Scalable Subspace Snooping

Jaehyuk Huh Doug Burger
Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin
cart @s. ut exas. edu - www. cs. ut exas. edu/ users/ cart

Department of Computer Sciences
Technical Report TR-06-41
The University of Texas at Austin

August 2006

Abstract

Snooping tag bandwidth is one of the resources that limagsntihmber of processors that can par-
ticipate in a cache-coherent snooping system. In this pageevaluate a type of coherence protocol
called subspace snooping, which decouples the snoop tatyizith from the address bus bandwidth.
In subspace snooping, each processor snoops a set of logaahels, which are a subset of the total
snoopable address busses in the system. Thus, each prosessps a subset of the address space,
reducing the number of tag matches required for a system ofem gize. By dynamically assigning
both processors and cache lines to channels, we supponinityfamation of subspaces, with the goal
of having only sets of processors that share data snoopiegamgiven channel.

Subspace snooping aligns best with systems for which theeasldus bandwidth greatly exceeds
the snooping tag bandwidth. Snooping optical intercorsexhibit such characteristics, providing enor-
mous transmission bandwidth, but which quickly becometiohby snooping tag energy and bandwidth
as the number of processors increases. Optical busses saibdigided into logical channels using ei-
ther wave-division or time-division multiplexing, makitigem good candidates for a subspace snooping
implementation. We evaluate a range of subspace snoopatggoats on six parallel scientific bench-
marks, running on an execution-driven simulator. We shovamrage 50% reduction in total snoops
for 64-processor systems with 8-32 channels, and that jaiaeapplications, subspace snooping shows
large performance improvements the ratio of processorvigtid to snoop bandwidth grows large.

9This material is based upon work supported by the Defensexddhd Research Project Agency (DARPA) under Contract
NBCH30390004.

1 Introduction

The difficulty and expense of supporting cache coherencédirhded scaling to very large shared-memory
multiprocessors. The largest message-passing clustersiwnmber in the tens of thousands of processors,
but shared-memory machines have not kept pace. This divezgis in part due to the financial cost of
developing custom hardware for large-scale shared-memaghines, and in part due to the complexity of
the protocols.

The two broad classes of coherence protocols, snoopingqaistand directory protocols, have tradi-
tionally targeted different scales of systems. Snoopiraiesys offer low-cost, simple coherence at small
system scales (two to a few tens of processors). Directatppols have been built to scale much higher,
but at great cost and complexity. Directory protocols alsftes from the latency of numerous point-to-point
messages in a large-scale system, which can be reducedexirese of additional protocol complexity.

Snooping protocols do not scale to large numbers of proce$siothree major reasons: bus bandwidth,
bus speed, and snoop tag bandwidth. As more processors arsdogie address bus, the traffic on the bus
grows linearly with the number of processors. Sun’s Wildfystem mitigated this problem by providing
multiple address-interleaved snoop buses [11] supporyea joint-to-point data transfer network. This
solution did not mitigate bus latency, since the bus baclgphaust still be routed to all snooping processors,
resulting in long traces and slow bus speeds.

Perhaps the worst factor for scaling, however is snoopiggbendwidth. Snoop bandwidth has not
traditionally been seen as a problem since the snoop taghuidth is matched to the address bus band-
width. As the number of processors grows, however, the nuwlgnoops that happen system-wide grow
asO(n?). For each request that each processor puts on the snoopng puocessors must snoop the
request. For multiple interleaved address buses, prayitiie L2 (or L3) tag bandwidth for snooping—even
with replicated tag banks—quickly becomes a performandesaergy bottleneck. The ideal large-scale hy-
brid protocol would allow many processors to share a highdbadth, low-latency bus, but also to have
scalable snoop tag bandwidth. Viewed another way, in thal isiesstem, processors would only snoop the
bus transactions for operations on data that were ofterein¢hches.

In the context of this papesubspacesare regions of data that are consistently shared by a stabses
of processors. These subspaces can be dynamically evobsanlpng as they are stable for sufficiently
long to be useful. For example, the faces on a cubic data deasition in a computational fluid dynamics
(CFD) code are shared by stable pairs of processors for ttatiaiu of the application, assuming that it is a
non-adaptive code.

This paper evaluates subspace snooping protocols, a ¢lasgacols that attempts to exploit stable sub-
spaces to improve snooping scalability and energy effigidnca subspace snooping system, the coherence
interconnect is divided into some number of snoopable dadamels (address buses being one example).
The total address bandwidth, however, would be larger thandividual snooping processor could handle,
so each individual processor could only snoop a subset athihanels. Ideally, stable sets of processors
sharing a subspace would allocate that subspace to a simghmel shared by that set of processors only.
Processors not sharing that subspace would be snoopingcbimenels, avoiding the energy and delay costs
of unnecessary snoops. Figure 1 shows the difference amadiidnal snooping, directory coherence,
and subspace snooping coherence. While subspace sno@asagadt achieve the sharing-list precision of
directory protocols, it has the potential to offer many af thenefits of snooping protocols with a reduced
number of total global snoops.

Subspace snooping protocols are likely to be best in systemese the aggregate available bus band-
width exceeds the snooping tag bandwidth, and in which lawmebers of processors can be partitioned into
regular and fairly stable sharing sets, such as with marhnieal application. Optical buses may be an ex-
cellent match for the former constraint. Many processorg siare them, their latency scales significantly

" subspace

O
Sharers / @)
@)
O
O
Snooping Coherence Directory Coherence Subspace Snooping Coherence

Figure 1: Snooping coherence, directory coherence anghaobsnooping

better with added processors than do electrical buses, ofamnels may be implemented using wave- or
time-division multiplexing, and, most important, the dable bandwidth on the optical link greatly exceeds
what a set of snoop tags can support.

In this paper, we evaluate a number of subspace snoopingcpiston an optical bus framework.
We simulate six scientific benchmarks—one from the NAS sauiig five from Splash—on a simulated 64-
processor system. We evaluate policies for assigning damse(or larger regions) are assigned to channels,
and how the processors each select their set of channele®dp.sprocessors choose specific channels to
snoop.

