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Abstract

Designing scalable memory ordering hardware is one of the most important challenges for large-window,
out-of-order processor design, due to its complexity, power, and its criticality for high performance. Recent
research has aimed to partition the functionality of load/store queues (LSQ) into three components: ordering
violations detection, value forwarding, and store buffering for commit, to avoid frequent access to large,
associative, energy-inefficient structures. This approach adds microarchitectural complexity but has been
shown to be effective. In this paper, we describe a family of energy-efficient distributed load/store queue
designs that avoid the need for partitioning the LSQ functionality, but which achieve comparable energy
efficiency with performance comparable to an ideal LSQ. These designs interleave LSQ banks based on
cache-line addresses, and deal with the resultant overflow challenges by prioritizing older instructions and
occasionally rejecting younger instructions using flow-control techniques. The experimental results show
that on average, there is no performance degradation for address-interleaved LSQs that areundersizedup
to three-quarters of a 256 memory instruction window for both SPEC and EEMBC benchmarks. In addition,
each LSQ access consumes only as much energy, on average, as a8-entry, fully associative traditional LSQ.

1 Introduction

The load/store queues (LSQs) that provide hardware memory disambiguation and ordering have become some

of the most challenging structures to design in modern, high-ILP processors. For processors that aim to ex-

ploit large–and growing–instruction windows, the LSQs canincur significant power, area, performance, and

complexity overheads. A recent approach by numerous researchers has been to partition the functionality of

LSQs into their three constituent functions:value forwardingfrom stores to loads,ordering-violation detection,

andstore-value bufferingfor commit [3, 7, 14, 11, 9]. By breaking up the LSQ into various combinations of

these three functions, researchers have been able to size each structure appropriately for its function, reducing

energy consumption as window sizes grow. This strategy has been shown to be effective, but suffers from two

disadvantages: the added complexity of multiple interacting structures, and the physical centralization of each

component.
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For large-window, wide-issue processors, primary memory systems will become increasingly partitioned, due

to both increased bandwidth requirements [10] and due to increasing communication delays [1]. Some of the

recent LSQ proposals that separate the functionality into multiple structures will likely become significantly

more complex when distributed among many primary memory system banks. Ideally, future LSQs will fulfill

two requirements. First, they will be distributed along with the level-one data caches with the same interleaving

function, allowing a load or store to be routed to a single partition of the primary memory system, where the

cache lookup and memory ordering can be performed locally. Second, future LSQs should require accesses

to only comparatively small, energy-efficient structures,that do not become more complex even as instruction

window sizes grow.

In this paper, we describe a family of LSQ designs which are broken into address-interleaved banks, partitioning

based on address rather than functionality. The classic problem with address-interleaved LSQ banks is bank

overflow; since the mapping of load/store banks to address isdynamically determined, too many loads and

stores may map to one LSQ bank. The classic technique for dealing with such structural hazards to flush the

pipeline, which can cause too much performance degradationin many cases.

The key idea in this family of designs is to provide low-overhead LSQ bank overflow handling. Each design

partitions the in-flight memory operations into age-ordered bins. For example, a window supporting up to 256

memory operations in flight might assign each consecutive 32loads or stores to one bin, permitting up to eight

bins total. The oldest bin is thehigh-priority bin. The LSQ banks handle loads or stores from the high-priority

bin differently from low-priority bins. These designs apply a range of flow-control techniques to the low-priority

operations (LPs), including interlocking them using virtual channels, or NACKing them and sending them back

to the issue window. High-priority operations (HPs) are either provided reserved space in each LSQ bank, or, on

a high-priority overflow, cause a rare pipeline flush followed by refetching of the HP operations and a temporary

throttling of subsequent operations.

We use the TRIPS architecture for a large-window substrate to evaluate these ideas. The scalar operand net-

works [13], which exist in the TRIPS design as well as others [15, 12] are useful for implementing the flow-

control policies (NACK and virtual channels). We show that the virtual-channel approach to flow control demon-

strates a negligible (2%) performance loss over an idealized distributed LSQ that never overflows, while requir-

ing each load or store to compare against 8 addresses, on average, for a window size of 256 memory operations

and 1024 instructions. These results show that partitioning based on functionality is unnecessary, particularly if

the primary memory system is distributed.

In the next section, we discuss related approaches, including prior distributed LSQ work as well as the recent
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body of work on functionality-partitioned LSQs. Section 3 describes the various implementations, including the

underlying microarchitecture, the different flow control mechanisms and policies for managing LSQ overflow

conditions, and the physical design of the LSQ bank, which must be able to handle unordered loads/stores due to

the address interleaving of LSQ banks. In Section 5, we analyze the performance of various approaches, as well

as analyzing the scalability of this approach to a finer degree of partitioning. Finally, we conclude in Section 6.

2 Related Work
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Figure 1:LSQ Related Work.

An LSQ fulfills three necessary functions: (1) it forwards store values to later loads when their addresses match,

(2) it detects load misspeculations, if a load issued with older unresolved stores in flight that were later found to

match the load’s address, and (3) it acts as a store buffer that is used to commit stores to memory upon retirement.

Recent work (see Figure 1) has proposed seperating some or all of the three LSQ functions into separate struc-

tures, to accelerate some of the individual structures. This approach results in increased complexity, and occa-

sional area increases due to redundant information held in multiple structures, but the potential power savings,

and in some cases, the access latency improvements, are considerable. In this paper, we propose a LSQ organi-

zation that provides all the benefits of functional decomposition without the increased complexity of the other

mechanisms.
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Both Baugh and Zilles [3] and Roth [7] use a small, fast, centralized, unordered, fully associative forwarding

buffer and a non-associative FIFO for buffering and committing stores. The papers differ on the misspecula-

tion detection function: Baugh and Zilles use a centralized, addressed-indexed structure, whereas Roth uses

enhancements of a load re-execution proposed by Cain and Lipasti [5]. The scalability and applicability of these

methods to distributed architectures has not been discussed.

