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Abstract

Designing scalable memory ordering hardware is one of thetfingportant challenges for large-window,
out-of-order processor design, due to its complexity, poar its criticality for high performance. Recent
research has aimed to partition the functionality of loddrs queues (LSQ) into three components: ordering
violations detection, value forwarding, and store bufigrifor commit, to avoid frequent access to large,
associative, energy-inefficient structures. This apphoadds microarchitectural complexity but has been
shown to be effective. In this paper, we describe a familynefgy-efficient distributed load/store queue
designs that avoid the need for partitioning the LSQ fumetldy, but which achieve comparable energy
efficiency with performance comparable to an ideal LSQ. &hissigns interleave LSQ banks based on
cache-line addresses, and deal with the resultant overfleallenges by prioritizing older instructions and
occasionally rejecting younger instructions using flowrrol techniques. The experimental results show
that on average, there is no performance degradation forasktinterleaved LSQs that ammdersizedup
to three-quarters of a 256 memory instruction window fob®PEC and EEMBC benchmarks. In addition,
each LSQ access consumes only as much energy, on averadgeearg, fully associative traditional LSQ.

1 Introduction

The load/store queues (LSQs) that provide hardware menisaynthiguation and ordering have become some

of the most challenging structures to design in modern, -Highprocessors. For processors that aim to ex-

ploit large—and growing—instruction windows, the LSQs @aeur significant power, area, performance, and

complexity overheads. A recent approach by numerous m&ss@r has been to partition the functionality of

LSQs into their three constituent functionslue forwardingirom stores to loadgrdering-violation detection

andstore-value bufferindor commit [3, 7, 14, 11, 9]. By breaking up the LSQ into vasotombinations of

these three functions, researchers have been able to sizesteacture appropriately for its function, reducing

energy consumption as window sizes grow. This strategy Bas bhown to be effective, but suffers from two

disadvantages: the added complexity of multiple intengctructures, and the physical centralization of each

component.



For large-window, wide-issue processors, primary memgsyesns will become increasingly partitioned, due
to both increased bandwidth requirements [10] and due te&sing communication delays [1]. Some of the
recent LSQ proposals that separate the functionality intdtiphe structures will likely become significantly
more complex when distributed among many primary memorteay$anks. Ideally, future LSQs will fulfill
two requirements. First, they will be distributed alonghwtite level-one data caches with the same interleaving
function, allowing a load or store to be routed to a singlditian of the primary memory system, where the
cache lookup and memory ordering can be performed localgcofsd, future LSQs should require accesses
to only comparatively small, energy-efficient structurigst do not become more complex even as instruction

window sizes grow.

In this paper, we describe a family of LSQ designs which ao&dm into address-interleaved banks, partitioning
based on address rather than functionality. The classiglggrowith address-interleaved LSQ banks is bank
overflow; since the mapping of load/store banks to addreslynamically determined, too many loads and
stores may map to one LSQ bank. The classic technique foindealth such structural hazards to flush the

pipeline, which can cause too much performance degradetiorany cases.

The key idea in this family of designs is to provide low-ovead LSQ bank overflow handling. Each design
partitions the in-flight memory operations into age-ordeoins. For example, a window supporting up to 256
memory operations in flight might assign each consecutivio@®s or stores to one bin, permitting up to eight
bins total. The oldest bin is tHagh-priority bin. The LSQ banks handle loads or stores from the high-pyrior
bin differently from low-priority bins. These designs applrange of flow-control techniques to the low-priority
operations (LPs), including interlocking them using vétahannels, or NACKing them and sending them back
to the issue window. High-priority operations (HPs) aréeitprovided reserved space in each LSQ bank, or, on
a high-priority overflow, cause a rare pipeline flush follol®y refetching of the HP operations and a temporary

throttling of subsequent operations.

We use the TRIPS architecture for a large-window substmtvaluate these ideas. The scalar operand net-
works [13], which exist in the TRIPS design as well as othéfs [L2] are useful for implementing the flow-
control policies (NACK and virtual channels). We show thne virtual-channel approach to flow control demon-
strates a negligible (2%) performance loss over an idahlitstributed LSQ that never overflows, while requir-
ing each load or store to compare against 8 addresses, @ayayéor a window size of 256 memory operations
and 1024 instructions. These results show that partitgpbased on functionality is unnecessary, particularly if

the primary memory system is distributed.

In the next section, we discuss related approaches, imgjyatior distributed LSQ work as well as the recent



body of work on functionality-partitioned LSQs. Sectionésdribes the various implementations, including the
underlying microarchitecture, the different flow controkohanisms and policies for managing LSQ overflow
conditions, and the physical design of the LSQ bank, whicktrbea able to handle unordered loads/stores due to
the address interleaving of LSQ banks. In Section 5, we aadlye performance of various approaches, as well

as analyzing the scalability of this approach to a finer degfeartitioning. Finally, we conclude in Section 6.

2 Related Work
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Figure 1:LSQ Related Work.

An LSQ fulfills three necessary functions: (1) it forwardsrstvalues to later loads when their addresses match,
(2) it detects load misspeculations, if a load issued witteolinresolved stores in flight that were later found to

match the load’s address, and (3) it acts as a store buffesthsed to commit stores to memory upon retirement.

Recent work (see Figure 1) has proposed seperating somleobttad three LSQ functions into separate struc-
tures, to accelerate some of the individual structuress @pproach results in increased complexity, and occa-
sional area increases due to redundant information helcuitipte structures, but the potential power savings,
and in some cases, the access latency improvements, ardezabte. In this paper, we propose a LSQ organi-
zation that provides all the benefits of functional decorntfmswithout the increased complexity of the other

mechanisms.