In the rest of this paper, we first review the limitation of epdag lookups for both energy and perfor-
mance, and present optical buses and related work in SextionSection 3, we define subspace snooping
and discuss the mechanisms necessary for guaranteeirggtconherence. In Section 4, we present two
subspace snhooping protocols and a policy for subspace fimman Section 5, we measure and evaluate
the reduction in snoops that can be provided with such potgpand we conclude in Section 6.

2 Scaling Snooping Cache Coherence

Traditionally, the bandwidth of address and data busesitmitedl the scalability of snooping cache coher-
ence systems. Bus bandwidth has been increasing with ®&tm clocks, wider buses, split transactions,
separate address/data buses and switched networks. Hotheveost of wide electrical buses still limits the
expansion of snooping coherence systems. Recently, thsrbden a significant improvement of the cost-
performance of optical interconnects for multiprocess@tems. Optical interconnects can provide large
bandwidth with relatively low cost and energy consumptitiis improving the scalability of snooping co-
herence systems. However, even though optical intercégican provide significant increases in address
bus bandwidth, snoop tag bandwidth will still limit the slaility of snooping systems, since all processor’
snoop tags must respond to every bus transaction.

In this section, we first show that snooping systems will batéd by snoop tag bandwidth in terms
of both energy and performance scalability. We also desarirrent-generation optical interconnection
technologies for multiprocessors and other snoopingeélaork.

2.1 Power Limitation of Snoop Tag Lookups

As multiprocessor sizes increase to solve larger problénessizes of data sets also typically scale with
the number of processors. Consequently, to support thedsed coherence traffic, address bus bandwidth
must increase linearly with the number of processors. Saticenooping tags must perform a lookup for

e

80| o

@
t=1
1
<

;,‘ —+— Miss rates = 0.1
I ---t-- Miss rates = 0.3
f -+«- Miss rates =0.5
!
[}

L2 energy %

N
o
1

20

0 50 100 150 200 250
Number of processors

Figure 2: Energy consumed by snoop tag accesses (% of totafrdg cache energy)

every bus requests, the total number of snoop tag acceskbéscrgase quadratically with the number of
processors. Assuming the data set size scales linearlytiagtimumber of processorsvf), and that the
number of L2 misses per processadr{ssesr>) is a constant and independent f, the number of bus
transactions isV,, x Missesrs. Since every tag should be snooped for each L2 miss, the nuohbetal
snoop lookups iVNp x Np x Missesyo
The quadratic increase of the number of tag snoops will aoessignificant and growing power to
access the tag arrays and drive the I/O pins. A recent stunlyeshthat a significant fraction of L2 cache
energy is consumed for snoop tag lookups [20]. We use a simptiel to demonstrate the extent to which
the energy consumption of snoop tags will increase as thebauwf processors in SMPs increases. We
assume that each processor incurs the same number of LZraigs¢he number of L2 misses per processor
is constant across different numbers of processors, ahththdata set scales with the number of processors.
Energypaa. andEnergyr,g are the energy used for each access to the data array andapgnethe local
cache.RemoteHits is the rate for missed blocks to be found in one of the rematbesm The model for
the ratio of snoop energy to the total ener@ufios,qop) is as follows:
Energypatasil = Energypata X (1 + Missespa X RemoteHits)
Energysnoop = Energyrqg x (Np — 1) x Missesya
EnergyTagAll = EnergySnoop + EnergyTag X (1 + MiSSGSLQ)

Ratiosnoop = Energysnoop/ (Energypata + Energyragan)
Figure 2 shows the fraction of L2 energy consumed for tag gingo as the number of processors

increases. At 128 processors, with 10% of L2 miss rate fdn pagcessor, tag lookups consume more than
80% of the total L2 dynamic energy. With the miss rates of 20%20%, snoop tag lookups consume more

than 95% of the dynamic L2 energy at 128 processors.

2.2 Snoop Tag Bandwidth Analysis

In conventional snooping protocols, snoop tag bandwidtigitly coupled with bus bandwidth. Since the
bus bandwidth has traditionally been lower than the tharptitential bandwidth of snoop tag arrays, bus
bandwidth has been the focus of research to scale snoopigese [2, 17, 15]. However, even though
optical links with wave-division multiplexing can greatiyprove the address network bandwidth, snoop

Bus Systems SGI Challenge| Sun Gigaplane-XB Sun Fireplane
Bus Bandwidth 47.6M/sec 167M/sec 150M/sec
Maximum Processors 36 64 24
Processor Clocks 150MHz 300MHz 750MHz

| Transactions/1K cycle/processpr8.8 transactiong 8.6 transactions | 8.3 transactions

Table 1: Bandwidth requirements for past SMP systems

tag bandwidth remains constrained by tag array speed andapidwidth. Although multi-ported snoop
tags can increase tag bandwidth, multi-porting is not aatdalsolution for large tag arrays due to large area
and energy overheads.

Table 1 shows a simple extrapolation of snoop bandwidthHigret SMP systems. Estimated from the
snoop bandwidth and processor clock speed data, the lagthows how much snooping bandwidth was
provided to each design, normalized to the processor clpekds at the years when the buses were first
introduced. For all three systems, approximately 9 bus#etions/1K cycles should be sustained for each
processor. If we make the unrealistic assumption that & la®jor L3 snooping tag array can service a
snoop request every processor clock cycle, 1000 trangatiid cycle are reached at about 110 processors,
for this set of systems and snooping bandwidths.

2.3 Optical Interconnection Technologies for Snooping Cdte Coherence

Optical interconnection technologies for multiprocessloave been improving rapidly. Arrays of Vertical
Cavity Surface Emitting Lasers (VCSELS) and arrays of ptiettors (PDs) provide inexpensive and fast
electro-optic and opto-electric conversion [18, 26]. Imreat technologies, a VCSEL can transmit 3-5 Gb/s
and an array of the VCSELSs can achieve 200-300 Gb/s transmisgtes [14]. In addition to traditional
optical fibers, polymer waveguides enable dense boardl-tgiecal interconnections [26]. These optical
device advances have made optical interconnects a highaldih alternative for traditional electrical buses
in multiprocessors.

