
captures the performance of non-systematic FEC codes, it is
too conservative for systematic FEC codes. As noted above,
a major advantage of systematic FEC codes is that even if
the entire group cannot be recovered (i.e., X + Y > R),
all the unmodified data packets that arrive successfully are
still available. To capture the performance of systematic
FEC codes, we use a new metric (X̄FEC), which is more
difficult to optimize and calls for the development of new
optimization algorithms (in Section IV-B).

Later in Section V, we will thoroughly compare our algorithms
with the algorithms proposed in [19] along with several other
baseline algorithms, and show that our algorithms significantly
out-perform the existing ones under bursty losses.

B. Allocation Algorithms

We decompose the original optimal allocation problem into
the following two sub-problems:

1. Given an allocation{(di, ri)}, how to computeX̄FEC, the
expected number of lost data packets after applying FEC?
This is challenging because random variablesX and Y
are convolutions of random variablesxi and yi (i.e., the
numbers of lost data and redundant packets on pathi) and
have no close form in general. In Section IV-B.1, we address
the challenge by approximating the joint distribution ofX
andY as a bivariate normal distribution.

2. How to find an allocation{(di, ri)} that minimizesX̄FEC?
The key challenge here is the enormous search space. Given
D data packets andR redundant packets, there areND+R

different ways of allocating them ontoN different physical
paths. For even moderate FEC group sizes, this is already
a too big search space for a brute-force approach to work
(e.g., 20-packet FEC group using 3 paths has 3486784401
combinations!). To address the issue, we develop an effi-
cient dynamic programming algorithm to find an optimal
allocation in Section IV-B.2.
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1) Approximating X̄FEC: Our first task is to estimate
X̄FEC, the expected number of lost data packets after applying
FEC under a given allocation{(di, ri)}. As noted above, our
basic strategy is to approximate the joint distribution ofX and
Y with a bivariate normal distribution. Such normal approxi-
mation is reasonable when the number of independent paths is
large and the allocation(di, ri) on each path is relatively small
compared to(D, R). In addition, our experience suggests
that even when these conditions do not hold, the allocation
obtained using the normal approximation tends to work well
in practice. Similar positive experience has been reported in
[19].

As shown in the Appendix , we can deriveE[xi], E[yi],
V [xi], V [yi], andcov[xi, yi] as functions of a given allocation
{(di, ri)}. Our analysis takes into account the fact that dif-
ferent values of(di, ri) can affect the burstiness of the packet
loss observed on a pathi. This phenomenon has been reported
by several recent studies. For example, the authors in [34],
[4] show that burstiness of probing traffic significantly affect
the burstiness in the observed loss rates. As the inter-arrival
of probing packets increases, the observed loss burstiness
decreases.

Based onE[xi], E[yi], V [xi], V [yi], and cov[xi, yi], we
then compute the statistics of the total numbers of lost data
and redundancy packets as follows. LetµX andσX denote the
mean and standard deviation ofX, respectively. LetµY and
σY denote the mean and standard deviation ofY , respectively.
Let σXY = cov[X,Y ] be the covariance ofX andY . In order
to deriveµX , σX , µY , σY , andσXY as functions of a given
allocation{(di, ri)}, we will assume thatlosses on different
paths are independent from each other. Later in Section IV-
E, we will discuss techniques that can be used to detect and
remove paths with shared congestion. Under the independence
assumption, we have

µX =
N∑

i

E[xi], σ2
X =

N∑

i

V [xi]

µY =
N∑

i

E[yi], σ2
Y =

N∑

i

V [yi]

σXY =
N∑

i

cov[xi, yi]

.
We can then approximate the joint distribution ofX andY

by a bivariate normal distribution with probability function

P (x, y) =
1

2πσXσY

√
1− ρ2

exp
[
− z

2(1− ρ2)

]
, (3)

where

z ≡ (x− µX)2

σ2
X

− 2ρ(x− µX)(y − µY )
σXσY

+
(y − µY )2

σ2
Y

,

and

ρ ≡ cor[X, Y ] =
σXY

σXσY

is the correlation ofX andY .

In the special case whenρ = 0 (i.e., X and Y are
independent), (3) can be further simplified into

P (x, y) =
1

2πσXσY
e
− (x−µX )2

2σ2
X

− (y−µY )2

2σ2
Y . (4)

Our experience through extensive simulations suggests that
the correlation ofX and Y (i.e., ρ) is often very small
when multiple paths and sufficiently large FEC group size are
used. For practical purposes, its effect can be safely ignored
compared to the effects ofµX , σX , µY , andσY . We therefore
will use (4) in the rest of the paper in the interest of simplicity.