Both Baugh and Zilles [3] and Roth [7] use a small, fast, adizted, unordered, fully associative forwarding
buffer and a non-associative FIFO for buffering and comngtstores. The papers differ on the misspecula-
tion detection function: Baugh and Zilles use a centralizedtressed-indexed structure, whereas Roth uses
enhancements of a load re-execution proposed by Cain aagti[p]. The scalability and applicability of these

methods to distributed architectures has not been distusse

Sha et al. [9] extend Roth’s scheme by using a modified depeederedictor to match loads with the precise
store buffer slots from which they are likely to receive farded data. This solution completely eliminates the
associative store forwarding buffer but instead requimegd multi-ported dependence/delay predictors (approx-

imately 16KB combined), thus effectively improving poweitlze expense of area.

Stone et al. [11] use a set associative cache for forwardimgn associative FIFO for commit, and an address-
indexed timestamp table for checking speculation. In #&idito the added complexity of this scheme, the
timestamp table may generate signal extra mis-specusatlan to address aliases and conservative handling of
partial flushes. Since the authors have no means to enfakceverhead flow control for instructions targeting
the LSQ, their address-indexed structures must be heavéysized for good performance. For instance, the
authors use an 8K entry, 8-bit wide timestamp table and aitB@ibe, 512 set, 2-way forwarding cache even

though there can be only 1K instructions in flight at any time.

Torres et al. [14] propose a distributed, unordered, addrdgsrleaved store-load forwarding buffer but a cen-
tralized, age-ordered store queue for speculation chgckidl commit. While the distributed store forwarding
buffers increase forwarding bandwidth, the centralizatbthe other two structures forces all loads and stores

to be routed to a central place for verification and commitmpering scalability.

Akkary et al. [2] propose two-level store buffers which amgtbcentralized, fully associative and age ordered.
Stores are first entered in the L1 store buffer, and when itfloves they are moved to the L2 store buffer.
Both buffers support forwarding and speculation checkingsbores commit from the second level buffer. This

scheme reduces power, but still requires a worst-case kZeadd uses area-inefficient CAMs.

It should be noted here that there have been no comprehestgdies evaluating different strategies for recover-
ing from LSQ bank overflow for distributed microarchiteasr While many of the above papers have referenced
the traditional set of possibilities: stalling fetch orlbtay issue to prevent overflows, flushing on an overflow
and incorporating a mechanism (usually serialized execluto guarantee forward progress and replaying the
overflowed instruction from the issue window, they do notradd efficient ways to deal with overflow for par-
titioned LSQs. In addition, the costs for each of the aboveharisms in distributed microarchitectures could

be higher than centralized designs because of increastahcksbetween the execution and the memory units.



The work presented in this paper shows how to leverage tkecominection network flow control techniques
to achieve similar levels of performance without oversizine buffers at all, merely by dividing the LSQ into

banks.

3 Distributed LSQ Microarchitecture

In a hypothetical age-indexed and partitioned LSQ, load €tnck instructions could be directed to different
LSQ banks using memory sequence numbers. This approactalhataad balances the memory instructions
across partitions, without requiring any extra entrieshimpartitions, and guaranteeing no overflows. However,
this organization would defeat the original purpose ofipaning the LSQ, which is to have LSQ banks tightly
coupled with the data cache banks that will receive thendand stores. Distributing age-interleaved partitions

to address-interleaved caches will effectively randorntlisecommunication among LSQ and cache banks.

Address-interleaved LSQs are a much better match for agighaasitioned memory systems, but the mapping
of loads and stores to banks is unknown until the instrustiexecute. In the worst case, all in-flight memory
instructions might map to the same patrtition. This behasgamcommon in many benchmarks, but may arise
when the application is loading from or storing to a seqaatiray of characters. Even so, sizing each partition
for the worst case results in a total LSQ capacity that—foraNks—is N times the memory instruction window
size. If the partitioned LSQ banks are sufficiently undexdithat overflows are not an extremely rare event, a
graceful, low-overhead mechanism for handling overflowsisessary. This section first describes the microar-
chitecture trends and design principles of a partitioneghitgctures that necessitate a new approach to LSQ

design. It then discusses the microarchitecture of an emeddLSQ design amenable to address interleaving.

3.1 Partitioned Microarchitecture

The architectural trends motivating the design of a pariéd LSQ include (1) very large instruction windows
with hundreds of in-flight memory instructions, and (2) eming of microarchitectures for scaling to higher
instruction execution and local memory bandwidth. Whileergt literature has many examples of these trends,
our mechanisms are built on top of the TRIPS microarchitectihe TRIPS processor is a partitioned microar-
chitecture that enables a window of up to 1024 instructiam @ to 256 simultaneously executing memory
instructions. All major components of the processor ardtfmred and distributed including instruction fetch,

instruction issue, and memory access.

The processor itself is composed of an array of 16 executiois gonnected via a routed operand network.



Instructions are striped across 4 instruction cache bahkshwvare accessed in parallel to fetch TRIPS instruction
blocks. Instructions are delivered to the execution unhenr® each instruction waits until its operands arrive.
The primary memory system (level-1 data cache, LSQs, depeedpredictors and miss handling units) is
divided into multiple banks which are also attached to théad operand network. Cache lines are interleaved
across the banks, which enables up to 4 memory instructiensyxle to enter the level-1 cache pipelines.
Figure 2(a) shows a highly abstracted view of the parts oftR€PS microarchitecture that are relevant to

memory instructions; additional details about the TRIRSi@ecture can be found in [4].

The features of the TRIPS architecture most relevant to éisegd of LSQs can be distilled down to a few prin-
ciples which are not unique to TRIPS. First, is distributedhe in which multiple level-1 cache banks must
independently preserve the proper ordering of load an@ statructions. Second, is the set of distributed exe-
cution units which independently decide which instructiom issue each cycle. Third, is distributed instruction
fetch which provides higher instruction fetch bandwidth daes not easily allow age tags to be assigned to
memory instructions in fetch order. Finally, a distributedhitecture with multiple execution and memory units
must include some form of interconnection network. TRIP$leys a mesh-routed operand network which
can be augmented to provide multiple virtual channels. Soitiee solutions outlined in this paper rely on the
network buffers and flow control to store in-flight memorytmstion packets. However, other interconnection
networks are feasible and they could likewise be augmenirhagditional queueing to buffer in-flight memory
instructions. The bottom line is that while we examine piaried LSQ design in a TRIPS context, we believe

that these concepts apply to other architectures that sbane of these basic characteristics.