The optical interconnects have two advantages over toaditiclectrical wires for snooping multipro-
cessor systems. First, the bandwidth/cost and bandwatl@ip of optical interconnects are superior to
those of electrical wires. In optical links, furthermoreyltiple wavelengths can co-exist in a single optical
fiber [3, 21]. Such wave-length division multiplexing (WDM&n multiply the interconnection bandwidth
without adding more physical links. The number of wavelaegtre typically limited by the cost and latency
of electro-optic/opto-electric conversion devices. Catlinks for wide area networks, in which the band-
width per distance is more important than the conversianiat of optical and electrical signals, use a dense
WDM with tens or even hundreds of wavelengths. However, imezu technologies, the optical intercon-
nects for multiprocessors are constrained by the convefatency and can support coarse-grained WDMs
with 4-12 wavelengths, but the number of wavelengths amdliko increase as the optical technologies
mature.

Second, optical interconnection can broadcast signalsesffly with passive components. In optical
interconnects, high fan-outs at high frequencies arelfi@asiA passive star coupler can provide all-to-all
connectivity over hundreds of nodes. This broadcast chfyatviakes the optical links desirable for snoop-
ing networks. In current technologies, hundreds of fars@ué possible without a significant loss of signal
strength. The optical broadcast can be more power-effitient hierarchical packet switched buses that
are widely used for snooping address buses. Furthermaeopiology of optical interconnections can be
simple and easily extended for more processors. Curreciriekd interconnections in multiprocessors use
switched networks, the topology of which is fixed and not madeed. Optical interconnects can connect
multiple processors with passive star couplers, which Birdpide light signals into multiple links [9].

Recent studies have shown that off-the-shelf parallelcaptiibers can be used for multiprocessor
interconnections. The Lambda-connect project at Lawrdrieermore National Laboratory and Multi-
wavelength Assemblies for Ubiquitous Interconnects (MAtIBmonstrated that multi-wavelength parallel
optical interconnect (MPOI) can greatly improve the bardttviof multiprocessor systems [13, 23]. In both
projects, parallel multi-mode fiber ribbon cables with XDvires have been used for short distance op-
tical interconnects with 4 channel WDM. In MAUI, an array @@ ¥ CSELs and 48 photodetectors were
used to construct 12 wires and 4 wavelengths/wire. For ebehn Bignals from 4 VCSELSs with different
wavelengths are multiplexed. Four photodectors in theivegeport pick up four different wavelengths.

Due to these technologies, high-bandwidth optical intenects are becoming more viable. However,
the availability of this high bandwidth will necessitateavations in snooping, which researchers have been
exploring in both optical and electrical contexts.

2.4 Related Snooping Work

In addition to the high bandwidth, the efficient broadcagadslity of optical links has led to several projects
exploring optical snooping bus designs [22, 1, 7]. In SPE&Rical buses have multiple WDM channels
and the channels are divided into a shared channel and teyftifpate channels. Bus requests for writes
(ownership request) are sent over a shared channel, andegaglsts are sent to memory through private
channels [10]. SYMNET used passive Y-splitters/couplersonnect processing nodes in a tree [14]. SYM-
NET modified a coherence protocol to eliminate combined gmesults from all processors.

Other work has looked at improving effective snoop bandwidta conventional, electrical context. In
Jetty, coarse-grained filters between snoop tags and a bus aréoudiedard snoops on the blocks which are
not in caches [20]. The coarse-grained filters are much smiflhn the cache tags, consuming less energy.
RegionScouexploits the observation that there are large continuoiaterregions, which are not shared by
other processors [19]. The RegionScout filters detect fgriregions and use the detected regions to reduce
unnecessary snoop tag lookups.

Subspace snooping contains elements of both traditiomalmsng and directory protocols. Other recent
work on improving coherence bandwidth has also used elendrgnooping and directories adaptively in
one system [17], extended by multicasting snoop requestgdan the prediction of potential sharers [2, 15],
and using a token-based coherence mechanism on fast butlered switched networks [16].

3 Subspace Snooping Coherence Architecture

Subspacesire regions of data that are consistently shared by a stabkesof processors. A subspace
is represented by a partition of address space (data) anlsatsof processors (sharers), which share the
address partition. To maintain coherence for a cache bhlaskrequests should be delivered to the processors
in the subspace the block is mapped to. Subspaces are mgttatatmay dynamically evolve during program
execution.

Figure 3 depicts conventional snooping and subspace smpapherence. In conventional snooping
protocols, all processors snoop every bus request, imgueilarge number of snoop tag lookups. Even
if the address bus consists of multiple address-intertedieses, processors must snoop all the buses. In
subspace snooping, we divide the available bus bandwitithmiltiple channels. Coherence messages for
a subspace are delivered through the channel designatee $albspace. The processors in a subspace must
snoop the channel for the subspace. In Figure 3 (b), thetti@e channels and each processor snoops only
two channels. For example, P1 snoops only channel 1 and 3chidmnel 1 is snooped by P1, P3, and P4,
so a bus transaction on the channel 1 will cause three tagihsoKThe last channel is reserved for a fully

Processors

P1 P2 P3 P4 Memory

L2$ L2$ L2$ L2$
|
X i i
& 0 0

(a) Conventional Snooping Coherence

Address Space

Processors Cl =
P1 P2 P3 P4 Memory Co =
L2$ L2$ L2$ L2$ Channel Map
| T ca =[N
Channel 1 (P1, P3, P4) 3 0} c1 C1~
Channel 2 (P2) { c2
Channel 3 (P1, P2, P3, P4) {} {} {} { } C3 C2 =
Fully—Associative Channel
(b) Subspace Snooping Coherence Cl=

Figure 3: Conventional snooping and subspace snooping&nte

associative channel, which is snooped by all processors.fllly associative channel covers the subspace
shared by all processors or the subspaces which can not lgethapany other channels.
There are three key issues to design subspace snoopingnober

e Mapping data and processors to subspac&be physical address space is partitioned and mapped
to subspaces. Subspace snooping should have a mechanismntaimthe address mapping and to
route bus requests to correct channels.

e Guaranteeing correctnesgubspace snooping should guarantee the correctness oénobédy pre-
venting processors from caching addresses which the @asedo not snoop. Since subspaces are
not static, processors may attempt to access addressesdnappn-snooped channels.

e Forming optimized subspaceSubspaces should be formed to minimize snoop tag lookupispauoe
snooping should identify frequently communicating praoes and group them to share a channel.

