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Features are increments in program functionality. Feature abstraction, the process of

abstracting programs into their constituent features, is a relatively common yet informal

practice in software design. It is common because it simplifies program understanding. It

is also important for software product lines whose essence is the systematic and efficient

creation of software products from a shared set of assets or features, where each product

exhibits common functionality with other products but also has unique functionalities.

Thus, it seems natural to modularize feature abstractions and use such modules as

building blocks of programs and product lines. Unfortunately, conventional modulariza-

tion approaches such as methods, classes and packages are not geared for supporting fea-

ture modules. They present two recurrent problems. First, a typical feature implementation

is spread over several conventional modules. Second, features are usually more than

source code artifacts as they can modularize many different program representations

(makefiles, documentation, performance models).
vii



An undesirable consequence is that developers must lower their abstractions from

features to those provided by the underlying implementation languages, a process that is

far from simple let alone amenable to significant automation. The conceptual gap created

between feature abstractions and their modularization hinders program understanding and

product line development. The root of the problem is the fact that feature modularity is not

well understood and thus not well supported in conventional programming languages,

modularization mechanisms, and design techniques.

In this dissertation, we explore language and modularity support for features

founded on an algebraic model geared for program synthesis. Our model integrates ideas

from collaboration-based designs, mixin layers, aspect oriented programming, multi-

dimensional separation of concerns, and generative programming. We assess our model

with an implementation of a non-trivial product line case study, and evaluate feature sup-

port in emerging modularization technologies.
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Chapter 1

Introduction

1.1  Overview and Contribution
Program abstraction and modularity are two of the driving factors behind the evolution of

software development. Abstraction allows us to focus on the relevant parts of a problem

while modularity lets us decompose problems and compose solutions in manageable units

to cope with program complexity.

The history of programming languages and their attendant software development

methodologies has been that of continuously raising the abstraction level from bits and

bytes towards concepts and language constructs that resemble more and more the abstrac-

tions of problem domains, and supporting the corresponding abstractions with adequate

modularity mechanisms. Examples are procedures or methods that led to Structural Pro-

gramming, and classes and objects that are the focus of Object Oriented Programming.

We propose features for program abstraction and modularization to address docu-

mented shortcomings of objects and classes, the current leading paradigm for software

development. We provide an algebraic model, and its underpinning implementation sup-

port, of feature modules that describes the analysis and synthesis of programs as mathe-

matical expressions subject to algebraic laws. We employ algebraic models because they

abstract architectural details from tool-specific implementation details. Representing pro-

grams as algebraic expressions of feature modules shifts our focus from implementation

details to architectural reasoning: what features constitute a program? and what is their

architecture (denoted by algebraic expressions that compose features)?. Algebraic models
1



also facilitate the application of automatic and generative techniques of program synthesis

and product line generation.

Informally, a feature is a prominent or salient part of an object or thing. Every day

objects like cars, houses, or dogs are distinguished among similar objects by the set of fea-

tures they exhibit such as color, size, or breed. A similar scenario can be applied to soft-

ware programs where features correspond to the functionality that programs provide. For

instance, a word processor has features of file loading and saving, editing options, spell

checking, font formatting, printing options, and so on. Feature abstraction is a relatively

common yet informal practice in software design, as exemplified by UML use cases [125],

because it simplifies program understanding. Feature abstraction is also important for soft-

ware product lines whose essence is the systematic and efficient creation of software prod-

ucts from a shared set of assets or features, where each product exhibits common

functionality with other products but also has unique functionalities.

It seems natural then to modularize features and use such modules as building

blocks of programs and product lines. Unfortunately, conventional modularization

approaches such as methods, classes or packages are not geared for feature modules and

present two recurrent problems. First, a typical feature implementation is spread over sev-

eral conventional modules. Second, features are usually more than source code artifacts as

they can modularize many different program representations such as makefiles, documen-

tation, or performance models.

As a negative consequence, software developers must lower their abstractions

from features to those provided by the underlying implementation languages, a process

that is far from simple let alone amenable to significant automatization. The conceptual

gap created between feature abstractions and their modularization hinders program under-

standing and product line development. The root of the problem is the fact that feature

modularity is not well understood and thus not well supported in conventional program-

ming languages, modularization mechanisms, and design techniques.

The main contributions of this dissertation are:
2



• A foundation of Feature Oriented Programming (FOP). FOP is a software develop-

ment paradigm that focuses on feature modularity. It generalizes and builds on the

success of Relational Query Optimization (RQO). The key insight derived from

RQO is expressing programs and their designs in terms of relational algebra expres-

sions whose operations are composed and possess mathematical properties. Such

program specifications are amenable to automatic programming (derivation of opti-

mized programs from unoptimized ones), and generative programming (generation

of efficient code from higher-level specifications). FOP raises the level of abstrac-

tion from low-level module implementations to mathematical entities that represent

features and are subject to algebraic laws. FOP aims at providing a general theory of

software development in the same sense that relational algebra is a theory upon

which query evaluation programs that access relational databases are built.

• An evaluation of feature modularity in novel modularization technologies. In recent

years, there has been an increasing interest in the study of new modularization tech-

niques to help overcome limitations of conventional object oriented programming

languages. The result has been a plethora of tools and techniques1. Such diversity

makes difficult the comparison among the different approaches and an assessment

of how they could be applied to product lines. To address this problem, we devel-

oped a canonical example of product lines and proposed basic properties that feature

modules that implement this example should provide [106]. We evaluated these

properties in several technologies to assess their support for feature modularity in

product line development and relate these properties to an algebraic model, thus

providing an implementation-independent model on which to compare and contrast

modularization technologies. 

• An algebraic model of a core of AspectJ. Aspect Oriented Programming (AOP) is a

popular emerging modularization technology [93]. Its flagship tool is AspectJ, an

extension of Java whose goal is to modularize aspects, modules that implement

1. For instance, [15] surveys 27 approaches.
3



crosscutting concerns, that is, their implementation cuts across other module bound-

aries (such as classes) or it is intertwined with fragments of other concerns. This

model helped us uncover some of the complexity in using aspects in product lines

and incremental development.

• A functional model of aspect composition. We propose an alternative model that

solves the problems encountered with the defacto model of AspectJ while leaving

AspectJ’s power intact. It merges contributions from FOP and AOP, and helps con-

trast and compare the differences of both paradigms, a common source of contro-

versy, misconceptions and confusion in the software engineering community.   

• An empirical assessment of the functional model of aspects. We implemented a

product line of non-trivial size in AspectJ to assess the validity and relevance of our

model. We emulated functional composition by preventing the problems identified

with the defacto AspectJ model and collected statistics that shed light on the impact

different constructs have on feature modules and on the overall structure of the

product line. 

1.2  Outline
The subsequent chapters are structured as follows:

In Chapter 2 we put our work in context. First, we provide working definitions of

features, modules, and product lines that we use to define feature modularity. Second, we

describe the two main processes recurrent in many product line methodologies, Domain

Engineering and Application Engineering, and set our work within the context of the main

activities of these two processes. Third, we present a classification of techniques for vari-

ability management (dealing with product variations) and categorized our work within that

classification. We finish the chapter by relating our work with research in software archi-

tecture and program synthesis.

In Chapter 3 we lay out the foundations of FOP. GenVoca [29], a methodology for

creating application families and architecturally extensible software, was the first model
4



of FOP. GenVoca was extended by AHEAD [1][30] whose feature modules are hierarchi-

cal and can include other artifacts besides source code. In this chapter, we describe an

algebraic representation of AHEAD’s feature modules, their composition, and implemen-

tation.

In Chapter 4 we propose a canonical example of product lines and a list of basic

properties of features modules. We perform an evaluation of feature modularity in several

novel modularization technologies with this example and properties.

In Chapter 5 we develop an algebraic model of a core of AspectJ. We analyze and

illustrate with this model some of the problems associated with aspects in the implementa-

tion of product lines and in incremental development. We propose an alternative model of

composition, the functional model, to address these problems. We compare and contrast

the functional model with the model of FOP explained in Chapter 3, and relate it to the

feature module properties presented in Chapter 4.

Chapter 6 presents an empirical assessment on the validity and relevance of our

functional model of aspects. We implemented a product line of non-trivial size emulating

functional composition in AspectJ and collected statistics on the use of language con-

structs. We analyze the statistics collected in relation to different types of features we iden-

tified and the relative strengths of FOP and AOP.

In Chapter 7 we summarize our results and contributions and discuss several ven-

ues for future research.
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Chapter 2

Features, Modules, and Product Lines

In this chapter we put our work and contributions in the context of program modularity

and research on software product lines, software architecture and program synthesis.

Features, modules, and software product lines are concepts whose definitions are

overloaded or not generally agreed upon. We illustrate the diversity of definitions with

samples extracted from research literature. Within this diversity, we frame our working

definitions for these concepts. We also introduce and define the concept of feature module

that we elaborate and illustrate in subsequent chapters.

Over the last decade, many product line methodologies have been proposed with

different goals, processes, artifacts, and perspectives. Despite the significant disparity, two

common threads can be distinguished: a) the distinction between two processes, Domain

Engineering and Application Engineering, and b) the importance of identifying and han-

dling the common and different properties of member programs, usually referred to as

commonality and variability management. We describe how our work fits in the basic

activities of these two processes and how feature modules can be classified within the dif-

ferent types of variability management mechanisms.

Finally, we relate our work with research in software architecture and program

synthesis.
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2.1  Features
Informally, a feature is a characteristic that is prominent in an entity or thing. Unfortu-

nately, in the Software Engineering literature there is no general agreement on what a fea-

ture is, let alone on its properties and implications. Some of the definitions are:

• End-user visible characteristics of a system [85].

• A distinguishable characteristic of a concept that is relevant to some stake-holder

[85].

• Qualitative properties of concepts [51].

• A functional requirement; a reusable product line requirement or characteristic. A

requirement or characteristic that is provided by one or more members of a software

product line [68].

• Increment in program functionality [162].

All these notions of features are valid and more relevant for different stages of

product line development or for different product line methodologies. For our work we

focus on the last definition, thus throughout the dissertation we regard features as incre-

ments in program functionality.

Software systems are designed and built to meet the requirements imposed by

users, customers, markets, etc. Broadly speaking, requirements can be categorized into

[67]:

• Functional requirements: Describe what a system does using informal or formal

notations.

• Non-functional requirements: Describe how a system meets the functional require-

ments and have a strong relation to the system’s architecture. Common non-func-

tional requirements are: availability, security, safety, integrity, and speed. Non-

functional requirements are also known as quality attributes [42].

Since we regard features as increments in program functionality, our work mainly

addresses functional requirements. Nevertheless, in Chapter 3 we describe how we deal

with artifacts associated with quality attributes such as performance models. 
7



2.2  Modules
The importance of building software systems modularly was recognized in the early days

of Software Engineering [133]. Among other benefits, modularity makes systems easier to

understand, evolve, use, and scale [67][118][122]. Despite its significance, there is no uni-

versal consensus as to what constitutes a software module let alone the properties it should

exhibit. One of the most thorough analysis of modularity, its properties and Software

Engineering implications has been presented by Bertrand Meyer in his seminal book on

Object Oriented Software Construction [118]. He describes five criteria that software

methods should have to be considered modular, five rules to follow to ensure modularity,

and five principles derived from the criteria and rules.

Five Criteria. The methodology should provide mechanisms to decompose sys-

tems into smaller and simpler subsystems (decomposability), and support composition of

complex systems from simpler ones (composability). It should allow developers to under-

stand each module without having to inspect all other modules that constitute a system

(understandability). It should limit the impact of specification changes to one or a small

number of modules (continuity) and contain run-time errors within the module or neigh-

boring modules where the error occurred (protection).

Five Rules. The modules identified at the design level should correspond to mod-

ules at the implementation level (direct mapping). Every module should communicate

with the fewest number of other modules (few interfaces), exchanging as little information

as possible (small interfaces) in a clear and explicit manner (explicit interfaces), and

exposing only a subset of its properties to other modules (information hiding). 

Five Principles. Modules should correspond to syntactic units in the language

(linguistic modular units), contain all information of a module within the module itself

(self-documentation), provide a uniform notation to its services whether stored or com-

puted (uniform access), and be open for extension and closed when available for use by

other modules (open-close). Additionally, when the system can support a set of alterna-

tives their definitions should be confined to a single module (single choice).
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All these facets of modularity are indeed important; however, our focus is on:

• Criteria. Decomposability and Composability because we want to decompose and

compose systems by features.

• Rules. Direct mapping because we want our modules to reflect a feature-level

design.

• Principles. Linguistic modular units because we want to have language constructs

to express features, self-documentation because we expect our modules to not only

contain source code but also other artifacts, open-close because we want our mod-

ules to be extensible yet usable by other modules.

Thus, in the context of Meyer’s modularity framework and our focus within it, our

working definition of feature module is:

A feature module is an extensible modularization mechanism supported by lan-

guage constructs and implementation machinery for decomposing and composing systems

in terms of features that can be realized with multiple artifacts.

Let us dissect this definition and relate it to the criteria, rules and principles that

we focus on:

• A feature module is an extensible modularization mechanism because we want our

modules to meet the open-close principle, being extensible yet usable by other mod-

ules.

• A feature module is supported by language constructs and implementation machin-

ery, this relates to the principle of linguistic modular units.

• Support for decomposing and composing and composing systems, relates to the cri-

teria of decomposability and composability.

• The fact that composition and decomposition is in terms of features relates to the

rule of direct mapping as we want to reflect our feature-level designs as modules in

our implementation.

• We state that feature modules can be realized with multiple artifacts to establish a

relation with the self-documentation principle. 

Throughout the dissertation we elaborate more on and illustrate this definition.
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2.3  Product Lines
Software product lines or product families were also conceived in the early days of Soft-

ware Engineering [134]. Like features and modules, there is no general agreement on what

is a software product line and how to model, design and build them. The following is a

sample of definitions of product line:

• A set of programs studied in terms of the common and special properties of the indi-

vidual members [134].

• A set of software-intensive systems sharing a common, managed set of features that

satisfy the specific needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way [42].

• A group of products sharing a common managed set of features that satisfy the spe-

cific needs of a selected market [160].

• A family of products designed to take advantage of the common aspects and pre-

dicted variabilities [158].

• A family of software systems that have some common functionality and some vari-

able functionality [68].

These definitions emphasize the perspectives taken by the different product line

methodologies. There is a common thread in them however, the recognition that products

in a product line share a common set of assets or features, and present differences among

them. These two facts are referred as commonality and variability respectively.

Our work acknowledges the importance of these two concepts while highlighting

that commonalities and variations within a product line are based on the features that

member programs implement. Thus our working definition is:

A software product line is a set of similar programs that are distinguished by the

set of features they implement1.

It is important to reiterate at this point that our working definitions of features,

modules, and product lines fall within the range of definitions of current research litera-

1. Typically features are shared among several programs thus constituting a common core of a product line.
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ture. This not only sets our work within a research context but also allowed us to build a

plausible working definition of feature modules.

2.4  Product Line Methodologies
Many methodologies have been developed to create product line architectures, some

examples are: Feature-Oriented Domain Analysis (FODA) [85], Feature Oriented Reuse

Model (FORM) [86], Family-oriented Abstraction Specification and Translation (FAST)

[158], FeatuRSEB [71], SEI Framework for Product Line Practice [39][42], ProdUct Line

Software Engineering (PuLSE) [32], Evolutionary Software Product Line Engineering

Process (ESPLEP) [68], Quality-driven Architecture Design and quality Analysis

(QADA) [111], Product Line Use case modeling for Systems and Software engineering

(PLUSS) [62], Kobra [16], PRIME [136]2.

Despite the enormous disparity among methodologies regarding the number of

processes, activities, tasks, artifacts or perspectives; a common theme can be identified.

Product line methodologies broadly categorize their processes in two:

• Domain Engineering is the process that analyzes, designs, and implements the com-

monality and variability of a product line. 

• Application Engineering is the process that captures product requirements, creates a

map (configuration) from requirements to common and variable assets obtained in

the Domain Engineering process, and builds (generates) the software products.

These two processes are depicted in Figure 2.1. We omit the lines in the figure as

we do not focus on the order in which these activities can be performed. Within these two

process our work fits as follows:

• Domain engineering: our work touches on design but fundamentally addresses

implementation issues.

2. More approaches appear in [51] and [136].
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• Application engineering: our work touches on configuration issues but concentrates

on the generation of product variants.

2.5  Variability Management
Variability is a key and pervasive concept in product line engineering. A consequence of

the proliferation of product line methodologies is a large range of mechanisms to express

and implement variability. Next we present a classification of variability mechanisms and

describe where our work fits in this classification [6][42][51][80].

Language Supported. Rely on the language philosophy, constructs, and imple-

mentation mechanisms.

• Inheritance mechanisms such as single, multiple, and mixin inheritance support

variability by adding functionality to classes [38][122][147].

• Generic programming abstracts variability into generic parameter types [51].

• Reflection and Metaprogramming permit variation in program execution based on

the program state or its representation [6][51].

Compiler or Linker Supported. Based on compiler or linker technology.

• Libraries are collections of functions or components that can vary for different com-

binations of features.

Figure 2.1  Overview of Domain and Application Engineering
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• Classloaders support variability by loading different versions of classes depending

on the program execution or configuration [6].

• Preprocessors support variability by including or excluding code fragments or pro-

grams before compilation.

Frame Technology. A frame is a text template that contains commands and code

fragments [20][76]. These commands generate code particular to a variant, usually accord-

ing to one or more parameters, in a process called frame instantiation. An example of

frame-based technology for handling variants in software product lines is XVCL (XML-

based Variant Configuration Language) [164].

Design Patterns. Programming protocols for common and recurrent functional-

ity. They support variability as they can be adapted for different sets of classes and usage

scenarios [66].

Frameworks. A framework is a set of cooperating classes that make up a reusable

design for a specific class of software [66]. Variability is supported by extending abstract

classes of the framework to provide them with the concrete implementation of a product

variant or frame instance [23].

Modularization Technologies. Recently, several technologies have been pro-

posed that address modularization shortcomings of current Object Oriented programming

languages and technologies. Some of them have already been used to implement product

lines [104][151][161].

Our work falls in the last category because we propose feature modules as a new

modularization technology conceived to support implementation and synthesis of product

line designs. In Chapter 4 we illustrate the use of several modularization technologies for

the implementation of a product line example.
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2.6  Software Architecture and Program 
Synthesis
Despite being commonly used in current day practice and research literature, there is no

common and universally accepted definition of the term Software Architecture. We use

Shaw and Garlan’s as our working definition [146]: 

Software architecture involves the description of elements from which systems are

built, interactions among those elements, patterns that guide their composition, and con-

straints on these patterns.

Extensive research has been carried out in software architecture since the mid

1980s. Researchers soon realized that there was a need to develop formal notations and

tool support to describe, analyze, and implement architectural specifications of systems.

This realization originated Architecture Description Languages (ADLs), which broadly

speaking provide syntactic and semantic models to describe systems at a higher-level view

not at implementation details. A vast array of ADLs have been proposed to address differ-

ent problem domains, expressed in different languages and supported by different seman-

tic models [117]. Examples of ADLs are: Weaves for parallel processing whose

component units are tool fragments (procedures) connected via ports that communicate by

passing objects [69], Darwin which is a declarative language (formally defined via π-cal-

culus) for the hierarchical composition of distributed systems built with components inter-

acting via services [109], and Wright which specifies and analyzes software architectures

in terms of components (ports and specification) and connector types theoretically under-

pinned in CSP [3].

Other component-based programming examples for parallel and distributed sys-

tems are: SBASCO which merges skeletons (code patterns) and components to provide

high-level programmability and performance portability [52], ASSIST which also uses

skeletons and components but its applications are specified in a coordination language

[154], Common Component Architecture (CCA) which is a large effort to define standards

for components for high-performance computation [9], and P-COM2 that targets develop-
14



ment of program families from components encapsulated with interfaces that describe

their properties which are used in the composition to produce near-optimal results for spe-

cific applications and execution environments [110]. These approaches are not typically

described as ADLs, nonetheless they pursue the same goal of describing system architec-

ture and composition with syntactic and semantic models that abstract implementation

details. 

Along the same lines, our work could be viewed as an example of ADLs that uses

an algebraic notation to specify how components (features) of systems are composed.

However, contrary to most ADLs, we do not focus on particular application domains. We

believe our work could potentially be used in conjunction with existing ADLs because we

regard features as increments in program functionality, view that fits the composition units

of ADLs, and the different program specifications used by ADLs can be regarded as pro-

gram artifacts that could be composed as described in Chapter 3.

Our work can also be put within the context of Program Synthesis whose goal is

to mechanically synthesize (generate) correct and efficient code from declarative specifi-

cations [91]. Kreitz divides program synthesis into three categories [91]:

• Proofs as programs regards program synthesis as a proof process. It relies on stan-

dard theorem proving techniques.

• Transformational program synthesis typically uses rewriting techniques to trans-

form a specification into a form that can be translated to a program in a straightfor-

ward manner.