3.2 Unordered LSQ design

In a traditional age-indexed LSQ, the instructions in theQL&e stored in a structure that is indexed by in-
struction’s memory sequence number. An age-indexed LSQthsamplicit age ordering to optimize the LSQ
search functions and to quickly allocate and deallocateesntHowever, for address interleaved LSQs, the cur-
rent age-indexing techniques cannot be used without sthed.SQ to match the memory instruction window
size (maximally sized LSQ). In this section, we provide arei@v of techniques that allow age-indexing to

work with undersized address interleaved LSQs. Fi@®r#lustrates the undersized age-indexing LSQ design.

The basic idea is to manage the undersized LSQ as a freedisind when memory instructions arrive at a
partition, a slot is allocated from a pool of free LSQ entristots are returned to the LSQ when entries are
deallocated either on flush or commits. Using this alloecapolicy results in an LSQ where a slot allocated to

the instruction has no relation to the instruction sequengeber (unordered LSQ) and for this type of LSQ,



Distributed functional units ‘

Each memory partition includesaddress interleaved data cache
banks, unordered LSQ, a local dependence predictor, a miss
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without any additional structures, the LSQ functions més tanultiple cycles to complete. For instance, during
store commits, all entries in the unordered LSQ have to bersxh one every cycle, to detect the oldest store to

commit and this can result in longer commit latencies whighlkaown to negatively impact performance.

The commit operations in the unordered LSQ can be optimigectdnating a table that is indexed by the age of
the instruction and holds the slot allocated to a instructiothe LSQ (Indirection table or INT). By using this
table, when stores are ready to commit, the LSQ slot withtibre glata can be looked up in the indirection table

with the age of the store.

The second function of the LSQ — store forwarding — is mor@ived to implement in an unordered LSQ and
can result in performance penalties because without theriogdinformation a more extensive search involving
all matching entriesn required in the LSQ. The process of store forwarding inuherdered LSQ works as
follows: An incoming load instruction performs associatsearch on the address CAM to identify all matching
store instructions. Then, the age of each matching entrgad put from the LSQ and compared against the
age of the incoming load. If the matching store is older thHamlbad, then the store should forward to the
load; the store is marked as matching and noted for laterepsiing by setting a bit corresponding to the store
in in the matching vector (a 1-b wide array indexed by thees$oage). Once all matching stores have been
identified, the process of collecting the load data from ttegciming stores begins by scanning the matching
vector backwards in age order. Then, when all of the load ldagebeen received store forwarding is complete.

Thus, the process of store forwarding withmatches takes at leadt+ 1 cycles to complete and at maSt+ 9



cycles to complete. In contrast in an age-indexed LSQ witmatching stores, forwarding can take at most 8

cycles (or the maximum datum size.)

Two optimizations can improve the performance of the unadl¢.SQ: first, instead of scanning the array and
reading out the ages of the matching instruction, a speg&lCGAM (AT-CAM)! can be utilized to identify older

stores instructions Second, the load can start scanningndétching stores starting from stores that belong to
the youngest branch before the incoming load and procesisinstores in the branch order. The results of both

these optimizations are presented in the results section.

Detecting violations and handling flushes are fairly stifigrward. If the incoming instruction is a store, the
associative search identifies matching addresses and goloagls. A violation is triggered if there are any
matching younger loads. For flushes, when a LSQ identifiemstituctions to be flushed by searching the

AT-CAM with the age of the instruction to be flushed.

Since the LSQ is undersized, special hardware is requiretiect and report overflow conditions. A simple
counting mechanism witltV + 1 counters is used for this purpos¥ (s the maximum number of unresolved
branches inflight). N of these counters hold the count of number of memory instmstthat have arrived
from each inflight branch while the remaining counter keegsimulative count. When the cumulative count
reaches a the total size of the LSQ an overflow is signalleddéaiiocation, the number of memory instructions
corresponding to the flushed branch is subtracted from theutaiive count. In case of the TRIPS processor,

N=8 and corresponds to the total number of inflight blocks.

To decrease the power consumption of the LSQ we use sepasgatand store Bloom filters (BFs) with flash
clearing [8]. BFs reduce the power hungry associative lpokith power efficient direct mapped lookup in the
common case. Seperate load and store BFs are associatedagfttinflight branch to efficiently implement
flash clearing. If a memory instruction is between inflighdrichb, andb; then the memory instruction is noted
in the Bloom filter belonging to that branch. All the bits iretBF are flash cleared when the branch is resolved
or branch is flushed and all instructions in the branch hawensitted. For the TRIPS processor, each inflight

branch naturally maps to an inflight block.

1The AT-CAM is special variant of the regular CAM. Instead ofitputting just equality matches the CAM outputs a
greater/lesser/equal results. The same CAM will be lated disr other optimizing flushes also.



4 Mitigating LSQ Overflows

The microarchitecture of the unordered LSQ in the previaasian is ideal for an address-interleaved cache ar-
chitecture, it must function correctly even if all of thefilght memory instructions are sent to a single partition.
A brute-force approach in which the LSQ tables are maxinsilted will result in area and power overheads in
the common case. This section examines several techniquesdersizing the LSQ tables in each partition,

while still maintaining correctness and deadlock freedom.

The principal question when using an undersized LSQ is whabtwhen a memory instruction arrives at a
full LSQ. An obvious (but flawed) mechanism to deal with owesfs gracefully is to simply stall the load/store
pipeline on an overflow until a slot in the LSQ partition be@sriree. This approach does not work because
of deadlocks; younger memory instructions can reach the BB€ad of the older instructions, filling up the
LSQ and preventing the older instructions from reachinggilieue and committing. A heavyweight alternative,
commonly used in conventional processors to handle a yafeesource overflows, is to flush the pipeline and
resume execution. In this case, the smaller the LSQ, the fregaent the flushes; if flushes are too frequent,

performance will drop precipitously.