Section 3.1 presents a formal definition of subspace sngagid the correctness invariant. In section
3.2, we will discuss issues to implement subspace snoopidg@mpare it to directory protocols.
3.1 Formal Definition and Correctness

Subspace snooping partitions the physical address spacmaps the subspaces to logical channels. A
processor snoops a subset of the total channels. Formallg, get of processaP = {p1,po, ..., pn} and
address spacé = {ay, as, ..., a,, }, SUbspace snooping can be defined with the following compene

e Asetof channelsC' = {c1,co,c3, ..., ¢, }

e Channel mapping; hannelMap ={a=c|a€ A, ce C}

e Processor mappind?rocMap = {p = sc|p € P, sc C C'}

Each processor snoops a subset of chand&lsd)M ap), and each block address is mapped to one chan-
nel (ChannelMap). A channel directorymaintains the channel mapping between addresses and thanne
For each block of memory, the channel directory has the spomding channel id. For a bus request, the
channel directory should route the request to a correctrilamn our baseline protocol, a node must first
send a bus request to the channel directory, which will paitréguest on the correct channel. Due to the
two-step bus transactions to route bus requests on cotrannels, the baseline subspace snooping requires
three-hop cache-to-cache transfers, increasing comiiondatencies.

To guarantee the correctness of subspace snooping, onigi@omdust be satisfied. A processor must
snoop a channel, if at least one address in its cache is mapeel channel:

e Correctness invariant: For each addressl;, cached in processaP;, P; must snoop channél}, to
which the addresg!; is mapped.

If a processor attempts to read a block into its cache and Woiesnoop the channel mapped to the
block, the correctness invariant can be violated. We definh siolation ashannel conflict To resolve the
channel conflicts, subspace snooping can take one of twanactl) move the conflicting address to another
channel, which the requesting processor already snoof®,meke the processor snoop the new channel.
In both cases, there is some cost to resolve such channektanfl

To move the mapping of an address to a new channel, the adsires&l be invalidated from all the
caches that snoop the old channel, if the caches do not sheagetv channel. The block can not reside in
the caches, if the caches no longer snoop the channel to whedblock is newly mapped. If a request is
an upgrade or read for ownership, such invalidation doesaumde any performance degradation, since the
request will invalidate the block anyway. However, if a regquis a read for sharing, the invalidation may
cause subsequent misses from other caches.

3.2 Implementation Issues

In optical interconnects, channels can be created in vaneays. First, when an optical bus consists of
multiple optical fibers, each channel can use a separatéfiatis. Second, for the same set of fibers, wave-
length division multiplexing (WDM) can make separate chelanassigning a wavelength to each channel.
Third, for the same set of fibers and a wavelength, time dimisnhultiplexing (TDM) can use different time
slots to distinguish different channels. Any combinatidrinese techniques can be used to create logical
channels. With these techniques, snoop interfaces caardisequests on un-snooped channels without
consuming any pin bandwidth.

The initial bus requests from processors to the channettding do not need to use the broadcasting
address bus. Instead, subspace snooping uses un-ordésietkti@orks to send the initial requests to the
channel directory, to avoid using the broadcast bandwifiddress bus. Subspace snooping reduces the
latency increase from indirect bus accesses by embeddamgnehids in cache tags. Cache tags store the
current channel ids of cached blocks. For upgrade tramses;tivhich change a block state from a shared to
a modified state, issuing processors can put bus requestrm@ctcchannels directly by using the channel
ids. However, for read or read-exclusive requests, isspiogessors conservatively send requests to the
channel directory, which will queue the requests on corckannels.

Subspace snooping restricts the number of channels sndgypeath processor. If a processor needs to
snoop a new channel, it should stop snooping one of the dwiamnels. Disconnecting a processor from a
channel is a costly operation. The processor should flusiblaak in its local cache, if the block is mapped

Proc X Proc X

—r—" E:

C3

-

(1) Bus request

2) N flict
(2) No conflic (2) Conflict: invalidate cache blocks

Cl (1) Bus request c2 \
S L/ (3) Change mapping to C1

Channel Directory

(a) Bus access without mapping conflict (b) Channel conflict resolution

Figure 4: Baseline subspace snooping protocol

to the channel to be disconnected. The channel ids in theedags are checked and blocks are flushed if
the blocks are mapped to the disconnected channel.

If a block is shared by the processors that do not have a conctmamel, the block will keep causing
mapping conflicts and block invalidations. Such frequenrtinflicting addresses are moved to the fully-
associative channel (FA channel). The FA channel is a safetyto map the conflicting blocks, which
otherwise can not be mapped to other channels. Howevenilligeaksociative channel consumes the same
snhoop tag bandwidth as conventional snooping protocotsttars its use should be minimized.