Sha et al. [9] extend Roth’s scheme by using a modified dependence predictor to match loads with the precise

store buffer slots from which they are likely to receive forwarded data. This solution completely eliminates the

associative store forwarding buffer but instead requires large multi-ported dependence/delay predictors (approx-

imately 16KB combined), thus effectively improving power at the expense of area.

Stone et al. [11] use a set associative cache for forwarding,a non associative FIFO for commit, and an address-

indexed timestamp table for checking speculation. In addition to the added complexity of this scheme, the

timestamp table may generate signal extra mis-speculations due to address aliases and conservative handling of

partial flushes. Since the authors have no means to enforce low overhead flow control for instructions targeting

the LSQ, their address-indexed structures must be heavily oversized for good performance. For instance, the

authors use an 8K entry, 8-bit wide timestamp table and a 80-bit wide, 512 set, 2-way forwarding cache even

though there can be only 1K instructions in flight at any time.

Torres et al. [14] propose a distributed, unordered, address-interleaved store-load forwarding buffer but a cen-

tralized, age-ordered store queue for speculation checking and commit. While the distributed store forwarding

buffers increase forwarding bandwidth, the centralization of the other two structures forces all loads and stores

to be routed to a central place for verification and commit, hampering scalability.

Akkary et al. [2] propose two-level store buffers which are both centralized, fully associative and age ordered.

Stores are first entered in the L1 store buffer, and when it overflows they are moved to the L2 store buffer.

Both buffers support forwarding and speculation checking but stores commit from the second level buffer. This

scheme reduces power, but still requires a worst-case sizedL2 and uses area-inefficient CAMs.

It should be noted here that there have been no comprehensivestudies evaluating different strategies for recover-

ing from LSQ bank overflow for distributed microarchitectures. While many of the above papers have referenced

the traditional set of possibilities: stalling fetch or stalling issue to prevent overflows, flushing on an overflow

and incorporating a mechanism (usually serialized execution) to guarantee forward progress and replaying the

overflowed instruction from the issue window, they do not address efficient ways to deal with overflow for par-

titioned LSQs. In addition, the costs for each of the above mechanisms in distributed microarchitectures could

be higher than centralized designs because of increased distance between the execution and the memory units.
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The work presented in this paper shows how to leverage the interconnection network flow control techniques

to achieve similar levels of performance without oversizing the buffers at all, merely by dividing the LSQ into

banks.

3 Distributed LSQ Microarchitecture

In a hypothetical age-indexed and partitioned LSQ, load andstore instructions could be directed to different

LSQ banks using memory sequence numbers. This approach naturally load balances the memory instructions

across partitions, without requiring any extra entries in the partitions, and guaranteeing no overflows. However,

this organization would defeat the original purpose of partitioning the LSQ, which is to have LSQ banks tightly

coupled with the data cache banks that will receive their loads and stores. Distributing age-interleaved partitions

to address-interleaved caches will effectively randomizethe communication among LSQ and cache banks.

Address-interleaved LSQs are a much better match for address-partitioned memory systems, but the mapping

of loads and stores to banks is unknown until the instructions execute. In the worst case, all in-flight memory

instructions might map to the same partition. This behavioris uncommon in many benchmarks, but may arise

when the application is loading from or storing to a sequential array of characters. Even so, sizing each partition

for the worst case results in a total LSQ capacity that–for N banks–is N times the memory instruction window

size. If the partitioned LSQ banks are sufficiently undersized that overflows are not an extremely rare event, a

graceful, low-overhead mechanism for handling overflows isnecessary. This section first describes the microar-

chitecture trends and design principles of a partitioned architectures that necessitate a new approach to LSQ

design. It then discusses the microarchitecture of an unordered LSQ design amenable to address interleaving.

3.1 Partitioned Microarchitecture

The architectural trends motivating the design of a partitioned LSQ include (1) very large instruction windows

with hundreds of in-flight memory instructions, and (2) partitioning of microarchitectures for scaling to higher

instruction execution and local memory bandwidth. While recent literature has many examples of these trends,

our mechanisms are built on top of the TRIPS microarchitecture. The TRIPS processor is a partitioned microar-

chitecture that enables a window of up to 1024 instructions and up to 256 simultaneously executing memory

instructions. All major components of the processor are partitioned and distributed including instruction fetch,

instruction issue, and memory access.

The processor itself is composed of an array of 16 execution units connected via a routed operand network.
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Instructions are striped across 4 instruction cache banks which are accessed in parallel to fetch TRIPS instruction

blocks. Instructions are delivered to the execution units where each instruction waits until its operands arrive.

The primary memory system (level-1 data cache, LSQs, dependence predictors and miss handling units) is

divided into multiple banks which are also attached to the routed operand network. Cache lines are interleaved

across the banks, which enables up to 4 memory instructions per cycle to enter the level-1 cache pipelines.

Figure 2(a) shows a highly abstracted view of the parts of theTRIPS microarchitecture that are relevant to

memory instructions; additional details about the TRIPS architecture can be found in [4].

The features of the TRIPS architecture most relevant to the design of LSQs can be distilled down to a few prin-

ciples which are not unique to TRIPS. First, is distributed cache in which multiple level-1 cache banks must

independently preserve the proper ordering of load and store instructions. Second, is the set of distributed exe-

cution units which independently decide which instructions to issue each cycle. Third, is distributed instruction

fetch which provides higher instruction fetch bandwidth but does not easily allow age tags to be assigned to

memory instructions in fetch order. Finally, a distributedarchitecture with multiple execution and memory units

must include some form of interconnection network. TRIPS employs a mesh-routed operand network which

can be augmented to provide multiple virtual channels. Someof the solutions outlined in this paper rely on the

network buffers and flow control to store in-flight memory instruction packets. However, other interconnection

networks are feasible and they could likewise be augmented with additional queueing to buffer in-flight memory

instructions. The bottom line is that while we examine partitioned LSQ design in a TRIPS context, we believe

that these concepts apply to other architectures that sharesome of these basic characteristics.