• Knowledge based program synthesis generates programs by developing strategies to

derive the parameters required to instantiate algorithmic schemas.

Our work falls into the transformational approach because we regard features as

program transformations that are mathematically modeled as functions from programs to

programs as will be explained in Chapter 3.
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2.7  Summary
In this chapter we put our work within the context of modularity, product line and software

architecture research, and program synthesis. First we presented our working definitions

of features, feature modules and software product lines, and noted that they derive from

commonly accepted definitions in current research literature. 

Second, we described how our work fits in the product line development process:

in the realm of Domain Engineering it addresses design and implementation activities,

while in the Application Engineering realm it touches on configuration but focuses mostly

on product generation.

Third, we saw that variability management, expressing and implementing product

variations, is fundamental for product line engineering. We presented a classification of

variability management mechanisms and classified our work as a modularization technol-

ogy because we aim at providing language level and implementation mechanism support

for feature modules.

Finally, we described how our work could be considered as an example of Archi-

tecture Description Languages and why we believe it could potentially be used with other

examples of ADLs. We classified our approach to program synthesis as transformational

as we regard features as program transformations as we will describe in next chapter.
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Chapter 3

Feature Oriented Programming

In Chapter 2 we identified feature modules as the building blocks of software product

lines. In this chapter, we describe Feature Oriented Programming (FOP), a technology

that studies feature modularity and its use in program synthesis. We explain the implemen-

tation, algebraic representation and composition of features modules in FOP1. In Chapter

4 we present an evaluation of how other modularization technologies could be used to

implement features modules.

3.1  Basic Ideas of FOP – GenVoca
FOP has its roots in GenVoca, a methodology for creating application families and archi-

tecturally extensible software [29]. In this section we explain the basic ideas behind Gen-

Voca, and in next section we present their generalization in AHEAD.

Let us start by considering a standard Java class like:

class Lit { 

  int value;

  Lit (int v) { value = v; }

  void print() { System.out.print(value);  }

  int eval() { return value; }

} (1)

1. The core of this chapter is based on our ASE paper [27].
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This class can be defined in several ways using inheritance, for instance2:

class Litc {

  int value;

  Lit (int v) { value = v; }

}

class Litp extends Litc {

  void print() { System.out.print(value);  }

}

class Lite extends Litp {

  int eval() { return value; }

}

class Lit extends Lit3 { } (2)

The two definitions of Lit, in terms of their functionality3, are identical. They

both provide the same field, constructor, and methods print and eval4. However there is

one restriction, the order in which inheritance is done matters. In this example, class Litc

should be at the root of the class hierarchy because it defines field value which is referred

to by classes Litp and Lite. Note however, that the order of these last two classes can be

interchanged and still yields the same functionality:

class Lite extends Litc {

  int eval() { return value; }

}

class Litp extends Lite {

  void print() { System.out.print(value);  }

}

class Lit extends Litp { } (3)

2. Suffixes c, p, and e in the class names stand for the functionality they implement core, print, and eval.
3. Remember from Chapter 2 that we do not address information hiding issues (thus we do not consider mod-

ifiers such as public, private, etc.), and we regard features as increments in program functionality.
4. The examples we develop in this chapter are variations of the Expression Problem. We shortly describe this

problem in Section 3.4.2, and explain it in more detail on next chapter where we use it as the basis for an
evaluation of several modularization technologies. 
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Another way to think about inheritance is as an operation that increments or

refines the functionality of a class. From this perspective, class Lit can be expressed as

follows:

class Lit {                  // Litc   

  int value;

  Lit (int v) { value = v; }

} (4)

refines class Lit {          // Litp

  void print() { System.out.print(value);  }

} (5)

refines class Lit {          // Lite

  int eval() { return value; }

} (6)

where refines is a modifier keyword that indicates a class refinement or class extension.

Note that the name of the class and the two class refinements is Lit, thus throughout the

chapter we use subscripts (in substitution of suffixes) to distinguish classes and their dif-

ferent refinements. 

Classes and their refinements can be expressed algebraically by using functions.

We distinguish a special kind of functions, those that receive no arguments and always

return the same constant value. We refer to this kind of functions as values (a.k.a. constant

functions) and to any other types of functions simply as functions. 

For example, class Lit in (4) is a value – a basic source code artifact (in this case

a standard Java class), and can be denoted with term Litc (subscript c refers to the core

definition in (4)). Note that parenthesis are omitted in the case of value terms. A class

refinement adds functionality to a class to create an extended or refined class. Thus class

refinements can be regarded as functions that maps programs (classes) to programs

(classes). For instance, the class refinements in (5) and (6) denoted with Litp and Lite

can be composed with Litc to create class Lit in (1) as follows:
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  Lit = Lite • Litp• Litc

For notational simplicity we use, throughout the chapter, symbol • to denote func-

tion composition and omit function application as our values are functions without argu-

ments, like Litc in this case. We refer to expressions that use operator • as composition

expressions.

Function composition works well with the order restrictions we identified before.

For instance, a composition expression like Lite • Litc • Litp makes no sense because

Litp is a function not a value and Litp references a field defined in Litc. Similarly, Lite

• Litp • Litc is functionality-wise equivalent to Litp • Lite • Litc as we noted in (2)

and (3).

Even in this simple example we can identify features (increments in program

functionality) to build a product line. The first one is the core functionality (a field and a

constructor) of the product line as expressed in Litc. A second feature is an operation to

print the field as implemented in Litp. And the third feature Lite is another operation

that returns the value stored in the class. Using these three features we can create the fol-

lowing programs to build a product line:

P1 = Litc

P2 = Litp • Litc

P3 = Lite • Litc

P4 = Lite • Litp • Litc (7)

When viewed in this way, a product line is a set of programs created from all valid

composition expressions. A composition expression is valid if it does not violate any con-

straints of the features it composes. A constraint is a problem domain requirement of fea-

tures in a product line design. For example, let f and g be features. Typical constraints

relate to composition order (feature f must be composed before feature g means ...• g •...•

f •...), feature inclusion (if f is included g must be also be included), feature exclusion (if

f is included g must be excluded), feature optionality (if f is included g may or many not

be included), or features that are mandatory (f must be included always). For instance,
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expression Lite • Litc • Litp is not valid because Litp and Litc violate composition

order constraints: Litp refers to value defined in Litc thus it must appear to the left of

Litc, and Litc is a value so it must be the rightmost term in our expression. We elaborate

more on this point later in the chapter.

It is the most common case that the implementation of a feature involves more

than one class. For example, consider a product line that besides defining class Lit and its

two operations it also requires the definition of a class that creates objects of Lit and tests

that their operations work correctly5. We call this product line LitTest throughout the

chapter. We can define such test class and its extensions as follows:

class Test {                  // Testc

  Lit t;

  Test() { t = new Lit(3); }

} (8)

refines class Test {          // Testp

  void testPrint() { t.print(); }

} (9)

refines class Test {          // Teste 

  void testEval()  { System.out.println(t.eval()); }

} (10)

Similar to what we did with class Lit, we can create the following test programs

using class Test and its extensions:

T1 = Testc

T2 = Testp • Testc

T3 = Teste • Testc

T4 = Teste • Testp • Testc (11)

Now the question is: How are Lit programs Pi and testing programs Tj related?

To answer this question notice that if a program Pi includes a Lit feature like print

5. This is a common practice in software testing with frameworks such as JUnit.
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operation, the related Tj program must have the feature that tests it. Symmetrically, if a

program Tj tests for a feature like print operation, the program Pi must implement it. In

other words, Lit and Test features are applied lock-step. Thus we can view the LitTest

product line as having three feature modules: 1) core feature with values Litc and

Testc, 2) print feature with functions or class refinements Litp and Testp, and 3)

eval feature with functions Lite and Teste. Figure 3.1a depicts the program with fea-

tures core and eval, and Figure 3.1b depicts the program with features core, print,

and eval. The standard classes or values are slightly shaded and the lines between the fea-

tures denote the class refinements.

3.2  AHEAD
AHEAD or Algebraic Hierarchical Equations for Application Design generalizes Gen-

Voca by considering features as hierarchical modules that can include other artifacts

besides source code. In this section we present an algebraic representation of both general-

izations and their implementation in the AHEAD Tool Suite (ATS).

Figure 3.1  Examples of Lit and Test product line
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3.2.1  Features as Hierarchical Modules

AHEAD redefines GenVoca’s notions of values as a hierarchical modules (modules that

contain other modules) of multiple artifacts, and functions to map hierarchical modules to

hierarchical modules. In AHEAD, a model is a set of features that can either be values or

function. For example, a model for LitTest in Section 3.1 is denoted as follows:

LitTest = { core, print, eval }

where the core represents classes Litc and Testc, print represents Litp and Testp, and

eval represents Lite and Teste. This is shown in the following models:

core  = { Litc, Testc }

print = { Litp, Testp }

eval  = { Lite, Teste } (12)

This example illustrates the hierarchical nature of feature modules, where a fea-

ture like core can itself consist of another set of features such as Litc and Testc. Let us

now analyzed how feature modules are implemented and composed.

Feature module implementation. We have

seen that feature modules are hierarchical and thus

can have nested modules. Hence a natural way to

implement feature modules is using file directories,

where the names of the directories correspond to the

names of the features and the leaves of the hierarchy correspond to the source code files as

illustrated in Figure 3.2. Please note that: a) we omit feature subscripts in the file names,

i.e. Litc becomes Lit, and b) we include file extension names .jak (AHEAD features

are implemented in a language called Jak, which we describe in Section 3.3). In Section

3.3.3, we describe the roles these two parts play in feature composition.

Feature module composition. Consider for instance the program with features

core and eval as illustrated in Figure 3.1a. Let us call this program CE. Its composition

is thus denoted as:

CE = eval • core

Figure 3.2  Feature core 

core

Lit.jak Test.jak
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Given the hierarchical nature of feature modules, the composition also permeates

to all their nested features, in other words:

CE = eval • core 

= { Lite, Teste }  • { Litc, Testc }

  = { Lite •Litc , Teste •Testc }

The crucial point to notice is that the composition of nested feature modules is

performed based on their names, that is, two nested features are composed if they have the

same name. In this example Litc with Lite and Testc with Teste. Composition is gen-

eralized in the following law.

Law of Composition. Let X and Y be feature modules defined as:

X = { ax , bx , cx      }

Y = { ay ,      cy , dy }

where a, b, c, and d are nested features whose subscripts indicate the feature module they

belong to. The composition of X and Y, denoted as X•Y, is:

X •Y  = { ax , bx , cx }  • { ay , cy , dy }

     = { ax•ay , bx , cx•cy , dy }

Nested features are composed by names (ignoring the subscripts). The features

whose names do not have a match, like bx or dy, are simply copied.

3.2.2  Features Modules with Non-Code Artifacts

Programs have usually many representations besides source code. Typical representations

are UML diagrams, makefiles, XML-based files, grammars, requirements documentation,

etc. Consequently, features should also modularize all these types of artifacts. 

For example, our LitTest product line may have UML class diagrams associated

with classes Lit and Test. This type of diagrams are commonly represented in XML

Metadata Interchange (XMI), a standard for representing and manipulating XML data and

objects [125]. Thus, feature core with classes Lit and Test and their associated XMI

artifacts could be denoted as:
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core  = { Litc.jak, Litc.xmi, Testc.jak, Testc.xmi }

The implementation of this feature is

illustrated in Figure 3.3. Note that artifact types

are distinguished by the extension names of the

files, i.e. XMI artifacts have extension .xmi.

The Law of Composition establishes that fea-

tures are composed by their names, therefore the subscripts of the algebraic terms of the

features do not form part of the file name so that they could be composed with other fea-

tures.

A key element of AHEAD’s feature module composition is to treat source code

artifacts and non-code artifacts uniformly as stated by the following principle that we

explain and illustrate on next section.

Principle of Uniformity. Impose a structure on artifacts that resembles the value

and function (refinement) notions of object-based source code.

3.3  AHEAD Tool Suite
The AHEAD Tool Suite (ATS) is an implementation of AHEAD’s model of FOP. As men-

tioned before, the feature modules of ATS tools are implemented using language Jak, an

extension of Java [1]. ATS features also contain several types of non-code artifacts. In this

section, we describe Jak and illustrate AHEAD’s composition for both code and non-code

artifacts.

3.3.1  Jak Language

Jak extends Java in several ways [1]. The extensions that concern us are:

Refinement. We have encountered refines keyword that indicates a class

refinement like Litp (5) or Lite (6).

Feature containment. Keyword layer defines the feature or layer to which a

class or a refinement belongs to. For example, the complete code of Lite is:

Figure 3.3  Feature core 

core

Lit.jak Lit.xmi Test.jak Test.xmi
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layer eval;

refines class Test {           

  void testEval()  { System.out.println(t.eval()); }

} (13)

Super construct. The construct Super serves two purposes. The first is to indi-

cate reference to superclasses and is equivalent to super in Java, but super is not a key-

word of Jak. The second purpose is to define method extensions whereby new

functionality is added to a method by means of class refinements6. Recall class Test in

(8) and its refinements. We can, for instance, define a new method run to execute tests

(method calls) of each refinement as illustrated in Figure 3.4 (we omit layer definitions

for simplicity). The syntax of Super is:

 Super(paramtypes).method(actparams); 

where paramtypes are the formal parameter types, method is the method name and

actparams are the actual parameters. 

The following example illustrates Super in method extensions. Consider the exe-

cution of method run when called on an object of class Test defined as

6. ATS recent release adds super for standard inheritance thus leaving Super exclusively for method
extensions.

Figure 3.4  Super construct example

class Test {    
Lit t; Test() {  t = new Lit(3); }
void run() {  … }

}

refines class Test {
void run() {  Super().run(); t.print(); }

}

refines class Test {          
void run() { Super().run(); System.out.println(t.eval()); }

}

core

print

eval

Test = Teste • Testp • Testc

1

2 3 4

56
7

8

control flowcontrol flow
26



Test=Teste•Testp•Testc. The most refined method run is executed first, in this case

the one on feature eval. This method in turn calls (with Super) the next method exten-

sion in the refinement chain (arrow 1), method run in print which in turns calls method

run in core (arrow 2). After this method is executed, control returns to method run in

feature print (arrow 3) that executes t.print() (arrow 4). After the execution of this

method (arrow 5), control returns to method run in eval (arrow 6). Here a println

statement that displays expression t.eval() is executed (arrow 7) and control flow

returns to the original call of method run (arrow 8). Thus, its execution is similar to

super in inheritance chains but in this case is according to class refinements.

Another way to visualize composition of method extensions is by aggregating

(macro expansion or substitution) to the original method body the bodies of the method

extensions according to the order of the composition expression. In our previous example,

the extended method run is:

void run() { … t.print(); System.out.println(t.eval()); }

Constructor refinement. It is the counterpart of method extensions. For example,

assume class refinement Testp requires defining another Test variable and assigning an

object to it. This is expressed as:

 refines class Test {          // print feature

   Test t2;  

   refines Test() { t2 = new Test(); }

} (14)

Notice that refines is used as a modifier to a standard constructor declaration.

However, there is no equivalent to referencing higher (in the constructor refinement chain)

constructors like using super in constructors of Java subclasses. Similarly, there is no

equivalent to this in Java.

New modifier. This modifier indicates that a method in a class refinement

replaces all of its previous definitions in the refinement chain. For example:

class A { void m() { println("Hello"); }

refines class A { new void m() { println("Bye");  }
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When composed, the resulting definition of method m is the second one which displays a

bye message. In Chapter 6 we present another use of this modifier. 

Overrides modifier. This modifier tells programmers that a method of a class

refinement is overriding the definition in its superclass. In Chapter 6 we provide examples

of its use and its relevance for the implementation of AHEAD product lines using aspects.

3.3.2  Non-Code Artifacts

The Principle of Uniformity establishes that all artifacts must be structured in such a way

that they resemble values and functions as described for Object Oriented language source

code. This principle implies:

• Treatment of standard non-code artifacts as values.

• Extensions to artifact definitions to accommodate for functions (refinements) and

the counterpart of Super.

• Implementation of artifact-specific composition tools. This tool provides the poly-

morphic implementation of operation •. ATS provides an application called com-

poser that selects the tool associated with an artifact type and performs the

corresponding composition. In the case of Jak code ATS provides two different

composition tools.

Let us illustrate these implications with an example of XMI artifacts for class Lit

in feature core and its refinement in feature eval. Figure 3.5a shows an overly simpli-

fied7 XMI representation of Litc class diagram. Since term Litc corresponds to a value,

its associated XMI representation must also correspond to a value. Values adhere to the

standard specification of their corresponding artifact. For instance, AHEAD source code

values are programs that exclusively use Java program constructs available in Jak. Simi-

larly, in case of XMI, values are files that adhere to the XMI specification [125].

7. XMI is a non-trivial and somewhat verbose standard. Further details on the full-fledge representation of
these fragments can be derived from the XMI specification [125].
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We have seen the extensions that Jak makes to Java to denote class refinement and

method extension via Super. The question is: what are their counterparts in XMI?.

XML composition is implemented in ATS with a tool called XML Composer (XC)

[1]. XC extends XML files with tags refine and super as shown underlined in

Figure 3.5b for refinement Lite8.

8. We elide details of method eval as they are very similar to the constructor definition.

Figure 3.5  Composition of XMI artifacts

<UML:Class name="Lit">

<UML:Attribute name="value">   <!-- int value -->
<UML:StructuralFeature.type>

<referentPath xmi.value="UML Standard Profile::int" /> 
</UML:StructuralFeature.type>

</UML:Attribute>

<UML:Operation name="Lit">     <!-- Lit (int v) -->
<UML:Parameter name="v">

<UML:Parameter.type>
<referentPath xmi.value="UML Standard Profile::int"/>

</UML:Parameter.type>
</UML:Parameter>

</UML:Operation>

</UML:Class>

<refine path="/Class[@name=’Lit’]"
tag="append" separator=" ">

<UML:Class name="Lit">
<super/>
<UML:Operation name="eval">

...                     
</UML:Operation>

</UML:Class>
</refine>

(a) (b)

<UML:Class name="Lit">

<UML:Attribute name="value">
…

</UML:Attribute>

<UML:Operation name="Lit">
…

</UML:Operation>

<UML:Operation name="eval">
...                     

</UML:Operation>

</UML:Class>

(c)
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Tag refine indicates an XML file refinement. It contains three attributes:

• Attribute path is an XPath expression that points to the fragment that is refined.

• Attribute tag defines the attribute composition policy when there are common

attributes in the value or functions files. The possible values are append, prepend

or override. Default option is append.

• Attribute separator specifies a separation string when attributes are appended or

prepended. Default is an empty string.

Tag super indicates the place where the refined code is going to be inserted. In

our example if we compose Lite•Litc, the result obtained is sketched in Figure 3.5c.

Note that the underlined code substitutes tag </super> in Figure 3.5b.

Currently ATS supports composition of equation files, XML files, and grammar

files [1].

3.3.3  Feature Module Composition

Features with non-code artifacts are also composed according to the Law of Composition

(Section 3.2.1) with three generalizations:

• Feature terms also include an extension name to specify the type of artifact.

• Composition is performed according to names and artifact types.

• Composition operator • is polymorphic on the artifact type, in other words, each

artifact implements composition differently.

For example, consider composition eval • core as defined in (12) with Jak and

XMI class diagrams:

eval•core = { Lite.jak, Lite.xmi, Teste.jak, Teste.xmi } •

            { Litc.jak, Litc.xmi, Testc.jak, Testc.xmi }

         =  { Lite.jak  • Litc.jak, Lite.xmi • Litc.xmi,  

              Teste.jak • Testc.jak, Teste.xmi • Testc.xmi } 
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In Section 3.3.1 we illustrated composition of Jak files and in Figure 3.5 we

described the composition of Lite.xmi•Litc.xmi. The rest of the terms are composed

similarly.

3.4  Origami
So far we have seen composition examples that consist of a few features with simple

dependencies. As expected, interesting feature-based applications are constructed with

larger number of feature modules with complex relations among them. Specifying pro-

gram synthesis as composition of feature modules quickly becomes unwieldy because the

number of feature combinations explodes as the number of features increases. This prob-

lem requires an architectural model to simplify program specification and thus enable

AHEAD to synthesize product lines of non-trivial scale and complexity. Origami is an

architectural model of AHEAD that tackles this problem.

In the following sections we motivate and illustrate the need of Origami; we

explain how it works, describe its algebraic representation, and show its connections with

other research.

3.4.1  Motivation

Our example product line LitTest contains only three features, copied from (12):

core  = { Litc, Testc }

print = { Litp, Testp }

eval  = { Lite, Teste }

Each feature contains two classes or class refinements. If we define Test with

method run and its extensions as in Figure 3.4, we can synthesize five different programs.

We can obtain their composition expressions rather easily as there is only one value (fea-

ture core), and the two function features can be permuted.

