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We consider the problem of developing formally correct dense linear algebra

libraries. The problem would be solved convincingly if, starting from the mathe-

matical specification of a target operation, it were possible to generate, implement

and analyze a family of correct algorithms that compute the operation. This thesis

presents evidence that for a class of dense linear operations, systematic and me-

chanical development of algorithms is within reach. It describes and demonstrates

an approach for deriving and implementing, systematically and even mechanically,
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Chapter 1

Introduction

“Programming is one of the most difficult branches of applied mathematics;”

E.W. Dijkstra [EWD 498]

Developing and implementing algorithms is a laborious and error-prone process when

performed by a human. This dissertation is motivated by the desire of making the

development and the implementation of dense linear algebra algorithms as system-

atic as possible.

1.1 Goals and Motivations

Proving the correctness of programs is a fundamental problem in the field of com-

puter sciences. Throughout the years, in a quest towards a formalism for proving

the correctness of algorithms, a number of scientists have received the ACM Tur-

ing Award for their contributions to structured programming, formal methods, and

analysis of programs: E.W. Dijkstra (1972), J. Backus (1977), R.W. Floyd (1978),

C.A.R. Hoare (1980) and J. Hopcroft (1986). Thanks to the seminal work of these

pioneers, the discipline of programming today lies on solid grounds: starting from

an algorithm (or routine) A, computer scientists possess the tools to assert whether
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A computes a target function or not (i.e., to prove the formal correctness of A).

Yet, the field is not closed. If the algorithm is loop-based, the methodology suffers

from a limitation: it relies on the programmer’s ability to identify a loop-invariant,

a predicate that remains true throughout the execution of the loop statement. The

proof of correctness of a loop-based algorithm depends on this predicate, but no

systematic method for identifying loop-invariants is known. As a consequence of

this limitation, a formal proof of correctness is often sought for critical applications

only, with loop-invariants manually identified by a human.

In the field of scientific computing, the situation is exacerbated by the fact

that most algorithms inherently deal with approximate quantities (real numbers)

instead of discrete values. In such a scenario, the concept of formal correctness

often translates to those of confidence and stability. The level of confidence of a

program is raised by explicit testing, that is, by executing the program on a vast

number of different inputs, monitoring its termination and accuracy (in some form).

In addition, the stability of an algorithm is assessed through a careful analysis, by

hand, of the propagation of errors due to approximate arithmetic. These premises

justify the tradition of creating new numerical libraries by expanding or modifying

existing ones, with the intent of retaining, as much as possible, the level of confidence

and the stability analyses that were established for the old libraries.

In this dissertation we examine the problem of developing dense linear alge-

bra libraries consisting of formally correct and numerically stable algorithms. Such

algorithms are the building blocks for countless scientific applications, including

sparse matrix computations. Because of the impact of dense linear algebra on com-

putational science, a library is subject to a number requirements. Here we present

a list of the most important requirements.

• High-performance. Performance plays a crucial role in the computational

sciences, where faster routines result in the ability of solving larger problems

2



or computing more accurate solutions.

• Multiple algorithmic variants. In Figs. 1.1 and 1.2, we report the se-

quential and parallel performance of three different algorithmic variants for

computing the Cholesky factorization. Additionally, in gray, we report the

performance for LAPACK, currently the de facto standard linear algebra li-

brary in the scientific community. The parallel performance was measured on

a shared memory architecture (a system where two or more identical proces-

sors are connected to a single shared main memory, also known as an “SMP

system”).1 Variant 1 attains the best sequential performance, but it is the

slowest in the parallel environment. By contrast, Variant 3 attains the best

parallel performance, and the worst sequential. LAPACK only includes one

variant,2 Variant 2, that is the second best in both scenarios. Fig. 1.3 reports

the parallel performance of four variants for computing the inverse of a trian-

gular matrix: the variant included in LAPACK (in grey) is again suboptimal

on both sequential and parallel systems; in this example the difference between

the best variant and the second best (LAPACK) is significant. Fig. 1.3 also

shows that the best performance is attained by different variants depending on

the problem size: Variant 2 is the fastest for small and medium-sized matrices,

while Variant 3 is to be preferred for very large matrices.