The goal then is to reduce the size of the LSQs as much as [@sgithout dramatically increasing the flush fre-
quency. The remainder of this section examines mechanisimgfier memory instructions in different parts of
the system if they cannot be accepted by the LSQ. We examiee tibvious places to buffer these instructions:
in the execution units, in the memory units (but before th&),Sr in the network connecting the execution
units to the memory units. The buffering space is much lessipus than the LSQ since the buffered locations
need not be searched for memory conflicts, which mitigatesatba and power overheads of employing more

buffer storage.

These buffering approach effectively stall processingestain memory instructions, which could potentially
lead to deadlock. However, memory instructions can be fdrintd groups based on age, with all of the in-
structions in a group having similar ages. In a machine whlloak-oriented instruction set such as TRIPS, the
memory instruction groups correspond to the instructiachks. One block is non-speculative, while multiple
blocks can be speculative. By choosing to prioritize the-sp@culative instructions over the speculative instruc-
tions, our solutions can reduce the circumstances for delsliand flushing. One possible design would reserve
LSQ entries for the non-speculative block, but our expentséndicated that this approach did not provide any

substantive performance benefits and resulted in largaraminimum sized LSQ.



4.1 Memory Instruction Retry

One common alternative to flushing the pipeline in convertigorocessors is to replay individual offending
instructions, either by retracting the instruction badoithe issue window, or by logging the instruction in a
retry buffer. In TRIPS retrying means sending an offendmmsiruction back to the ALU where it was issued and
storing it back into its designated reservation stationc&ihe reservation station still holds the instruction and
its operands, only a short negative-acknowledgement (NAG&ssage needs to be sent back to the execution
unit. No additional storage in the system is required asdBervation station cannot be reassigned to another
instruction until the prior instruction commits. The isdogic may retry this instruction later according to a

number of possible policies.

Figure 3a shows the basics of this technique applied to LSflows. When a speculative instruction arrives
at a full LSQ, the memory unit sends the NACK back to that indions execution unit. This policy ensures
that speculative instructions will not prevent a non-sgegore instruction from reaching the LSQ. If a non-

speculative instruction arrives at a full LSQ, then the figemust be flushed.
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Figure 3:LSQ Flow Control Mechanisms.

A range of policies are possible for determining when tosgisgy a NACKed memory instruction. If the in-
struction reissues too soon (i.e. immediately upon NACKJan degrade performance by clogging the network,
possibly requiring multiple NACKs for the same instructiorhis can delay older non-speculative instructions
from reaching the LSQ partition, as well as general exenudiad instructions headed to other LSQ partitions.
Alternatively, the reservation stations can hold back NAQHKnstructions until a fixed amount of time has
elapsed. Waiting for a set amount of time requires a courdeNACKed instruction, and may be either too

long (incurring unnecessary latency) or too short (indrepeetwork contention).

Instead, our approach triggers re-issue when the non-sieeublock commits, which has the desirable prop-
erty that LSQ entries in the overflowed partition are likalyhiave been freed. This mechanism does have two

extra overheads, however: an additional state bit for exesgrvation station is required, to indicate that the

10



instruction is ready but waiting for a block to commit befoeéssuing, and a control path to wake up NACKed

instructions when the commit signal for the non-specutalilock arrives.

4.2 Skid Buffers

A second technique is to store memory instructions waitingdcess the LSQ in a skid buffer located in the
memory unit. As shown in Figure 3b, the skid buffer is simplyl&O into which memory instructions can be
inserted and extracted. To avoid deadlock, our skid buffeig hold speculative memory instructions. If an
arriving speculative memory instruction find the LSQ fullisiinserted into the skid buffer. If the skid buffer is
also full, the block is flushed. Arriving non-speculativstiuctions are not placed in the skid buffer. If they find

the LSQ full, they trigger a flush.

When the non-speculative block commits and the next oldesktbecomes non-speculative, all of its instruc-
tions that are located in the skid buffer must be extractstidind placed into the LSQ. If the LSQ fills up during
this process, the pipeline must be flushed. Like retry, tlyed¢his approach is to prioritize the non-speculative
instructions and ensure that the speculative instructittmaot impede progress. Skid buffers can reduce the
ALU and network contention associated with NACK and ingircreplay, but may result in more flushes if the

skid buffer is small.

4.3 Virtual Channel-Based Flow Control

A third approach is to use the buffers in the network thatgmaits memory instructions from the execution
to the memory units as temporary storage for memory instmstwhen the LSQ is full. In this scheme, the
operand network is augmented to have two virtual channezsjVone for non-speculative traffic and one for
speculative traffic. When a speculative instruction iseskat an ALU, its operands and memory requests are
transmitted on the lower priority channel. When a speotdatiemory instruction reaches a full LSQ and cannot
enter, it remains in the network and asserts backpressomg #he speculative virtual channel. Non-speculative
instructions use the higher priority virtual channel fottboperands and memory requests. A non-speculative
memory instruction that finds the LSQ full triggers a flushyoid deadlock. Figure 3c shows a diagram of this

approach.

This virtual channel approach has a number of benefits., Iioshew structures are required so logic overhead
is only minimally increased. Additional router buffers aeguired to implement the second virtual channel, but

our experiments show that two-deep flit buffers for eachuairthannel is sufficient. Second, no additional ALU

11



or network contention is induced by NACKs or instructionlesg. Third, the higher priority virtual channel
allows non-speculative network traffic to bypass spearddtiaffic. Thus non-speculative memory instructions

are likely to arrive at the LSQ before speculative memortrirdions, which reduces the likelihood of flushing.