Unfortunately specification simplicity degrades rapidly even for product lines

slightly larger. Consider what happens if we break LitTest features into their constituent
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classes and class refinements. We call this new product line LitTest’ and define its fea-

tures as follows:

lc = { Litc } , tc = { Testc }

lp = { Litp } , tp = { Testp }

le = { Lite } , te = { Teste } (15)

As a naming convention, we form the names of these feature modules with the

first letter of the class followed by the first letter of the operation they implement. For

instance, feature module lp implements in class Lit operation print. Similarly, feature

module te tests in class Test operation eval. 

Additionally, we put a further restriction: synthesize test features optionally in

accordance with the selection of Lit operations. For example, if a program implements

operations print and core for Lit and the synthesis of tests is selected, features tp and

tc must be generated.

The natural questions to ask are: What are all the valid composition expressions of

LitTest’?, and how many different programs can be generated? After some careful,

laborious and error-prone process it is possible to derive all twenty two valid compositions

of LitTest’ illustrated in Figure 3.6. 

The table shows for each selection of Lit features, the valid composition expres-

sions with and without tests. For instance, if core is selected for Lit (feature module lc)

with test option (feature module tc) the program generated is expressed as tc • lc.

Besides illustrating all valid program compositions, the table also shows the different pro-

grams that can be generated. Table entries with more than one  expression indicate that a

program can be generated via different compositions9. For example, the program with fea-

tures core (lc) and print (lp) with tests (tc, tp) can be generated in two different

ways: tp • tc • lp • lc or tp • lp • tc • lc. In other words, both composition expressions

9. In Figure 3.6, composition expressions lp • le • lc and lp • le • lc are in the same table entry
because they generate the same program. These expressions are aligned with their associated test-aug-
mented expressions which in this case generate two different programs (different execution order of
method run).
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produce class Lit with value field, constructor and print method; and class Test with

field t of type Lit, a constructor, method run which is extended with a call to method

print on t.

Even our simple product line LitTest’, formed with only six features, evidences

the complexity of program specification. The problem is summarized in the question: how

to devise concise and valid composition expressions from a selection of features in a sys-

tematic and principled way?

Next section explains how Origami addresses this question.

3.4.2   Origami Matrices 

An Origami Matrix is a n-dimensional matrix where each dimension is formed by a set of

features and its elements are the feature modules that implement the functionality at the

intersection of their coordinates in the n-dimensions.

Figure 3.6  Program compositions in LitTest’

Test Features

tc • lp • te • le • tc • lc , tp • lp • te • tc • le • lc,
tp • te • lp • tc • le • lc , tp • te • tc • lp • le • lc

tp • te • le • tc • lp • lc , tp • te • tc • le • lp • lc

te • tc • le • lc , te • le • tc • lcle • lccore, eval

lp • le • lc

le • lp • lc

lp • lc

lc

No Test
tc • lccore

tp • tc • lp • lc , tp • lp • tc • lccore, print

te • le • tp • lp • tc • lc , te • le • tp • tc • lp • lc,
te • tp • le • tc • lp • lc , te • tp • tc • le • lp • lc

core, print, 
eval

te • tp • lp • tc • le • lc , te • tp • tc • lp • le • lc

Test
Lit Features Test Features

tc • lp • te • le • tc • lc , tp • lp • te • tc • le • lc,
tp • te • lp • tc • le • lc , tp • te • tc • lp • le • lc

tp • te • le • tc • lp • lc , tp • te • tc • le • lp • lc

te • tc • le • lc , te • le • tc • lcle • lccore, eval

lp • le • lc

le • lp • lc

lp • lc

lc

No Test
tc • lccore

tp • tc • lp • lc , tp • lp • tc • lccore, print

te • le • tp • lp • tc • lc , te • le • tp • tc • lp • lc,
te • tp • le • tc • lp • lc , te • tp • tc • le • lp • lc

core, print, 
eval

te • tp • lp • tc • le • lc , te • tp • tc • lp • le • lc

Test
Lit Features
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We can represent LitTest’ with the two-

dimensional origami matrix in Figure 3.7. The hori-

zontal dimension (rows) corresponds to operations

core, print, and eval. The vertical dimension

(columns) corresponds to data types classes Lit

and Test. In origami matrices each entry implements the functionality at the intersection

of its feature coordinates. For instance, feature module le implements eval (coordinate

in operations dimension) in class Lit (coordinate in classes dimension).

We define an AHEAD model for each dimension:

Operation = { core, print, eval }

DataType = { Lit, Test } (16)

Composition in an Origami matrix

is performed by composing column-wise or

row-wise, a process called folding, the

selected features according to the composi-

tion constraints of the matrix. For Lit-

Test’ the constraints are depicted in

Figure 3.8. The full arrows indicate refine-

ment dependencies (a feature refines

another feature) and dashed arrows indicate reference dependencies (a feature references

entities declared at another feature). For instance, feature module tp: a) refines class Test

thus it needs module tc, b) calls print method in an object of class Lit thus it refers that

method of module lp. The rest of the product line constraints have similar interpretations.

Besides refinement constraints and reference constraints there exist design con-

straints that capture semantic relationships among features. AHEAD implements design

constraints with an artifact called design rules (extension.drc), a domain-specific lan-

guage. For further details consult [1].

Let us illustrate how Origami composition works. For example, we want to syn-

thesize the program that implements eval and also performs tests. In our matrix this

Figure 3.7  LitTest Matrix 
teleeval
tplpprint
tclccore

TestLit

teleeval
tplpprint
tclccore

TestLit

Figure 3.8  Composition Constraints 

teleeval
tplpprint
tclccore

TestLit

teleeval
tplpprint
tclccore

TestLit

refinement constraints
reference constraints
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means selecting rows core and eval, and columns Lit and Test. Because we are only

interested in these feature subsets of both dimensions, we can project the selected rows

and columns and eliminate those not required. This is illustrated for our example in

Figure 3.9a where row print was eliminated. At this point there are two alternatives. The

first alternative folds rows first, see Figure 3.9b. This folding satisfies the composition

constraints, le is composed after lc and te is composed after tc, thus it is a valid fold-

ing. The second step folds the matrix by columns, see Figure 3.9c. This folding is valid

because satisfies composition constraints, tc is composed after lc and te is composed

after le. Since the resulting matrix has a single entry, it cannot be folded any further and

the resulting expression denotes a valid composition expression for the selected features.

The second alternative for our example folds columns first, Figure 3.9d. This folding is

valid because it satisfies composition constraints, tc is composed after lc and te is com-

posed after le. The second step folds rows. This folding is valid because it satisfies that

le is composed after lc and te is composed after tc. This alternative yields a different

valid composition expression.

Figure 3.9  Example of Origami Composition

teleeval
tclccore

TestLit

teleeval
tclccore

TestLit

te • tc • le • lceval • core
Test • Lit

te • tc • le • lceval • core
Test • Lit

te • tcle • lceval • core
TestLit

te • tcle • lceval • core
TestLit

te • leeval
tc • lccore

Test • Lit

te • leeval
tc • lccore

Test • Lit

te • le • tc • lceval • core
Test • Lit

te • le • tc • lceval • core
Test • Lit

(a)

(b)

(c)

(d)

(e)
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In summary, for our application example two valid composition expressions can

be derived:

te • tc • le • lc  and  te • le • tc • lc (17)

The question now becomes: what do we gain with Origami? Origami provides a

disciplined and systematic way to derive valid composition expressions given a set of

selected features and composition constraints. But most importantly, Origami simplifies

program specification by describing programs with dimensional equations, composition

expressions of features from dimensional models, instead of the feature modules. For

example, a program defined in (17) can be specified with two dimensional equations that

compose features of dimensional models in (16):

operation = eval • core

datatype = Test • Lit (18)

Where operation is the equation for the selected features in the operation dimension and

class is the equation for the classes dimension. Certainly for our small example the sim-

plification is not significant but consider the general case where the matrix has k dimen-

sions and n features per dimension. For that case, the specification of a program using its

feature modules is O(nk), whereas using one equation per dimension the specification is

O(nk).

Origami matrices are related to the extensibility problem, also known as the

“expression problem” [48][155], a fundamental problem of software design that consists

of extending a data abstraction to support a mix of new operations and data representa-

tions. On Chapter 4 we explore this relationship further.

3.4.3  Origami as a Multi-Dimensional Algebraic Model

A fundamental principle of Software Engineering is Separations of Concerns (SoC) which

proposes breaking program development into units of interest or functionality (concerns)

as a mechanism to tackle program complexity [54]. Multi-Dimensional Separation of

Concerns (MDSoC) generalizes this principle to advocate that modularity can be under-

stood by multi-dimensional spaces of units (concerns), where dimensions represent differ-
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ent modularizations and units along the dimensions are particular instances of that

dimension’s modularity [150][28]. Origami models are examples of the MDSoC where

each dimension is formed by an AHEAD model (a set of dimension features).

Origami matrices also have an algebraic representation. Consider again program

formed by class Lit with method eval and corresponding test. We presented in (16) the

AHEAD models of our product line and in (18) the dimensional equations that specify this

program. We represent each dimensional equation as a summation of features from each

corresponding AHEAD model: 

Operation = {core, print, eval} DataType = {Lit, Test} 

operation = eval • core = Σiε(eval,core)Operation

datatype = Test • Lit = Σiε(Lit,Test)DataType

A program is represented as summations, one for each dimension, ranging over

the selected features of the product line matrix (MLitTest’ in our example). Thus our

program is represented as:

P = Σiε(eval,core)Σiε(Lit,Test)MLitTest’operation,datatype

The algebraic representation of origami matrices has proven an useful abstraction

to analyze matrix orthogonality, a property that guarantees that the same program is pro-

duced for any summation order [22].

3.4.4  Scaling Origami

Origami originated during the development of Jedi, a documentation generator for exten-

sible domain-specific languages [103]. The goal of this tool was to replicate the function-

ality of generating HTML documents provided by Sun Microsystem’s javadoc [84] but

for extensions of Java required by AHEAD. As the development proceeded it became

clear that an underlying architecture was emerging for the implementation of each lan-

guage extension. Each extension consists of three parts:

• Parse: codes that parses the language constructs made by an extension and creates a

parse tree.
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• Harvest: reads a program with its comments and creates a data structure or reposi-

tory with them.

• Doclet: or documentation generation, produces HTML code for a program based on

the information harvested and document templates. 

Figure 3.10 illustrates the architecture

of Jedi. As we mentioned before, AHEAD

makes several extensions to Java (Java). Two

of those extensions are support for state

machines (Sm) and feature module (Tmpl) dec-

larations – layer constructs originally called

templates. Considering these two extensions we have the origami matrix shown in

Figure 3.11. In this matrix, the name of the feature module is formed with the first letter of

the extension and an architecture part. Like in the matrix of LitTest, the Jedi matrix is

composed with row and column foldings that satisfy the set of composition constraints of

the matrix. For example, a valid expression for the three extensions (Java, Tmpl, Sm) and

the three Jedi architecture parts (Parse, Harvest, Doclet) is: 

Jedi =   SDoclet • SHarvest • SParse • 

           TDoclet • THarvest • TParse  • 

               JDdoclet • JHarvest • JParse (19)

This program results from: a) folding column Harvest on Parse, b) folding col-

umn Doclet, c) folding row Tmpl on Java, d) folding row Sm. The same program can be

expressed with a shorter specification using its dimensional equations:

Language = Sm • Tmpl • Java

Architecture = Doclet • Harvest •  Parse (20)

Figure 3.11  Jedi Origami Matrix 

SHarvest
THarvest
JHarvest
Harvest

SDoclet
TDoclet
JDoclet
Doclet

SParseSm
TParseTmpl
JParseJava
Parse

SHarvest
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SDoclet
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JDoclet
Doclet
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TParseTmpl
JParseJava
Parse

Figure 3.10  Jedi Architecture
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Jedi is a testament to the scalability of Origami matrices because it is implemented

with 30K+ LOC, in several hundred classes, interfaces, and refinements. An even larger

example is AHEAD tool suite. It is generated from a 3-dimensional Origami matrix with

14 language extension features, 9 architecture features, and 9 language interaction fea-

tures. The total code generated for ATS is 250K+ LOC. For further details on the construc-

tion of ATS consult [1][30].

3.5  Summary
In this chapter we presented the foundations of Feature Oriented Programming. We

described GenVoca, the precursor of FOP, and how it was extended by AHEAD to include

hierarchical feature modules that can contain multiple artifacts. We showed how these two

extensions are algebraically represented and implemented, guided by the Law of Compo-

sition and the Principle of Uniformity.

We exemplified how program specification becomes harder as the number of fea-

ture modules increases. We illustrated how Origami addresses this problem, its composi-

tion mechanism and underlying algebraic representation, and how it scales program

synthesis from simple product lines to tools and tool suites like ATS.
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Chapter 4

Modularization Technologies Evaluation

In Chapter 2 we saw the importance of features in product line engineering. In Chapter 3

we presented Feature Oriented Programming and AHEAD as an approach to modularize

and compose features. In recent years, other approaches have been proposed that have the

potential to provide better support for feature modularity. These technologies have very

different notions of modularity and composition, and as a consequence are difficult to

compare and unify. Thus it is increasingly important to advance standard problems and

metrics for technology evaluation. A few attempts have been made to compare technolo-

gies and evaluate their use to refactor and re-implement systems that are not part of a prod-

uct family [41][58][112][123]. But for a few studies [49][161][120], the use of new

technologies to modularize features in a product line is largely unexplored.

In this chapter we present a standard problem that exposes common and funda-

mental issues that are encountered in feature modularity in product-lines1. The problem

reveals technology-independent properties that feature modules should exhibit. We use

these properties to evaluate solutions written in six modularization technologies: AspectJ

[11][87], Hyper/J [130][151], Jiazzi [113][114][161], Scala [143][126][127][128], CaesarJ

[8][119][120], and AHEAD [1][30]. Chapter 5 goes a step further by giving the properties

of this evaluation an algebraic foundation. Such algebraic model of feature modules and

their composition can provide a framework or set of criteria that a rigorous mathematical

1. The core of this chapter comes from our ECOOP paper [106].
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presentation should satisfy and can help reorient the focus on clean and mathematically

justifiable abstractions when developing new tool-specific concepts.

4.1  The Expressions Product Line
The Expressions Product Line (EPL) is based on the extensibility problem also known as

the “expression problem” [48][155]. It is a fundamental problem of software design that

consists of extending a data abstraction to support a mix of new operations and data repre-

sentations. It has been widely studied within the context of programming language design,

where the focus is achieving data type and operation extensibility in a type-safe manner.

Rather than concentrating on that issue, we consider the design and synthesis aspects of

the problem to produce a family of program variations. More concretely, what features are

present in the problem? How can they be modularized? And how can they be composed to

build all the programs of the product-line?

4.1.1  Problem Description

Our product-line is based on Torgersen’s expression problem [153]. Our goal is to define

data types to represent expressions of the following language:

Exp :: = Lit | Add | Neg

Lit :: = <non-negative integers>

Add :: = Exp "+" Exp

Neg :: = "-" Exp

Two operations can be performed on expressions of this grammar:

1) Print displays the string value of an expression. The expression 2+3 is represented

as a three-node tree with an Add node as the root and two Lit nodes as leaves. The op-

eration Print, applied to this tree, displays the string “2+3”. 

2) Eval evaluates expressions and returns their numeric value. Applying the operation

Eval to the tree of expression 2+3 yields 5 as result.
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We add a class Test that creates

instances of the data type classes and invokes

their operations. We include this class to dem-

onstrate additional properties that are important

for feature modules. Figure 4.1 shows the com-

plete Java code for a program of the product-

line that implements all the data types and oper-

ations of EPL. Shortly we will see what the

annotations at the beginning of each line mean.

From a product line perspective, we can identify two different feature sets [51]. The first is

that of the operations {Print, Eval}, and the second is that of the data types {Lit, Add,

Neg}. Using these sets, it is possible to synthesize all members of the product-line

described in Figure 4.2 by selecting one or more operations, and one or more data types.

Figure 4.2  Members of the EPL
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Figure 4.1  Complete code of the Expressions Product Line
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interface Exp {  
  void print();  
  int eval();  
} 
 
class Add implements Exp {  
  Exp left, right;  
  Add (Exp l, Exp r) { 
   left = l; right = r; }  
  void print() {  
    left.print(); 
    System.out.print("+"); 
    right.print(); 
  } 
  int eval() {  
    return left.eval() 
         + right.eval(); 
  } 
} 
 
class Neg implements Exp {  
  Exp expr;  
  Neg (Exp e) { expr = e; }  
  void print() {  
    System.out.print("-("); 
    expr.print(); 
    System.out.print(")"); 
  } 
  int eval() {  
    return expr.eval() * -1; 
  } 
} 

lp 
lp 
lp 
lp 
lp 
lp 
le 
lp 
 
lp 
lp 
ap 
np 
lp 
lp 
ap 
np 
lp 
lp 
lp 
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class Lit implements Exp {  
  int value;  
  Lit (int v) { value = v; }  
  void print() {  
    System.out.print(value); 
  } 
  int eval() { return value; }  
} 
 
class Test {  
  Lit ltree;  
  Add atree;  
  Neg ntree;  
  Test() {  
    ltree = new Lit(3);  
    atree = new Add(ltree, ltree);  
    ntree = new Neg(ltree);  
  } 
  void run() {  
    ltree.print();  
    atree.print();  
    ntree.print();  
    System.out.println(ltree.eval());  
    System.out.println(atree.eval());  
    System.out.println(ntree.eval());  
  } 
} 
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For instance, row 4 is the program that contains Lit and Add with operations Print and

Eval. As with any product line design, in EPL there are constraints on how features are

combined to form programs. For example, all members require Lit data type, as literals

are the only way to express numbers.

A common way to implement features in software product lines is to use prepro-

cessor declarations to surround the lines of code that are specific to a feature. If we did this

for the program in Figure 4.1, the result would be unreadable. Instead, we use an annota-

tion at the start of each line to indicate the feature to which the line belongs. This makes it

easy to build a preprocessor that receives as input the names of the desired features and

strips off from the code of Figure 4.1 all the lines that belong to unneeded features. As we

saw in Chapter 2, this approach is very brittle for problems of larger scale and complexity.

Never the less, the approach can be used as a reference to define what is expected from

feature modules in terms of functionality (classes, interfaces, fields, methods, construc-

tors), behaviour (sequence of statements executed), and composition.

4.1.2  Feature modularization

A natural representation of the expression problem, and thus for EPL, is a two-dimen-

sional matrix [48][155][65]. The vertical dimension specifies data types and the horizontal

dimension specifies operations. Each matrix entry is a feature module that implements the

operation, described by the column, on the data type, specified by the row. As a naming

convention throughout the chapter, we identify matrix entries by using the first letters of

the row and the column, e.g., the entry at the intersection of row Add and column Print is

named ap and implements operation Print on data type Add. This matrix is shown in

Figure 4.3 where module names are encircled.

To compose any program from Figure 4.2, the modules involved are those at the

intersection of the selected columns and the selected rows. For example, program number

1, that provides Print operation on Lit, only requires module lp. Another example is

program 6, that implements operations Print and Eval on Lit and Neg data types,

requires modules lp, le, np, and ne.
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The source code of a feature module are the lines that are annotated with the name

of the module. For instance, the contents of feature ap include: 

a) Class Add with Exp fields left and right, a constructor with two Exp arguments,

and method void print(), and

b) An increment to class Test, because it is adding something to the class as opposed

to contributing a brand new class as is the case of class Add. This increment is symbol-

ized by ∆Test in Figure 4.3. It adds: field atree, a statement to the body of the con-

structor expressed with ∆Test(), and a statement to the body of method run expressed

as ∆run().

For clarity the Exp interface was put inside module lp instead of creating a sepa-

rate row for it. This decision makes sense since the other data types are built using Lit

objects. Also, we put the constructors and fields of the data types in column Print instead

of refactoring them into a new column and have columns Print and Eval implement

only their corresponding methods. Additionally, from the design requirements we can

infer dependencies and interactions among the feature modules. For instance, if we want

to build a program with module ap, we also need to include module lp because ap incre-

ments the Test class which is introduced in lp. Later, we briefly discuss this issue as

compositional constraints, which are not the focus of this chapter. Constraints are dis-

cussed in [1][25][35].

Figure 4.3  Matrix representation and Requirements
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4.2  Basic Properties for Feature Modularity
To give structure to our evaluation, we identify a set of basic properties about features that

can readily be inferred from, illustrated by, and assessed in EPL and its solutions in the

five technologies evaluated. Conceivably, there are other desirable properties that feature

modules should exhibit such as readability, ease of use, etc. However, for sake of simplic-

ity and breadth of scope, they are not part of this evaluation as their objective assessment

would require a larger case study that would prevent us from comparing all five technolo-

gies together.

The properties are grouped into two categories, covering the basic definition of

features and their composition to create programs. The first properties in each category

follow from the structure of EPL, while the others come from the studied solutions to EPL

and are desirable from the software engineering perspective.

4.2.1  Feature Definition Properties

The first category of properties relate to the definition of the basic building blocks of EPL,

the representation of each piece, and their organization into features.