We conclude that in order to obtain high-performance in different scenarios,

a library has to include a family of algorithmic variants computing the same

operation.
1The experiments were performed on an IBM Power 4 SMP System. This architecture consists

of an SMP node, with sixteen 1.3 GHz Power4 processors and 32 GBytes of shared memory. The
processors operate at 4 FLOPS per cycle, for a peak theoretical performance of 5.2 GFLOPS/proc
(billions of FLOPS, per processor), with a dgemm (matrix-matrix multiply) benchmarked at 3.7
GFLOPS/proc. We measured performance running the experiments with one and sixteen proces-
sors.

2LAPACK normally contains two routines per operation: the blocked and unblocked versions.
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Figure 1.1: Performance for the sequential computation of the Cholesky factoriza-
tion.

• Coverage. A library should include the functionality encountered by scientific

applications.

• Correctness.

“Program testing can be used to show the presence of bugs,

but never to show their absence! Therefore, proof of program

correctness should depend only upon the program text.”

E.W. Dijkstra [EWD268]

When developing numerical routines, it is customary to consider testing as the

principal tool for asserting formal correctness. The routines are executed thou-

sands (or even millions) of times on carefully constructed test-beds comprised
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Figure 1.2: Computation of the Cholesky factorization in a shared memory environ-
ment: performance for 16 processors.

of artificial matrices with specific properties along with matrices arising in

real-life applications. While testing is certainly indispensable, it is not enough

to certify the correctness of a routine. A formal proof of correctness, together

with testing, would increase dramatically the confidence level of routines and

libraries.

• Stability Analysis. A numerical algorithm is to be trusted only if docu-

mented with a stability analysis: unstable algorithms may return highly in-

accurate answers and must not be taken into consideration for performance

reasons. Moreover, given the modular structure of scientific applications, the

analysis of an algorithm is useful for assessing the stability of the operations

that use such an algorithm as a component.
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Figure 1.3: Computation of the inverse of a triangular matrix in a shared memory
environment: performance for 16 processors.

• Performance Analysis. When facing many algorithmic variants for the

same operation, the users need criteria to select the best variant for a specific

scenario. Every routine in the library should be documented with a perfor-

mance analysis. Better yet, the library should automatically chose the best

algorithm.

Because of the scientific advancements and ever evolving architectures, new

libraries, containing new and improved algorithms (customized for different archi-

tectures), are always in demand. The development of a library that satisfies the

listed requirements represents a daunting task.

Traditionally the problem has been made manageable by reducing the re-

quirements and by adopting an incremental approach (new libraries are built upon
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previous ones). Presently, it is common for libraries to include at most one or two

algorithmic variants for most operations. Such a simplification significantly affects

the task of testing and analyzing. No performance analysis is needed. The stability

analysis is often inherited from previous libraries. Furthermore, formal correctness

has never been pursued.

We approach the development of dense linear algebra libraries from a different

perspective. The magnitude of effort required to develop and maintain a library in

accordance with the listed requirements attests to the need for mechanical tools

to aid, or even replace, the human programmer. Our vision is to shift the burden

from a human to a mechanical system. Such a system would take the mathematical

description of a target operation as input and, at the press of a button, would

generate a family of formally correct algorithms that compute the operation. Each

algorithm would be in the form of a high-level description or a routine implemented

in a target language. In addition, each algorithm would come with an accompanying

stability and performance analysis.

The goal of this thesis is to create theories and tools for facilitating the

mechanical generation of dense linear algebra libraries.

1.2 Background

Several topics in computer sciences come together in this dissertation: high per-

formance computing, formal derivation methods, numerical linear algebra and au-

tomatic generation of programs. In the next sections we provide a brief historical

overview of these disciplines. We introduce the concept of “formal correctness,”

distinguishing between correctness and accuracy of algorithms.
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1.2.1 Dense Linear Algebra Libraries

The first libraries for linear algebra appeared in the early 1970s; an exhaustive list

of libraries released since would be daunting. Here we only mention those projects

that became popular and are related to the dissertation.

The “NAG Fortran Library” was the first (commercial) library to be dis-

patched, in September 1971; it was written in Fortran (and was also available in

Algol 60) and included numerical algorithms for a variety of problems ranging well

beyond the realm of linear algebra. The next year (1972) EISPACK [35] was re-

leased; it was distributed free of charge and only included routines related to the

solution of eigenproblems. The developers of EISPACK made an effort to con-

sistently document every routine with a publication presenting the algorithm and

discussing its stability analysis.