3.2 Unordered LSQ design

In a traditional age-indexed LSQ, the instructions in the LSQ are stored in a structure that is indexed by in-

struction’s memory sequence number. An age-indexed LSQ uses the implicit age ordering to optimize the LSQ

search functions and to quickly allocate and deallocate entries. However, for address interleaved LSQs, the cur-

rent age-indexing techniques cannot be used without sizingthe LSQ to match the memory instruction window

size (maximally sized LSQ). In this section, we provide a overview of techniques that allow age-indexing to

work with undersized address interleaved LSQs. Figure?? illustrates the undersized age-indexing LSQ design.

The basic idea is to manage the undersized LSQ as a free-list;as and when memory instructions arrive at a

partition, a slot is allocated from a pool of free LSQ entries, slots are returned to the LSQ when entries are

deallocated either on flush or commits. Using this allocation policy results in an LSQ where a slot allocated to

the instruction has no relation to the instruction sequencenumber (unordered LSQ) and for this type of LSQ,
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without any additional structures, the LSQ functions may take multiple cycles to complete. For instance, during

store commits, all entries in the unordered LSQ have to be scanned, one every cycle, to detect the oldest store to

commit and this can result in longer commit latencies which are known to negatively impact performance.

The commit operations in the unordered LSQ can be optimized by creating a table that is indexed by the age of

the instruction and holds the slot allocated to a instruction in the LSQ (Indirection table or INT). By using this

table, when stores are ready to commit, the LSQ slot with the store data can be looked up in the indirection table

with the age of the store.

The second function of the LSQ — store forwarding — is more involved to implement in an unordered LSQ and

can result in performance penalties because without the ordering information a more extensive search involving

all matching entriesin required in the LSQ. The process of store forwarding in theunordered LSQ works as

follows: An incoming load instruction performs associative search on the address CAM to identify all matching

store instructions. Then, the age of each matching entry is read out from the LSQ and compared against the

age of the incoming load. If the matching store is older than the load, then the store should forward to the

load; the store is marked as matching and noted for later processing by setting a bit corresponding to the store

in in the matching vector (a 1-b wide array indexed by the store’s age). Once all matching stores have been

identified, the process of collecting the load data from the matching stores begins by scanning the matching

vector backwards in age order. Then, when all of the load datahas been received store forwarding is complete.

Thus, the process of store forwarding withN matches takes at leastN +1 cycles to complete and at mostN +9
7



cycles to complete. In contrast in an age-indexed LSQ withN matching stores, forwarding can take at most 8

cycles (or the maximum datum size.)

Two optimizations can improve the performance of the unordered LSQ: first, instead of scanning the array and

reading out the ages of the matching instruction, a special age CAM (AT-CAM)1 can be utilized to identify older

stores instructions Second, the load can start scanning formatching stores starting from stores that belong to

the youngest branch before the incoming load and processingthe stores in the branch order. The results of both

these optimizations are presented in the results section.

Detecting violations and handling flushes are fairly straightforward. If the incoming instruction is a store, the

associative search identifies matching addresses and younger loads. A violation is triggered if there are any

matching younger loads. For flushes, when a LSQ identifies allinstructions to be flushed by searching the

AT-CAM with the age of the instruction to be flushed.

Since the LSQ is undersized, special hardware is required todetect and report overflow conditions. A simple

counting mechanism withN + 1 counters is used for this purpose (N is the maximum number of unresolved

branches inflight).N of these counters hold the count of number of memory instructions that have arrived

from each inflight branch while the remaining counter keeps acumulative count. When the cumulative count

reaches a the total size of the LSQ an overflow is signalled. Ondeallocation, the number of memory instructions

corresponding to the flushed branch is subtracted from the cumulative count. In case of the TRIPS processor,

N=8 and corresponds to the total number of inflight blocks.

To decrease the power consumption of the LSQ we use separate load and store Bloom filters (BFs) with flash

clearing [8]. BFs reduce the power hungry associative lookup with power efficient direct mapped lookup in the

common case. Seperate load and store BFs are associated witheach inflight branch to efficiently implement

flash clearing. If a memory instruction is between inflight branchb0 andb1 then the memory instruction is noted

in the Bloom filter belonging to that branch. All the bits in the BF are flash cleared when the branch is resolved

or branch is flushed and all instructions in the branch have committed. For the TRIPS processor, each inflight

branch naturally maps to an inflight block.

1The AT-CAM is special variant of the regular CAM. Instead of outputting just equality matches the CAM outputs a
greater/lesser/equal results. The same CAM will be later used for other optimizing flushes also.
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4 Mitigating LSQ Overflows

The microarchitecture of the unordered LSQ in the previous section is ideal for an address-interleaved cache ar-

chitecture, it must function correctly even if all of the in-flight memory instructions are sent to a single partition.

A brute-force approach in which the LSQ tables are maximallysized will result in area and power overheads in

the common case. This section examines several techniques for undersizing the LSQ tables in each partition,

while still maintaining correctness and deadlock freedom.

The principal question when using an undersized LSQ is what to do when a memory instruction arrives at a

full LSQ. An obvious (but flawed) mechanism to deal with overflows gracefully is to simply stall the load/store

pipeline on an overflow until a slot in the LSQ partition becomes free. This approach does not work because

of deadlocks; younger memory instructions can reach the LSQahead of the older instructions, filling up the

LSQ and preventing the older instructions from reaching thequeue and committing. A heavyweight alternative,

commonly used in conventional processors to handle a variety of resource overflows, is to flush the pipeline and

resume execution. In this case, the smaller the LSQ, the morefrequent the flushes; if flushes are too frequent,

performance will drop precipitously.