Despite its conceptual elegance, this solution requirasnaber changes to the baseline network and execution
engine. The baseline TRIPS implementation has the follgyertinent features: it provides a single operand
network channel that uses on-off flow control to exert basgpure, each router contains a four-entry FIFO
to implement wormhole routing, the microarchitecture casHlany in-flight instructions located in any tile or
network router when the block they belong to is flushed, arallfinall of the core tiles (execution, register file,
data cache) of the TRIPS processor connect to the operandnikeind will stall issue if they have a message

to inject and the outgoing network FIFO is full.

Adjusting this network to support VC requires several augiai@ons: (1) an additional virtual channel in the
operand network to separate speculative from non-spaeulaetwork traffic, including the standard buffer
capacity and control logic needed by virtual channels, {@ualization of the pipeline registers, which must
stretch into the execution and register tiles to allow npeesilative instructions to be proceed even if specu-
lative instructions are stalling up the virtual network) {8sue logic in these tiles that selects non-speculative
instructions over speculative logic when the virtual netwis backed up, and (4) a means to promote specu-
lative instructions from the speculative virtual chanrmethe non-speculative channel when its block becomes

non-speculative.

The trickiest part of the design is the promotion of specwgahetwork packets to the non-speculative virtual
channel when the previous non-speculative block commbte. TRIPS microarchitecture already has a commit
signal which is distributed in a pipelined fashion to all leétexecution units, memory units, and routers. When
the commit signal indicates that the non-speculative blaskcommitted, each router must nullify any remaining
packets in the non-speculative virtual channel and copypakkets belonging to the new non-speculative block

from the speculative VC to the non-speculative VC.

4.4 Reserving LSQ Entries

The three techniques of retry, skid buffers, and virtualncieds all eliminate flushes on speculative memory
instructions by buffering them when the LSQ is full. To fuethreduce flushes requires a means of increasing

the likelihood that space is available when non-specudatigtructions arrive at the LSQ. Aside from increasing

12



the total size of the LSQ partition, there are two obvious svmyadjust the effective size of the LSQ. One is
to decrease the number high-priority memory instructiaiative to the number of low-priority ones. While

changing the ratio in TRIPS would require changing the blside, a more conventional architecture which
dynamically assigned memory instructions to priority greweould accomplish this just by altering the size of

the groups that are formed.

A second way is to reserve some number of LSQ slots for thegrighity memory instructions. If enough slots
are reserved to capture the maximum number of high priangtrictions, then flushes can be completely elim-
inated. For TRIPS, this would mean a minimum LSQ size of 32&ntegardless of the number of partitions.
Reserving a large number of LSQ entries for the worst-cakavier can reduce overall performance since the
effective LSQ size for low-priority memory instructions dmaller. This effect can be mitigated by reserving
only a few entries (for example 4 entries out of 16 or 32 tota{lentries) for the high-priority instructions, and
sharing the remainder among high and low priority instartdi The effectiveness can be improved by allocat-
ing the reserved entries only when all other entries in th® age full. Section 5 further examines the effect of

reserving LSQ entries.

5 Results

In this section, we present experiments, quantitative datbqualitative arguments to answer the following two
questions about the proposed LS@$) Can the proposed LSQ designs perform as well as maximakdsiz

LSQs? and2) How does the the LSQ design impact area, power and complequirements?

Simulation Infrastructure: The parameters of the simulated microarchitecture, thepdemdetails and the
simulation methodology are summarized in Table 1. The raiciuitecture timing simulator used in this study
is a cycle accurate event-driven simulator and is validéabelde within11% of performance compared to the
actual hardware RTL of the TRIPS prototype. On a suite of leginized benchmarks the simulated microar-
chitecture outperforms Alpha 21264 microarchitecture ¥38%. For this study, we analyze performance using
the EEMBC benchmark suite and 12 SPEC CPU 2000 (8 FP + 4 INTchoearks with MINNESPEC medium
sized reduced inputs. In addition to these benchmarks, seeusle specially constructed synthetic benchmarks
that stress the interconnection network and allow us toystiuel performance of the LSQ flow control schemes

in isolation.
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Parameter | Configuration |

Overview Microarchitecture supports block-atomic execution aretrated execution. Out-of-order execution w(th
up to 1024 instructions inflight, up to 256 register readstai@56 register writes and up to 256 memary
instructions can be simultaneously in flight. Up to 4 stoms 4registers can be committed every cycle.
Compiler Compiler generates single-entry-multiple-exit blockshwip to 128 instructions (32 Id/st’s per block). The
instructions in each block are statically assigned to tleeetion units (but are dynamically issued.)
Instruction IL1 partitioned into 5 banks (8KB/bank, 1-cycle hit). Lotashare Tournament predictor (10K bits, 3 cycle

Supply latency) with speculative updates; Local: 512(L1) + 102)(IGlobal: 4096, Choice: 4096, RAS: 128, BTB:
2048. 16-entry FA Instruction TLB replicated at each bank.
Execution 16 Int/FP units, arithmetic operations are single cycleltmses pipelined functional units. Each executipn

Resources unit is fed by a single issue 64-entry direct-mapped issunelaw which selects oldest ready instruction for
issue. The instructions astaticallymapped to issue windows.
Data Supply | 4-bank cache-line interleaved DL1 (8KB/bank, 2-way assaieback, write-around 2-cycle hit) with ong
read and one write port per bank to different addresses. Up mutstanding misses per bank to up to four
cache lines, 2MB L2, 8 way assoc, LRU, writeback, write-gdli@, average (unloaded) L2 hit latency is [L5
cycles, Average (unloaded) main memory latency is 127 sydl6-entry FA replicated DTLB per bank. Best
case load-to-use latency is 5 cycles. Store forwardingn¢gtés variable, minimum penalty is 1 cycle.
InterconnectionThe 16 Int/FP units, the 4 data cache banks, the 4 regist&shamd the global controller are connected
Network through a packet switched mesh network with wormhole rgutifhe banks are arranged in 5x5 grid, with
data banks and register banks on adjacent edges. Each usateround-robin arbitration. There are fqur
buffers in each direction per router and 25 routers. The htgmty is 1-cycle.
Simulation Execution-driven simulator validated to be within 11% oflRdesign. 28 EEMBC benchmarks, 12 SPE
benchmarks (everything but C++&F90 benchmarks, gcc, pedhvpr, crafty, sixtrack, apsi and mcf) an
two synthetic worst case benchmark. SPEC run to completioMEINNESPEC medium reduced inpu
except gzip, equake, bzip2, art, mesa, wupwise and mgrid/iidch we skipped 1B and simulated 100
with medium reduced inputs.