A first set of Basic Linear Algebra Subprograms (Level 1 BLAS, or BLAS1 [25,

33]) was identified in 1973; the BLAS1 library consisted of vector operations that

were optimized for the then popular vector architectures. The rationale was to

express more complex linear algebra algorithms in terms of the BLAS1 opera-

tions, which were then optimized for different platforms, to attain portable high-

performance. This was the philosophy underlying LINPACK [15] (announced in

1974 and released in 1978), the first library for the solution of dense linear sys-

tems that gained widespread acceptance. LINPACK was written in Fortran77 and

included a variety of algorithms for general matrices as well as for matrices with

structure (symmetric, banded, triangular). Today, almost 30 years after its release,

the LINPACK legacy is still very tangible: not only are the fastest supercomputers

ranked based on the LINPACK benchmark [16] (computation of the solution of a

linear system via LU factorization with pivoting), but many libraries are still devel-

oped complying with the modular style introduced by the authors of LINPACK.

In the late 1980s the idea of BLAS was extended to include matrix-vector

8



operations (Level 2 BLAS, or BLAS2 [18], 1988) and eventually matrix-matrix op-

erations (Level 3 BLAS, or BLAS3 [17], 1990). The objective was to attain high-

performance on architectures with a hierarchical memory system by amortizing the

costly data movement over a large number of floating point operations. At the

same time (1987) a new project started, LAPACK [1]: the goal was to rewrite the

EISPACK and LINPACK libraries exploiting the Level 3 BLAS, to attain high per-

formance “on shared-memory vector and parallel processors. On these machines,

LINPACK and EISPACK are inefficient because their memory access patterns dis-

regard the multi-layered memory hierarchies of the machines, thereby spending too

much time moving data instead of doing useful floating-point operations” [32]. LA-

PACK was written in Fortran77 and since its inception in 1992 has become the most

widely used library for high-performance dense linear algebra.

In the 1990s several libraries targeting distributed memory architectures ap-

peared. In 1993, LAPACK’s sister library, ScaLAPACK [12], was released, but

because of the cumbersome interface, it never equaled the popularity of LAPACK;

it was still written in Fortran77. PLAPACK [36] was released in 1997: this package

was not meant as a complete dense linear algebra library per se, but as a convenient

infrastructure for coding dense linear algebra algorithms on distributed memory

architectures. It was implemented in C and provided the user with a high-level

interface, hiding the intricate indexing present in ScaLAPACK. The FLAME Appli-

cation Program Interfaces (APIs) illustrated in Section 1.3 evolved from PLAPACK.

Starting from 1995 the concept of automatic generation of programs gained

popularity. Recognizing that the matrix-matrix multiply (GEMM) is the central

operation in dense linear algebra (every other BLAS3 routine is written in terms

of it), the PHiPAC project [11], and later the ATLAS [37, 38] project, tackled the

problem of optimizing this routine for a target architecture without any machine-

9



specific hand tuning.3 The PHiPAC methodology consists of three components:

1) a model for the C compiler that provides guidelines to produce portable high-

performance ANSI C code; 2) a parameterized code generator that produces codes

according to guidelines; 3) a set of scripts that automatically tune code for a partic-

ular architecture by varying the code generators parameters and benchmarking the

resulting routines. ATLAS employed a modification of PHiPAC’s technique in that

the search space is reduced by constraining the number of different implementations

that are generated in the search process. Consequently the optimization process

completes more quickly, typically in a matter of hours. On the other hand, in terms

of performance, these two projects have not delivered routines that approach the

performance of hand-optimized BLAS. Currently, the fastest Open Source BLAS

implementation for a number of architectures is the GotoBLAS [21] library.

We make a comment to differentiate the concepts expressed by the words

“automatic” and “mechanical.” We associate “automatic” with a system that im-

plements an optimization process over a parametric space. With respect of the

generation of algorithms, both PHiPAC and ATLAS automatically produce many

different implementations of the same algorithm (GEMM). We refer to the process

of searching for the implementation whose execution time is minimal (among the

ones generated) as “tuning” for a target algorithm. In contrast, we use the word

“mechanical” to indicate a system that generates different algorithmic variants with

no human intervention (each variant can then be optimized by tuning).