The goal then is to reduce the size of the LSQs as much as possible, without dramatically increasing the flush fre-

quency. The remainder of this section examines mechanisms to buffer memory instructions in different parts of

the system if they cannot be accepted by the LSQ. We examine three obvious places to buffer these instructions:

in the execution units, in the memory units (but before the LSQ), or in the network connecting the execution

units to the memory units. The buffering space is much less precious than the LSQ since the buffered locations

need not be searched for memory conflicts, which mitigates the area and power overheads of employing more

buffer storage.

These buffering approach effectively stall processing of certain memory instructions, which could potentially

lead to deadlock. However, memory instructions can be formed into groups based on age, with all of the in-

structions in a group having similar ages. In a machine with ablock-oriented instruction set such as TRIPS, the

memory instruction groups correspond to the instruction blocks. One block is non-speculative, while multiple

blocks can be speculative. By choosing to prioritize the non-speculative instructions over the speculative instruc-

tions, our solutions can reduce the circumstances for deadlocks and flushing. One possible design would reserve

LSQ entries for the non-speculative block, but our experiments indicated that this approach did not provide any

substantive performance benefits and resulted in larger than a minimum sized LSQ.
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4.1 Memory Instruction Retry

One common alternative to flushing the pipeline in conventional processors is to replay individual offending

instructions, either by retracting the instruction back into the issue window, or by logging the instruction in a

retry buffer. In TRIPS retrying means sending an offending instruction back to the ALU where it was issued and

storing it back into its designated reservation station. Since the reservation station still holds the instruction and

its operands, only a short negative-acknowledgement (NACK) message needs to be sent back to the execution

unit. No additional storage in the system is required as the reservation station cannot be reassigned to another

instruction until the prior instruction commits. The issuelogic may retry this instruction later according to a

number of possible policies.

Figure 3a shows the basics of this technique applied to LSQ overflows. When a speculative instruction arrives

at a full LSQ, the memory unit sends the NACK back to that instructions execution unit. This policy ensures

that speculative instructions will not prevent a non-speculative instruction from reaching the LSQ. If a non-

speculative instruction arrives at a full LSQ, then the pipeline must be flushed.

ALU LSQ PartitionOPN Router

Nack

ALU LSQ PartitionOPN Router

Flush

VC0VC1
VC1

VC0

(a) NACK and Retry 

Flush

(b) Skid Buffer (c) Virtual Channel (VC) 

LSQ PartitionOPN Router

Flush

Skid Buffer

Figure 3:LSQ Flow Control Mechanisms.

A range of policies are possible for determining when to reissuing a NACKed memory instruction. If the in-

struction reissues too soon (i.e. immediately upon NACK), it can degrade performance by clogging the network,

possibly requiring multiple NACKs for the same instruction. This can delay older non-speculative instructions

from reaching the LSQ partition, as well as general execution and instructions headed to other LSQ partitions.

Alternatively, the reservation stations can hold back NACKed instructions until a fixed amount of time has

elapsed. Waiting for a set amount of time requires a counter per NACKed instruction, and may be either too

long (incurring unnecessary latency) or too short (increasing network contention).

Instead, our approach triggers re-issue when the non-speculative block commits, which has the desirable prop-

erty that LSQ entries in the overflowed partition are likely to have been freed. This mechanism does have two

extra overheads, however: an additional state bit for everyreservation station is required, to indicate that the
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instruction is ready but waiting for a block to commit beforereissuing, and a control path to wake up NACKed

instructions when the commit signal for the non-speculative block arrives.

4.2 Skid Buffers

A second technique is to store memory instructions waiting to access the LSQ in a skid buffer located in the

memory unit. As shown in Figure 3b, the skid buffer is simply aFIFO into which memory instructions can be

inserted and extracted. To avoid deadlock, our skid buffersonly hold speculative memory instructions. If an

arriving speculative memory instruction find the LSQ full, it is inserted into the skid buffer. If the skid buffer is

also full, the block is flushed. Arriving non-speculative instructions are not placed in the skid buffer. If they find

the LSQ full, they trigger a flush.

When the non-speculative block commits and the next oldest block becomes non-speculative, all of its instruc-

tions that are located in the skid buffer must be extracted first and placed into the LSQ. If the LSQ fills up during

this process, the pipeline must be flushed. Like retry, the key to this approach is to prioritize the non-speculative

instructions and ensure that the speculative instructionsdo not impede progress. Skid buffers can reduce the

ALU and network contention associated with NACK and instruction replay, but may result in more flushes if the

skid buffer is small.

4.3 Virtual Channel-Based Flow Control

A third approach is to use the buffers in the network that transmits memory instructions from the execution

to the memory units as temporary storage for memory instructions when the LSQ is full. In this scheme, the

operand network is augmented to have two virtual channels (VCs): one for non-speculative traffic and one for

speculative traffic. When a speculative instruction is issued at an ALU, its operands and memory requests are

transmitted on the lower priority channel. When a speculative memory instruction reaches a full LSQ and cannot

enter, it remains in the network and asserts backpressure along the speculative virtual channel. Non-speculative

instructions use the higher priority virtual channel for both operands and memory requests. A non-speculative

memory instruction that finds the LSQ full triggers a flush to avoid deadlock. Figure 3c shows a diagram of this

approach.

This virtual channel approach has a number of benefits. First, no new structures are required so logic overhead

is only minimally increased. Additional router buffers arerequired to implement the second virtual channel, but

our experiments show that two-deep flit buffers for each virtual channel is sufficient. Second, no additional ALU
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or network contention is induced by NACKs or instruction replays. Third, the higher priority virtual channel

allows non-speculative network traffic to bypass speculative traffic. Thus non-speculative memory instructions

are likely to arrive at the LSQ before speculative memory instructions, which reduces the likelihood of flushing.