Swo_o

Table 1:Features of the distributed microarchitecture, compitel simulation methodology for this study.

5.1 Performance of the Unordered LSQ

In the baseline unordered LSQ, store forwarding withmatches takes at leaat cycles to complete. But, in

an ordered LSQ, by virtue of order optimized search, theedtmmvarding penalty is always less than D cycles
(where D is the datum size of the incoming load instructionis Dypically 8) irrespective of the number of
matching stores. Despite, this difference we did not oles@erformance degradations due to the increased
penalty in the unordered LSQ. This result can be explainethéyact that for more than 95% of loads there
are one or zero matching stores (see Table 2). In additionsing the optimized search metha@, searching
backwards starting from the youngest matching unresolVecktand going backwards, the number of loads

that need to search past one matching store is reduced tihs$%.

5.2 Performance of Flow Control Mechanisms

The performance of the flow control techniques is affectethbyooth number of overflows, and the performance

penalty for each action resulting from an overflow (a NACHJIgtg a virtual channel, or flushing the pipeline).
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Benchmarks Number of matching stores

Baseline Search Optimized Search
0 1 2 3 4+ O 1 2 3 4+
SPEC 96.3 3.0 0.1 0.0 0.6963 35 03 0.0 0
EEMBC 905 48 11 12 24905 86 08 0.1 04

Table 2:Number of matching stores reported as a fraction of totallmenof dynamic loads.

The purpose of experiments in this section is to understheddlative costs of these two factors, first, using

simple microbenchmarks, and then for SPEC and EEMBC bentisma

The number of overflows is determined by the size of each LStipa, the number of memory operations
reaching each partition, and the rate at which memory iostms reach the partitions. The performance penalty
of the flow control mechanism varies, depending on the nurab#ushes, the routing delays to and from the

NACK’ed reservation station, and/or the congestion in thevork.

Microbenchmark Results: To estimate the expected- and worst-case bounds and tostenaithe flow control
performance in isolation for all three flow control mechamssproposed in the paper, we constructed two mi-
crobenchmarks that drive the memory system with typicaltagt loads. The first microbenchmark (labelled
TYP) shows expected case behavior, in which memory opesatioe evenly distributed among all banks. This
microbenchmark contains a single-block loop that execl®&9 times, with 32 load instructions in the block,

eight of which target each of the four banks. All of the instions target the same address each iteration.

The second benchmark (WC) simulates the worst possiblauigacscenario for the interconnection networks,
where all loads and stores in the window are mapped to the saoie and LSQ bank. Like TYP, WC runs a
single block for 1000 iterations, with all 32 load operatian the block targeting cache bank 0 every iteration.
For the TYP benchmark, the maximum number of instructioaswhll reside in each bank is 64, since there are

256 maximum in flight and 4 banks and for the WC benchmark thrdrmam number is 256 at each bank.

We show the results of the WC benchmark and TYP benchmarlgur&ié for FLUSH, NACK, SKID and VC
schemes for LSQ sizes ranging from 32 to 160. For each ber&hma normalize the performance (measured
in cycle counts) to a configuration with maximally sized, 256ry LSQ partitions that never overflow. For all

of the schemes, we show performance with no slots reservalddamon-speculative instructions.

For the SKID scheme, we evaluate performance with two diffeconfigurations (a) each partition utilizes a
128 entry skid buffer, the largest size accessible in 1 cgtB5nm at 1.25GHz and (b) each partition utilizes a

skid buffer that is sized according to the number of memoguests expected at each LSQ partition (labelled
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== VC22, VC42, SKID128, SKID_E 4.5 WC Benchmark
TYP Benchmark = NACK
254 == FLUSH

5.7 6.7 7.7 4.4 = SKID128
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= NACK

= FLUSH

2.5+
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Slowdowns wrt max LSQ
Slowdowns wrt max LSQ
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32 40 48 56 64 32 40 48 64 128 160

Number of LSQ Entries Number of LSQ Entries

Figure 4:Performance of the LSQ flow control mechanisms under typicdlworst case conditions. Slowdowns for TYP
benchmark with flush scheme is annotated on the bar.

SKID_E), i.e. the skid buffer sizes are either (256 - LSQ partition size)VitC or (64 - LSQ partition size) for
TYP.

For the VC mechanism, we show performance with 4 and 6 buffeesach router. For the 4-entry buffer, the
buffer slots are equally divided between the two virtualrofels and for the 6 entry buffer, 4 slots are reserved
for the low priority channel and 2 slots are reserved for thyh lpriority channel. The baseline configuration

also 4 entry buffers but does not have any virtual channels.

As can be seen from the TYP benchmarks charts 4, the degradlatile the flush scheme are much higher than
the NACK scheme for any configuration. Between the remaisitigemes there is no difference between the
flow control scheme when the memory instructions are equityibuted between the cache banks. However,
when overflows become more numerous due to load imbalangegiflfathe WC benchmark, the flow control

schemes show more varied behavior.