Program deltas. The code in Figure 4.1 can be decomposed into a collection of

program deltas or program fragments. The kinds of program deltas required to solve EPL

are shown in Figure 4.3, and include:

• New Classes, for example Lit in module lp.

• New Interfaces, for example Exp in module lp.

• New fields that are added to existing classes, like field atree in module ap is added

to class Test.

• New methods that are added to existing interfaces, like eval() in module le is

added to interface Exp.

• Method extensions that add statements to methods. For example, extension to

method run(), expressed by ∆run(), in all modules except lp.
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• Constructor extensions that add statements to constructors. For instance, extensions

to constructor Test(), expressed by ∆Test(), in modules ap and np.

There are other program deltas, such as new constructors, new static initializers,

new exception handlers, etc. that are not needed for implementing EPL and thus are not

considered in this evaluation. Nonetheless, we believe that EPL contains a sufficient set of

program deltas for an effective evaluation.

Cohesion. It must be possible to collect a set of program deltas and assign them a

name so that they can be identified and manipulated as a cohesive module.

Separate compilation. Separate compilation of features is useful for two practi-

cal reasons: a) it allows debugging of feature implementation (catching syntax errors) in

isolation, and b) it permits the distribution of bytecode instead of source code.

4.2.2  Feature Composition Properties

Once a set of feature modules has been defined, it must be possible to compose them to

build all the specific programs in the Expression Product Line.

Flexible Composition. The implementation of a feature module should be syntac-

tically independent of the composition in which it is used. In other words, a fixed compo-

sition should not be hardwired into a feature module. Flexible composition improves

reusability of modules for constructing a family of programs.

Flexible Order. The order in which features are composed can affect the resulting

program. For instance, in EPL, the order of test statements in method run() affects the

output of the program. The program in Figure 4.1 is the result of one possible ordering of

features, namely (lp, ap, np, le, ae, ne). Another plausible order in EPL is to have

expressions printed and evaluated consecutively, as in order (lp, le, ap, ae, np, ne).

Hence, feature modules should be composable in different orders.

Closure under Composition. Feature modules are closed under composition if

one or more features can be composed to make a new composite feature. Composite fea-

tures must be usable in all contexts where basic features are allowed. In EPL, it would be
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natural to compose the Lit and Neg representations to form a LitNeg feature which rep-

resents positive and negative numbers. 

Static Typing. Feature modules and their composition are subject to static typing

which helps to ensure that both are well-defined, for example, preventing method-not-

found errors. We base the evaluation of this property on the availability of a formal typing

theory or mechanism behind each technology.

Using these properties we evaluate AspectJ, Hyper/J, Jiazzi, Scala, and AHEAD

in the following sections.2 We use a concrete example to illustrate these alternatives, i.e.

the program that supports Print and Eval operations in Lit and Add data types (pro-

gram number 4 in Figure 4.2). Thus, the program has four modules: lp, ap, le, and ae

that we compose in this order (the same as in Figure 4.1). Throughout the chapter, we call

this program LitAdd. 

4.3  AspectJ
An aspect, as implemented in AspectJ3 [11][87], modularizes a crosscut as it contains code

that can extend several classes and interfaces. AspectJ has two types of crosscuts: static

and dynamic. Static crosscuts affect the static structure of a program [11][93]. Examples

are introductions, also known as inter-type declarations, that add fields, methods, and con-

structors to existing classes and interfaces.

Dynamic crosscuts run additional code when certain events occur during program

execution. The semantics of dynamic crosscuts are commonly understood and defined in

terms of an event-based model [94][157]. As a program executes, different events fire.

These events are called join points. Examples of join points are: variable reference, vari-

able assignment, execution of a method body, method call, etc. A pointcut is a predicate

that selects a set of join points. Advice is code executed before, after, or around each join

point matched by a pointcut. 

2. For a more detailed description of the implementation see [107].
3. We used AspectJ version 1.1 for our evaluation.
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4.3.1  Feature modules and their composition

The implementation of module lp is straightforward as it consists of Java interface Exp

and classes Lit and Test. In AspectJ literature, programs written using only pure Java

code are called base code. In Figure 4.4a, the names of files that are base code are shown

in italics, while those of aspect code are shown in all capital letters. 

Alternatively, we could have declared the new classes and interfaces as nested ele-

ments of an aspect. However, they would be subject to the instantiation of their containing

aspect, and their references would be qualified with the aspect name where they are

declared. For these reasons, we decided to implement classes and interfaces in separate

files.

From Figure 4.3, module le:

1) adds method eval() to interface Exp, 

2) adds the implementation of eval() to class Lit, and

3) appends a statement to method run() of class Test that calls eval() on field

ltree.

Figure 4.4  AspectJ Solution

public aspect LE {

// ∆Exp interface
public abstract int Exp.eval();

// ∆Lit class
public int Lit.eval() { return value; }

// ∆Test, advice that implements ∆run()
pointcut LPRun(Test t): 

execution (public void Test.run())
&& target(t);

void around(Test t) : LPRun(t) {
proceed(t);
System.out.println("= "  + t.ltree.eval());

}  
}
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The entire code of module le is implemented with the aspect shown in

Figure 4.4b. The first two requirements use AspectJ’s introductions [11][87]4. Method

extensions, like that of the third requirement, cannot be implemented as introductions

because there is already a member of that class with the same signature. Hence, to imple-

ment the last requirement it is necessary to utilize AspectJ’s pointcuts and advice.

Since it is required to execute an additional statement when method run() is exe-

cuted, we must capture the join point of the execution of that method. Also, since the

statement to add is a method call on field ltree of class Test, we must get a hold of the

object that is the target of the execution of method run() to access its ltree field.

These two conditions are expressed in pointcut LPRun of Figure 4.4b, where t is the refer-

ence to the target object. Lastly, to add the extension statement we use an around advice.

This type of advice executes instead of the join points of the pointcut, but it allows its exe-

cution by calling AspectJ’s special method proceed. We add the new statement to run()

after the call to method proceed(t).5

The implementation of feature module ap (not shown in Figure 4.4) uses two

files. The first is a Java class to implement data type Add. The second is an aspect to

implement the extensions to class Test. The first extension adds a new field to class

Test. This is done also using inter-type declaration in the following way:

public Add Test.atree;

The other two extensions of module ap, ∆Test() and ∆run(), are implemented

in a similar way to those of module le. The other modules ae, np, and ne have an analo-

gous implementation. 

To compose program LitAdd, the AspectJ compiler (weaver) ajc, requires the

file names of the base code and the aspects of the feature modules. The composition is

specified as follows, where the order of the terms is inconsequential: 

4. We could also implement the first requirement as follows:
     public int Exp.eval() { return 0; }

    This alternative defines a default value for the method which can be subsequently overridden by each class
that implements Exp.

5. Method proceed, has the same arguments as the advice where it is used.
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ajc Exp.java Lit.java Test.java LE.java Add.java AP.java   

AE.java  -outjar LitAdd.jar (21)

The static crosscutting model of AspectJ has a simple realization, after composi-

tion there can be only one member for a given signature. However, in the case of dynamic

crosscutting, i.e. pointcuts and advice, several pieces of advice can apply to the same join

point. In such cases, the order in which advice code is executed is in general undefined6.

This means that a programmer cannot know a priori, by simply looking at the pointcut and

advice code, in what order advice is applied. In program LitAdd, this issue is manifested

in the order of execution of method run() and its extensions. The order that we want is

that of Figure 4.1, namely, first the statement from lp followed by those of ap, le and ae.

However, the order obtained by executing the program is statements from lp, ae, ap, and

le7.

AspectJ provides a mechanism to give precedence to advice, thus imposing an

order, at the aspect level. In other words, it can give precedence to all the advice of an

aspect over those of other aspects. To obtain the order that we want for method run(), we

must define the following aspect:

public aspect Ordering {

declare precedence : AE, LE, AP;

}

And add it to the list of files in the specification (21). For further details on how prece-

dence clauses are built, consult [11][93].

4.3.2  Evaluation

Feature definition. AspectJ can describe all program deltas required for EPL.

However, in cases like module ap which is implemented with class Add and aspect AP,

there is no way to express that both together form feature ap. In other words, AspectJ does

6. There are special rules that apply for certain types of advice when advices are defined in either the same
aspect or in others [11]. These rules help determine the order in few cases but not in general.

7. In AspectJ version 1.1
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not have a cohesion mechanism to group all program deltas together and manipulate them

as a single module. Nonetheless, this issue can be addressed with relatively simple tool

support. Aspects cannot be compiled separately, as they need base code in which to be

woven.

Feature composition. AspectJ provides flexible composition and order. It can be

used to build all members of EPL in the order described in an auxiliary aspect that con-

tains a declare precedence clause. This type of clause can also be used inside aspects

that implement feature modules, like LE, but doing that could reduce order flexibility as

the order could be different for different programs where LE is used. Feature modules

implemented in AspectJ are not closed under composition for two reasons: the absence of

a cohesion mechanism and the lack of a general model of aspect composition. The latter is

subject of intensive research [57]. Static typing support for AspectJ is also an area of

active research [83][156].

4.4  Hyper/J
Hyper/J [151] is the Java implementation of an approach to Multi-Dimensional Separation

of Concerns (MDSoC) called Hyperspaces [130][151]. A hyperspace is a set of units. A

unit can be either primitive, such as a field, method, and constructor; or compound such as

a classe, interface, and package. 

A hyperslice is a modularization mechanism that groups all the units that imple-

ment a concern (a feature in this paper) which consists of a set of classes and interfaces.

Hyperslices must be declaratively complete. They must have a declaration, that can be

incomplete (stub) or abstract, for any unit they reference. Hyperslices are integrated in

hypermodules to build larger hyperslices or even complete systems.
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4.4.1  Feature modules and their composition

The Hyper/J weaver performs composition at the bytecode level which makes a natural

decision to implement each hyperslice (feature module) as a package that can be compiled

independently. Hyperslices that contain only new classes and interfaces, like module lp,

have a straightforward implementation as Java packages. The interesting case is hyper-

slices that extend units in other hyperslices. For example, Figure 4.5a shows the package

that implements feature le. It adds method eval() to Exp (new method in an interface),

the implementation in Lit (new method in a class), and a call in method run() of class

Test (method extension)  .

However, extra code is required to make a hyperslice declaratively complete so

that it can be compiled. For instance, variable value that is introduced in feature lp is

replicated in class Lit so that it can be returned by method eval(). Something similar

occurs with variable ltree in Test. Additionally, the Hyper/J weaver requires stubs for

non-default constructors. When the package is compiled, the references of these variables

are bound to the definitions in the package; however, when composed with other hyper-

slices that also declare these variables, all the references are bound to a single declaration

determined by the composition specification. The extension of methods and constructors

is realized by appending the code of their bodies one after the other. The rest of the feature

modules are implemented similarly.

The LitAdd composition is defined by the three files of Figure 4.5b: hyperspace

LitAdd.hs, concern mapping LitAdd.cm, and hypermodule LitAdd.hm. The hyper-

space file lists all the units that participate in the composition. The concern mapping

divides the hyperspace into features (hyperslices) and gives them names. Finally, the

hypermodule specifies what hyperslices are composed and what mechanisms (operators)

to use. Our example merges units that have the same name.
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4.4.2  Evaluation

Feature definition. Hyper/J’s hyperslices can modularize all deltas, treat them as

a cohesive unit, and compile them separately. Though, separate compilation requires man-

ual completion of the hyperslices. 

Feature composition. Hyper/J provides flexible composition. The order is speci-

fied in the hypermodule and can be done using several composition operators [151], thus

composition order is flexible. Hyperslices are by definition closed under composition. To

the best of our knowledge there is no theory to support static typing of hyperslices.

4.5  Jiazzi
Jiazzi [113][114][161] is a component system that implements units [64][65] in Java. A

unit is a container of classes and interfaces. There are two types of units: atoms, built from

Java programs, and compounds built from atoms and other compounds. Units are the mod-

ularization mechanism of Jiazzi. Therefore they are the focus of our evaluation.

Figure 4.5  Hyper/J Implementation

class Lit implements Exp {
public int value;  // stub lp
public Lit (int v) { } // req constructor
public int eval() { return value; }

}

interface Exp {
int eval();

}

class Test {
Lit ltree; // stub lp
public void run() {
System.out.println(ltree.eval());
}

}    

class Lit implements Exp {
public int value;  // stub lp
public Lit (int v) { } // req constructor
public int eval() { return value; }

}

interface Exp {
int eval();

}

class Test {
Lit ltree; // stub lp
public void run() {
System.out.println(ltree.eval());
}

}    

(a) Package LE of feature le

Hypermodule (hm)
hypermodule LitAdd
hyperslices:  
Feature.LP,
Feature.AP, 
Feature.LE,
Feature.AE;

relationships:
mergeByName;

end hypermodule;

Hyperspace (hs)
hyperspace  LitAdd
composable class LP.*;
composable class LE.*;
composable class AP.*;
composable class AE.*;

Concern Mapping (cm)
package LP : Feature.LP
package LE : Feature.LE
package AP : Feature.AP
package AE : Feature.AE

Hypermodule (hm)
hypermodule LitAdd
hyperslices:  
Feature.LP,
Feature.AP, 
Feature.LE,
Feature.AE;

relationships:
mergeByName;

end hypermodule;

Hyperspace (hs)
hyperspace  LitAdd
composable class LP.*;
composable class LE.*;
composable class AP.*;
composable class AE.*;

Concern Mapping (cm)
package LP : Feature.LP
package LE : Feature.LE
package AP : Feature.AP
package AE : Feature.AE

(b) Composition Specification
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4.5.1  Feature modules and their composition

Jiazzi programs use pure Java constructs. Jiazzi groups classes and interfaces in packages

that are syntactically identical to Java packages. Implementation of modules like lp are

thus standard Java packages with normal classes and interfaces. Consider the following

code contained in package le that implements the feature of the same name8:

public interface Exp extends lp.Exp { 

int eval();  

}

public class Lit extends lp.Lit 

implements fixed.Exp {

public int eval() { return value; }

}

public class Test extends lp.Test {

public void run() {

super.run(); 

System.out.println(ltree.eval());

}

}

Two important things to note are: a) Exp, Lit and Test extend their counterparts

of feature lp, and b) class Lit implements fixed.Exp which refers to the version of Exp

that contains all the extensions in a composition.

Package le shows how methods can be added to existing classes and interfaces,

and how existing methods can be extended. Jiazzi also supports adding new classes, inter-

faces, constructor extensions, and fields in a similar way to that of normal Java inherit-

ance. The rest of the feature modules are implemented along the lines of module le. 

Composition in Jiazzi is elaborate. For simplicity, we illustrate unit composition

with units lp and le instead of LitAdd. From this readers can infer what the composition

of LitAdd entails. 

8. Definition of non-default constructors is required but not shown.
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We start with the definition of a signature which describes the structure of a pack-

age, i.e., the interface it exports. The following code is the signature of package le9:

signature leS = l : lpS + {

package fixed;

public interface Exp { int eval(); }

public class Lit { public int eval(); }

public class Test { public void run(); }

}

Two relevant points are: a) the expression l:lpS + indicates that leS is an

extension of signature lpS, meaning that Exp, Lit, and Test of le extend their counter-

parts in lp, and b) fixed is a package parameter that is used, as we have seen, in the

implementation of le. How this parameter is bound is explained shortly.

A unit definition consists of import and export packages followed (if necessary)

by a series of statements that establish relations among the packages which, in the case of

compound units, determines the order in which units are composed. Each of the features in

our problem is implemented by an atom, and a program in the EPL is expressed by a com-

pound unit. The following code defines unit le:

atom le {

import lp : lpS;

export le extends lp : leS;

import fixed extends le;

}

It asserts that atom le imports package lp with signature lpS and that it exports

package le of signature leS which is an extension of lp. It also states that it imports

package fixed, an extension of le which is bound, at composition time, to the package

parameter of the same name in the signature.

9. For convention in this section, we form signature names with the names of the packages they described fol-
lowed by a S.
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Jiazzi supports composition through the Open Class Pattern [113][114]. The key

element of this pattern is the creation of a package, called fixed in our example, that con-

tains all the extensions made by the units. This package is imported by the atom units, cre-

ating a feedback loop that permits them to refer to the most extended version of the classes

and interfaces involved in a composition.

Figure 4.6a shows the code that composes these two units. Figure 4.6b illustrates

this composition. Consider the second part of the specification first. It states that the com-

position contains two units (line 3): lpInst an instance of unit lp, and leInst an

instance of unit le. The packages of these two units are linked as follows: a) line 4 states

that the exported package le of leInst is bound to all the fixed packages in the com-

pound, b) line 5 sets the link between the export package lp of lpInst to the import

package lp of leInst.

To be useful, compound packages must export something, in our case it exports a

package that we named compLELP with signature leS (line 1) which is linked to package

le of unit leInst in line 6. Since compLELP has signature leS that contains package

parameter fixed we must bind it, in this case to itself, as done in line 2. 

Signatures allow separate unit compilation. Jiazzi provides a stub generator that

uses the unit’s signature to create the packages and the code skeletons of the classes and

interfaces required to compile the unit. It also provides a linker that checks that the com-

piled unit conforms to the unit’s signature and stores the unit’s binaries and signature into

a Java archive (jar) file that can be used to compose with other units. For further details

on the stub generator and linker refer to [115]. 

Figure 4.6  Jiazzi Composition of le and lp

lpInst
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compound lelp {
export compLELP : leS; (1)
bind package compLELP to compLELP@fixed; (2)
}{

link unit lpInst : lp, leInst : le; (3)
link package

leInst@le to *@fixed, (4)
lpInst@lp to leInst@lp, (5)
leInst@le to compLELP; (6)

}
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4.5.2  Evaluation

Feature definition. Jiazzi units can modularize all program deltas of EPL in a

cohesive way. Furthermore, signatures allow separate compilation. 

Feature composition. Jiazzi separates clearly the implementation of features

from their composition thus provides a flexible composition. The order of unit composi-

tion is determined by the linking statements in compound units and therefore it is flexible.

By definition, units are closed under composition. Jiazzi is backed up with a formal theory

for type checking units and their compositions [64][65]. This theory permits the linker to

statically check and report errors in program composition.

Jiazzi’s type checking and separate compilation come with a price. Defining sig-

natures and wiring the relationships between units is a non-trivial task, especially when

dealing with multiple units with complex relations among them [161].

4.6  Scala
Scala is a strongly-typed language that fuses concepts from object-oriented programming

and functional programming [143][126]. Though Scala borrows from Java, it is not an

extension of it. We included Scala10 in our evaluation because it supports two non-tradi-

tional modularization mechanisms: traits [142] and mixins [38].

4.6.1  Feature modules and their composition

A trait in Scala can be regarded as an abstract class without state and parameterized con-

structors. It can implement methods and contain inner classes and traits. We implemented

each feature module by a trait. Consider the implementation of feature lp shown in

Figure 4.7a. The trait contains:

• Abstract type exp with upper bound Exp. This means that exp is at least a subtype

of Exp and thus it leaves exp open for further extensions by other features.

10.We used version 1.3.0.10 for our evaluation.
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• Trait Exp declares method print(). A trait is used in this context because it is

roughly equivalent to a Java interface, as it declares a type with methods whose

implementations are not yet defined.

• Class Lit extends Exp.11 It has a primary constructor (or main constructor) that

receives an integer which is assigned to field value. It also provides an implemen-

tation for method print() that displays this field.

• Class Test contains abstract field ltree of abstract type exp. Because of this,

class Test is also abstract. Test also contains method run() that calls method

print() on ltree.

Trait ap is implemented as an extension of trait lp, shown in Figure 4.7b, that

contains:

• Class Add that extends trait Exp of module lp. It has a two parameter constructor to

initialize the expression fields and the implementation of method print().

• Extension to class Test, that adds field atree and extends method run() with the

call to print() on this field12. This class is also abstract because atree’s type

is abstract.

Trait le is also implemented as an extension to trait lp and is shown in

Figure 4.7c. This trait has:

• Trait Exp extends Exp of feature lp by adding method eval(). 

• Abstract type exp that extends exp of feature lp, meaning that exp is now at least a

subtype of Exp that has print() and eval() methods.

• An extension of class Lit. This class uses mixin composition (expressed as with

Exp in the figure) to indicate that Lit is also a subtype of Exp and thus it must

implement both of its methods. Since it inherits print() from trait lp it only needs

to implement eval().

11.Scala traits are conceptually not different from classes so that is why we use an extends clause instead of
implements.

12.To prevent inadvertent overriding, Scala requires overriding methods to include an override modifier
as part of their definitions. Notice also that the overridden method can still be called using super as in Java.
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• An extension of class Test that modifies run() to invoke eval() on ltree. 

Feature ae is implemented as an extension of feature ap and a mixin composition

with feature le because it provides an implementation of method eval() for class Add.