Despite its conceptual elegance, this solution requires a number changes to the baseline network and execution

engine. The baseline TRIPS implementation has the following pertinent features: it provides a single operand

network channel that uses on-off flow control to exert back-pressure, each router contains a four-entry FIFO

to implement wormhole routing, the microarchitecture can flush any in-flight instructions located in any tile or

network router when the block they belong to is flushed, and finally, all of the core tiles (execution, register file,

data cache) of the TRIPS processor connect to the operand network and will stall issue if they have a message

to inject and the outgoing network FIFO is full.

Adjusting this network to support VC requires several augmentations: (1) an additional virtual channel in the

operand network to separate speculative from non-speculative network traffic, including the standard buffer

capacity and control logic needed by virtual channels, (2) virtualization of the pipeline registers, which must

stretch into the execution and register tiles to allow non-speculative instructions to be proceed even if specu-

lative instructions are stalling up the virtual network, (3) issue logic in these tiles that selects non-speculative

instructions over speculative logic when the virtual network is backed up, and (4) a means to promote specu-

lative instructions from the speculative virtual channel to the non-speculative channel when its block becomes

non-speculative.

The trickiest part of the design is the promotion of speculative network packets to the non-speculative virtual

channel when the previous non-speculative block commits. The TRIPS microarchitecture already has a commit

signal which is distributed in a pipelined fashion to all of the execution units, memory units, and routers. When

the commit signal indicates that the non-speculative blockhas committed, each router must nullify any remaining

packets in the non-speculative virtual channel and copy anypackets belonging to the new non-speculative block

from the speculative VC to the non-speculative VC.

4.4 Reserving LSQ Entries

The three techniques of retry, skid buffers, and virtual channels all eliminate flushes on speculative memory

instructions by buffering them when the LSQ is full. To further reduce flushes requires a means of increasing

the likelihood that space is available when non-speculative instructions arrive at the LSQ. Aside from increasing
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the total size of the LSQ partition, there are two obvious ways to adjust the effective size of the LSQ. One is

to decrease the number high-priority memory instructions relative to the number of low-priority ones. While

changing the ratio in TRIPS would require changing the blocksize, a more conventional architecture which

dynamically assigned memory instructions to priority groups could accomplish this just by altering the size of

the groups that are formed.

A second way is to reserve some number of LSQ slots for the highpriority memory instructions. If enough slots

are reserved to capture the maximum number of high priority instructions, then flushes can be completely elim-

inated. For TRIPS, this would mean a minimum LSQ size of 32 entries regardless of the number of partitions.

Reserving a large number of LSQ entries for the worst-case behavior can reduce overall performance since the

effective LSQ size for low-priority memory instructions issmaller. This effect can be mitigated by reserving

only a few entries (for example 4 entries out of 16 or 32 total LSQ entries) for the high-priority instructions, and

sharing the remainder among high and low priority instructions. The effectiveness can be improved by allocat-

ing the reserved entries only when all other entries in the LSQ are full. Section 5 further examines the effect of

reserving LSQ entries.

5 Results

In this section, we present experiments, quantitative dataand qualitative arguments to answer the following two

questions about the proposed LSQs:(1) Can the proposed LSQ designs perform as well as maximally sized

LSQs? and(2) How does the the LSQ design impact area, power and complexityrequirements?

Simulation Infrastructure: The parameters of the simulated microarchitecture, the compiler details and the

simulation methodology are summarized in Table 1. The microarchitecture timing simulator used in this study

is a cycle accurate event-driven simulator and is validatedto be within11% of performance compared to the

actual hardware RTL of the TRIPS prototype. On a suite of handoptimized benchmarks the simulated microar-

chitecture outperforms Alpha 21264 microarchitecture by 2x-3x. For this study, we analyze performance using

the EEMBC benchmark suite and 12 SPEC CPU 2000 (8 FP + 4 INT) benchmarks with MINNESPEC medium

sized reduced inputs. In addition to these benchmarks, we also use specially constructed synthetic benchmarks

that stress the interconnection network and allow us to study the performance of the LSQ flow control schemes

in isolation.
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Parameter Configuration

Overview Microarchitecture supports block-atomic execution and predicated execution. Out-of-order execution with
up to 1024 instructions inflight, up to 256 register reads, upto 256 register writes and up to 256 memory
instructions can be simultaneously in flight. Up to 4 stores and 4 registers can be committed every cycle.

Compiler Compiler generates single-entry-multiple-exit blocks with up to 128 instructions (32 ld/st’s per block). The
instructions in each block are statically assigned to the execution units (but are dynamically issued.)

Instruction
Supply

IL1 partitioned into 5 banks (8KB/bank, 1-cycle hit). Local/Gshare Tournament predictor (10K bits, 3 cycle
latency) with speculative updates; Local: 512(L1) + 1024(L2), Global: 4096, Choice: 4096, RAS: 128, BTB:
2048. 16-entry FA Instruction TLB replicated at each bank.

Execution
Resources

16 Int/FP units, arithmetic operations are single cycle, mult uses pipelined functional units. Each execution
unit is fed by a single issue 64-entry direct-mapped issue window which selects oldest ready instruction for
issue. The instructions arestaticallymapped to issue windows.

Data Supply 4-bank cache-line interleaved DL1 (8KB/bank, 2-way assoc,writeback, write-around 2-cycle hit) with one
read and one write port per bank to different addresses. Up to16 outstanding misses per bank to up to four
cache lines, 2MB L2, 8 way assoc, LRU, writeback, write-allocate, average (unloaded) L2 hit latency is 15
cycles, Average (unloaded) main memory latency is 127 cycles. 16-entry FA replicated DTLB per bank. Best
case load-to-use latency is 5 cycles. Store forwarding latency is variable, minimum penalty is 1 cycle.