Finally we mention Matlab [26]. Rather than being a proper library, it

is an effective computing environment, especially when it comes to linear algebra

operations. In its latest versions, Matlab acts as a user-friendly interface to linear

algebra libraries: the user invokes matrix functions through a high-level interface,4

3Recent versions of ATLAS produce a mix of automatically tuned and user-contributed code.
4As an example, the expressions x=A\b and M=lu(A) correspond to solving the linear system

Ax = b and to computing the LU factorization of matrix A, respectively.
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which are then translated into internal functions or into calls to external linear

algebra libraries like LAPACK, SLICOT [3] and RECSY [29, 30] (these last two are

specialized libraries for control theory equations).

1.2.2 Error Analysis of Algorithms

When dealing with numerical algorithms, it is crucial to study the propagation of

errors due to floating point representation and arithmetic. Performance issues may

be taken into account only when an algorithm is certified to yield an approximation

to the solution that is as good as the conditioning of the problem warrants.

James Wilkinson was the first to publish a thorough analysis of the errors

arising in a cross section of numerical algorithms. His books Rounding Errors in

Algebraic Processes [39] and The Algebraic Eigenvalue Problem [40], published about

40 years ago, initiated a new discipline in numerical analysis. The problems and the

solutions Wilkinson presented were so crucial to the computer science community

that he received both the ACM Turing award and the SIAM von Neumann award.

Since Wilkinson’s ground-breaking work many books and papers have exten-

sively treated the argument of analyzing the stability properties of algorithms. The

majority of numerical linear algebra publications have a section dedicated to error

analysis. A comprehensive book on the subject for many operations in linear algebra

is Nick Higham’s book Accuracy and Stability of Numerical Algorithms5 [27].

Today the area is the domain of a few experts. Normally the error analysis

for a new algorithm is a reduction to a standard result or it consists of a composition

of known results. Generally speaking, the techniques used to derive error analyses

of algorithms present two deficiencies: they are not sufficiently modular and their

clarity greatly depends on notation. Quoting Higham [27]:

“Two reasons why rounding error analysis can be hard to understand
5This book covers algorithms in numerical linear algebra with the exception of the area of

eigenvalue and singular value computations.
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are that, first, there is no standard notation and, second, error analyses

are often cluttered with re-derivations of standard results.”

1.2.3 Formal Correctness vs. Numerical Stability

Let Op : X → Y be a mathematical function and A an algorithm implementing

Op. The output y̌ is obtained by executing algorithm A on input x ∈ X: y̌ = A(x).

We investigate the relation between the computed solution y̌ and the exact solu-

tion y = Op(x). Naturally it would be desirable that y̌ equal y for any input x,

but since the computer arithmetic for real numbers is approximate, numerical algo-

rithms cannot generally satisfy such a property. The definition of formal correctness

is therefore given under the assumption of exact arithmetic (absence of roundoff er-

ror); this leads to the possibility of having formally correct algorithms that compute

inexact results. For this reason, when dealing with numerical algorithms, two dis-

tinct concepts are needed: formal correctness and numerical stability.

The Floyd-Hoare logic [28, 19] is a formal system for reasoning about the

correctness of computer programs with the rigor of mathematical logic. The central

tool of this logic is the Hoare triple. A triple describes how the execution of a section

of code changes the state of the computation. A Hoare triple is of the form

{P} C {Q}

where P and Q are predicates (formulae in predicate logic) and C is a command.

P is called the precondition and Q the postcondition. Such a triple is read as:

whenever the command C is executed in a state in which P holds, it will terminate

and Q holds upon completion.

Definition 1 (Formal Correctness) Algorithm A is correct if in the absence of

roundoff it exactly computes Op. That is, for each x ∈ X it returns y̌ = A(x) such

that y̌ = Op(x).
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Definition 1 can be stated in term of a Hoare’s triple as:

{x = x̂; y = ŷ} A {y = Op(x̂)}

which means that if the algorithm A is executed in a state in which the variable x

equals some value x̂, then the execution terminates and it leads to a state in which

the value of variable y equals the value Op(x̂).
If algorithm A does not comprise approximate computations, a proof of (for-

mal) correctness guarantees that A always returns the same output as Op. The

reasons why the same conclusion cannot be drawn for numerical algorithms are:

1) not every real number can be stored exactly in a computer and 2) real number

computations (floating point computations) incur approximations. In the presence

of floating point computations, a formally correct algorithm may return a value y̌

which may not even be “close” to the exact solution y.