3.3 Comparing Subspace Snooping to Directory Protocols

Directory protocols can provide higher scalability thaaditional snooping protocols. However, due to
the complexity of protocols and the overheads for the dimycthe directory protocols have not replaced
snooping protocols. Subspace snooping mitigates the siagolmitation of snooping protocols, with the
simplicity of snooping protocols. In this section, we comgaubspace snooping to directory protocols:

e Subspace snooping uses broadcast buses and caches aedsatoopically through the buses. Sub-
space snooping may avoid the protocol complexity of dingcpwotocols.

e Each cache maintains coherence states in tags. Unlikertetatiy in directory protocols, the channel
directory does not have sharing states, and thus the sizenhel directory is much smaller than that
of the directory in directory protocols.

¢ Increasing the granularity of coherence in directory prol® can degrade the performance signifi-
cantly due to false sharing. Subspace snooping decou@esglstates from channel mapping states.
Subspace snhooping may increase the channel mapping gignulishout incurring false sharing.

e Since subspace mapping changes less frequently thangktates in directory protocols, predicting
the channel id may be more accurate than predicting shasediréctory protocols. Such channel
prediction allows two-hop cache-to-cache transfers.

4 Subspace Snooping Protocols

In this section, we present two subspace snooping protoCals baseline protocol always sends requests,
except upgrade requests, to the channel directory firser Adticeiving requests, the channel directory for-

8

Proc X Proc X

) (1) Bus request
= = =

(1) Bus request

A\ A\
c3 (3) Forward to C2
(2) Wrong bus access
(2) Correct bus access
Cl Cc2
Channel Directory
(a) Successfully predicted channel (b) Failed channel prediction

Figure 5: Performance subspace snooping protocol

wards them to correct channels. Our performance protoedigis channels for missed blocks and broad-
casts requests through the predicted channels. The chdineetbry will correct the speculation of channel
ids. In 4.4, we present our policy to form subspaces to redanéicts as well as snoop tag lookups.

4.1 Baseline Subspace Snooping Protocol

For read misses, requesting processors do not know thectahrannels for the missed blocks. Therefore,
bus requests for reads are always forwarded first to the ehainectory. For such forwarding, our imple-
mentation does not use the address broadcasting bus.dngtedus request is sent through a point-to-point
data network to the channel directory. The forwarding dastsneed to use the address bus, since request
serialization occurs when the channel directory puts amehbus transaction on the bus.

To eliminate unnecessary accesses to the channel diretiiergurrent channel ids of blocks are ap-
pended to cache tags. For upgrade transactions (changlogkaestate from shared to modified), requesting
processors can put requests on correct channels by usiegibhedded channel ids.

If a requesting processor is not snooping on the channektigested block is mapped to, the channel
directory starts the conflict resolution procedure. For gpmpirag conflict, we change the mapping of the
conflicting block to one of the channels the requesting @saeis snooping. The channel directory adds
the new channel id to the bus request when it forwards theestdhrough the old channel. The processors
on the old channel should invalidate the block, if they are stmoping the new channel. The mapping
conflicts never occur for upgrade requests. For a upgradsaction, the requesting processor already has
the shared copy, so the processor must be snooping the tcanamel of the block the processor attempts
to upgrade. Figure 4 shows the flows of protocol executiorafoead request without and with channel
conflicts.

If a block causes too many conflicts, we map the block to tHg agsociative channel. In the channel
directory, we record the history of conflicts for each blotikthe number of conflicts for a block become
larger than the threshold, the block is moved to the fullyeagative channel. Note that moving the mapping
of an address to the fully-associative channel, does natecany block invalidation, since all processors
snoop the FA channel. However, if too many blocks are mappdket FA channel, conflicts may decrease,
but snoop tag lookups will increase.

Application initialization and first loop execution

Py

Training phase ____» | Building subspaces — [Execution]
Choose the best matching channel for SV Form subspaces based on Phase
Update the channel for processors in SV the frequency

Input from snoop reponses:
Sharing vectors (SV)

Figure 6: Training and building subspaces

4.2 Performance Subspace Snooping Protocol

The performance protocol improves the baseline protocdirbgdcasting requests on predicted channels.
The channel directory, which snoops all channels, verifiespredicted channels. If the predicted channel
is incorrect, the channel directory initiates the secormhticast on correct channels. If the prediction is
correct, the performance protocol reduces the latencws the baseline protocol. If the prediction is
incorrect, unlike the baseline protocol, the performana#qzol may cause extra snoop tag lookups at the
initially failed broadcasts of requests.

To predict the channel ids for read misses, we use a simpléanen using invalid blocks. In multi-
processors, many invalidated blocks remain invalid tilqassors access them again. If a missed block is
in the invalid state, we use the channel id in the local caaghd,place the request on the predicted channel.
However, if the requesting processor does not snoop thécpeddchannel currently, the request is sent to
the channel directory conservatively. Figure 6 shows thedlof protocol execution with speculative bus
accesses.

4.3 Subspace Formation

The goals of subspace formation are to map the smallest pedoéssors on each channel to reduce snoop
tag lookups and to minimize conflicts and block invalidasiat the same time. However, achieving these
two goals is difficult since pursuing one goal may conflicthifie other goal. If there are too few processors
on channels, common sharing patterns can not be mapped thangel, and thus are mapped to the fully-
associative channel.

In this paper, we use a decoupled approach to build subsfracesraining inputs. At the initialization
and the first iteration of applications, the system uses mabaddress-interleaved snooping protocol. Dur-
ing the training phase, sharing patterns are collected gwoop responses, and fed to the subspace training
controller. At the end of the first iteration, subspaces arméd from the trained sharing patterns.