By replacing the discrete summation in (1) with a continu-
ous integral, we can then approximatēXFEC by

X̄≈
FEC ≡

∫ D

x=0

∫ ∞

y=R−x

x P (x, y) dy dx (5)

=
∫ D

x=0

∫ ∞

y=R−x

x

2πσXσY
e
− (x−µX )2

2σ2
X

− (y−µY )2

2σ2
Y dy dx(6)

=
∫ D

x=0

e
− (x−µX )2

2σ2
X

2
√

2πσX

x

(
1 + erf

[
µY + x−R√

2σY

])
dx (7)

where erf(z) = 2√
π

∫ z

0
e−t2dt is the error function [37]. We

can then numerically evaluatēX≈
FEC using standard software

package such as Matlab.
2) Dynamic Programming Based Solution:Our second

major task is to find an optimal allocation{(di, ri)} that
minimizesX̄≈

FEC as defined in (7). The main challenge here
is that X̄≈

FEC does not have close-form and cannot be easily
transformed into simple objective functions. Fortunately, from
(7) we can show that̄X≈

FEC is monotonically decreasing with
respect to bothσX andσY .

Our high-level approach to traffic allocation under no ca-
pacity constraints is as follows. We enumerate all possible
values ofµX , and use dynamic programming to find the data
allocation that results in the minimumσX for each given
µX . Similarly, for all possible values ofµY , we determine
the allocation of redundancy packets that minimizesσY for
each givenµY . Then we plug all(µX , µY , σX , σY ) into
Equation 7, and find the allocation that minimizesX̄≈

FEC. The
monotonicity of X̄≈

FEC with respect toσX and σY ensures
that the final solution gives the best possibleX̄≈

FEC. Later we
will extend the idea to handle capacity constraints.

Below we first describe how to determine the allocation that
minimizesσX andσY givenµX andµY . Then we show how
to use these solutions to solve the original allocation problem.

Subproblem: Variance Minimization. Let E{xi|di = k}
and V {xi|di = k} denote the average and variance of data
losses on pathi when pathi is allocateddi = k data packets.
To apply dynamic programming, we need integer values of
E{xi|di = k} andV {xi|di = k}. So we scale them byλ. Let
ed[i, k] ≡ bE{xi|di = k}λc andvd[i, k] ≡ bV {xi|di = k}λc
be the scaled, discretized mean and variance ofxi, whereb·c
is the floor function (i.e., taking the largest integer no larger
than the input). We can pre-computeed[i, k] and vd[i, k] for
∀1 ≤ k ≤ D and∀1 ≤ i ≤ N as shown in Appendix .

Define a data loss variance minimizationproblem
dlvm(d, p, e, c) as the problem of allocatingd data packets
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onto the firstp paths to minimize the total variance while
satisfying capacity constraintsc and the constraint that the
total mean ise. Formally,

dlvm(d, p, e, c) : minimize
p∑

i=1

vd[i, di]

subject to





∑p
i=1 di = d∑p
i=1 ed[i, di] = e

di ≤ c[i],∀i
Let opt(d, p, e, c) be the variance achieved by an optimal

solution todlvm(d, p, e, c). We have

opt(d, p, e, c) =min
0≤k≤d
k≤c[p]

{vd[p, k]+opt(d−k, p−1, e−ed[p, k], c)}

So we can apply a dynamic programming algorithm to solve
dlvm(d, p, e, c) for all 0 ≤ d ≤ D, 1 ≤ p ≤ N , 0 ≤ e ≤
Emax, whereEmax controls the granularity of the solutions.
The complexity for this algorithm isO(D2NEmax).

Similarly, we can define aredundancy loss variance mini-
mizationproblemrlvm(r, p, e, c) as the problem of allocating
r redundant packets onto the firstp paths to minimize the total
variance subject to the constraint that the total mean ise. We
can solverlvm(r, p, e, c) again using dynamic programming.

Traffic allocation under no capacity constraints. We are
now ready to solve the original allocation problem. Let us first
consider the unconstrained allocation problem, whereci = ∞.
In this case, data packets can be allocated independently
from redundancy packets. So the final allocation is to allocate
data packets such thatdlvm(D, N, e1,∞) is minimized, and
allocate redundancy packets such thatrlvm(R, N, e2,∞) is
minimized. The algorithm is illustrated in Figure 4. It searches
through all possible values ofµX andµY , and determines the
allocation that minimizesσX andσY for each givenµX and
µY . Note that the discretization may introduce some error.
However, our experience from extensive simulations suggests
that with sufficiently largeEmax (e.g., 500), the algorithm
tends to perform close to optimal.