Figure 4.7  Scala Solution

package epl;
abstract class Test1 extends lp with ap {

abstract class Test extends super.Test with super[ap].Test;
}
abstract class Test2 extends Test1 with le {

abstract class Test extends super.Test with super[le].Test;
}
abstract class Test3 extends Test2 with ae {

abstract class Test extends super.Test with super[ae].Test;
}
object LitAddObj extends Test3 {

type exp = Exp;
class Test  extends super.Test {

val ltree = new Lit(3);
val atree = new Add(ltree, new Lit(7));

}
def main(args: Array[String]) : unit = {

var test = new Test();
test.run();

}
} (e)

package epl;
trait ae extends ap with le {
class Add(l: exp, r: exp) extends super.Add(l, r) 

with Exp   {
def eval(): int = left.eval() + right.eval()

}

abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(atree.eval());

}
}

}

(d)

package epl;
trait ap extends lp {
class Add(l: exp, r: exp) extends super.Exp {
val left = l; val right = r;
def print(): unit = {
left.print(); System.out.print("+");   
right.print();

}
}
abstract class Test extends super.Test {
val atree: exp;
override def run(): unit = {
super.run(); atree.print();

}
}

}                                  (b)

package epl;
trait le extends lp {
type exp <: Exp;
trait Exp extends super.Exp {
def eval(): int

}
class Lit(v: int) extends super.Lit(v) with Exp {
def eval(): int = value;

}
abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(ltree.eval());

}
}

} (c)

package epl;
trait lp {
type exp <: Exp;
trait Exp {
def print(): unit;

}
class Lit(v: int) extends Exp {
val value = v;
def print(): unit = System.out.print(value);

}
abstract class Test {
val ltree: exp;
def run(): unit = { ltree.print(); }

}
}                             

(a)

package epl;
trait ae extends ap with le {
class Add(l: exp, r: exp) extends super.Add(l, r) 

with Exp   {
def eval(): int = left.eval() + right.eval()

}

abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(atree.eval());

}
}

}

(d)

package epl;
trait ap extends lp {
class Add(l: exp, r: exp) extends super.Exp {
val left = l; val right = r;
def print(): unit = {
left.print(); System.out.print("+");   
right.print();

}
}
abstract class Test extends super.Test {
val atree: exp;
override def run(): unit = {
super.run(); atree.print();

}
}

}                                  (b)

package epl;
trait le extends lp {
type exp <: Exp;
trait Exp extends super.Exp {
def eval(): int

}
class Lit(v: int) extends super.Lit(v) with Exp {
def eval(): int = value;

}
abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(ltree.eval());

}
}

} (c)

package epl;
trait lp {
type exp <: Exp;
trait Exp {
def print(): unit;

}
class Lit(v: int) extends Exp {
val value = v;
def print(): unit = System.out.print(value);

}
abstract class Test {
val ltree: exp;
def run(): unit = { ltree.print(); }

}
}                             

(a)
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The code is shown in Figure 4.7d. Additionally this trait extends method run() of class

Test. The other two feature modules of EPL, np and ne, are implemented similarly.

To define program LitAdd is necessary to: a) specify the order in which method

extensions are composed, and b) to create an object, a singleton object of a new class, to

run the program. Figure 4.7e illustrates this. For the first part, we use deep mixin composi-

tion [165] (mixin composition at trait level and nested class level), to establish a linear

order of Test classes as they contain extensions of method run(). For the second part,

we define LitAddObj that extends Test3 (the most refined abstract Test class), binds

abstract type exp to concrete type Exp as defined by Test3, and makes concrete class

Test by creating instances for the test objects ltree and atree. The main method cre-

ates an instance of Test and calls method run() on it.

4.6.2  Evaluation

Feature definition. Scala can implement all program deltas of EPL. Regarding

cohesion, traits provide a mechanism to collect program deltas under a single name. Sepa-

rate compilation in Scala requires traits and classes to be placed in named packages, as it is

illustrated by package epl in Figure 4.7.

Feature composition. Scala provides flexible composition and flexible order

mechanism for implementing EPL. Scala uses inheritance and mixin composition to com-

pose program deltas that add new classes, traits, fields, methods and simple constructor

extensions. However, specifying the order of method extensions is a verbose and non-triv-

ial task. Scala traits are closed under composition. Scala is supported by a sophisticated

nominal type theory called vObj calculus [128].
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4.7  CaesarJ
CaesarJ is an aspect oriented language that merges concepts of collaboration-based

designs [147], mixins [38], aspects [12], and virtual classes [96] into modules called class

families [119][120]. A goal of the language is to raise object oriented concepts such as late

binding and subtype polymorphism to groups of classes.

4.7.1  Feature modules and their composition

Features modules and their classes are implemented with virtual classes, denoted with

keyword cclass. For example, the following is the definition of feature le:

public cclass le extends lp {

public cclass Expression {

public int eval() { return 0; }

}

public cclass Lit {

public int eval() { return value; }

}

public cclass Test {

public void run() {

super.run();

System.out.println(ltree.eval());

}

}

}

CaesarJ utilizes mixin composition, denoted with operator &, to compose class

hierarchies [8]. This operator is not commutative and implements a non-trivial variation of

the C3 linearization algorithm to linearize mixin composition, for further details refer to

[61][8]. The way the mixin linearization algorithm works can potentially permit many

ways in which to specify a particular feature composition order. For instance, in our exam-
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ple LitAdd features are composed in the order: lp, ap, le, and ae. This feature composi-

tion order can be obtained with 7 different mixin composition orders, one of which is:

public cclass LitAdd extends le & ap & ae & lp {}

The driver code creates an object of the desired product member and creates an

instance of class Test to execute the method run on it as shown below:

public class Driver {

  public static void main (String[] args) {

LitAdd ast = new LitAdd();  

LitAdd.Test test = ast.new Test();

test.run();

  }

}

Among other functionality, CaesarJ also provides AspectJ-like advice and point-

cut constructs. Thus it is possible to implement EPL with pointcuts and advice as shown in

Section 4.3 and its evaluation would be similar to AspectJ’s.

4.7.2  Evaluation

Feature definition. CaesarJ can implement all program deltas required for EPL.

It provides support for feature cohesion as it groups classes within cclass modules; how-

ever, it does not provide separate compilation.

Feature composition. CaesarJ provides flexible composition and flexible order.

However, determining the order in which to compose mixins with operator & to yield a

particular composition order is a non-trivial task, specially when dealing with product line

members with a significant number of features. CaesarJ’s virtual classes are closed under

composition. There is a calculus that describes a core of the virtual classes implemented in

CaesarJ [61].
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4.8  AHEAD
As we saw in Chapter 3 AHEAD is a feature modularization and composition technology

based on step-wise development that was created to address the issues of feature-based

development of product lines [30][27][1].

4.8.1  Feature modules and their composition

Recall that AHEAD partitions features into two categories: constants that modularize any

number of classes and interfaces, and functions that modularize classes, interfaces and

their extensions.

The implementation of constant features like lp, whose elements are standard

classes and interfaces, uses pure Java constructs. Recall from Chapter 3 that Jak uses mod-

ifier keyword refines to distinguish class and interface refinements extensions. It also uses

the construct Super.methodName(args) to refer to the method being extended. Thus,

the Jak code of feature module le:

layer le;

refines interface Exp { int eval(); }

layer le;

refines class Lit implements Exp {

public int eval() { return value; }

}

layer le; 

refines class Test {

public void run() {

Super.run();

System.out.println( ltree.eval() );

}

}
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As described in Figure 4.3, this feature extends interface Exp with method

eval(), extends class Lit with the corresponding implementation, and extends class

Test by extending method run() with a call to eval() on ltree. Super.run()

invokes the previously defined method run(). In the case of LitAdd it calls the run()

method of ap. Constructor extensions follow a similar pattern, as illustrated in the follow-

ing example, which extends the constructor of Test of feature ap by assigning variable

atree a value:

refines Test() {

Add atree = new Add( ltree, ltree );

}

The remaining feature modules are implemented in a similar way. Each feature is

represented by a directory that contains files for each class and interface definition and

extension. The command line to compose these directories to form LitAdd is:

composer --target=LitAdd lp ap le ae

4.8.2  Evaluation

Feature definition. AHEAD can modularize all EPL program deltas into a cohe-

sive unit. AHEAD provides tools to compile feature modules to bytecode and compose

byte-code representations; however, this is not accomplished by separate compilation.

Compilation uses global knowledge of all possible classes, interfaces, and members that

can be present in a product-line [1].

Feature composition. AHEAD feature modules are independent of the composi-

tion. The order in which features are composed is the order in which they are listed on the

composer command line. AHEAD features are by definition closed under composition.

AHEAD currently does not have a static typing model.
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4.9  Other Modularization Technologies
We evaluated feature modularity in several other modularization technologies. Our evalu-

ation showed that they either do not support the program deltas required by EPL or they

lacked appropriate tool support at the time of the evaluation. The following is a summary

of the evaluation of these methodologies. 

MultiJava. MultiJava is an extension of Java that supports symmetric multiple

dispatch and modular open classes [44][46]. Its focus is on solving the augmenting method

problem, that consists on adding operations (methods) to existing type hierarchies. Given

this constraint, it is not possible to implement EPL as it cannot add new fields, add new

classes and interfaces, and extend existing methods and constructors.

Classboxes. Classbox/J [34], the Java implementation of Classboxes [33], pro-

vides modules implemented as packages of classes that allow to add new classes and

refine existing ones. A class refinement can new methods, new constructors and new

fields. Classbox/J also supports a limited notion of method and constructor extension. The

construct original() refers to the original definition of the method or constructor, in

AHEAD terms the base definition. Packages are explicitly imported which reduces feature

composition flexibility. 

Difference-Based Modules. Difference-Base Modules is a modularization tech-

nology based on collaborations [78]. It can implement all the program deltas of EPL

except constructor extensions. Its language, MixJuice [79], has constructs remarkably sim-

ilar to AHEAD’s with two major differences: a) module relations are hardwired (fixed), b)

support for multiple inheritance (dealt with linearization and name-space policies). Mix-

Juice compiler does not provide set true separate compilation. MixJuice modules are not

closed under composition, and do not have a model of static typing.

Object Teams. Object Teams is a modularization technology also based on col-

laborations [74]. A team is a set of classes that implement the roles in a collaboration. It

appears that the only program delta not supported by teams is constructor extensions. The

relationships between teams are hardwired, and teams are not closed under composition.
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Object Teams also has advice capability similar to AspectJ except that it only affects the

execution of single methods (no name patterns). We are unaware of any model of static

typing for Object Teams.

Aspectual Collaborations. Aspectual Collaborations is also a technology based

on collaborations whose goal is to reconcile modules and aspects [97]. An aspectual col-

laboration consists of a participant graph, where nodes are Java-class like entities called

participants, and the edges are is-a and has-a relations [132]. Participants do not have con-

structors, thus constructor extensions program deltas do not apply here. Participants have

methods that can be defined as aspectual to advise the execution of other methods (con-

sider them as methods that hold the advice code in AspectJ). The members of a participant

can also have modifiers expected and exported to indicate the participants requirements

with reference to other collaborations. Composition of collaborations is performed with

attach clauses. Aspectual collaborations support separate compilation, provide flexible

composition and order, are closed under composition, and have a model for static typing.

Delegation Layers. Delegation Layers is also another technology based on col-

laborations. Its goal is to scale Object Oriented mechanisms such as delegation, late bind-

ing, and subtype polymorphism to sets of collaborating objects [131]. The main

differences with mixin layers [147] and AHEAD are: a) composition occurs at runtime, b)

support of virtual classes [96] and family polymorphism [60]. Delegation layers appear to

be able to implement all program deltas of EPL but it is unclear how they would support

constructor extensions. Delegation layers do not have a flexible composition and order,

and are not closed under composition. To the best of our knowledge, there is no model for

static typing.

Aspectual Mixin Layers. Aspectual Mixin Layers (AML) capitalizes on the

strengths of FOP and AOP [7]. In this context, features are mixin layers that contain mixin

classes and aspects that can also refine pointcuts and pieces of advice. AML follows a

function composition similar to that of AspectJ. A prototype tool is under development.

Classpects. Classpects are an attempt at unifying aspects and classes as units of

modularization [137]. The authors argue that the asymmetric treatment of both concepts
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makes understanding and using aspect oriented programming harder, complicates system

composition, and harms modularity. Classpects enhance classes with bindings that pair an

advice type and a pointcut with the method that implements the advice. Furthermore,

classpects provide a more flexible mechanism for aspect instantiation and instance advis-

ing. Classpects do not provide support for feature cohesion, are not compiled separatedly,

and are not closed under composition. We are unaware of any static typing model.

Open Modules. A common criticism of AOP is the unrestrictive capability of

aspects to break standard modularization properties such as encapsulation and modular

reasoning. Open Modules address this issue by providing a module system on top of

aspects to specify methods and pointcuts to which client programs can apply advice [2]. A

Java version of Open Modules has been recently developed [129]; because it is based on

AspectJ, its evaluation for the implementation of EPL is equiparable to that in Section 4.3

with an improvement in feature cohesion.

Framed Aspects. Framed aspects merge frame technology and AOP [101][102].

AOP is used to modularize crosscutting concerns while frame technology is utilized for

configuration, validation and variability via parameterization, conditional compilation and

code generation. This approach relies on languages such as AspectJ and thus its evaluation

is equiparable to that in Section 4.3.

4.10  Related Work
Expression Problem. The expression problem originated in the works of Rey-

nolds [138] and Cook [48]. Torgersen [153] presents a concise summary of the research on

this problem and four solutions that utilize Java generics. Though extensive, this literature

focuses only on programming language design and separate compilation issues, and not

about the requirements of feature modularity.

Comparison of AOP Models. Masuhara et al. describe a framework to model the

crosscutting mechanisms of AspectJ and Hyper/J [112]. Both are viewed as weavers

parameterized by two input programs plus additional information such as where, what,
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and how new code is woven. Their focus is on the implementation of crosscutting seman-

tics rather than on the broader software design implications that these mechanisms have.

The AOSD Network of Excellence published a survey of 28 AOP languages [15].

This survey makes a basic categorization of the AOP languages along two dimensions: a)

Aspect Language dimension that compares characteristics such as types of join points,

pointcuts, modules, and models of composition, weaving and instantiation; b) Execution

Model dimension that includes characteristics such as implementation techniques and

architectures (JVM, .NET, etc), runtime representation, and advice instantiation. The  sur-

vey does not make a comparison based on standard problems and does not address the

implications the different language mechanisms have on systems implementation let alone

for product line development.

Comparison on Feature Refactoring. Murphy et al. [123] present a limited

study that uses AspectJ and Hyper/J to refactor features in two existing programs. The

emphasis was on the effect on the program’s structure and on the refactoring process, not

in providing a general framework for comparison. Coyler et al. [49] focus on refactoring

tangled and scattered code into base code and aspects that could be considered as the fea-

tures of a product line. They indicate that, based on their experience implementing middle-

ware software, concerns (features) are usually a mixture of classes and aspects; a finding

that corroborates the importance of feature cohesion. Liu et al. [99] describe an algebraic

theory of feature refactoring that could be used to compare modularization technologies in

terms of refacturing capability.

Comparison on Systems Implementation. Driver [58] describes a re-implemen-

tation of a web-based information system that uses Hyper/J and AspectJ, but the evalua-

tion is subjective and expressed in terms of factors such as extensibility, plugability,

productivity, or complexity. Clarke et al. [41] describe how to map crosscutting software

designs expressed as composition patterns (extended UML models) to AspectJ and Hyper/

J, and evaluate their crosscutting capabilities to implement such patterns.
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Chapter 5

Towards an Algebraic Model of Features

In Chapter 4 we analyzed several  approaches to feature modules. To better compare and

contrast them it is crucial to devise a model that abstracts implementation details and

exposes the fundamentals. As a first step towards that goal, and inspired by the work on

AHEAD, this chapter describes an algebraic model for the core of AspectJ. We chose to

start with AspectJ because it is the most popular of the approaches we surveyed. An

immediate benefit of this model was highlighting the source of some problems docu-

mented for this language. We propose an alternative model based on function composition

to address these problems1. We relate these models with AHEAD’s model in Chapter 3

and the properties of feature modules evaluated in Chapter 4.

5.1  Motivation
An aspect can be regarded as a declaration of changes that are to be made to a program;

the process of making these changes is called weaving. There have been several proposals

to define aspect semantics [56]. The most common uses an event-based model [157].

There are many ways in which aspects and weaving can be implemented. The historical

roots of AOP are in meta-object protocols (MOPs) [40]. A MOP alters the metaclasses

that control the behavior of a program’s execution. On the other hand, aspect compilers

perform static weaving by producing woven binaries or woven source [17]. When a

1. The core of this chapter comes from our PEM paper [108].
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woven binary is run, its execution flow is indistinguishable from that of a MOP implemen-

tation. Aspect compilers are popular today because, among other reasons, they offer

improved program run-time performance through static optimizations that are too expen-

sive to realize via MOPs [18].

If we want to understand the impact that aspects have on a program’s structure, we

need to study an implementation of aspects that makes program structure explicit. We use

program transformations for that purpose. A program transformation is a function that

maps programs to programs [135]. While there are few aspect compilers [70] that explic-

itly use program transformation tools [145],  the effects of  weaving can be understood in

terms of transformations. This connection enables us to raise aspects from code artifacts to

mathematical entities (functions from programs to programs) and develop an algebraic

model of aspects and their composition. This model reveals aspect composition as a sig-

nificant source of some documented problems in AspectJ: limited reuse [72], hard to pre-

dict behavior [116], and difficult modular reasoning [43][2]. All these hinder useful

software engineering practices such as step-wise development [159] and its natural materi-

alization in Component-Based Software Engineering (CBSE) [149], where programs are

developed incrementally by composing components one at a time.

5.2  Crosscuts as Program Transformations
Recall from Chapter 4 that AspectJ has two types of crosscuts, static and dynamic. This

section describes how both can be interpreted as program transformations. 

Static Crosscuts as Transformations. Static crosscuts affect the static structure

of a program  [11][93]. Our model focuses on  introductions, also known as inter-type dec-

larations, that add fields, methods, and constructors to existing classes and interfaces.

Consider class Point defined below:

class Point {

int x;

void setX(int v) { x = v; }

} (22)
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The following aspect TwoD adds (introduces) a second coordinate value to class

Point. It adds field y and method setY:

aspect TwoD {

int Point.y;  

void Point.setY(int v) { y = v; }

}

When these two files are composed or woven by the AspectJ compiler ajc using

the command:

ajc Point.java TwoD.java

The result is a new class Point’ with the introduced members underlined below:

class Point’ {

int x;

void setX(int v) { x = v; }

int y;  

void setY(int v) { y = v; }

} (23)

AspectJ generally uses more sophisticated rewrites than those shown here. The

composed code snippets we present simplify illustration and are behaviorally equivalent to

those produced by ajc.

From the program transformation perspective, base code such as Point in (22)

represents a value to which a function (a program transformation) or aspect is applied. For

instance, class Point’ in (23) can be written as the following expression:

Point’ = TwoD ( Point )

That is, Point is a base program and TwoD is a function that maps Point to Point’.

Dynamic Crosscuts as Transformations. Dynamic crosscuts, in contrast, run

additional code when certain events occur during program execution. The following

aspect is the familiar logging example. Its interpretation is: run the advice code (under-

lined) after (advice type) the execution of methods in class Point whose name starts

with ‘set’ (pointcut in italics).
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aspect Logging {

after(): execution(* Point.set*(..)) 

{ println(“Logged”); }

} (24)

From a compiler perspective, an equivalent interpretation is: insert the advice

code after the body of any method in class Point whose name starts with ‘set’. For

example, if aspect Logging is woven into class Point’ in (23) the result is equivalent to:

class Point” {

int x;

void setX(int v) {x = v; println(“Logged”); }

int y;  

void setY(int v){ y = v; println(“Logged”); }

} (25)

Dynamic crosscuts can be implemented by transformations. For example, class

Point” in (25) can be written as the expression:

Point” = Logging(Point’) = Logging(TwoD(Point))

That is, class Point” is the result of applying two transformations, or from an AOP per-

spective the result of weaving two aspects, into class Point.

AspectJ provides an array of sophisticated mechanisms to define  pointcuts and to

perform complex rewrites when weaving aspects into programs. All dynamic crosscuts

can be understood as transformations including pointcut designators such as cflow, args,

this, and target, which expose context information of a join point [11].

Consider cflow(Y) where Y is a pointcut. Suppose Y captures a specific method

execution or method call. cflow(Y) is the set of join points that occur during the execu-

tion of Y, from the time that the method is called to the time of the return [11]. An interest-

ing question to ask is if a join point X occurs within the control flow of Y? The pointcut

that expresses this is concisely written in AspectJ as:

cflow( Y ) && pointcut_for_X

From a compiler’s perspective, control flow advice is a transformation that is

composed from four simple transformations: (i) introduce a control flow stack S, (ii)
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before each Y join point, push a marker M on S, and (iii) after each Y join point, pop M off S.

For the duration that M is on S, any join point that occurs does so within the control flow of

Y. And finally, (iv) at each X join point, check to see if M is on S; if so, execute the advice

code.

Despite a significant body of research, regarding aspects as program transforma-

tions remains a controversial issue. We address this controversy in Section 5.7.1.