Interconnection
Network

The 16 Int/FP units, the 4 data cache banks, the 4 register banks and the global controller are connected
through a packet switched mesh network with wormhole routing. The banks are arranged in 5x5 grid, with
data banks and register banks on adjacent edges. Each routeruses round-robin arbitration. There are four
buffers in each direction per router and 25 routers. The hop latency is 1-cycle.

Simulation Execution-driven simulator validated to be within 11% of RTL design. 28 EEMBC benchmarks, 12 SPEC
benchmarks (everything but C++&F90 benchmarks, gcc, perlbmk, vpr, crafty, sixtrack, apsi and mcf) and
two synthetic worst case benchmark. SPEC run to completion on MINNESPEC medium reduced inputs
except gzip, equake, bzip2, art, mesa, wupwise and mgrid forwhich we skipped 1B and simulated 100M
with medium reduced inputs.

Table 1:Features of the distributed microarchitecture, compiler and simulation methodology for this study.

5.1 Performance of the Unordered LSQ

In the baseline unordered LSQ, store forwarding withN matches takes at leastN cycles to complete. But, in

an ordered LSQ, by virtue of order optimized search, the store forwarding penalty is always less than D cycles

(where D is the datum size of the incoming load instruction, Dis typically 8) irrespective of the number of

matching stores. Despite, this difference we did not observe performance degradations due to the increased

penalty in the unordered LSQ. This result can be explained bythe fact that for more than 95% of loads there

are one or zero matching stores (see Table 2). In addition, byusing the optimized search method,i.e. searching

backwards starting from the youngest matching unresolved block and going backwards, the number of loads

that need to search past one matching store is reduced to lessthan 1%.

5.2 Performance of Flow Control Mechanisms

The performance of the flow control techniques is affected bythe both number of overflows, and the performance

penalty for each action resulting from an overflow (a NACK, stalling a virtual channel, or flushing the pipeline).
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Benchmarks Number of matching stores
Baseline Search Optimized Search

0 1 2 3 4+ 0 1 2 3 4+

SPEC 96.3 3.0 0.1 0.0 0.6 96.3 3.5 0.3 0.0 0.0
EEMBC 90.5 4.8 1.1 1.2 2.4 90.5 8.6 0.8 0.1 0.0

Table 2:Number of matching stores reported as a fraction of total number of dynamic loads.

The purpose of experiments in this section is to understand the relative costs of these two factors, first, using

simple microbenchmarks, and then for SPEC and EEMBC benchmarks.

The number of overflows is determined by the size of each LSQ partition, the number of memory operations

reaching each partition, and the rate at which memory instructions reach the partitions. The performance penalty

of the flow control mechanism varies, depending on the numberof flushes, the routing delays to and from the

NACK’ed reservation station, and/or the congestion in the network.

Microbenchmark Results: To estimate the expected- and worst-case bounds and to understand the flow control

performance in isolation for all three flow control mechanisms proposed in the paper, we constructed two mi-

crobenchmarks that drive the memory system with typical andhigh loads. The first microbenchmark (labelled

TYP) shows expected case behavior, in which memory operations are evenly distributed among all banks. This

microbenchmark contains a single-block loop that executes1000 times, with 32 load instructions in the block,

eight of which target each of the four banks. All of the instructions target the same address each iteration.

The second benchmark (WC) simulates the worst possible execution scenario for the interconnection networks,

where all loads and stores in the window are mapped to the samecache and LSQ bank. Like TYP, WC runs a

single block for 1000 iterations, with all 32 load operations in the block targeting cache bank 0 every iteration.

For the TYP benchmark, the maximum number of instructions that will reside in each bank is 64, since there are

256 maximum in flight and 4 banks and for the WC benchmark the maximum number is 256 at each bank.

We show the results of the WC benchmark and TYP benchmark in Figure 4 for FLUSH, NACK, SKID and VC

schemes for LSQ sizes ranging from 32 to 160. For each benchmark, we normalize the performance (measured

in cycle counts) to a configuration with maximally sized, 256-entry LSQ partitions that never overflow. For all

of the schemes, we show performance with no slots reserved for the non-speculative instructions.

For the SKID scheme, we evaluate performance with two different configurations (a) each partition utilizes a

128 entry skid buffer, the largest size accessible in 1 cycleat 65nm at 1.25GHz and (b) each partition utilizes a

skid buffer that is sized according to the number of memory requests expected at each LSQ partition (labelled
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Figure 4:Performance of the LSQ flow control mechanisms under typicaland worst case conditions. Slowdowns for TYP
benchmark with flush scheme is annotated on the bar.

SKID E), i.e. the skid buffer sizes are either (256 - LSQ partition size) for WC or (64 - LSQ partition size) for

TYP.

For the VC mechanism, we show performance with 4 and 6 buffersat each router. For the 4-entry buffer, the

buffer slots are equally divided between the two virtual channels and for the 6 entry buffer, 4 slots are reserved

for the low priority channel and 2 slots are reserved for the high priority channel. The baseline configuration

also 4 entry buffers but does not have any virtual channels.

As can be seen from the TYP benchmarks charts 4, the degradations due the flush scheme are much higher than

the NACK scheme for any configuration. Between the remainingschemes there is no difference between the

flow control scheme when the memory instructions are equallydistributed between the cache banks. However,

when overflows become more numerous due to load imbalances, as with the WC benchmark, the flow control

schemes show more varied behavior.