1. solve alldlvm(d, p, e,∞) andrlvm(r, p, e,∞).
using dynamic programming

2. for e1 = 1 to Emax

3. {di} = an optimal solution ofdlvm(D, N, e1,∞)
4. for e2 = 1 to Emax

5. {ri} = an optimal solution ofrlvm(R, N, e2,∞)
6. computeµX , µY , σX , σY under{(di, ri)}
7. computeX̄≈

FEC

8. store{(di, ri)} if it is the best so far
9. end
10.end
11. return {(di, ri)} that gives the minimumX̄≈

FEC

Fig. 4. Traffic allocation under no capacity constraints.

Traffic allocation under capacity constraints. When net-
work paths have capacity constraints, allocation of redundancy
packets is dependent on the allocation of data packets to
ensure the capacity constraints are satisfied. To incorporate
capacity constraints, we modify the previous algorithm by

introducing a new capacity constraintc′ to ensure that the
rate for sending redundancy packets on pathi cannot exceed
the residual capacity of pathi (after sending its allocated data
packetdi).

The solution to the allocation problem with capacity con-
straints can be sub-optimal. Due to capacity constraints, the
allocation of data packets is now coupled with the allocation of
redundancy packets. Such coupling further increases the search
space. For efficiency, we decouple the data and redundancy
allocation by first optimizing data allocation (while ignoring
the capacity consumed by redundancy packets), and then
optimizing redundancy packet allocation based on remaining
capacity. Such decoupling may result in sub-optimal solution.
In practice, however, we find through extensive simulations
that the solution we obtain tends to perform close to optimal.

1. solve alldlvm(d, p, e, c) via dynamic programming
2. for e1 = 1 to Emax

3. {di} = an optimal solution ofdlvm(D, N, e1, c)
4. c′i = ci − di, ∀1 ≤ i ≤ N
5. solve allrlvm(r, p, e, c′) via D.P.
6. for e2 = 1 to Emax

7. {ri} = an optimal solution ofrlvm(R, N, e2, c
′)

8. computeµX , µY , σX , σY under{(di, ri)}
9. computeX̄≈

FEC

10. store{(di, ri)} if it is the best so far
11. end
12.end
13. return {(di, ri)} that gives the minimumX̄≈

FEC

Fig. 5. Traffic allocation problem under capacity constraints.

3) Packet Spreading Algorithm:In Section IV-B.1 and
Section IV-B.2, we derive the traffic allocation (i.e.,{(di, ri)}
for each pathi). For the same allocation, different ways of
assigning packets onto paths can result in different observed
loss burstiness. The burstiness in the observed loss increases
with the burstiness in traffic. So we should try to spread the
packets allocated on the same path as evenly as possible. This
reduces burstiness in experienced packet losses, and enhances
effectiveness of FEC. To achieve this goal, we develop a
simple packet spreading algorithm, as described in Appendix .
For a given allocation,{(di, ri)}, it determines exactly which
packets in an FEC group should be allocated onto which paths
so that the final loss rate is minimized.

C. Estimating Parameters for the Loss Model

The effectiveness of the above traffic allocation scheme
depends on the accuracy of the loss model estimation. In our
evaluation, we use extended Gilbert loss model, and estimate
its transition matrix (in Equation 2), as shown in [32].

p01 = (
n−1∑

i=1

mi)/m0

p(k−1)k = (
n−1∑

i=k

mi)/(
n−1∑

i=k−1

mi)
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where mi denotes the number of loss bursts with lengthi,
where i = 1, 2, ..., n − 1 and m0 denote the number of
delivered packets.

Since network path properties change over time, we predict
future network performance using previous intervals.

D. FEC redundancy adaptation

We derive the allocation scheme given the number of
redundant packets R per FEC group. In practice, we can do
greedy search to find the minmum R value which can satisfy
target loss rate (e.g.,1e-6). As a result, we can reduce the
bandwidth overhead.

E. Handling Shared Congestion

In the previous discussion, we consider loss rates on the
physical paths are independent. In practice, we may have
some paths that share a common bottleneck. In this case,
the loss rates on these paths are highly correlated. To handle
such cases, we can apply an existing technique to detect
shared congestion. A number of techniques have been pro-
posed for this purpose, such as cross-correlation-based ap-
proach [31], entropy-based approach [22], and wavelet-based
approach [23]. We then treat the set of paths that share
congestion as one path, and apply our traffic allocation scheme
to the merged paths.

V. PERFORMANCEEVALUATION

In this section, we first introduce our evaluation methodol-
ogy and then describe evaluation results.

A. Evaluation Methodology

We evaluate the performance of SmartTunnels using the
following three ways: (i) Internet trace-driven simulation, (ii)
ns-2 simulation, and (iii) experiment on PlanetLab. These three
evaluation methods are complementary to each other. Trace-
driven evaluation allows us to extensively evaluate the perfor-
mance of SmartTunnels under realistic Internet performance
characteristics; ns-2 simulation allows us to study the inter-
actions between multiple tunnels in a controlled environment;
and real experiment allows us to understand the benefit and
overhead of SmartTunnels in a real network.