To train common sharing patterns, we us& ax M matrix T (N = the number of channels, and M =
the number of processors). Each row of the mditizorresponds to a channel, and for each channel (row),
we record the number of accesses to processors. For eagh sspmnse, the training controller obtains
sharing vector SV (SV[i] = 1, if processor i has a cached blfackthe snoop, and SVJ[i] = 0, otherwise).
The controller looks for a channel (row) from matffX which matches best with the input sharing vector
SV. We select a row with the highest score, with a simple matcfunction, F,,,q¢cn:

o match(c) = Sumoverlapped(c) - Sumexcluded(c)

o SuMmoperiapped(c) = L T[d][i], if SV[i] =1

10

Application | Dataset/parameters

AppBT 36x36x36 grid
Barnes 16K particles
FMM 16K particles
Ocean 258x258 grid
Water nsquared 512 molecules
Water spatial | 512 molecules

Table 2: Application parameters for workloads

o Sumegeiuded(c) = X T[c][i], if SV[i] =0
For the best matching channegl,;, T[N][M] is updated as follows:
e Foreach il [cpest][i] = Tlcpest)]t] + 1, if SV[i] =1

Each processor can snoop maximiérohannels. Therefore, when subspaces are formed, for e&ch co
umn (processor), k channels are selected with the higheatues. Subspaces are formed by choosing those
channels for each processor.

In this paper, we evaluate this decoupled subspace formatibich requires a training phase to gather
information of sharing patterns. However, continously atpty subpaces is also a feasible policy. We leave
such policy as future work.

5 Experimental Results

We ran the subspace snooping evaluation using SimpleMP §24¢xecution-driven multiprocessor based
on SimpleScalar’s out-of-order simulator. The cache hifrawe modeled consists of separate level-one
data and instruction caches, and snooping level-two cactieg a 5-state MOESI protocol. The L1 in-
struction and data caches are 32KB, 4-way associative,84ithblocks. The unified L2 caches are 8-way
associative with 512KB capacity, and also use 64B blockehHEd and L2 cache can have eight pending
misses. We simulated a 64-processor system running sintgicidoenchmarks, five from the SPLASH-2
benchmark suite [25] and AppBT, a parallel shared-memorgioe of BT in the NAS parallel benchmark
suite [4]. Table 2 shows the data set sizes used. We modealgitianal test and test-set locks, and imple-
mented atomic swaps using load-locked and store-conditiostruction pairs.

We simulate subspace snhooping protocols with 8, 16, and @2dbchannels (wavelengths) in the
optical address bus, reserving one channel to be the fafigaative channel (FA channel). To determine
the best number of per-processor snooping channels, tmanimes total snoops, we explored the design
space and found that for the 8, 16, and 32 channel configngatibe best number of per-processor channels
were 3, 4, and 5, respectively. We assume those numbersefoeshof this section.

We also assume a separate optical data bus. As an optimizateosend memory accesses to private
pages—such as stacks and local heaps—directly to memoheatata bus, bypassing the snooping buses.
To model the optical latencies, we used estimated lateffices the literatures [14, 12], assuming that an
address bus transaction takes 50 cycles from the start efdoess to the completion of the snoop responses.
We assume that a transfer of a 64B data block takes 64 cydedshat sending a bus request to the channel
directory takes 22 cycles. We form subspaces after the tirsttion of each application’s main loop.

11

==8 Channels - 3 Snoops/proc
==16 Channels - 4 Snoops/proc
==32 Channels - 5 Snoops/proc

(%)

8
T

2
T

Snoop Reduction
3 8

n —

AppBT Barnes FMM Ocean Water-Nsqg Water-Sp

Figure 7: Snoop reduction rates with 8, 16, and 32 channels

Application | sharers<c 8 8< sharers< 32 sharers> 32 | FA usage
AppBT 91.8% 3.1% 5.1% 10.1%
Barnes 20.6% 13.6% 65.8% 58.8%
FMM 59.4% 26.7% 13.9% 24.0%
Ocean 95.5% 0.0% 4.5% 10.9%
Water nsquared 68.8% 0.2% 31.0% 29.0%
Water spatial 0.2% 87.7% 12.0% 90.4%

Table 3: Distribution of bus accesses and FA channel usages

5.1 Reducing Snoop Tag Lookups

Figure 7 shows the reduction of snoop tag lookups with 8, 28,32 logical channels. The six benchmarks
show snoop reductions of 5-80% across different numbershafirels. The most regular applications,
AppBT and Ocean, show the largest reductions (60-80%) ionad-or Barnes and Water-Sp, the snoop tag
lookup reductions are quite small (5% and 20%). For thesdragular applications, our channel mapping
algorithm could not form stable subspaces effectively liermajority of memory accesses, forcing many or
most bus accesses to occur on the fully associative channel.

As the number of logical channels increases, the reduciiamease for the three most regular applica-
tions (AppBT, Ocean, and Water-Nsq). With more logical ates, the subspace formation algorithm has
greater flexibility to form subspaces with smaller numbdngrocessors. For the three regular applications,
the reductions increase by 10-20% from 8 channels to 32 etsnAs the bandwidth and the number of
wavelengths in optical interconnects increase, subspampsg will allow a more fine-grained partitioning
of processors, reducing more snoop accesses.

(%)

=8 Channels - 3 Snoops/proc
==16 Channels - 4 Snoops/proc
== 32 Channels - 5 Snoops/proc

3
T

5
T

Wl | e DAN OEw

AppBT Barnes FMM Ocean Water-Nsq Water-Sp

Traffic Increase

Figure 8: Bus traffic increases for shared data with 8, 16,3nchannels

12

AppBT Barnes FMM

37 --x-- conventional snooping
subspace snooping base

Normalized Time
N
1

Normalized Time
£
1
Normalized Time

I1x 4x 8x 16x 32x 64x I1x 4x 8x 16x 32x 64x I1x 4x 8x 16x 32x 64x
X

Water-SP

Ocean Water-Nsq .

Normalized Time
£~y
1
Normalized Time
»
1
Normalized Time
N
1

1x 4x 8x 16x 32x 64x 1x 4x 8x 16x 32x 64x 1x 4x 8x 16x 32x 64x

Figure 9: Performance scalability of subspace snooping

Table 3 shows the distribution of bus accesses for diffemantbers of sharers. For each block address,
we record processors which access the block at least onaeydhe execution of applications. Table 3
shows the frequencies of three classes of bus accesses:tifane3 sharers, 8 to 32 sharers, and more than
32 sharers. For AppBT and Ocean which showed the best sndopti@n, more than 90% bus accesses are
for the addresses with less than eight sharers. Subspaopisgaan effectively find subspaces with small
numbers of processors for such applications. However, &on& and Water-Sp, the majority of accesses
are for the addresses with more than 8 sharers. Water-Sgsafistinct patterns with 87% of bus accesses
with 8 to 32 sharers. The last column of Table 3 shows the uségiee FA channel in the 16 channel
configuration. The FA usage is low for AppBT and Ocean, but et&Sp, 90% accesses are sent through
the FA channel, since the common sharing patterns with 8:8@egsors can not be mapped to any other
channels.