5.3  Advice Precedence
Recognizing that aspects can be realized as program transformations is a key first step in

understanding how aspects impact program structure. The next step is to see how aspects

are composed.

Multiple pieces of advice can be applied to the same join point. Advice precedence

determines the order in which advice is woven. AspectJ deals with precedence differently

depending on where the pieces of advice are defined, either in the same aspect or in differ-

ent aspects [11]. 

Ordering aspects. AspectJ programmers have the option of declaring the order in

which aspects are woven by a precedence statement such as:

declare precedence: Aspect3, Aspect2, Aspect1;

In the above example, the advice of Aspect1 is woven first, then the advice of Aspect2,

and finally the advice of Aspect3.2 If no precedence statement is declared, the precedence

of aspects is undefined in the semantics of AspectJ. In such cases, the AspectJ compiler

chooses an order in which to weave aspects. In general, this order cannot be inferred by

programmers prior to weaving.

Unfortunately, different weaving orders can result in programs that behave differ-

ently. Let us demonstrate with an analogy from arithmetic: given a value 2 and functions

double(x), add3(x), and sub2(x) doubling the input, adding 3, and subtracting 2,

2. The mathematical concept of precedence has the opposite meaning of precedence in AspectJ. Higher prece-
dence in AspectJ means apply later, whereas mathematical precedence means apply earlier.
74



respectively, different orders of their composition yields different results: dou-

ble(sub2(add3(2))=6 but sub2(double(add3(2)))=8. This is the reason why

expressions, not sets of operations, are evaluated. In our setting, a value is a base program

and the functions are aspects.

We need to know the weaving order to be able to predict the result. If the weaving

order is undetermined, as in the absence of a precedence declaration, the woven program

will at the least be not portable (since different compilers can choose different weaving

orders). Moreover, programmers will not be informed about the order the compiler

chooses, i.e., they will find it hard to predict the result of a weaving [13].

Ordering advice. Within an aspect, different pieces of advice appear in a certain

textual order. However, the precedence of advice is governed by the following rules cop-

ied verbatim from [11]:

If two pieces of advice are defined in the same aspect, then there are two cases: 

• If either are after advice, then the one that appears later in the aspect has precedence

over the one that appears earlier.

• Otherwise, then the one that appears earlier in the aspect has precedence over the

one that appears later.

These precedence rules lead to two problems: 1) they may introduce a circularity

such that the compiler cannot decide with which piece of advice to start the weaving, and

2) they cannot express all composition (weaving) orders. 

The circularity problem is well-known [11], but the latter is not. A single aspect

with three pieces of advice (identified by subscripts) illustrates both:

aspect Circular {

void around1():execution(void test.main(..))

 { println(“A1”); proceed(); println(“A1”); }

after3(): execution(void test.main(..)) 

{ println(“A3”); }

void around2():execution(void test.main(..))
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{ println(“A2”); proceed();println(“A2”); }

} (26)

First, when the rules are applied, a circular precedence is

created, as illustrated in the diagram to the right. To resolve the

problem, programmers must manually modify the order in which

the advice is listed in the program text, ensure that the resulting weaving order eliminates

circularity, and produce a semantically appropriate weaving for the task at hand, a non-

trivial and lengthy process. 

Second, some composition orders cannot be attained. Suppose we want the fol-

lowing output sequence (A2, A1, <main>, A1, A3, A2), which is achieved by weaving

around1 first, then after3, and then around2. In what order should advice around1,

after3, and around2 be listed in a single aspect file to achieve this weaving order?

The above rules dictate that around2 must be listed before around1 (because

around1 must be woven first). Advice after3 must also appear before around2 (to

weave after3 first). Thus, the ordering so far is: after3 then around2 then around1.

But after3 must also appear after around1 (for around1 to be woven before after3).

It is impossible for after3 to be both before around2 and after around1. Thus, no lin-

ear ordering of the advice around1, around2, and after3 can achieve the desired

weaving order.

A way to realize such a weaving is to store each advice in a separate aspect file

and use declare precedence:

declare precedence: around2, after3, around1;

Another way might be to convert all after and before advice into around advice, which can

be easily ordered. But this then begs the question of why after and before advice have dif-

ferent ordering rules than around advice.

In summary, the current rules for precedence makes program reasoning unneces-

sarily difficult. But precedence is not the only problem with aspect composition. Funda-

mental software engineering practices such as step-wise development are not satisfactorily

supported by AspectJ, as the following section shows.

around1 after

around2

x yhas precedence over
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5.4  Incremental Development Example
Incremental or Step-Wise Development (SWD) is a fundamental programming practice

[30][149][159]. It aims at building complex programs from simpler ones by progressively

adding programmatic details. SWD is a centerpiece of core results in the synthesis of pro-

grams in product-lines [30] and component-based software engineering [149]. 

We illustrate a small but typical example of incremental development. Subscripts

denote a particular version of our program at a given step and underline the code that is

added by each increment.

Base. Class Point0 defines a 1-dimensional point with an x coordinate and corre-

sponding setX method:

class Point0 {

int x;

void setX(int v) { x = v; }

} (27)

First increment. Adds coordinate y and its setY method to Point0 yielding:

class Point1 {  

int x;   

void setX(int v) { x = v; }   

int y;

void setY(int v) { y = v; }

}

Second increment. Counts how many times the set methods are executed. Add-

ing both increments to base results in:

class Point2 {  

int x;   

void setX(int v) { x = v; counter++; }   

int y;

void setY(int v) { y = v; counter++; }
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int counter = 0;

}

Third increment. Adds a color field and  setColor method to Point2:

class Point3 {  

int x;   

void setX(int v) { x = v; counter++; }   

int y;

void setY(int v) { y = v; counter++; }

int counter = 0;

int color;

void setColor(int c) { color = c; }

}

Now here is an implementation in AspectJ:

Base. Identical to (27) because classes are the base code of AspectJ applications. 

First increment. We define aspect TwoD that introduces field y and method setY

to class Point:

aspect TwoD {

int Point.y;

void Point.setY(int v) { y = v; }

}

The command that composes class Point0 and aspect TwoD and achieves a pro-

gram equivalent to Point1 is:

ajc Point0.java TwoD.java

Second increment. Aspect Counter introduces field counter to class Point

and advises the execution of all set methods to increment this counter3: 

aspect Counter {

int Point.counter = 0;

 after(Point p) : execution(* Point.set*(..)) 

3. There are other ways to define Counter. Shortly, we will present the rationale behind this implementa-
tion decision. 
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&& target(p)

{ p.counter++; }

} (28)

A program that is equivalent to Point2 is produced by:

ajc Point0.java TwoD.java Counter.java

Third increment. Aspect Color adds a color field and a setColor method:

aspect Color {

int Point.color;

void Point.setColor(int c) { color = c; }

}

The composition of base with the three increments is:

ajc Point0.java TwoD.java Counter.java Color.java

However, this time the result is not Point3, but instead:

class Point3’ {  

int x;   

void setX(int v) { x = v; counter++; }   

int y;

void setY(int v) { y = v; counter++; }

int counter;

int color;

void setColor(int c){ color=c; counter++; }

}

That is, the setColor method of Point3’ increments counter (underlined

above) unlike Point3. This means that developers face the problem that building a pro-

gram incrementally by hand may yield different results than using AspectJ.  A more con-

strained version of Counter, that captures execution join points only of setX and setY

methods, is required to produce Point3:

aspect Counter {

int Point.counter = 0;

 after(Point p) : (execution(* Point.setX(..)) 
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|| execution(* Point.setY(..)))&& target(p)

{ p.counter++; }

} (29)

An obvious question is: why was Counter not defined like (29) in the first place?

Doing that certainly would solve this problem, but we must consider other properties of

software modules that are also desirable for aspects. Among them is reusability, i.e., we

want to treat aspects as components as in CBSE and reuse them as is. For example, sup-

pose Counter is redefined as (29), but now we want to build program Point3’ instead.

We would have to revise Counter back to (28) as the version in (29) cannot be used. We

could conceivably keep in our code repository the two versions of Counter and select and

apply one depending on the program we would like to synthesize. Regrettably,  this alter-

native does not scale because it requires a specialized pointcut for each program that could

be synthesized.The question now becomes: why can we not reuse the same aspect for both

cases? The problem is that aspect weaving does not distinguish among development stages

of a program. We show how to solve this problem in the next section.

5.5  An Algebraic Model of Aspects
In this section, we develop an algebraic model that reveals another source of complexity in

AspectJ composition. We then propose an alternative model of composition that retains

the power of AspectJ, supports step-wise development, simplifies advice precedence, and

facilitates reasoning using aspects. Our model has three operations that build upon the

notions of introduction, advice, and weaving.

5.5.1  Preliminaries

Our model requires all method introductions to be explicit. Advice in AspectJ implicitly

introduces a method. Recall the Logging aspect:

aspect Logging {

after(): execution(* Point.set*(..)) 
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{ println(“Logged”); }

}

When woven into class Point0 in (22), aspect Logging can be regarded as the

transformation that results in:

class Point  {  

int x;   

void setX(int v) { x = v; printLog(); }

static void printLog(){ println(“Logged”);} 

}

Method printLog is an explicit method that contains the advice body (the log

message) and it is called at the end of the body of method setX (after the method execu-

tion).

Pure advice is a named advice that separates advice from introductions and

replaces the advice body with a method call. To preserve AspectJ semantics, this call is not

advisable, i.e., it has no join points. All join points of the original advice body reside in the

method that is called. For example, we can conceptually rewrite the Logging aspect as:

aspect Logging {

static void Point.printLog() 

{ println(“Logged”); }

Log is after():execution(* Point.set*(..)) 

--> Point.printLog();

} (30)

where Log is the name given to the pure advice, printLog is the method that contains the

advice body, and the --> arrow indicates the method call. Other researchers have advo-

cated a similar concept (that of making advice bodies into explicit methods), but have

motivated the idea for different reasons [137]. Without loss of generality, we assume all

advice is pure advice in the remaining of this chapter.
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5.5.2  Introduction Sum

An introduction is a function that adds a data member or method to a program. Recall

aspect TwoD and class Point0 whose composition was modeled algebraically as:

Point1 = TwoD(Point0) (31)

where Point0 and Point1 are values, and TwoD is a function that maps class Point0 to

class Point1. Appealing to intuition, we can rewrite (31) as the sum of the introductions

of TwoD with Point0:

Point1 = TwoD + Point0 (32)

Operation + is called introduction sum. It is a binary operation that performs dis-

joint union on program fragments, which are sets of variables and methods. For example,

aspect TwoD is the program fragment (set) containing y and setY, and class Point0 is the

fragment (set) containing x and setX. We write introduction sum as:

Point1 = TwoD + Point0

= (setY + y) + (setX + x)

= setY + y + setX + x

meaning Point1 = {setY, y, setX, x} where our notation above omits set brackets.

As + is disjoint set union, introduction sum has the following properties:

Identity. 0 is the empty program (i.e., a program fragment that contains no mem-

bers). If X is a program fragment:

X = X + 0 = 0 + X

Commutativity. + is commutative because set union is commutative. 

Associativity. + is associative as set union is associative.

Operation + differs from AspectJ introduction in that it allows adding new classes

and interfaces but does not allow member overriding.
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5.5.3  Weaving

Pure advice is a function that maps an input program to a program where calls to advice

methods have been inserted. We use function application to model the operation of weav-

ing. Let a be pure advice and P be a program. The result of applying (weaving) a into P is

program P’:

P’ = a(P) 

Weaving has the following properties:

Identity. id is the null pure advice — i.e., pure advice that captures no join

points. Null pure advice is the identity transformation; its application does not affect a pro-

gram. If P is a program fragment, P=id(P). That is, P does not change when woven with

id.

Fixed Point. If pure advice a is woven to program fragment P but a does not cap-

ture any join points of P, the outcome of the weaving is P. That is,

P = a(P)

Associativity. Weaving is right associative.

Distributivity. Weaving distributes over introduction sum. Let P be a program, a

be pure advice, and P’=a(P). Suppose P=X+Y+Z, where X, Y, and Z are arbitrary program

fragments. We have:

P’ = a(P)

= a(X + Y + Z)

= a(X) + a(Y) + a(Z)

Advice applies to all join points in a program. Thus it is immaterial if the program

fragment is viewed as a whole (P) or as the sum of its parts (X+Y+Z). This distributivity

property is central to AOP.

Partial Distributivity. Corollary of Distributivity.

P’ = a(P)

= a(X + Y + Z)

= a(X) + a(Y + Z)
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5.5.4  Advice Sum

Each piece of advice is a transformation (i.e., a function). The application of multiple

pieces of advice is modeled by function composition, denoted by •, which we call advice

sum. • also models advice precedence. a3•a1 means apply advice a1 first and then a3.

Advice sum has the properties:

Identity. id is the null pure advice. If a is pure advice:

a = a • id = id • a

Commutativity. The order in which advice is applied matters. • is not commuta-

tive.4

Associativity. • is associative because function composition is associative. 

5.5.5  Modeling Aspects as Pairs

We model an aspect as a pair of two entries. The first entry, called the advice part, is the

aspect’s advice and the second entry, called the introduction part, is the aspect’s introduc-

tions. The pair for Logging (30) is:

Logging = <Log, printLog>

where Log is the name of the pure advice and printLog is the name of the introduced

method.

Counter is another example. A pure advice version of it is:

aspect Counter {

CounterP is after(Point p): 

execution(* Point.set*(..)) && target(p) 

--> Point.counterInc(p);

static void Point.counterInc(Point p)

 { p.counter++; }

4. Two pieces of advice commute if they have no join point in common.
84



int Point.counter = 0;

}

and its pair is:

Counter = <CounterP, counterInc + counter>

Note that the second entry of the pair sums the introductions counterInc (the method of

the advice body) and counter (the variable).

Finally, a pure version of the Circular aspect (26) is:

aspect Circular {

pointcut pcd() : execution(void test.main(..));

static void test.m1(){ ... }

static void test.m3(){ ... }

static void test.m2(){ ... }

a1 is void around1(): pcd() --> test.m1();

a3 is after3(): pcd() --> test.m3();

a2 is void around2(): pcd() --> test.m2();

}

Suppose advice is woven in the textual order listed in an aspect. Circular would

be modeled by the pair:

Circular = <a2 • a3 • a1, m2 + m3 + m1>

The expression a2•a3•a1 represents compound advice, where a1 is woven first

and a2 last.

5.5.6  Pair Model of Aspect Composition

Let aspects A1 and A2 be modeled by the pairs A1=<a1,i1> and A2=<a2,i2>. We denote

aspect composition in AspectJ by operation ◊. The AspectJ composition of A2 with A1

(with A1 being applied first) is:

A2 ◊ A1 = <a2,i2> ◊ <a1,i1>

= <a2 • a1, i2 + i1>
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◊ is similar to vector addition because the coordinates of pairs are summed: +

sums program fragments, • sums advice in weaving order.

As another example, program P can be modeled by the pair <id,p>, where id is

null pure advice and p is the introduction sum of the members of P. Weaving aspect A1

into P and then weaving aspect A2 is:

A2 ◊ A1 ◊ P

= <a2,i2> ◊ <a1,i1> ◊ <id,p>

= <a2 • a1 • id, i2 + i1 + p>

= <a2 • a1, i2 + i1 + p> (33)

The code of a pair is the program that the pair represents. Let V be a pair. Its code,

denoted [V], is computed by weaving its advice part with its introduction part:

[V] = [<a,i>] = a(i) (34)

This follows from the fact that advice can advise any join point of a program5.

Thus the program that is produced by weaving A1 and then A2 into P is:

[A2 ◊ A1 ◊ P] = a2 • a1(i2 + i1 + p) (35)

More generally, the result of weaving into P aspects A1...An  (in this order) is:

[An ◊ An-1 ◊ ... ◊ A1 ◊ P] 

= an•an-1•...a1(in+in-1+...+i1+p) (36)

That is, the result of weaving a sequence of aspects into a program equals the

weaving of advice in weaving order into the program that is the introduction sum of the

program’s members and aspect introductions. (36) represents the “shape” of any program

produced by AspectJ. We call this the pair model of composition.

(36) identifies the source of the problems noted earlier in Section 5.4 about incre-

mental program development using AspectJ. It can be seen in the expansion of  (35):

[A2 ◊ A1 ◊ P]

= a2 • a1(i2 + i1 + p)

= a2•a1(i2) + a2•a1(i) + a2•a1(p)

5. Readers familiar with advice that advises itself will recognize that the pure advice part advises its introduc-
tion part. This is modeled by (34).
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The offending term is underlined. It means that to apply aspect A2, the program-

mer is required to know how an advice from a previous development step (a1) affects an

introduction added in the current step (i2). More generally, the weavings that cause prob-

lems in incremental development are underlined below:

...•ak+2•ak+1•ak•ak-1•...•a2•a1(ik) + ...

In other words, a programmer needs to know how previously applied pieces of

pure advice aj affect later introductions ik where j < k. These are the terms that make

step-wise development difficult. The problem is aggravated when a large number of

aspects are composed and the development involves multiple steps.

5.5.7  Functional Model of Aspect Composition 

In Chapter 3 we described the role of function composition in the synthesis of product

lines [28][29]. We propose an alternative model, that equates aspect composition with

function composition and eliminates the problems mentioned while preserving the power

of AspectJ.  Consider aspect A=<a,i>. We can model A as the function:

A(x) = a(i + x)

That is, A adds its introductions (i) to its program fragment input (x) before weav-

ing its advice (a). So applying aspect A1 to program P and then applying aspect A2 is:

A2(A1(P)) = a2(i2 + a1(i1 + p))

= a2(i2) + a2•a1(i1) + a2•a1(p) (37)

Note that the offending pure advice a1 disappears from the left summand

(a2(i2)). This generalizes to the composition of any number of aspects: the weavings

that make step-wise development difficult are never generated. We call this the functional

model. In effect, the pair model expresses unbounded quantification (i.e., the scope of

advice extends over the entire program) [63], whereas the functional model expresses

bounded quantification (i.e., the scope of advice extends over a stage in a program’s devel-

opment). An obvious question arises: which model is more expressive?
87



The functional model can express programs that the pair model cannot express,

for example program (37). This expression cannot be produced by the pair model because

all pieces of advice are woven into all introductions yielding program (35). Again, this is a

consequence of the unbounded quantification of the pair model.

Unbounded quantification is a special case of bounded quantification. Think of

quantifiers in first-order logic: the scope of a quantifier extends from its position in a logi-

cal formula to the right. Unbounded quantification means that the formula starts with the

quantifier. In the functional model, a weaving expression is interpreted the same way: the

influence of advice extends to the right and not to the left. Let us illustrate this with pro-

gram (35) which requires unbounded quantification. To construct this program in the func-

tional model, we decompose aspect A1 into a pair of aspects, one containing introduction

i1 and the other with advice a1:

A1intro(x) = i1 + x

A1advice(x) = a1(x)

Similarly for aspect A2:

A2intro(x) = i2 + x

A2advice(x) = a2(x)

To build (35), we weave the aspects with introductions to P first and then the

aspects with advice to get:

A2advice(A1advice(A2intro(A1intro(P))))

= a2 • a1(i2 + i1 + p)

This ability to model unbounded quantification in the functional model is general,

and is not specific to this particular example.

In summary, the functional model can express all programs that the pair model

can express, and more once aspects are expressed in terms of bounded quantification.

Recall the Point example of Section 5.4. Let us add a third dimension to Point, which is

defined by aspect ThreeD that introduces a z variable and setZ method. Assuming that

Counter advises all set methods as in (28) using bounded quantification, we can build at

least four programs:
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(a) Color(ThreeD(TwoD(Counter(Point0))))

(b) Color(ThreeD(Counter(TwoD(Point0))))

(c) Color(Counter(ThreeD(TwoD(Point0))))

(d) Counter(Color(ThreeD(TwoD(Point0))))

Program (a) is a program that counts the executions of setX. (b) counts the

executions of setX and setY. (c) counts the executions of setX, setY, and setZ. (d)

counts the execution of all set methods. Each of these programs is synthesized by reusing

and composing aspects as is. Using AspectJ, weaving aspects Counter, Color, ThreeD,

and TwoD in an arbitrary order into P will always produce program (d). To build all four

programs using AspectJ would require four different versions of Counter.

To summarize, problems in step-wise development arise using AspectJ when

pointcuts are not bounded to a set of classes, methods, and variables at a specific stage of

program development. Common examples are pointcuts that capture the set of all calls to

one or more methods, and wildcard patterns. Subsequent introductions that are captured

by these pointcuts give rise to the problems discussed here. The functional model avoids

these problems.

5.6  Significance of Functional Model
Our work eliminates several problems in AspectJ. First, the precedence rules for ordering

pieces of advice within an aspect (Section 5.3) can be eliminated. We propose a simpler

rule: apply advice in the order in which it is listed in an aspect file. This rule will simplify

the ordering algorithms currently utilized by aspect compilers and will help AspectJ pro-

grammers by reducing the effort to determine a composition order.