First, we examine the performance between similar configurations like VC22 and VC42, SKID128 and SKIDE

which have roughly the same cost for handling overflows. By comparing the performance of these benchmarks

we can understand how the delivery of operands to the LSQ affects performance. We observed that the number

of flushes for VC22 and VC42 for similar sized LSQs were different causing the disparity in performance;

this is probably due to fact that deeper buffers promote moreout-of-order execution consequently causing more

capacity violations. Second, we examine performance across differently sized LSQs. The performance improves

with smaller LSQ sizes (64 and less) because the LSQs fill up faster and the probability of flushes occurring
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Figure 5: Left: Average LSQ Performance for the EEMBC benchmark suite. Right: Three worst benchmarks. bitmnp
shows a different trend because there are fewer LSQ conflict violations in bitmnp when the LSQ capacity is decreased.
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Figure 6:Left: Average LSQ Performance for the SPEC benchmark suite.Right: Three worst benchmarks.

earlier increases. Early flushes are always better than lateflushes, given equal number of flushes. Finally, we note

that The VC scheme is 2x faster compared to any other flow control scheme for all undersized LSQs even for the

WC benchmark. The performance degradations are much lower for VC because the virtual channel promotion

policiesnaturally maintain instructions in program orderthereby reducing out-of-order LSQ subscription and

the number of capacity violations. For rest of the performance analysis, we use skid buffers sized according to

expected number of requests and the virtual channel scheme with equally provisioned virtual channels because

they perform as well or better than the larger sized structures.

SPEC and EEMBC Results: Figures 5 and 6 show the performance of the different flow control schemes

for the EEMBC and SPEC benchmarks respectively. For both these benchmarks, the VC flow control method

works best and flush scheme results in unacceptable performance degradations. For LSQs that are as small as 40-

entries (70% of the steady state number of memory requests) the VC mechanism shows a moderate performance

degradation of 5% and 4% for SPEC and EEMBC benchmarks respectively. For 48-entry LSQs, with the VC

scheme, the performance degradations drop to 1% and 2% respectively. Most of the performance degradation
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realLow_1 = &realData_1[l_1];
imagLow_1 = &imagData_1[l_1];
realHi_1 = &realData_1[i_1];
imagHi_1 = &imagData_1[i_1];
:
:

realData_1[l_1] = *realHi_1 - tRealData_1;
imagData_1[l_1] = *imagHi_1 - tImagData_1;
realData_1[i_1] += tRealData_1;
imagData_1[i_1] += tImagData_1;

Figure 7:Code snippet from aiifft benchmark.

in SPEC (see Figure 6 Right) is due to FP benchmarks as these benchmarks typically have a larger fraction of

inflight memory references than the SPEC INT programs.

Program Analysis of Outliers: We studied the worst three benchmarks (see Figure 5) from theEEMBC suite

to understand the large performance degradations. While for most of the benchmarks, the memory accesses

tend to be evenly distributed across the cache banks with occasional bursty behavior, the benchmarks with large

degradations showed continuous unbalanced access patterns. In these benchmarks, the code generated by the

compiler was such that most of the memory references for the benchmarks were targeted at one or few of the

banks. For instance, consider the frequently executed codesequence in aiifft01(see Figure 7).

The inner loop contains 2 reads and 2 writes to two different arrays. The code generated by the compiler aligns

the both the arrays to 256 byte boundaries and since the arrays are accessed by same indices, all of the four

accesses end to the same bank. This problem is exacerbated byloop unrolling which our compiler performs

quite aggressively. We changed the alignment of the arrays by hand and verified that performance improves.

However, it is not clear if this alignment optimization can be automatically detected and fixed by the compiler

without the programmer’s help.

Another frequent code sequence that caused load imbalancesis frequent use of static scalar variables. Static

scalar variables in general cannot be register allocated (precise exceptions, consistency requirements etc.) and

remain allocated to one bank for the life time of a program. Ifthe program repeatedly uses the static variable

then imbalances occur. For example, a file pointer declared as static and a program that writes to a large in

memory file pointed by the file pointer.

These two case studies and the data in this section illustrate the important point that imbalances in partitioned

memory systems cannot be easily detected and optimized for by the compiler and that low overhead hardware
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Benchmark Number of LSQ Reserved Slots
(aiifft) LSQ Size 48 LSQ Size 40

0 4 8 16 32 0 4 8 16 32

VC
Performance 1.38 1.20 1.06 1.12 1.39 1.20 1.11 1.03 1.06 1.24
Inst/Flush 337 788 1.4M No F No F 643 1441 No F No F No F

NACK
Performance 1.52 1.35 1.26 1.47 2.33 1.29 1.17 1.12 1.25 1.88
Inst/Flush 283 683 43K No F No F 515 1291 No F No F No F
Inst/NACK 21.58 2.21 1.15 0.70 0.23 55.25 5.29 2.56 1.16 0.36

Table 3: Performance improvements from reserving LSQ slots. No F stands for no flushes. A value of less than 1 for
Inst/NACK indicates that instructions were NACK’ed multiple times.

mechanisms are essential for dealing with capacity violations.

Improving flow control performance:

As described in section 4.4, the performance of the flow control mechanisms can be improved by reserving a

few slots for the non-speculative instructions to avoid some or all of the costly capacity violations. Table 3

illustrates the performance of theaiifft benchmark with the VC and NACK scheme with varying number

of slots reserved for the non-speculative instructions. For the VC scheme, as the number of slots is increased

performance gradually increases, and the number of committed instructions per flush increases. But increasing

the number of reserved slots beyond 16 diminishes performance because reserving too many slots effectively

stifles out-of-order execution. Similarly, for the NACK scheme, reserving more slots for the non speculative

instructions increases performance until too many NACK’edrequests congest the network and the performance

drops precipitously. While reserving slots is beneficial for the aiifft benchmark, in general we observed that for

most of the benchmarks, not reserving any slots was as at least good as reserving slots.

5.3 Discussion of Power, Area and Complexity

Table 4 summarizes and compares the mechanisms described inthis section based on metrics of performance,

complexity, area, and power.