We compare the following traffic allocation schemes:

• SmartTunnel: This is the algorithm we describe in Sec-
tion IV.

• Markowitz numeric (MkwNu): This is the algorithm
proposed in [19]. It maximizes the Sharpe-Ratio [3] by
solving a series of quadratic optimization problems.

• Round robin (RR): Traffic is assigned to multiple physical
paths in a round robin fashion.

• Greedy: Traffic is assigned to the path that has the lowest
loss rate. When multiple paths experience the same loss rate,
one path is selected randomly among them.

B. Trace-driven Simulation

We collect Internet traces by sending 16-byte ICMP echo
packets from 57 hosts on PlanetLab to 55 popular Web sites,
selected from the 100 popular websites listed at [1]. We
run zing and tcpdump concurrently on each PlanetLab host.
To capture bursty loss behavior, zing is modified to generate
ICMP echo packets with an inter-packet arrival of 2 ms.
Tcpdump is used to captured ICMP echo-reply packets. In
order to avoid PlanetLab hosts to drop packets when the
probing traffic are too bursty. We introduce 1 second idle time
every 1 second bursty traffic. Each measurement experiment
lasts at least 800 seconds. Figure 6 shows the CDF of raw loss
rates. About 78.5% of paths have loss rates below 2%. The
mean loss rates of these paths is 0.0175.

Each trace is divided into 20 intervals, so each interval is a
40-second trace. We apply different traffic allocation schemes
on each 40-second interval. For all the evaluation, we use
FEC group size of 40 packets (including data and redundancy
packets), and adapt traffic allocation every interval. Two kinds
of evaluation results are shown. One is oracle result in which
we assume current network path performance can be known
from Oracle and there is no prediction errors. The other one is
prediction result in which current network path performance is
predicted from previous intevals. Table II shows probabilities
of SmartTunnel to achieve loss free reliability. When there is
no prediction error, SmartTunnel can achieve loss free with
probability up to 0.9991 if it uses 6 paths. It can also achieve
around loss free with probability 0.94 even with only 2 paths.
If we consider prediction errors, SmartTunnel can also achieve
loss free with probability from 0.85 to 0.93.

2Path 3Path 4Path 6Path
Oracle 0.94 0.9852 0.996 0.9991

Prediction 0.85 0.88 0.91 0.9267

TABLE II

PROBABILITIES OF SMARTTUNNEL TO ACHIEVE FOUR 9S RELIABILITY

1) Oracle results:We compare different traffic allocation
schemes by varying the number of available physical paths,
redundancy level used in FEC, and quality of the paths. For
each experiment configuration (e.g., a fixed number of paths
to the same website and combination of path property), we
conduct 20 random runs (i.e., selecting 20 different combina-
tions of traces used for evaluation), and report the summary
statistics from these runs.

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

loss rate

C
D

F

Fig. 6. Path raw loss rates

To systematically study the performance, we categorize
results into different scenarios based on the number of low
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loss paths selected. Low loss paths are paths whose loss rates
are below 2%. This classification is used in [39]. Results are
shown in Table III, Table IV and Table V. Let K denote the
number of redundant packets and G denote the number of
low loss paths chosen. We make the following observations.
First, in all cases SmartTunel is the best performing algorithm.
Second, when all paths are low loss paths, SmartTunel can
achieve loss free reliability for 94.47%-99.81% of time. Third,
SmartTunnel uses high loss paths much better than other
algorithms. For example, when all paths are high loss paths,
SmartTunnel can achieve loss free reliability for around 6%-
35% more time intervals compared to other algorithm. It is
interesting that when high loss paths are selected, Greedy
algorithm is almost the second best algorithm. Fourth, in
those cases with three physical paths selected, the difference
between various traffic allocation schemes becomes smaller
when the number of redundancy packets increases. This sug-
gests that the choice of traffic allocation is more important
when there is limited bandwidth.

4Path, K = 7 6Path, K = 7
SmartTunnel 96.99% 98.65%

MkwNU 94.73 % 97.13%
RR 75.45% 90.16%

Greedy 94.73% 97.19%

TABLE V

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY

UNDER 4 PATHS OR 6 PATHS RANDOMLY CHOSEN FROM THE TRACES

Table VI and Table VII show mean loss rates of Smart-
Tunnel with different number of low loss paths selected and
different number of redundant packets. We can derive the
expected loss rate of N-Path SmartTunnel as follow.