Second, the rules that AspectJ uses to assign precedence to aspect files can also be

eliminated. We propose that a precedence be declared for all aspect files to define their

composition order. Alternatively, the compiler could raise an error when users fail to spec-

ify an order where ordering matters. Again, this change simplifies advice ordering algo-
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rithms for multiple aspect files and also helps programmers as now aspect compiler output

will be predictable.

AOP researchers have raised the issue that it should be unnecessary to specify a

composition order when aspects are provably commutative. We agree. In cases where

pointcuts have disjoint sets of join points their corresponding advice is commutative.

Existing tool support can help identify these situations [11]. However, it is still necessary

to specify when these pieces of advice are to be applied.

5.7  Controversial Issues in AOP
There are several controversial issues around Aspect Oriented Programming. In this sec-

tion we address the two most closely relate to our work.

5.7.1  Aspects as Program Transformations

Aspect compilers, such as ajc, demonstrate that aspects can be implemented by transfor-

mations: ajc takes a base program and aspects as input and produces a woven binary as

output. Even so, the connection of dynamic crosscuts, especially cflow, to transforma-

tions remains controversial [73]. However, when given proper consideration, optimization

and weaving techniques such as those presented in [18][75][112] are examples of program

transformations, sophisticated indeed, but transformations nonetheless.

The relationship between program transformations and aspects is not new. Läm-

mel studied the implementation of aspects as programs transformations [94]. Kniesel et al.

developed JMangler, a backend tool to support AOP that relies in transformations at the

bytecode level [90]. The work of Krishnamurthi et al. on modular verification of aspect

advice has an underlying assumption that aspects can be regarded as transformations [92].

We extend these ideas by showing how a transformation view leads to an algebraic model

of aspect composition.

The history of automated software design is replete with results on transforma-

tions and their connection to program structure. Tool-enabled program refactorings are
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program transformations [152]. Layers in layered software designs are transformations

[29]. When viewed as increments in program functionality, features in software product-

lines are transformations [30]. Model transformations play a key role in Model Driven

Architectures; they are mappings between models (which are non-code representations of

programs) [37]. Arguably the most significant result in automated software design is rela-

tional query processing [144]: a query evaluation program is defined by a composition of

relational algebra operations. These operations are transformations of query evaluation

programs.

Aspects define very useful transformations, and their strength is that programmers

do not need understand transformation technologies to use them. As mentioned earlier,

transformations are just one of a number of ways in which aspects can be implemented.

The advantage of viewing aspects as transformations is that it exposes how aspects modify

a program’s structure. Doing so places aspects in context with results in software architec-

tures and automated software development that also define and modify program structure.

5.7.2  Aspects and Modular Reasoning

Modular reasoning with AOP is controversial [44][45][46]. Kiczales and Mezini claim

that in the presence of aspects “the complete interface of a module can only be determined

once the complete configuration of modules in the system is known” [89]. In other words,

aspects entail global reasoning that they define as “having to examine all the modules in

the system or subsystems”. The pair model of AspectJ mathematically corroborates their

claim and shows the negative implications it has for incremental development. The func-

tional model of composition reduces the need of global reasoning without restricting the

power of AspectJ. 

Rinard et al. propose a framework to classify aspects based on their interactions

with other aspects and base code [139]. They present a tool that alerts users of cases where

modular reasoning (a user-defined property) could be compromised so that users can take

corrective action when necessary. Open modules proposes a module system whereby an
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interface describes the pointcuts and join points that are advisable by the pieces of advice

of other modules thus promoting modular reasoning about aspects [2].

5.8  Relating AspectJ and AHEAD Models
The composition of AHEAD in Chapter 3 has only one operation, function composition

denoted by the symbol •. On the other hand, our models of AspectJ use three operations: i)

introduction sum denoted by +, ii) advice weaving denoted by function composition, and

iii) advice sum (unfortunately) denoted also by symbol •.

Developing both AspectJ models helped us realize that AHEAD operation • is

overloaded; it can be interpreted either as introduction sum +, function application, or as

function composition. This overloading did not represent a problem in the implementation

of ATS. However, the integration of aspects into ATS must make these finer distinctions

into account, and consequently it entails major changes to AHEAD composition model

and tools. Therefore, the generalization of AHEAD model to include aspect operations

and the corresponding implementation of supporting tools is part of our future work.

5.9  Algebraic Models and Feature Properties
In Chapter 4 we presented the basic properties of feature modules required for the imple-

mentation of our product line EPL. Our evaluation in that chapter illustrated how basic

properties of feature modules can be abstracted from different modularization technolo-

gies. In this section we go a step further by relating those properties to our algebraic mod-

els. We believe this relation can constitute a foundation for a framework or set of criteria

that a rigorous mathematical presentation should satisfy and can help reorient the focus on

clean and mathematically justifiable abstractions when developing new tool-specific con-

cepts.

In Chapter 4 we divided feature properties into definition and composition proper-

ties. Next we analyze how these properties can be expressed algebraically. The feature

definition properties are:
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• Program deltas. Program deltas were defined as program fragments, thus they are

indeed increments in program functionality or features. In Chapter 3 we illustrated

how features can be denoted by algebraic terms. The features or program deltas that

we identified for EPL have the characteristic that cannot be divided further. 

• Cohesion. Cohesion was defined as the capability of collecting, identifying, and

manipulating sets of program deltas as a unit. In Chapter 3 we defined a feature

module as a set of nested modules. Thus by collecting the constituents of feature

models into sets with a name, we can refer to them as a cohesive unit. For example,

feature lp in Figure 4.3 can be denoted as lp={Exp,Lit,Test}.

• Separate compilation. Separate compilation is not a property of an algebraic

model, but rather a desirable engineering requirement of an implementation of our

algebraic model.

Feature composition properties are:

• Flexible composition. AHEAD model explicitly separates feature modules,

denoted by terms, from their composition denoted by expressions that operate on

feature terms.

• Flexible order. We saw in Section 3.4 how Origami allows us to devise multiple

composition expressions from a set a features and constraints.   

• Closure under composition. Closure under composition follows from our defini-

tion of feature modules whereby a module can be formed with nested modules.

• Static typing. This property could be modeled as a new operation on feature mod-

ules.
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5.10  Related Work
Since the Sixties, the paradigm of layered software has been applied to harness the com-

plexity of large software systems (initially, they were operating systems [53]). A key prop-

erty of layered software is that a layer has knowledge of lower layers but not of higher

layers. (This is bounded quantification). We apply this principle to aspect orientation: the

weaving of an advice affects the existing program, but not any parts that are added later.

Compositional models of aspects have a long history. GenVoca, AHEAD, and

HyperJ are examples [29][30][63][150]. Relating compositional models to algebras is dis-

cussed in [30]. 

McEachen and Alexander consider the problems caused by weaving bytecode that

already contains woven aspects [116]. A foreign aspect is an aspect that has been woven;

the woven bytecode is later imported by a third party that has no access to the aspect’s

source code. A foreign aspect “comes alive” and can potentially affect subsequently added

base or aspect code. Foreign aspects are problematic as they can: a) not capture all

intended join points, b) capture unintended join points, and c) inadvertently interact with

other aspects. The authors advocate guidelines to design the scope of pointcuts, use of

abstract pointcuts to control the set of join points advisable by foreign aspects, and pro-

mote adequate pointcut documentation. Our work provides a foundation to understand the

problems caused by foreign aspects and a solution to eliminate them. The rules of the

functional model can be enforced by a compiler, whereas adhering to the guidelines of

McEachen and Alexander is the responsibility of programmers.

Complementary to our approach, there is work that aims to improve aspect reuse

by making significant language changes. Gybels and Brichau propose a logic-based cross-

cut language to better decouple aspects from programs [72]. Rho and Kniesel propose

aspect uniform genericity, application of logic metavariables in language constructs, as a

way to promote reuse and to significantly expand the generic capabilities of AspectJ

[140]. Incidentally, they too take a transformation view of aspects.
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Classpects unify aspects and classes [137]; they are classes enhanced with bind-

ings. A binding associates an advice type (before, after, around) and a pointcut with a

call to a list of methods. These methods replace the advice body, similar to what we did

when we transformed advice into pure advice.
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Chapter 6

An Assessment of the Functional Model

 In Chapter 5 we presented the Pair Model and the Functional Model of aspect composi-

tion. In this chapter we show how to emulate the Functional Model (using the default Pair

Model as implemented in ajc) for the implementation of a non-trivial product line con-

sisting of five core tools of the AHEAD tool suite. 

The emulation was achieved through a careful use of precedence clauses and a

selection of language constructs that prevents the problems shown for the Pair Model and

permits the composition specification defined by the Functional Mode. The emulation was

tailored to the implementation of the five AHEAD tools and, as can be inferred from

Chapter 5, is by no means a general mechanism to implement the Functional Model.

This case study serves several purposes: a) It helps gauge the potential benefits of

the Functional Model, b) It shows how aspects can be used to implement non-trivial prod-

uct lines of scale and complexity comparable to those implemented with AHEAD1, c) It

profiles the role different aspect constructs play in the synthesis of product lines, and d) It

presents venues of research on the use of aspects in product line implementations.

We start by presenting a simple product line example to illustrate the kinds of fea-

tures, composition, and mapping issues encountered in the translation of the AHEAD tools

to AspectJ.

1. To the best of our knowledge, product lines implemented with AspectJ have been of smaller scale LOC or
number of features.
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6.1  Quadrilaterals Product Line
We start by developing a simple example, the Quadrilaterals Product Line (QPL), to

describe the types of features, composition, and mapping issues we encountered in trans-

lating the AHEAD tool suite to AspectJ. 

The task at hand is to incrementally build two kinds of quadrilaterals: rectangles

and trapezoids. Quadrilaterals have a draw operation that displays the lines between the

four points that form a quadrilateral. However, rectangles and trapezoids use different

lines, styles, and colors. Our example consists of three features.

Base feature. This feature defines: a) class Quadrilateral that contains four points and

a draw operation that draws the lines between the points, b) class Rectangle that

extends Quadrilateral, and c) class Trapezoid that extends Quadrilateral and

overrides method draw to add new instructions to make the lines thicker. Feature Base

can be implemented as follows: 

class Quadrilateral {

Point p1, p2, p3, p4;

void draw() {... std lines ...}

}

class Rectangle extends Quadrilateral {}

class Trapezoid extends Quadrilateral {

void draw() { 

super.draw(); ... thick lines ...

}

} (38)

For sake of simplicity we omit details that differentiate rectangles and trapezoids

and focus only on the draw methods.

Style Feature. This feature adds a pattern to fill rectangles and replaces operation

draw in trapezoids to display dashed lines only. The result of composing features Base

and Style is shown below, where the code that is added by the Style feature is under-

lined:
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class Quadrilateral {

Point p1, p2, p3, p4;

void draw() {... std lines ...}

}

class Rectangle extends Quadrilateral {

void draw() { super.draw();… fill pattern … }

}

class Trapezoid extends Quadrilateral {

void draw() { ... dashed lines ... }

} (39)

Recall from Chapter 3 that a class refinement is the modularization of changes

made by a feature to a class defined in another feature. Feature Style consists of two

class refinements, one for Rectangle and one for Trapezoid. The class refinement of

Rectangle overrides method draw defined in Quadrilateral. We refer to this type of

refinement as a method override. The class refinement of Trapezoid effectively replaces

method draw defined for this class in feature Base. We refer to this type of refinement as

a method replacement.

Color Feature. Color adds a color field and a setColor method to Quadri-

lateral. It sets the color of rectangles to green and the color or trapezoids to blue. 

The result of composing features Base with Style and Color, in that order,

yields the following result where the changes caused by Color to (39) are underlined:

class Quadrilateral {

Point p1, p2, p3, p4;

void draw() {... std lines ...}

int color;

void setColor(int c) { color = c; }

}

class Rectangle extends Quadrilateral {

void draw() { setColor(GREEN); 

super.draw();… fill pattern … 

}
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}

class Trapezoid extends Quadrilateral {

void draw() { setColor(BLUE); 

 ... dashed lines ... 

}

} (40)

The Color feature is implemented by three class refinements. The refinement of

Quadrilateral adds color and setColor. The refinement of Rectangle extends the

functionality of method draw by adding a call to setColor with value GREEN. Similarly,

the Trapezoid refinement extends functionality of method draw with a call to set-

Color with value BLUE. We refer to these last two refinements as a method extension. We

call the derived method body the part of the method extension that it is the result of the

composition of all previous class refinements. In (40) this corresponds to the code of

method draw that is not underlined.

Product Line Members. Based on the description of our three features, QPL can

synthesize the following three products: 1) Base, 2) Base and Style, 3) Base, Style

and Color. Though completely reasonable, QPL does not contain program with features

Color and Base. Section 6.3.1 explains an interesting characteristic of this product in the

AspectJ implementation of QPL.

Modularization Issues. We have seen in Chapter 4 that preprocessors, although

commonly used and simple, are not first class modularization techniques; preprocessors,

by definition, express concepts that are not supported by a host language. In the next two

sections we evaluate AHEAD and AspectJ implementations of QPL.

6.2  AHEAD Implementation of QPL
Recall from Chapter 3 that AHEAD divides features into constant and function features.

QPL is implemented with a constant feature for Base, and two function features, one for

Style and one for Color. Next we present their implementation.
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Base feature. Base is a constant feature that has three Jak files (one for each

class):

layer Base;

class Quadrilateral {

Point p1, p2, p3, p4;

void draw() {... std lines ...}

}

layer Base;

class Rectangle extends Quadrilateral {}

layer Base;

class Trapezoid extends Quadrilateral {

void draw() { 

Super.draw(); ... thick lines ...

}

} (41)

There are only two differences with the code in (38): the layer construct declares

that these classes belong to feature Base, and Jak’s keyword Super refers to the super-

class of Trapezoid.

Style Feature. Style is a function feature that modularizes two class refinements

(recognized by the keyword refines). In the Rectangle refinement, modifier over-

rides denotes that method draw is overridden and the superclass reference (super) in

(39) is translated as Super. In the Trapezoid refinement, modifier new means that the

draw method replaces the one defined for that class in feature Base.

layer Style;

refines class Rectangle {

overrides void draw() { 

Super.draw(); … fill pattern …

}

}
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layer Style;

refines class Trapezoid {

new void draw() { … dashed lines … }

} (42)

Color Feature. Color is a function feature that modularizes three class refine-

ments. Class refinement Quadrilateral adds new members color and setColor.

Class refinements Rectangle and Trapezoid extend their draw methods by setting

their corresponding colors and calling the draw method using keyword Super, underlined

in the code below. One way to think about Super in method extensions is as a placeholder

for the derived method body mentioned in (40).

layer Color;

refines class Quadrilateral {

int color;

void setColor(int c) { color = c; }

}

layer Color;

refines class Rectangle { 

void draw(){ setColor(GREEN); Super.draw();}

}

layer Color;

refines class Trapezoid {

void draw() { setColor(BLUE); Super.draw();}

} (43)

Product Line Members. AHEAD can generate the three programs of QPL using

its composer tool. For instance the program with features Base, Style, and Color (that

we call All) is synthesized by the following command:

composer -target=All Base Style Color
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As we mentioned in Chapter 3, AHEAD provides design rules to validate compo-

sition. For further details consult [1].

6.3  AspectJ Implementation of QPL
We now show how QPL is implemented with aspects. The techniques we use are identical

to those needed to translate an AHEAD code base to an AspectJ code base in Section 6.5.

Base Feature. This feature is implemented as (38). As we saw in Chapter 4,

AspectJ refers to standard Java classes and interfaces as base code. We also saw, that

AspectJ does not provide a mechanism to modularize multiple classes or aspect files into

features [106]. For our implementation of QPL, we use file directories to group the classes

and aspects that constitute features.

Style Feature. This feature is implemented with two aspects. The first one uses an

introduction to override method draw inherited from Quadrilateral. The aspect is

declared privileged to have access to private members of the classes involved and the

name is formed with the feature and class names implemented by the aspect. The rationale

behind these two decisions is explained shortly.

privileged aspect Style_Rectangle {

void Rectangle.draw() { 

super.draw(); … fill pattern … 

}

} (44)

The second aspect uses an around advice on the execution of method draw on

Trapezoid. For simplicity, we introduced a new method style$draw to Trapezoid to

hold the body of the method replacement. Thus, any time draw is executed, the call is

intercepted and redirected to method style$draw, effectively replacing the original

draw method for this class in Base feature. The pointcut descriptor of the advice contains

a target clause to obtain a reference, we call it obj$Trapezoid, of the object whose

method is executed. This reference is used to access instance members on that object thus
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the need for privileged aspects in case members are private. In our example, we use

this reference to call method style$draw.

privileged aspect Style_Trapezoid {

void around(Trapezoid obj$Trapezoid) : 

execution(void Trapezoid.draw()) && 

target(obj$Trapezoid){

obj$Trapezoid.style$draw();

}

void Trapezoid.style$draw(){… dashed lines … }

} (45)

Arguably, this feature could be implemented in a single aspect that combines the

contents of aspects (44) and (45). We have seen in Chapter 5 that, in general, aspect com-

position is hindered by the rules that govern advice precedence. Shortly we describe how

we avoided those problems in the implementation of QPL.

Color Feature. This feature is implemented with three aspects. The first one

introduces color and setColor to Quadrilateral.

privileged aspect Color_Quadrilateral {

int Quadrilateral.color;

void Quadrilateral.setColor(int c) {color=c;}

} (46)

The second aspect uses around advice on execution of method draw. It also

uses a target clause to get the object being called and uses this reference to set the color

to GREEN. As opposed to the advice in feature Style, this aspect uses AspectJ proceed

statement to continue with the execution of the method. Thus, any time that draw is

called, the call is intercepted, the color is set, and the execution is resumed.

privileged aspect Color_Rectangle {

void around(Rectangle obj$Rectangle) : 

execution(void Rectangle.draw()) && 

target(obj$Rectangle){

obj$Rectangle.setColor(GREEN);
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proceed(obj$Rectangle);

 }

} (47)

One way to think about proceed in method extensions is as a placeholder of the 
derived method body we mentioned in (40) because it indicates the execution of the rest of 
extensions made to this method by other features.

The third aspect follows along the same lines of the previous one only applied to

Trapezoid instead of Rectangle.

privileged aspect Color_Trapezoid {

void around(Trapezoid obj$Trapezoid) : 

execution(void Trapezoid.draw()) && 

target(obj$Trapezoid){

obj$Trapezoid.setColor(BLUE);

proceed(obj$Trapezoid);

}

} (48)

Product Line Members. AspectJ compiler (weaver) ajc, uses the file names of

base code and aspects of the features to create product members. Recall from Chapter 4

and Chapter 5 that aspect precedence determines the order aspect introductions and pieces

of advice are woven to base code.

In the case of introductions, the one with higher precedence overrides (replaces)

those with lower precedence. An introduction cannot override a member already present

in base code. This is why class refinement Trapezoid in feature Style is implemented

with an around advice.

In the case of pieces of advice, when several of them apply to the same join point,

AspectJ follows ordering rules that depend on where the conflicting pieces of advice are

defined [11][93]. However, as we demonstrate in Chapter 5, these rules can lead to unde-

fined orders (programmers cannot easily infer the order by looking at the code), circularity

errors (compiler cannot not infer a weaving order), and some composition orders cannot

be expressed [108].
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To prevent problems with advice weaving order, we use only around advice and

a define an aspect with a declare precedence clause to order pieces of advice by fea-

tures. For instance, the following aspect specifies the weaving order required to obtain the

composition of Base, Style, and Color in (40):

aspect Ordering {

declare precedence: Color_*, Style_*;

} (49)

This aspect instructs the compiler to weave first the aspects from the Style fea-

ture and then those from the Color feature, according to the ordering rules that apply to

around advice in different aspects [11][93]. This is the reason why we followed the con-

vention of including feature names as part of the names of our aspects. 

Finally, the ajc command for the composition in (40) is (we omit feature direc-

tory names for simplicity)2:

ajc Quadrilateral.java Rectangle.java Trapezoid.java 

Style_Rectangle.java Style_Trapezoid.java 

Color_Quadrilateral.java Color_Rectangle.java 

Color_Trapezoid.java Ordering.java (50)

The order of files in this command is immaterial. Composition validation accord-

ing to design rules is not part of ajc. 

6.3.1  Choice of Pointcuts

AspectJ provides a vast array of pointcuts that could be used for feature implementation.

We use execution pointcuts because their semantics most closely resembles what

AHEAD uses for method extension and replacement in QPL. However, there may be cases

where other pointcut combinations could be more appropriate.

For example, consider QPL product that contains Base and Color features. From

a design point of view, this program seems completely reasonable and valid; however, its

2. It should be Base/Quadrilateral.java, Base/Rectangle.java, Base/Trapezoid.java, etc.
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implementation is not possible using execution pointcuts. This is because AspectJ

semantics specifies that when a declaring type is used in an execution pointcut this cap-

tures only join points that match methods declared or overridden in the declaring type

[11][12]. In our example, this means that pointcut execution(void Rectan-

gle.draw()) of feature Color in (47) matches join points only if Rectangle declares

or overrides method draw, which is not the case in feature Base as Rectangle inherits

the method from Quadrilateral (38). This problem can be solved replacing the exe-

cution pointcut by a combination of call and target pointcuts.