The study of the numerical stability of algorithms finds bounds to express the

quality of computed quantities. It is often the case that it is not the distance (ab-

solute or relative) between the computed solution y̌ = A(x) and the exact solution

y = Op(x) that sets apart stable (reliable) algorithms from unstable (unreliable)

algorithms: a characterizing criterion is given by the backward stability.

Definition 2 (Numerical Stability) Let A be an algorithm that computes Op,
and let us assume that it possible to bound a priori the number of steps necessary for

A to complete. The algorithm A is said to be backward stable if for each x ∈ X,

in the presence of roundoff, it returns an output y̌, which is the exact solution of a

problem Op(x̃), where x̃ is a “small” perturbation of the input data x.

The backward stability of an algorithm A implementing the operation Op
can be defined in terms of norms as follow: A is stable if ∀x ∈ X, there exists a

“small” quantity ε such that A(x) = Op(x̃) and ‖x − x̃‖ ≤ ε. The definition of
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“small” is context-dependant.

1.3 The Framework: FLAME

The Formal Linear Algebra Methods Environment (FLAME) effort is a project that

aims at generating and implementing high-performance linear algebra algorithms.

The project encompasses a large number of theoretical and practical tools, some of

which are presented in this thesis. At the core is a new notation for expressing dense

linear algebra algorithms [10]. This notation has a number of attractive features:

(1) it avoids the intricate indexing into the arrays that store the matrices that often

obscures the algorithm; (2) it raises the level of abstraction at which the algorithm

is represented; (3) it allows different algorithms for the same operation and similar

algorithms for different operations to be easily compared and contrasted; and (4)

it allows the state (loop-invariant) of the matrix being updated to be concisely

expressed.

FLAME APIs for representing algorithms in code have been defined for a

number of programming languages [8]. These APIs allow the code to closely resemble

the formally correct algorithms so that (1) the implementation requires little effort

and (2) chances of introducing coding error are minimized.

As this dissertation demonstrates, the notation supports a step-by-step pro-

cess for deriving formally correct families of loop-based algorithms [5]. The method-

ology is sufficiently systematic that it can be made mechanical [7] and it can be

extended to numerical stability analysis [9]. The project is also working towards

making performance analysis similarly systematic and mechanical [23].

Here we give an overview of the notation and the APIs employed in the

FLAME project. A blocked algorithm for computing the Cholesky factorization

of a matrix A is used as an example. The complete derivation of this algorithm

and a more detailed presentation of the FLAME notation and APIs are provided in
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for j = 1 : n in steps of nb

b := min(n− j + 1, nb)

Aj:j+b−1,j:j+b−1 :=

Γ(Aj:j+b−1,j:j+b−1)

Aj+b:n,j:j+b−1 :=

Aj+b:n,j:j+b−1A
−T
j:j+b−1,j:j+b−1

Aj+b:n,j+b:n :=

Aj+b:n,j+b:n−
tril(Aj+b:n,j:j+b−1A

T
j+b:n,j:j+b−1)

end

Algorithm: A := Chol blk(A)

Partition A→
„

ATL ?

ABL ABR

«

where ATL is 0× 0

While m(ATL) < m(A) do
Determine block size b
Repartition
„

ATL ?

ABL ABR

«
→
0
@

A00 ? ?

A10 A11 ?

A20 A21 A22

1
A

where A11 is b× b

A11 := Γ(A11)
A21 := A21 tril(A11)

−T

A22 := A22 − tril(A21A
T
21)

Continue with
„

ATL ?

ABL ABR

«
←
0
@

A00 ? ?

A10 A11 ?

A20 A21 A22

1
A

endwhile

Figure 1.4: Matlab-like and FLAME description of a blocked algorithm for comput-
ing the Cholesky factorization. The function tril(X) denotes the lower triangular
part of matrix X.

Appendix A.