Let P denote the probability a selected path has loss rate
lower than 2% andL(G = i,K = j) as the mean loss rate of
SmartTunnel whenG = i andK = j. Then we can compute
the expected loss rateLN,K=j of N-Path SmartTunnel.

LN,K=j =
N∑

i=0

L(G = i,K = j) ∗ Pr(G = i)

=
N∑

i=0

L(G = i,K = j) ∗ Ci
N ∗ P i ∗ (1− P )N−i

For example, when N = 2,L2,K=7 = 8×10−4. We find out
that the expected loss rate of 3-Path SmartTunnel can be as
small as5× 10−5 when K is 14.

K=7 K=10 K=14
G = 0 0.0101 0.0071 0.0054
G = 1 0.0009 0.0004 0.0003
G = 2 0.0001 0 0

TABLE VI

MEAN LOSS RATES OFSMARTTUNNEL USING 2 PATHS

2) Predictability of Path Properties:For a traffic allocation
to work well, we need to be able to predict future network path
performance. In this section, we study the predictability of loss
rates.

We apply Fisher exact probability test [12] to compare the
predicted and actual loss transition matrices. The Fisher test

K=7 K=10 K=14
G = 0 0.0067 0.0046 0.0031
G = 1 0.0003 0.0002 0.0001
G = 2 0.0001 0 0
G = 3 0 0 0

TABLE VII

MEAN LOSS RATES OFSMARTTUNNEL USING 3 PATHS

is a statistical significance test for analyzing categorical data
where sample sizes are small. LetPN [RL ≥ i] denote the
number of predicted loss runs whose lengths equal or exceed
i, and AN [RL ≥ i] denote the number of actual loss runs
whose lengths equal or exceedi. We use Fisher test to test
the hypothesis thatPN [RL ≥ i] out of PN [RL ≥ i − 1]
is consistent withAN [RL ≥ i] out of AN [RL ≥ i − 1].
We computeP -value in the Fisher test. It measures statistical
significance. WhenP -value is above 0.01, it indicates that
there isno evidence that the predicted data isnot consistent
with the actual data.
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Fig. 7. Fraction of samples that pass the Fisher test for different loss run
length valuesi.

Figure 7 plots the fraction of cases where the hypothesis
passes the Fisher test. We use different length of history traces
to predict current network performance. As it shows, test re-
sults are not sensitive to the length of history traces. The main
difference is wheni = 1. In practice, we prefer to use longer
history trace to do the prediction because it is more stable.
In the following evaluation, we use the loss transition matrix
of previous 320 second trace (8 intervals) as the prediction of
the current interval. 76% time intervals pass the Fisher test
when i = 1, and over 94% intervals passes Fisher test for a
larger i. This suggests that the temporal dependency between
consecutive loss events is more predictable than the transition
from no loss to loss. Overall we observe that the predicted loss
transitions match reasonably well with the actual values. This
suggests that it is possible to apply traffic allocation based on
past performance.

3) Trace-driven evaluation results:Table VIII, Table IX
and Talbe X show trace-driven results with prediction. Smart-
Tunnel out-performs the other schemes in all senarios except
one in which there are three low loss rate paths and K is 14.
This is because the performance of SmartTunnel reduces from
99.81 % to 97.64% due to prediction errors while prediction
errors do not affect the performance of round robin.

C. NS-2 Simulation

In this section, we study the interactions between multiple
SmartTunnels using ns-2 simulations. Figure 8 shows the
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K = 7 K = 10 K = 14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0

SmartTunnel 94.47% 79.45% 31.12% 98.88% 89.62% 52.95% 99.09% 93.81% 63.30%
MkwNU 87.91 % 75.40% 25.51% 95.36% 84.58% 40.84% 98.20% 90.93% 53.40%

RR 82.82% 48.09% 16.73% 91.52% 64.51% 40.11% 92.04% 74.80% 49.53%
Greedy 88.86% 77.71% 27.85% 94.79% 85.87% 44.53% 97.80% 90.60% 53.21%

TABLE III

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER2 PATHS RANDOMLY CHOSEN FROM THE TRACES

K = 7 K = 10 K = 14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0

SmartTunnel 98.71 % 96.80 % 88.20 % 48.82 % 99.61 % 98.82 % 93.58 % 65.86 % 99.81 % 99.62 % 97.25 % 77.84 %
MkwNU 96.35 % 93.84 % 84.96 % 33.09 % 98.80 % 97.26 % 90.76 % 47.73 % 99.67 % 99.02 % 94.78 % 64.79 %

RR 90.53 % 64.51 % 35.73 % 14.77 % 93.84 % 79.05 % 55.22 % 33.27 % 99.78 % 96.93 % 82.88 % 61.60 %
Greedy 96.00 % 94.49 % 86.08 % 42.82 % 97.73 % 96.60 % 90.43 % 53.23 % 98.92 % 98.44 % 93.94 % 61.08 %