First, we examine the performance between similar configunsilike VC22 and VC42, SKID128 and SKIB
which have roughly the same cost for handling overflows. Bygaring the performance of these benchmarks
we can understand how the delivery of operands to the LSQ@taffeerformance. We observed that the number
of flushes for VC22 and VC42 for similar sized LSQs were ddfdrcausing the disparity in performance;
this is probably due to fact that deeper buffers promote rmoateof-order execution consequently causing more
capacity violations. Second, we examine performance adifferently sized LSQs. The performance improves

with smaller LSQ sizes (64 and less) because the LSQs fill sierfaand the probability of flushes occurring
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Figure 5: Left: Average LSQ Performance for the EEMBC benchmark suiight: Three worst benchmarks. bitmnp
shows a different trend because there are fewer LSQ conittilzgttions in bitmnp when the LSQ capacity is decreased.
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Figure 6:Left: Average LSQ Performance for the SPEC benchmark sRitght: Three worst benchmarks.

earlier increases. Early flushes are always better thafidatees, given equal number of flushes. Finally, we note
that The VC scheme is 2x faster compared to any other flow aiostheme for all undersized LSQs even for the
WC benchmark. The performance degradations are much law&f@ because the virtual channel promotion

policiesnaturally maintain instructions in program ordehereby reducing out-of-order LSQ subscription and
the number of capacity violations. For rest of the perforogaanalysis, we use skid buffers sized according to
expected number of requests and the virtual channel schémegually provisioned virtual channels because

they perform as well or better than the larger sized strestur

SPEC and EEMBC Results: Figures 5 and 6 show the performance of the different flowrobsichemes

for the EEMBC and SPEC benchmarks respectively. For botketbenchmarks, the VC flow control method
works best and flush scheme results in unacceptable pericentiegradations. For LSQs that are as small as 40-
entries (70% of the steady state number of memory requést3jJ@ mechanism shows a moderate performance
degradation of 5% and 4% for SPEC and EEMBC benchmarks riédaglgc For 48-entry LSQs, with the VC

scheme, the performance degradations drop to 1% and 2%ctieshe Most of the performance degradation

17



real Low 1 = &realData_1[I _1];
i mgLow 1 = & nagData_ 1[I _1];
real H 1 = &realData_1[i _1];
imagH 1 = & magData_1[i _1];

real Data_1[| _1] *real H _1 - tReal Data_1;
imgData_1[1 1] = *imagH _1 - tlmagData_1;
real Data_1[i _1] += tReal Data_1;
i magData_1[i 1] += tlnagData_1;

Figure 7:Code snippet from aiifft benchmark.

in SPEC (see Figure 6 Right) is due to FP benchmarks as thesbarharks typically have a larger fraction of

inflight memory references than the SPEC INT programs.

Program Analysis of Outliers: We studied the worst three benchmarks (see Figure 5) frora EMBC suite

to understand the large performance degradations. Whilenést of the benchmarks, the memory accesses
tend to be evenly distributed across the cache banks witisamtal bursty behavior, the benchmarks with large
degradations showed continuous unbalanced access pattarthese benchmarks, the code generated by the
compiler was such that most of the memory references for ¢éinetimarks were targeted at one or few of the

banks. For instance, consider the frequently executed segleence in aiifft01(see Figure 7).

The inner loop contains 2 reads and 2 writes to two differertya. The code generated by the compiler aligns
the both the arrays to 256 byte boundaries and since thesaarayaccessed by same indices, all of the four
accesses end to the same bank. This problem is exacerbatedpbynrolling which our compiler performs

quite aggressively. We changed the alignment of the arrgysahd and verified that performance improves.
However, it is not clear if this alignment optimization cam &dutomatically detected and fixed by the compiler

without the programmer’s help.

Another frequent code sequence that caused load imbal@néesjuent use of static scalar variables. Static
scalar variables in general cannot be register allocatexti§e exceptions, consistency requirements etc.) and
remain allocated to one bank for the life time of a programthéf program repeatedly uses the static variable
then imbalances occur. For example, a file pointer declasestadic and a program that writes to a large in

memory file pointed by the file pointer.

These two case studies and the data in this section illestnatimportant point that imbalances in partitioned

memory systems cannot be easily detected and optimizedyftireocompiler and that low overhead hardware
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Benchmark Number of LSQ Reserved Slots

(aiifft) LSQ Size 48 LSQ Size 40

0 4 8 16 32 0 4 8 16 32
VC

Performance 1.38 1.20 1.06 1.12 139 1.20 1.11 1.03 1.06 1.24

Inst/Flush 337 788 14M NoF NoH 643 1441 NoF NoF NoH

NACK

Performance 152 135 126 1.47 233 1.29 117 112 1.25 1.8i

Inst/Flush 283 683 43K NoF NoH 515 1291 NoF NoF No
InsYNACK | 21.58 221 115 0.70 0.2§5525 529 256 116 0.3

Table 3: Performance improvements from reserving LSQ slots. No Rdstdor no flushes. A value of less than 1 for
Inst/NACK indicates that instructions were NACK’ed mulggimes.

mechanisms are essential for dealing with capacity vimhati
Improving flow control performance:

As described in section 4.4, the performance of the flow cbmtrechanisms can be improved by reserving a
few slots for the non-speculative instructions to avoid eamn all of the costly capacity violations. Table 3
illustrates the performance of tlza i f ft benchmark with the VC and NACK scheme with varying number
of slots reserved for the non-speculative instructions: the VC scheme, as the number of slots is increased
performance gradually increases, and the number of comuniitstructions per flush increases. But increasing
the number of reserved slots beyond 16 diminishes perfarenbrcause reserving too many slots effectively
stifles out-of-order execution. Similarly, for the NACK srhe, reserving more slots for the non speculative
instructions increases performance until too many NACK#mliests congest the network and the performance
drops precipitously. While reserving slots is beneficialtfe aiifft benchmark, in general we observed that for

most of the benchmarks, not reserving any slots was as atjead as reserving slots.

5.3 Discussion of Power, Area and Complexity

Table 4 summarizes and compares the mechanisms descritigd gection based on metrics of performance,

complexity, area, and power.