Fig. 1.4 shows side-by-side, a “Matlab-like” and the FLAME description of

the algorithm. It is apparent that the Matlab notation (on the left), although very

concise, makes it is hard to identify what regions of the matrix are updated and

used. On the contrary, the FLAME notation (on the right) makes these regions

explicit. Thanks to a Matlab API (“FLAME@lab”), the FLAME implementation

in Fig. 1.5 closely mirrors the algorithm description of Fig. 1.4 (right).

A LAPACK routine implementing the same blocked algorithm is shown in

Fig. 1.6. High-performance is attained thanks to the calls to BLAS functions. Again,

the code makes it difficult to create a picture of what parts of the matrix are used

or updated. A high-performance FLAME implementation (FLAME/C) is given

in Fig. 1.7. The routine presents the same structure as the FLAME algorithm
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function [ A_out ] = Chol_blk( A, nb_alg )

[ ATL, ATR, ...

ABL, ABR ] = FLA_Part_2x2( A, ...

0, 0, ’FLA_TL’ );

while ( size( ATL, 1 ) < size( A, 1 ) )

b = min( size( ABR, 1 ), nb_alg );

[ A00, A01, A02, ...

A10, A11, A12, ...

A20, A21, A22 ] = FLA_Repart_2x2_to_3x3( ATL, ATR, ...

ABL, ABR, ...

b, b, ’FLA_BR’ );

%------------------------------------------------------------%

A11 = Chol_unb( A11 );

A21 = A21 / tril( A11 )’;

A22 = A22 - tril( A21 * A21’ );

%------------------------------------------------------------%

[ ATL, ATR, ...

ABL, ABR ] = FLA_Cont_with_3x3_to_2x2( A00, A01, A02, ...

A10, A11, A12, ...

A20, A21, A22, ...

’FLA_TL’ );

end

A_out = [ ATL, ATR

ABL, ABR ];

return

Figure 1.5: FLAME@lab (Matlab) code for a blocked Cholesky factorization.

description (Fig. 1.4) and the Matlab implementation (Fig. 1.5).
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SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )

* Parameters declaration.

[..]

*

DO 20 J = 1, N, NB

*

* Update and factorize the current diagonal block and test

* for non-positive-definiteness.

*

JB = MIN( NB, N-J+1 )

CALL DSYRK( ’Lower’, ’No transpose’, JB, J-1, -ONE,

$ A( J, 1 ), LDA, ONE, A( J, J ), LDA )

CALL DPOTF2( ’Lower’, JB, A( J, J ), LDA, INFO )

IF( INFO.NE.0 )

$ GO TO 30

IF( J+JB.LE.N ) THEN

*

* Compute the current block column.

*

CALL DGEMM( ’No transpose’, ’Transpose’, N-J-JB+1, JB,

$ J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),

$ LDA, ONE, A( J+JB, J ), LDA )

CALL DTRSM( ’Right’, ’Lower’, ’Transpose’, ’Non-unit’,

$ N-J-JB+1, JB, ONE, A( J, J ), LDA,

$ A( J+JB, J ), LDA )

END IF

20 CONTINUE

Figure 1.6: LAPACK (Fortran) code for a blocked Cholesky factorization.
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int FLA_Chol_blk( FLA_Obj A, int nb_alg )

{ /* parameters declaration */

[..]

FLA_Part_2x2( A, &ATL, &ATR,

&ABL, &ABR,

/* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );

while ( FLA_Obj_length( ABR ) != 0 ){

b = min( FLA_Obj_length( ABR ), nb_alg );

FLA_Repart_2x2_to_3x3( ATL, ATR, &A00, /**/ &A01, &A02,

/* ******************** */

&A10, /**/ &A11, &A12,

ABL, ABR, &A20, /**/ &A21, &A22,

/* with */ b, /* by */ b, /* A11 split from */ FLA_BR );

/* *************************************************************** */

FLA_Chol_unb( A11 );

FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR, FLA_TRANSPOSE,

FLA_NONUNIT_DIAG, ONE, A11, A21 );

FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, MINUS_ONE,

A21, ONE, A22 );

/* *************************************************************** */

FLA_Cont_with_3x3_to_2x2( &ATL, &ATR, A00, A01,/**/ A02,

A10, A11,/**/ A12,

/* **************** */

&ABL, &ABR, A20, A21,/**/ A22,

/* with A11 added to submatrix */ FLA_TL );

}

return;

}

Figure 1.7: FLAME/C code for a blocked Cholesky factorization.
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1.4 Contributions

The main contribution of this dissertation is that it provides evidence that a mechan-

ical system for developing linear algebra algorithms and libraries is within reach. By

letting a formal correctness proof guide the construction of loop-based algorithms,

a systematic methodology is defined. Evidence is presented that this methodology

can be made mechanical and that the approach also applies to stability analysis.