TABLE IV

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER3 PATHS RANDOMLY CHOSEN FROM THE TRACES

K = 7 K = 10 K = 14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0

SmartTunnel 90.46 % 77.25% 27.76% 96.18% 87.12% 50.21% 97.35% 91.25% 59.25%
MkwNU 83.66 % 73.53% 20.47% 91.27% 83.30% 37.47% 96.22% 89.25% 49.81%

RR 82.76% 48.19% 17.38% 91.36% 64.41% 39.89% 91.95% 74.45% 48.87%
Greedy 84.85% 76.18% 27.10% 90.82% 85.07% 42.63% 95.15% 89.22% 52.26%

TABLE VIII

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER2 PATHS RANDOMLY CHOSEN FROM THE TRACES

K = 7 K = 10 K = 14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0

SmartTunnel 94.42 % 92.31 % 85.46 % 41.77 % 96.39 % 95.39 % 90.49 % 58.18 % 97.64 % 97.06 % 94.14 % 71.08 %
MkwNU 91.32 % 89.31 % 82.61 % 25.77 % 95.03 % 93.61 % 88.79 % 40.68 % 97.22 % 96.28 % 93.31 % 59.67 %

RR 90.52 % 64.48 % 35.43 % 15.27 % 93.84 % 78.54 % 54.90 % 33.05 % 99.76 % 96.92 % 82.46 % 61.31 %
Greedy 91.37 % 90.62 % 84.69 % 39.36 % 93.82 % 93.37 % 89.03 % 49.23 % 96.09 % 95.56 % 92.42 % 57.14 %

TABLE IX

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER3 PATHS RANDOMLY CHOSEN FROM THE TRACES

4Path, K = 7 6Path, K = 7
SmartTunnel 92.43% 94.49%

MkwNU 90.01 % 93.82%
RR 75.51% 90.73%

Greedy 90.64% 93.06%

TABLE X

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY

UNDER 4 PATHS OR 6 PATHS RANDOMLY CHOSEN FROM THE TRACES

network topology used in the evaluation. Both senders use
3 redundancy packets per FEC group, where each FEC group
consists of 13 packets in total. Figure 9 shows the evolution of
loss rates experienced by 2 SmartTunnels that share physical
paths. To stress test, we initialize their allocation to both
use path A-B-D. Due to poor initial allocation, both tunnels
initially experience high loss rates before and after FEC. This
also highlights the importance of appropriate traffic allocation
on end-to-end reliability. Then the two tunnels continuously
adapt their traffic allocation according to their monitored
performance every time interval. At interval 7, both tunnels
converge to low loss rates before FEC, and close to 0 loss
rate after applying FEC. Figure 10 further plots the data
allocation of two tunnels on these paths. As we can see, they
converge to an even share of network resources, both allocating
5 data packets on two paths. Similar fair allocation is achieved
for redundancy packets (not shown in the interest of space).

Overall both reliability and fairness are achieved.

50ms
10Mbps

50ms
10Mbps

50ms
1Mbps

80ms
1Mbps

10ms
10Mbps

S1

S2

R1

R2

A

B

C

D

10ms
10Mbps

10.2ms
10Mbps

10.3ms
10Mbps

Fig. 8. Network topology used in n2-simulation. Two tunnels S1-R1 and S2-
R2 share two physical paths. S1 sends 0.7 Mbps CBR traffic, and S2 sends
0.5 Mbps CBR traffic. Low-rate Pareto traffic is introduced as background
traffic on links BD and CD. In addition, links BD and CD use Gilbert-loss
models to drop traffic, where the loss transition matrix at B is [0.985 0.015;
0.45 0.55], and that at C is [0.99 0.01; 0.35 0.65].

D. Experiments on PlanetLab

We implement SmartTunnel using click [24] on PlanetLab.
Our implementation is around 2500 lines of C++ code. Click
is a flexible and configurable router architecture. It consists of
packet processing modules, calledelements. Existing elements
in click include queueing, scheduling, and interfacing with net-
work devices. We add the following elements to click to pro-
vide SmartTunnel functionalities: (i) monitors at both sender
and receiver to cooperatively monitor network performance
using either active probing or passive probing, (ii) a traffic
distributor that stripes traffic according to the controller’s
specification, (iii) an encoder and decoder that apply FEC
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(b) Loss rates after applying FEC.
Fig. 9. Loss rates dynamics of the 2 competing SmartTunnels in ns-2.

encoding and decoding using the public FEC software [28]
and add/remove SmartTunnel header, and (iv) packet buffering.
Figure 11 shows the diagram of different components in our
implementation. ToSocket and FromSocket in the figure are
the existing elements in click to provide sending and receiving
functionalities, and the other elements in the figures are what
we implement. At the sender side, the controller, implemented
outside the click, coordinates with different click elements by
specifying monitoring instructions, an FEC coding scheme, a
traffic allocation scheme. The receiver logic is much simpler:
on the data path, it decodes and buffers packets; on the control
path, the monitor responses to active probes from the sender,
and also periodically sends back performance information for
the paths that carry traffic.