Power and Energy efficiency:Two mechanisms, address partitioning and Bloom filtering kay to achieving
high power efficiency in LSQs for large window processorssthi, partitioning the LSQ by addresses naturally
reduces the number of entries incoming memory instructemith search against. Over and above that, Bloom
filtering reduces the number of memory instructions perfograssociative searches thereby improving power

efficiency. As shown in Table 5, nearly 70-80% of the memostrirctions (both loads and stores) can be
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Metric Performance Complexity Area Power

Flush | Poor if flush frequent Lowest Best Poor if flush frequent

NACK | Fair Simple Good Poor if replay and flush frequent
SKID | Good Moderate | High Good by reducing replay

VC Best High Moderate| Best (no replay)

Table 4:Summary of LSQ Optimization Mechanisms.

Benchmarks  Average LSQ Activity Factor
VC || SKID NACK
40 48| 40 48| 40 48
SPEC 21 21| .27 .30| .30 .31
EEMBC 26 .27| .38 .39| .38 .39

Table 5:Number of matching stores reported as a fraction of totallmemof dynamic loads

prevented from performing associative searches.

However, using Bloom filters incurs additional some addaiopower for reading and updating the filters for
every memory instruction. In our implementation, each mec@ memory instruction reads eight 32-bit reg-
isters (one corresponding to each inflight block) and siamdbusly writes to one of the registers. Assuming
a 1.25GHz clock, at 65nm power dissipated for a Bloom filtadrerite is 110nW. Since eight of the filters
have to be accessed in parallel, the total power is appraglyayW. In contrast, the dynamic power of the
the CAM under similar technology constraints is 40mW (frorscaled synthesized CAM). Using the activity
factors presented in Table 5, the average equivalent paweralch memory access is about 8-10mW. At the

same technology, this is roughly equivalent to the powesaored by an 8 entry, 64-wide CAM.

Area Analysis: Among the proposed mechanisms, assuming that the issu@wiisddesigned to hold onto
instructions until explicit deallocation, the NACK meclism is the most area efficient. Basically, it requires
a cumulative storage of 1024 bits to identify the NACK’edtinstions (one bit for every instruction in the
instruction window) and minimal changes to the issue log®alect and re-issue the NACK’ed instructions. The
VC mechanism is next best in terms of area efficiency The areeheads of the VC are due to the additional
storage required for pipeline priority registers in thea#t®n units to avoid deadlocks and the combinational
logic in routers to deal with promotion.The skid buffer sateerequire the largest amount of storage, although
most of the structure can be implemented as RAMs. A 24-emdiy suffer supplementing a 40-entry LSQ,
approximately increases the LSQ patrtition by 3-4%.

It should also be noted here that the unordered, unified L9 dot duplicate any state; in contrast, decomposed
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LSQs typically maintain multiple redundant copies of theealata to support the constituent functions thorough
physically different structures. For instance, a copy efstore address tag could be present in the forwarding
structure and the same tag could also be present in the caqueies. Although much of this storage is in form

of area-efficient RAMs, decomposition inherently introdsianore area overheads than the unified LSQ design

proposed in this paper.

Complexity: Among the schemes proposed in the paper, the VC scheme iahtyothe most difficult to
implement. As explained in an earlier section, the VC schezgeires virtualization of not only the network
routers but also the the execution units that feed the ro&t@rinstance, when the low priority channel in the
network is backed up, the issue logic must supply the netwiika high priority instruction even though it may
be in the middle of processing a low priority instruction.eTHACK scheme comes second or third depending
on the baseline architecture — if the baseline allows iostras to be held in the issue queues until commit,
implementing NACK is as simple as setting a bit in a returnkeéd@nd routing it back to the source instead of
the destination. However, if instructions are immediatiallocated upon execution from the windows, NACK
may be considerable more complex. The skid buffer solutsoprobably the simplest of all the solutions: it
requires some form of priority logic for selecting the oldestructions, mechanisms for handling invalidations
in the skid buffer and arbitration for the LSQ between instians in the skid buffer and new instructions coming
into the LSQ partition. Despite the apparent complexityhaf schemes described here, we believe that that the

schemes are realistic and lend themselves to efficient amglesimplementation in hardware.

6 Conclusions

Load/store queues have generated so much recent work irmr¢higeature community because they are one
of the hardest structures to scale, due to their associasiire and the static uncertainty about relationships
among memory operations. The recent work on partitionimgftimctionality of LSQs into distinct structures

has shown great promise in making them energy-efficientaigel windows. In this paper, we have presented
another possible LSQ design that creates additional appities for scaling by constructing address-interleaved

LSQs and using them with low overhead overflow-handling raa@ms.

We proposed using the buffering provided by on-chip mictaneks to gracefully handle overflows in address-
interleaved LSQs, employing priority-based virtual chelsrio avoid deadlock scenarios efficiently. The virtual
channel flow-control approach works extremely well, with degradation in performance for the SPEC and

EEMBC benchmarks using four 48-entry LSQ partitions to suipp 1024 instruction window processor with a
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maximum number of 256 loads and stores in flight. We also shawthe energy-efficiency of the small, address-
interleaved LSQ banks can improved further by the additiosimple Bloom filters. With the combination of
flow-control supported address-interleaving and Bloorer§lt the per-access energy of the LSQ is reduced to

approximately the energy consumed by an 8-entry fully datige traditional LSQ.

Address-interleaved LSQs have been suggested as effectighanism for scaling LSQs for nearly a decade
now [6] but until this work, researchers had no graceful wlyamdling overflows, so had to oversize partitions
to keep flushes sufficiently low. We believe that the solidipnesented in this paper provide a long-term so-
lution to this problem, even to more partitions and largetrunction windows. Whether the complexity of the
flow control mechanisms outweighs the complexity of theipaned-functionality approach (especially in an
interleaved memory system) is an open question. Althoulgbf @ahe techniques we have presented are appli-
cable to conventional ISAs and microarchitectures, theeddmbmplexity of these techniques is much less for
distributed microarchitectures like TRIPS simply becamsey of the necessary mechanisms are already extant

in the design.
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