The performance disadvantage of subspace snooping isdtease of bus accesses due to channel con-
flicts. Resolving such conflicts can incur cache misses klinf@ting cache blocks to maintain correctness.
Such extra misses caused by invalidations will increasghi§gace snooping is unable to form a good set of
subspaces. Figure 8 shows the increase of total bus acakss#s mapping conflicts. Except Barnes and
FMM, four other benchmarks show the low increases of bussgesg less than 5%. For those applications,
the effect of extra bus accesses is small, but FMM has avelatirge increase—up to 25% of bus accesses.

5.2 Performance Scalability

In this section, we reduce effective snoop bandwidth togmtojpow well subspace snooping will scale to
larger systems with more processors. Since our simulatifsastructure is unable to model systems with
hundreds of processors, due to limited simulation time, orgraonstraints and application scalability, we

13

(%)

Bus Accesses
IS
5

8

——upgrade
ol L ==no prediction
=== correct prediction
= incorrect prediction
60

AppBT Barnes FMM Ocean Water-Nsg Water-SP

Figure 10: Channel prediction accuracy (16 channels)

used an alternate approximation. Instead of scaling thebeumf processors, we decreased the available
snooping tag bandwidth for a fixed number of processors {4)assume the number of bus accesses will
linearly scale with the number of processors and the consampf tag bandwidth will increase linearly.
We simulate the effect of scaling the system by a factor,dfy reducing snooping tag bandwidth by,

but leaving address bus bandwidth constant, since we asiangnoop tag bandwidth is decoupled from
address bus bandwidth.

Figure 9 presents the scalability results of six applicetiol he x-axis represents system scaling factors
of 1, 4, 8, 16, 32, and 64 in a 64-processor system. In 1x systach snoop tag bank can process one
request per processor cycle, which is highly optimisti@ 8tarFire bus can process a snoop every three
processor cycles, and the snoop bus in the Sun Fireplaneadnteect can process a snoop only every 6
processor cycles [6, 5]. Those numbers do not necessaiily ismbound on potential snooping tag speed,
since for those systems, snoop tag bandwidth is coupledstbdndwidth.

For the six applications, the execution times increase bgertttan twice at 64x scaling with the con-
ventional snooping. For the regular applications (AppBge&n, and Water-Nsq), it appears that subspace
snooping can potentially support larger systems effdgtigiven a sufficiently high-bandwidth optical fab-
ric. At that ratio, the Ocean benchmark incurs a slowdownigliitetimes with conventional snooping but
subspace snooping slows the increase to three times.

5.3 Accuracy of Performance Subspace Snooping Protocols

The performance subspace snooping protocol enhances skéneaprotocol by sending bus requests di-
rectly through predicted channels. However, incorrectlist®ns can waste snoop tag bandwidth, since a
request must be broadcast twice on two channels in that E&pare 10 shows the prediction accuracy for
bus accesses with 16 channels.

We break down bus accesses to four classes: upgrade, notnedcorrect prediction, and incorrect
prediction. For upgrades, requests are always placed geatarhannels directly without checking the
channel directory. Therefore, upgrades do not use predictror read misses, the performance subspace
shooping uses channel prediction only when there are thealche blocks for missed addresses and pro-
cessors are snooping predicted channels. Otherwise, staggerocessors send requests to the channel
directory conservatively, using no prediction.

For these benchmark applications, the ratios of upgraded@25% except for Water-Sp. The per-
formance protocol can predict channels for more than 50%usfdzcesses correctly except for the FMM
benchmark, which has a large fraction of no channel predistbeing made. Across all benchmarks, the
incorrect prediction ratios are relatively low (less th&@3dexcept for AppBT).

14

6 Conclusions

In this paper, we have explored a new class of coherenceqatstintended to expand the scalability of
snooping-like protocols. If snooping optical interconiselsecome common, snooping protocols will face a
severe snoop tag bandwidth limitation as the system isdcasewell as an energy consumption limit.

For regular applications, we have shown that subspace sipoEreases the effective snoop tag band-
width by forming subspaces, using a hardware mechanismebaginizes common communication patterns
and forms subspaces. We used pair-wise communicatioatstsbetween two processors to find subspaces.

The subspace snooping results showed a 5-80% reductioroop sag lookups by using 8, 16, and 32
logical channels. Two applications with regular sharingigzas showed 60-80% reduction of snoop tag
lookups. Such snoop reduction allowed the systems to sedlertihan a conventional snooping protocol,
so long as the application has sufficient regularity.

While these results show that subspace snooping has dtimtlarge-scale systems running regular,
scientific applications, we do not believe that it can be maidetical on electrical buses. With optics,
however, the tradeoff space is quite different, and newsygeoherence protocols may well arise if optical
interconnects, particularly snooping ones, become wigesh

We believe that many large-scale applications have stdialeng patterns that can be exploited trans-
parently and much more efficiently, but it may require siguaifitly larger systems (a higher number of
processors), with more logical channels and bigger datdlsah we can safely simulate. Nevertheless, we
have shown that significant reductions in energy and tageation are possible using subspace shooping,
even for these relatively small-scale benchmarks.

References

[1] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and Bl Ritter. Exploitation of optical
interconnects in future server architecturBaM Journal of Research and Developmg@t’s), 2005.