Figure 12 plots the encoding time for different numbers of
redundancy packets for a 40-packet FEC group, where each
packet has 1024 bytes. The encoding time includes time to
generate redundancy packets and time to add SmartTunnel
headers. The number is measured when click is running at
user-level mode on 3.2 GHz desktop. As we would expect,
the encoding time increases with the number of redundancy
packets we need to generate. The data rate we can support
varies from 0.56 Gbps using 20 redundancy packets to 1.8
Gbps using 2 redundancy packets. Such data rate is sufficient
for most Internet gateways. Moreover, running at a kernel
mode can further increase the rate.

In the experiment, we construct a SmartTunnel on top of
three overlay paths between two hosts. The SmartTunnel uses
10 redundancy packets per FEC group (each group with 40
packets). Figure 13 (a) shows 15 minutes time series of path
loss rates before FEC and SmartTunnel loss rate after FEC. As
we can see, these three paths experience substantial loss rates.
Figure 13 (b) further shows the traffic allocation on these paths
over time. Initially all traffic are allocated on Path I. FEC does
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(a) SmartTunnel S1-R1 data allocation on 2 paths.
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(b) SmartTunnel S2-R2 data allocation on 2 paths.
Fig. 10. Data allocation dynamics of the 2 competing SmartTunnels in ns-2.
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Fig. 11. SmartTunnel implementation in click.

not work well because the loss is too bursty. Every one minute,
SmartTunnel computes the new traffic allocation based on its
observed performance. SmartTunnel is pretty ’smart’. Among
these three paths, Path III has lowest loss rate and smallest loss
variance. SmartTunnel put around 60 % traffic on it. Instead
of putting all traffic on the best path, SmartTunnel also uses
worse paths (i.e, put around 13% traffic on Path I). After 4
minutes, SmartTunnel achieves almost full reliability.

E. Summary

To summarize, in this section we evaluate the performance
of SmartTunnels using trace-driven simulation, ns-2 simu-
lation, and PlanetLab experiments. Our results show that
SmartTunnel can achieve high reliability over a diverse set of
scenarios. Moreover our initial study of interactions between
multiple smart tunnels suggests that they can co-exist well. We
plan to further investigate their interactions more thoroughly
in the future.

VI. CONCLUSION

In this paper, we proposeSmartTunnel, an end-to-end ap-
proach to achieving high reliability. It applies FEC and allo-
cates traffic onto multiple physical paths to minimize loss rates
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Fig. 12. Encoding time: it includes generating redundancy packets and adding
SmartTunnel headers. The FEC group size is 40 packets and 1024 bytes.
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(b) Evolution of traffic allocation across three paths.
Fig. 13. Time series of loss rates and traffic allocation on three paths spanned
by SmartTunnel on PlanetLab.

under realistic Internet loss models. Using extensive simulation
and real implementation, we demonstrate that SmartTunnel is
effective in achieving high reliability.

As part of our future work, we are interested in applying
SmartTunnel to wireless networks. An increasing number of
wireless devices have multiple interfaces. Effectively utilizing
these interfaces simultaneously has the potential to signifi-
cantly improve reliability in wireless networks. Wireless link
loss characteristics differ significantly from those of wireline
links. For example, wireless links are more variable and
unpredictable. We plan to study the performance of SmartTun-
nel in such a highly dynamic network. In addition, network
paths involving wireless links may experience extended outage
periods (e.g., due to mobility or environmental changes). Such
outages may span multiple FEC groups, and significantly
reduce the effectiveness of FEC. We are interested in extending
SmartTunnel to handle such outages in addition to bursty
losses.
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APPENDIX

Consider an FEC group that consists ofD data packets
followed by R redundant packets. Suppose we allocated
data packets andr redundant packets to an individual path.
Let random variablesx and y denote the number of lost
data packets and the number of lost redundancy packets on
this path, respectively. Our goal here is to derive statistics
for packet loss, including mean (E[x], E[y]), variance (V [x],
V [y]), and covariance (Cov[x, y]).

We will consider the General Markov Model for packet loss.
So our results generalize the analysis by Zorziet al. [40],
which is based on the2-state Gilbert-Elliott Model. Suppose
the loss model for the data packets is a General Markov Model
with state setS, loss probability vectorL = [`i], and transition
matrixP = [pij ]. The loss model for the redundant packets has
the sameS andL but a different transition matrixP ′ = [p′ij ].
Note that data packets and redundant packets have different
transition matrices because they may have different sending
rates. In Appendix we will describe how the sending rate
determines the transition matrix.