Power and Energy efficiency:Two mechanisms, address partitioning and Bloom filtering, are key to achieving

high power efficiency in LSQs for large window processors. Firstly, partitioning the LSQ by addresses naturally

reduces the number of entries incoming memory instruction has to search against. Over and above that, Bloom

filtering reduces the number of memory instructions performing associative searches thereby improving power

efficiency. As shown in Table 5, nearly 70-80% of the memory instructions (both loads and stores) can be
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Metric Performance Complexity Area Power
Flush Poor if flush frequent Lowest Best Poor if flush frequent
NACK Fair Simple Good Poor if replay and flush frequent
SKID Good Moderate High Good by reducing replay
VC Best High Moderate Best (no replay)

Table 4:Summary of LSQ Optimization Mechanisms.

Benchmarks Average LSQ Activity Factor
VC SKID NACK

40 48 40 48 40 48

SPEC .21 .21 .27 .30 .30 .31
EEMBC .26 .27 .38 .39 .38 .39

Table 5:Number of matching stores reported as a fraction of total number of dynamic loads

prevented from performing associative searches.

However, using Bloom filters incurs additional some additional power for reading and updating the filters for

every memory instruction. In our implementation, each incoming memory instruction reads eight 32-bit reg-

isters (one corresponding to each inflight block) and simultaneously writes to one of the registers. Assuming

a 1.25GHz clock, at 65nm power dissipated for a Bloom filter read/write is 110nW. Since eight of the filters

have to be accessed in parallel, the total power is approximately, 1�W. In contrast, the dynamic power of the

the CAM under similar technology constraints is 40mW (from ascaled synthesized CAM). Using the activity

factors presented in Table 5, the average equivalent power for each memory access is about 8-10mW. At the

same technology, this is roughly equivalent to the power consumed by an 8 entry, 64-wide CAM.

Area Analysis: Among the proposed mechanisms, assuming that the issue window is designed to hold onto

instructions until explicit deallocation, the NACK mechanism is the most area efficient. Basically, it requires

a cumulative storage of 1024 bits to identify the NACK’ed instructions (one bit for every instruction in the

instruction window) and minimal changes to the issue logic to select and re-issue the NACK’ed instructions. The

VC mechanism is next best in terms of area efficiency The area overheads of the VC are due to the additional

storage required for pipeline priority registers in the execution units to avoid deadlocks and the combinational

logic in routers to deal with promotion.The skid buffer scheme require the largest amount of storage, although

most of the structure can be implemented as RAMs. A 24-entry skid buffer supplementing a 40-entry LSQ,

approximately increases the LSQ partition by 3-4%.

It should also be noted here that the unordered, unified LSQ does not duplicate any state; in contrast, decomposed
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LSQs typically maintain multiple redundant copies of the same data to support the constituent functions thorough

physically different structures. For instance, a copy of the store address tag could be present in the forwarding

structure and the same tag could also be present in the commitqueues. Although much of this storage is in form

of area-efficient RAMs, decomposition inherently introduces more area overheads than the unified LSQ design

proposed in this paper.

Complexity: Among the schemes proposed in the paper, the VC scheme is probably the most difficult to

implement. As explained in an earlier section, the VC schemerequires virtualization of not only the network

routers but also the the execution units that feed the router. For instance, when the low priority channel in the

network is backed up, the issue logic must supply the networkwith a high priority instruction even though it may

be in the middle of processing a low priority instruction. The NACK scheme comes second or third depending

on the baseline architecture – if the baseline allows instructions to be held in the issue queues until commit,

implementing NACK is as simple as setting a bit in a return packet and routing it back to the source instead of

the destination. However, if instructions are immediatelydeallocated upon execution from the windows, NACK

may be considerable more complex. The skid buffer solution is probably the simplest of all the solutions: it

requires some form of priority logic for selecting the oldest instructions, mechanisms for handling invalidations

in the skid buffer and arbitration for the LSQ between instructions in the skid buffer and new instructions coming

into the LSQ partition. Despite the apparent complexity of the schemes described here, we believe that that the

schemes are realistic and lend themselves to efficient and simple implementation in hardware.

6 Conclusions

Load/store queues have generated so much recent work in the architecture community because they are one

of the hardest structures to scale, due to their associativenature and the static uncertainty about relationships

among memory operations. The recent work on partitioning the functionality of LSQs into distinct structures

has shown great promise in making them energy-efficient for large windows. In this paper, we have presented

another possible LSQ design that creates additional opportunities for scaling by constructing address-interleaved

LSQs and using them with low overhead overflow-handling mechanisms.

We proposed using the buffering provided by on-chip micronetworks to gracefully handle overflows in address-

interleaved LSQs, employing priority-based virtual channels to avoid deadlock scenarios efficiently. The virtual

channel flow-control approach works extremely well, with nodegradation in performance for the SPEC and

EEMBC benchmarks using four 48-entry LSQ partitions to support a 1024 instruction window processor with a
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maximum number of 256 loads and stores in flight. We also show that the energy-efficiency of the small, address-

interleaved LSQ banks can improved further by the addition of simple Bloom filters. With the combination of

flow-control supported address-interleaving and Bloom filters, the per-access energy of the LSQ is reduced to

approximately the energy consumed by an 8-entry fully associative traditional LSQ.

Address-interleaved LSQs have been suggested as effectivemechanism for scaling LSQs for nearly a decade

now [6] but until this work, researchers had no graceful way of handling overflows, so had to oversize partitions

to keep flushes sufficiently low. We believe that the solutions presented in this paper provide a long-term so-

lution to this problem, even to more partitions and larger instruction windows. Whether the complexity of the

flow control mechanisms outweighs the complexity of the partitioned-functionality approach (especially in an

interleaved memory system) is an open question. Although all of the techniques we have presented are appli-

cable to conventional ISAs and microarchitectures, the added complexity of these techniques is much less for

distributed microarchitectures like TRIPS simply becausemany of the necessary mechanisms are already extant

in the design.
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