[2] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, MD. Hill, and D. A. Wood. Multicast
snooping: a new coherence method using a multicast addeéssni. INISCA '99: Proceedings of
the 26th annual international symposium on Computer agchiire pages 294-304, Washington, DC,
USA, 1999. IEEE Computer Society.

[3] C. Brackett. Dense wavelength division multiplexingtwerks: Principles and applicationdEEE
Journal of Selected Areas in Communicatiof®, Aug. 1990.

[4] D. Burger and S. Mehta. Parallelizing appbt for sharestmory multiprocessors. Technical Report
1308, Computer Sciences Department, University of Wisooi@eptember 1995.

[5] A. Charlesworth. Starfire: Extending the smp envelofi=E Micro, 18(1):39-49, 1998.

[6] A. Charlesworth. The sun fireplane system interconnbtSupercomputing '01: Proceedings of the
2001 ACM/IEEE conference on Supercomputing (CDR(Qddyes 7—7, New York, NY, USA, 2001.
ACM Press.

[7] P. W. Dowd, J. A. Perreault, J. Chu, J. C. Chu, D. C. Hoffstezi, and D. Crouse. LIGHTNING: a
scalable dynamically reconfigurable hierarchical WDM ratwfor high-performance clustering. In
Proc. of the Fourth IEEE Int'l| Symp. on High Performance baited Computing (HPDC-4)pages
220-229, 1995.

15

[8] B. G. Fitch, R. S. Germain, M. Mendell, J. Pitera, M. Pitma\. Rayshubskiy, Y. Sham, F. Suits,
W. Swope, T. J. C. Ward, Y. Zhestkov, and R. Zhou. Blue matarapplication framework for
molecular simulation on blue gené. Parallel Distrib. Comput.63(7-8):759-773, 2003.

[9] A. Groot, R. Deri, R. Haigh, F. Patterson, and S. DiJaiigh-performance parallel processors based
on star-coupled wdm optical interconnects.Pimceedings of MPPQIL996.

[10] J.-H. Ha and T. Pinkston. The speed cache coherencegotdbr an optical multi-access interconnect
architecture. IrProceedings of the Second Workshop on Massively Paralted2sing Using Optical
Interconnections1995.

[11] E. Hagersten and M. Koster. Wildfire: A scalable path$&Ps. InProceedings of the 5th Interna-
tional Symposium on High-Performance Computer Architecfpages 172-181, Jan. 1999.

[12] A. K. Kodi and A. Louri. Design of a high-speed opticatenconnect for scalable shared-memory
multiprocessorslEEE Micro, 25(1):41-49, 2005.

[13] B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, Bladhavan, A. Levi, and D. W. Dolfi.
MAUI: Enabling fiber-to-the-process with parallel multivedength optical interconnectslournal of
Lightwave Technology 22004.

[14] A. Louri and A. K. Kodi. An optical interconnection netnk and a modified snooping protocol for
the design of large-scale symmetric multiprocessors (smp&E Transactions on Parallel and Dis-
tributed Systemg12):1093-1104, Dec. 2004.

[15] M. M. K. Matrtin, P. J. Harper, D. J. Sorin, M. D. Hill, and.B.. Wood. Using destination-set prediction
to improve the latency/bandwidth tradeoff in shared menmutiprocessors. IfProceedings of the
30th Int. Symp. on Computer Architectupages 206—217, June 2003.

[16] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token cohererc decoupling performance and cor-
rectness. IfProceedings of the 30th Int. Symp. on Computer Architechages 182—-193, June 2003.

[17] M. M. K. Matrtin, D. J. Sorin, M. D. Hill, and D. A. Wood. Batwidth adaptive snooping. IRroceed-
ings of the 8th International Symposium on High Performa@oenputer Architecture (HPCAJeb.
2002.

[18] F. Mederer, I. Ecker, J. Joos, M. Kicherer, H. J. Unold JKEbeling, M. Grabherr, R. Jager, R. King,
, and D. Wiedenmann. High performance selectively oxid€&SELs and arrays for parallel high-
speed optical interconnectleEE Transactions on Advanced Packagi@ig(4):442—429, Nov. 2001.

[19] A. Moshovos. Regionscout: Exploiting coarse grainrsttpin snoop-based coherence Aroceedings
of the 32nd International Symposium on Computer Architectiune 2005.

[20] A. Moshovos, G. Memik, B. Falsafi, and A. N. Choudhary. TJ&: Filtering snoops for reduced
energy consumption in SMP servers.HRCA pages 85-96, 2001.

[21] B. Mukherjee. WDM-based local lightwave networks-tparSinglehop systemslEEE Net. Mag.
May 1992.

[22] O. O. Ogunsola, A. Benner, and J. D. Meindl. A practicainsetric multi-processor architecture
design study using optical multi-drop networks.Aroceedings of the 5th Annual Austin CAS Confer-
ence Feb. 2004.

16

[23] R. Patel, S. Bond, M. Pocha, M. Larson, H. Garrett, R.\ioa, H. Petersen, D. Krol, R. Deri, and
M. Lowry. Multiwavelength parallel optical interconnedisr massively parallel processindEEE
Journal of Selected Topics in Quantum Electron{@3, 2003.

[24] R. Rajwar and J. R. Goodman. Speculative lock elisionaliing highly concurrent multithreaded
execution. InProceedings of the 34th Int. Symp. on Microarchitecty@ges 294—-305, Dec. 2001.

[25] S. C.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptae $PLASH-2 programs: Characterization
and methodological considerations.Rroceedings of the 22th International Symposium on Compute
Architecture pages 24-36, Santa Margherita Ligure, Italy, 1995.

[26] R.J.W.Y.S. Liu, W. Hennessy, P. Piacente, J. J. Rowétt Kadar-Kallen, J. Stack, Y. Liu, A. Peczal-
ski, A. Nahata, and J. Yardley. Plastic vcsel array paclggimd high density polymer waveguides for
board and backplane optical interconnect.Phoceedings of Electronic Components and Technology
Conferencepages 999-1005, 1998.

17