Let Φij(k|n) be the probability for “k out of n data packets
are lost and the initial states0 = i and end statesn = j”.
Clearly, Φij(k|n) satisfies

Φij(k|n)=
∑

m∈S

[Φim(k−1|n−1)`m + Φim(k|n−1)(1−`m)] pmj

(8)
HereΦim(k−1|n−1)`mpmj gives the probability for “k−1 out
of the firstn−1 data packets are lost and the initial states0 = i
and end statesn = j and penultimate statesn−1 = m and the
n-th packet is lost”. Similarly,Φim(k|n−1)(1− `m)pmj gives
the probability for “k out of the firstn−1 packets are lost and
the initial states0 = i and end statesn = j and penultimate
statesn−1 = m and then-th packet is not lost”.

In addition, the following initial condition holds:

Φij(k|n) = 0, if k < 0 or n < 0 (9)

Φij(0|0) =
{

0, if i 6= j
πi, if i = j

(10)

whereπi is the stationary probability for the General Markov
Model to stay in statei, which can be computed fromP .

Combining (8), (9) and (10), we can computeΦij(k|n) for
all n ≤ d via dynamic programming.

Similarly, defineΦ′ij(k|n) as the probability for “k out of
n redundant packets are lost and the initial states0 = i and
end statesn = j”. We can computeΦ′ij(k|n) for all n ≤ r
again via dynamic programming. We then have

E[x] =
∑

i,j∈S

d∑

k=1

kΦij(k|d)

V [x] = −E[x]2 + E[x2] = −E[x]2 +
∑

i,j∈S

d∑

k=1

k2Φij(k|d)

E[y] =
∑

i,j∈S

r∑

k=1

kΦ′ij(k|r)

V [y] = −E[y]2 + E[y2] = −E[y]2 +
∑

i,j∈S

r∑

k=1

k2Φ′ij(k|r)

Cov[x, y] = −E[x]E[y] + E[x y]

= −E[x]E[y] +
∑

i,m,j∈S

d∑

k1=1

r∑

k2=1

k1k2Φim(k1|d)Φ′mj(k2|r)

The sending rate can have a significant impact on the
burstiness of packet loss. Specifically, letPD be the transition
matrix for the General Markov Loss Model when we sendD
data packets along a given path (at the average data arrival rate
of the SmartTunnel). LetPd be the corresponding transition
matrix for the General Markov Loss Model when we only
sendd data packets along the same path. It is easy to see that
if we send thesed data packets in an evenly spaced fashion,
the sending rate is reduced by a factor ofD/d. As a result,
we have

Pd = (PD)D/d (11)

which in general is less bursty thanPD itself.
Note that (11) assumes thatd dividesD. In a more general

case, letf0 = dD/de, f1 = bD/dc, n0 = D mod d, n1 =
d − n0. Among thed data packets,n0 will have transition
matrix (PD)f0 andn1 will have transition matrix(PD)f1 . So
we can approximatePd as their weighted average

Pd =
n0

d
(PD)f0 +

n1

d
(PD)f1 (12)

Similar results hold for the redundant packets.
Therefore, given an allocation{(di, ri)}, we should try to

spread the packets allocated on the same path as evenly as
possible. To achieve this goal, we develop a simple packet
spreading algorithm, shown in Figure 14. The algorithm is
used to offline determine which packets should be allocated
onto which paths within an FEC group. This offline compu-
tation incurs low overhead, and is one-time cost for a given
FEC group size. Then the derived packet spreading strategy is
applied to incoming traffic continuously.

As shown in Figure 14, the algorithm allocates traffic using
a credit-based scheme. Each path is associated with a credit.
The path with the largest number of credits is selected to
transmit the next packet. The credit of a pathi is updated as
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1. inc[i] = di/D, ∀i = 1, · · · , N ;
2. credit[i] = 0, ∀i = 1, · · · , N ;
3. for t = 1 to D
4. credit[i]+= inc[i], ∀i = 1, · · · , N ;
5. imax = arg maxi{credit[i]};
6. t-th data packet is sent by pathimax;
6. credit[imax]−−;
8. end

Fig. 14. A simple packet spreading algorithm.

follows. Each time a new data packet is transmitted (regardless
of which path transmits it), pathi earnsdi/D credits (so after
seeing allD data packets, it earnsdi credits). Each time path
i transmits a packet, it consumes 1 credit. We apply the same
strategy for sending redundancy packets but change the credit
increase rate tori/R.
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