This example suggests the existence of patterns of method extensions and replace-

ments that could be better expressed with different combinations of pointcuts, new point-

cut constructs tailored for specific feature extensions, or semantically modified versions of

existing pointcuts [19]. We believe this is an interesting venue for future research. 

6.4  Emulating Functional Composition
In Section 5.5.6 we presented the Pair Model of aspect composition and illustrated its

implications to common software engineering practices. The implementation in AspectJ

of QPL and our case study, the AHEAD tool suite, are implemented using ajc which fol-

lows the Pair Model. We saw in Chapter 3 that the original AHEAD tool suite imple-

mented in Jak follows a functional model similar to that described in Section 5.5.7. In

Section 5.8 we analyzed the relationship between these last two models. The question is:

Why was it possible to implement the AHEAD tool suite in AspectJ if AHEAD and

AspectJ follow different composition models? It turns out that the AspectJ translation of

the AHEAD tool suite emulates function composition. In other words, the set of AspectJ

language constructs chosen for the translation and the particular usage of precedence does

not exhibit any of the problems of the pair model that the Functional Model exposes. 

In this section we illustrate how function composition was emulated in QPL, and

hence in our case study. Saying that the AspectJ implementation of QPL emulates func-

tional composition means that for the three program members of QPL the Pair Model
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yields the same composition expressions as the Functional Model. We start with an intui-

tive proof that we later formalize using the models of Chapter 5. 

In previous chapters we have seen that function composition makes explicit the

order of composition and binds the scope to which program extensions are applied. Con-

sider for instance, the program that contains features Base, Style and Color in that

order. This program can be denoted as function composition Color(Style(Base))

because:

• Composition order: Aspect Ordering in (49) tells the weaver to first apply to Base

the pieces of advice and introductions in Style followed by those of Color.

• Bounded scope: Feature Style applies its extensions only to Base, and feature

Color applies its extensions only to its input program Style(Base).

Elaborating more on the second bullet, feature Style overrides method draw in

class Rectangle (44), and replaces method draw in class Trapezoid using advice (45).

In the first case, the introduction overrides an inherited method in Rectangle of feature

Base. In the second case, the advice captures join points triggered by the execution of

method draw of Trapezoid also in feature Base. Thus feature Style applies its exten-

sions only to elements in feature Base.

Similarly, feature Color applies its extensions only to the program it receives as

input Style(Base). Its three refinements ((46),(47), and (48)) add and extend elements

present in feature Base and thus present in Style(Base). Figure 6.1 illustrates this pro-

gram. The scoping arrows depict the code that class refinements affect. For example, the

two refinements in feature Style, affect their corresponding base code classes in feature

Base. Note that all scoping arrows point upwards, which means that features apply their

changes to the programs they receive as input.

It follows from this discussion that programs: a) with feature Base and b) with

features Base and Style can also be expressed with functional composition for the same

arguments just mentioned. 

This findings can be formalized as follows. We start by describing the algebraic

terms of the three features of QPL. 
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Base Feature. This feature consists of base programs, thus it is represented as:

Base = Quadrilateral + Rectangle + Trapezoid (51)

where each term correspond to each of the classes.

Style Feature. This feature contains aspects Style_Rectangle (44) and

Style_Trapezoid (45) whose pair representation is respectively defined as:

SR = <id, draw>

ST = <sta, staI + style$draw> where

sta is void around(Trapezoid obj$Trapezoid) : 

execution(void Trapezoid.draw()) && 

target(obj$Trapezoid)--> staI ( obj$Trapezoid);

static void Trapezoid.staI(Trapezoid t) {

  t.style$draw();

}

void Trapezoid.style$draw(){… dashed lines … } (52)

Color Feature. This feature contains aspects Color_Quadrilateral (46),

Color_Rectangle (47) and Color_Trapezoid (48) whose pair representation is

respectively defined as3:

CQ = <id, color + setColor>

CR = <cra, craI> where

3. In this model proceed calls preserve their semantics.

Figure 6.1  Function Composition in QPL

Base

Style

Color

inheritance refinement scoping

Color ( Style ( Base ) )

Quadrilateral TrapezoidRectangle
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cra is void around(Rectangle obj$Rectangle) : 

execution(void Rectangle.draw()) && 

target(obj$Rectangle) --> craI(Rectangle r);

static void Rectangle.craI(Rectangle r) {

t.setColor(GREEN); proceed(t);

}

CT = <cta, ctaI> where

cta is void around(Trapezoid obj$Trapezoid) : 

execution(void Trapezoid.draw()) && 

target(obj$Trapezoid) --> craI(obj$Trapezoid);

static void Trapezoid.ctaI(Trapezoid t) {

t.setColor(GREEN); proceed(t);

} (53)

In QPL the composition order was determined by the precedence clause in aspect

Ordering (49). Having defined our algebraic terms we now show how the Functional

Model of composition can be emulated for the three QPL programs expressed in the Pair

Model.

Program with feature Base. This follows trivially from the fact that Base fea-

ture is a constant program.

Program with features Base and Style. This program is expressed as4:

ST ◊ SR ◊ Base

  // substitution from (51)and (52)

= <sta, staI + style$draw> ◊ <id,draw> ◊ <id,Base> 

  // by pair model composition (33)

= <sta • id • id, staI + style$draw + draw + Base> 

  // by pair model weaving rule (36)

= sta • id • id (staI + style$draw + draw + Base) 

  // by identity of advice sum of 

4. Terms ST and SR can be composed in any other and yield the same result because they affect different
base classes.
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= sta • id (staI + style$draw + draw + Base)

// by partial distrib. of weaving over introduction sum

= sta (id(staI) + id(style$draw) + id(draw + Base))

// by definition of id

= sta (staI + style$draw + id(draw + Base))

// by functional model of composition (37)

= ST(SR(Base))

Program with features Base, Style, and Color. This program is expressed as

follows5:

CT ◊  CR ◊  CQ ◊ ST ◊ SR ◊ Base

// by substitution from (51), (52), and (52)

= <cta,ctaI> ◊  <cra,craI> ◊ <id,color+setColor> ◊  

  <sta, staI + style$draw> ◊  <id,draw> ◊ <id,Base> 

// by pair model composition (33)

= <cta • cra • id • sta • id • id, 

ctaI+ craI+ color+setColor+ staI+style$draw + draw +Base> 

// by pair model weaving rule (36)

= cta • cra • id • sta • id • id (ctaI + craI + color+ setColor    

 + staI + style$draw + draw + Base) 

// by partial distributivity of weaving and definition of id

= cta • cra • id • sta • id (ctaI + craI + color+ setColor +

 staI + style$draw + id (draw + Base))

// by definition of id

= cta • cra • id • sta (ctaI + craI + color+ setColor +

 staI + style$draw + id (draw + Base))

// by partial distributivity of weaving6

= cta • cra • id [ sta (ctaI + craI + color+ setColor) +

  sta(staI + style$draw + id (draw + Base))]

5. Additionally terms CT, CR, and CQ can appear in any other and yield the same result.
6. Brackets are for visual aid only, they have the same meaning as parenthesis.
110



// by distributivity and fixed point of weaving

= cta • cra • id [ ctaI + craI + color+ setColor +

  sta(staI + style$draw + id (draw + Base))]

// by partial distributivy and definition of id 

= cta • cra [ ctaI + craI + id (color+setColor + 

                  sta(staI + style$draw + id(draw+Base)))]

// by partial distributivity and fixed point

= cta(ctaI + cra(craI + id (color+setColor + 

                  sta(staI + style$draw + id(draw+Base)))))

// by functional model of composition (37)

= CT ( CR ( CQ ( ST ( SR ( Base )))))

6.5  AHEAD Translation Case Study
Section 6.2 and Section 6.3 describe how AHEAD and AspectJ implement QPL,  and

illustrate the mapping between both approaches that was followed for the translation of

the AHEAD tool suite case study.  

We translated into aspects the code base of the five key tools of AHEAD: a) mixin

performs mixin composition on features, b) jampack composes features by collapsing

their refinement chains, c) unmixin propagates changes from composed files back to their

constituent features, d) jak2java translates Jak programs into Java, and e) mmatrix sup-

ports AHEAD feature browser.

6.5.1  Mapping Jak to AspectJ

The mapping between Jak and AspectJ constructs was implemented in a translator called

jak2aj. It is summarized in Figure 6.2. Though not shown in the figure, the translation of

interfaces is similar to that of classes. 

There are four special cases in this mapping:
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• Translation of static methods does not have target clauses because their execution

is associated to a class not to an object.

• Methods with arguments and (&&) an extra args pointcut for the method parame-

ters which are bound to the around advice parameters.

• AspectJ does not permit introduction of protected members [12]. We translated

those as public members.

• Interfaces in implements clauses of class refinements are mapped to declare

parent clauses in their corresponding aspect.

AspectJ has an asymmetrical approach to overriding [11][12]; precedence can

override introductions but not base code members. Because of this, we had to distinguish

between method override and method replacement.

6.5.2  Results

The five tools studied are built from combinations of 48 different features. The code gen-

erated for all of them is slightly more than 205K+ LOC (Figure 6.3a). The 48 features sur-

veyed are implemented in 524 standard Java files (base code) and 503 aspect files. In

terms of LOC, Java code is 38K+ and AspectJ code 18K+. Thus, we found a 68%-32%

Figure 6.2  jak2aj Translation Summary

privileged aspect L_C { 
type around(C obj$C) :   execution(mods type C.f())

&& target(obj$C) {  return obj$C.L$f( );   }
type C.L$f() { … }

}

layer L;
refines class C { new mods type f() { ... } }

Method replacement

privileged aspect L_C {
mods type C.f(args) {  ... super.f(args); ...  } 
}

layer L;
refines class C { 
overrides mods type f(args)  { ... Super.f(args); ... }

}

Method override

privileged aspect L_C { 
type around(C obj$C) : execution(mods type C.f())

&& target(obj$C) {  …proceed(obj$C); … }
}

layer L;
refines class C { mods type f() { ...Super.f(); … } }

Method extension

AspectJJak

privileged aspect L_C { mods type C.f(args) {...}  }layer L;
refines class C { mods type f(args) {...} }

New method

privileged aspect L_C {   mods type C.f; }layer L;
refines class C { mods type f; }

New field

class C { …}layer L;
class C { … }

Standard Class

privileged aspect L_C { 
type around(C obj$C) :   execution(mods type C.f())

&& target(obj$C) {  return obj$C.L$f( );   }
type C.L$f() { … }

}

layer L;
refines class C { new mods type f() { ... } }

Method replacement

privileged aspect L_C {
mods type C.f(args) {  ... super.f(args); ...  } 
}

layer L;
refines class C { 
overrides mods type f(args)  { ... Super.f(args); ... }

}

Method override

privileged aspect L_C { 
type around(C obj$C) : execution(mods type C.f())

&& target(obj$C) {  …proceed(obj$C); … }
}

layer L;
refines class C { mods type f() { ...Super.f(); … } }

Method extension

AspectJJak

privileged aspect L_C { mods type C.f(args) {...}  }layer L;
refines class C { mods type f(args) {...} }

New method

privileged aspect L_C {   mods type C.f; }layer L;
refines class C { mods type f; }

New field

class C { …}layer L;
class C { … }

Standard Class
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ratio between Java code and AspectJ code as illustrated in Figure 6.3b. The Java code has

1006 fields, 40 constructors and 2200+ methods. AspectJ code introduces 58 new fields

and 610 new methods, with 164 method overrides, 8 method replacements, and 8 method

extensions (Figure 6.3c). These numbers and their corresponding LOC indicate that

AHEAD tool suite relies heavily on introductions, and only uses a tiny number of pieces

of advice. Of the 56700+ LOC in the 48 features of the synthesized tools, only 119 lines

(.2% — 2 tenths of one percent) is due to method extension, and 440 lines (.7% — seven

tenths of one percent) is due to method replacement.

A strength of AOP is without doubt the sophisticated mechanisms to specify com-

plex pointcuts yet in the case of AHEAD tool suite they were not fully exploited. This is

not surprising, as AHEAD itself offers very limited advising capabilities (method and con-

structor extensions). This explains why less than 1% of the synthesized code is due to

advice. An open research question is: if AHEAD had more powerful forms of pointcuts

and advice, how much larger would this percentage be?

Figure 6.3  AHEAD Case Study Summary
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4423420jampack

207053Total

4390717jak2java
3879811unmixin

4040216mixin
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A bound on this number is the recognition that features in product lines generally

implement collaborations [7][147], which in the AOP literature correspond to heteroge-

neous crosscuts. Such crosscuts deal with field and method introductions and advice

whose pointcuts qualify a single join point. AspectJ excels in realizing homogeneous

crosscuts (advice whose pointcuts qualify multiple join points). The important role of het-

erogeneous crosscuts is not surprising: large programs are not synthesized by adding the

same piece of code in different places, but rather, adding different pieces of code in differ-

ent places.

6.6  Related Work
The use of AOP as an implementation technology for product lines have been analyzed

and evaluated in several case studies: embedded systems [36][100], graph algorithms

[104], extensibility problem [106], mobile phones applications [5][4], middleware soft-

ware [50][163], and e-commerce [124]. We elaborate on those closest to our work.

Anastasopoulus and Muthig propose criteria to evaluate AOP as a product line

implementation technology [5]. Their criteria encompasses the main activities of both

framework and application engineering. They regard AOP as a program transformation

technique. From that perspective, their evaluation on Reuse Over Time concludes that

aspect reuse is hindered because it is hard to predict the effects of AOP transformations.

The foundations of our function composition model is an algebra that also regards aspects

as transformations [108]. This perspective allowed us to analyze AspectJ composition and

propose an alternative model with simpler and more predictable composition semantics.

Another evaluation criterion is Variation Type where authors mention precedence as a

mechanism to address variation order. In this paper we showed that in some cases prece-

dence clauses are not enough to express some variation orders.

Alves et al. propose a methodology that combines reactive and extractive

approaches to product line development [4]. It is an iterative process that starts by identi-

fying concerns in a set of related products, builds a concern graph [141], and extracts the
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commonality and variability present in the graph to build a product line design. At each

iteration the product line is reactively adapted through code transformations based on a set

of template-oriented AOP refactorings. This contrasts with our work as we use aspects as

building blocks of an existing product line. However, we believe that a function composi-

tion model can also increase reuse in the aspects extracted following their methodology.

Coyler and Clement implemented members a middleware product line using

aspects [50]. They developed three features that are typical AOP applications: tracing,

monitoring and failure data capture. They also refactored into a feature the support for

EJB in a server application. Their implementation of this latter feature shows a 3-1 ratio

between the number of introductions and pieces of advices. More surprisingly, the pieces

of advice of this feature capture only a single join point as we did in our case study. 

A similar study was performed by Zhang and Jacobsen [163]. They refactored

aspects from a CORBA implementation using an iterative process they called Horizontal

Decomposition (HD). They achieved a 40% reduction on code size and good performance

improvement. Liu and Batory have proposed an algebraic theory of feature composition

and decomposition that generalizes and provides a mathematical foundation in which to

understand HD [99]. This theory also relies on function composition.
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Chapter 7

Conclusions and Future Work

This dissertation proposed features as modularity units for abstraction and synthesis of

programs. We developed algebraic models and tools to support feature modules, assess

their applicability by implementing a non-trivial case study, and evaluated support for fea-

tures in emerging modularization technologies. In this chapter we review the core results

and contributions of our work, and present venues for future research.

7.1  Results and Contributions
Software systems are commonly described and designed by features, and the functionality

they provide. Unfortunately conventional software modularization paradigms fail to pre-

serve feature abstraction down to the implementation level because of two problems. First,

a typical feature implementation is spread over several conventional modules. Second,

features are usually more than source code artifacts as they can modularize many different

program representations such as makefiles, documentation, or performance models.

The lack of feature modularity causes software developers to lower their abstrac-

tions from features to those provided by the underlying implementation languages. In

other words, features are broken into many fragments which (at best case) become modu-

lar units in supporting languages or (most commonly) form new modular units with frag-

ments from other features. Thus the conceptual gap between feature abstractions and their

modularization hinders program understanding and product line development. 
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We proposed features, increments in program functionality, as an evolutionary

step in program abstraction and modularity. We explored the foundations of Feature Ori-

ented Programming, a software development paradigm whose cornerstone is feature mod-

ularity, and explained its algebraic model, underlying principles, and tool support.

A key contribution of our work was Origami [27], an architectural model to sim-

plify program specification. Specifying a program as a composition of feature modules

can quickly become unwieldy when the number of feature combinations explodes as the

number of modules increases. Origami addresses this problem by constructing n-dimen-

sional models, depicted as n-dimensional matrices. Each dimension is formed by an

AHEAD model, and feature modules are arranged in the matrix at the n-dimension inter-

section of the functionality they implement. Origami specifies a composition for each

dimension with a dimensional equation. In the general case, a model with k dimensions

and n features per dimension, this significantly reduces the length of specification from

O(nk) to O(nk). This reduction is crucial because it allows AHEAD to seamlessly scale

program synthesis to product lines of non-trivial size and complexity.

To make an assessment of feature modularity support in emerging modularization

technologies, we developed an example product line – Expressions Product Line (EPL),

yet another example of Origami – and proposed basic properties that feature modules that

implement this problem should provide. We evaluated several technologies and found that

none of them fully satisfy all the proposed properties. We related the properties to our

algebraic models, thus providing a foundation for an implementation-independent model

on which to compare and contrast modularization technologies.

AspectJ is the flagship language of Aspect Oriented Programming, a popular and

emerging modularization technology. We developed an algebraic model for a core of this

language which helped us highlight two problems with its defacto composition model:

unbounded quantification, and aspect composition via precedence clauses. We devised an

alternative model, which regards aspect composition as function composition, to address

these problems. We believe this model in conjunction with the model of FOP constitutes a

foundation of a mathematically-founded model of feature modularity. 
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We performed an empirical assessment of the functional model of aspects. We

implemented the core tools of ATS (200K+ LOC) in AspectJ to assess the validity and rel-

evance of our model. This required the construction of a translator from Jak to AspectJ

whose mapping emulated functional composition by preventing the problems identified

with the defacto AspectJ model. Statistics were collected that shed light on the impact dif-

ferent constructs have on feature modules and on the overall structure of the product line.

7.2  Future Work
Despite its success in implementing systems of non-trivial scale, we believe Feature Ori-

ented Programming is still in its infancy and has a promising potential. Overall it requires

a more cohesive and comprehensive tool support, coupled with a thorough implementa-

tion and assessment of case studies from a wide spectrum of problem domains. To contrib-

ute towards those goals, our work opens several concrete venues for future research:

• Generalization of AHEAD model to include aspects and the corresponding develop-

ment of supporting tools. We emulated functional composition for the implementa-

tion of five core tools of ATS by avoiding the problems highlighted in the defacto

model of AspectJ. This case study helped us glimpse at the potential effect of func-

tional composition in program development with aspects. However, to fully gauge

and exploit the impact that aspects may have on product line synthesis we need to

generalize AHEAD composition model and develop a set of supporting tools. For

the implementation of these tools, we may rely on parts of the infrastructure pro-

vided by abc [10][17], an extensible AspectJ compiler.

• Analysis of aspect constructs impact on product line implementation. The statistics

we gathered for the implementation of ATS showed that its features are predomi-

nantly collaborations, heterogeneous crosscuts in AOP terms, which can be ele-

gantly implemented with OO technology similar to mixins. On the other hand,

AspectJ excels at realizing homogeneous crosscuts; however, our case study did not

require crosscuts of this type. Based on the experience of other researchers and ours
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[7], we conjecture that the predominant use of aspects in product lines is to imple-

ment heterogeneous crosscuts rather than homogeneous crosscuts. To validate this

conjecture it is necessary to develop a set of metrics to quantify how aspect lan-

guage constructs are used and how they affect the structure of feature code to imple-

ment heterogeneous or homogeneous crosscuts. These metrics would then be

applied to a pool of AspectJ-based product lines and then our conjecture could be

evaluated.

• Compiler and type theory support for FOP. The current implementation of AHEAD

is based on sophisticated program preprocessors. This technology presents limita-

tions on the kinds of program analysis that can perform. We are interested in stati-

cally checking that feature modules and their composition is well typed. Thus a type

theory and appropriate compiler support are needed.

• Broadening the scope of FOP for product line development. In Chapter 2 we

described the two main processes of product line methodologies, Domain and

Application Engineering, and sketched their basic activities. Throughout the disser-

tation, we have seen that FOP touches on the activities of design and configuration,

but fundamentally addresses implementation and generation. We believe FOP can

extend its scope to other activities. For instance, work on UML support for product

line design [68], and implementation of use cases with AspectJ [80][82] open the

possibility of integrating FOP into mainstream design practices using models such

as UML.
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