Specific contributions to the fields of computer sciences are:

• Program correctness. We present a methodology for deriving loop-based

algorithms for a large number of dense linear algebra operations. The algo-

rithms are built around a proof of correctness, therefore they are correct by

construction and no further proof is required. This result was facilitated by

the choice of an appropriate level of abstraction at which to reason about dense

linear algebra algorithms. This, in turn, was instrumental for the discovery

that for a class of operations, loop-invariants can be identified systematically

and a priori. Once a loop-invariant is selected, the proof of correctness guides

the construction of the corresponding algorithm.

• Systematic derivation of families of algorithms. We show that the

derivation methodology is systematic and generates many algorithms for the

same operation. The methodology consists of a procedure that takes the math-

ematical specification of a target operation as input and returns a family of

algorithms that compute the operation. Every step of the procedure is fully

determined by the input.

• Mechanical derivation. We identify the information that a mechanical

system needs in order to execute the derivation procedure. A prototype system

that executes the procedure with limited human intervention is introduced.

This system further certifies that the derivation procedure is systematic and
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demonstrates that the mechanical derivation of dense linear algebra operations

is within reach.

• Systematic stability analysis. We present an extension to the derivation

procedure for investigating numerical properties of algorithms generated via

our methodology. The result is a systematic procedure that allows for modular

error analysis.

The contributions to the field of computational science and engineering lie

with the families of algorithms and the libraries that our derivation methodology

and tools enable.

1.5 Outline of the Thesis

This dissertation is organized as follows.

Chapter 2 introduces a systematic procedure to derive formally correct loop-

based algorithms. A template of a proof of correctness for dense linear algebra

algorithms is derived in Sec. 2.1. Such a template becomes a worksheet (Sec. 2.2) for

the derivation of algorithms. The derivation is systematic: in Sec. 2.3 an eight-step

procedure is described. How to derive multiple algorithms for the same operation

is explained in Section 2.5. The derivation methodology discussed in Chapter 2

represents the foundations for both Chapters 3 and 4.

The mechanical generation of algorithms is covered in Chapter 3. In Sec. 3.1,

the systematic procedure of Sec. 2.3 is revisited with an eye on opportunities for

mechanization. A prototype mechanical system for generating algorithms and rou-

tines is presented in Sec. 3.2. A number of examples are included, illustrating how to

use the system. Sec. 3.3 comments on the scope and the limitations of the prototype

mechanical systems.

Chapter 4 deals with the error analysis of algorithms obtained via the deriva-
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tion methodology (Chapter 2) or generated by the prototype system (Chapter 3).

Sec. 4.1 discusses extensions to the worksheet and the procedure first introduced

in Chapter 2. Secs. 4.3, 4.4, and 4.5 present the stability analyses for operations

of increasing complexity, with the intent of demonstrating the modularity of the

methodology.

Finally, Chapter 5 summarizes the results of this thesis and proposes future

research directions.
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Chapter 2

Formal Derivation of Correct

Linear Algebra Algorithms

As a first step towards a mechanical system, we describe a systematic procedure for

deriving formally correct loop-based algorithms (see Section 1.2.3 for the definition

of correctness). The input to the procedure is a mathematical specification of a

target linear algebra operation, while the output is a family of correct loop-based

algorithms that compute the operation. The development of such a procedure is

important for two reasons: on one hand it allows a family of algorithms to be

generated by following a sequence of unambiguous steps, and on the other hand it

guarantees the formal correctness of the generated algorithms.

Proving the formal correctness of algorithms containing one or more loops

has always been a challenging task: while the analysis requires a predicate that

expresses a loop-invariant for each loop, there is no systematic way to discern a

loop-invariant for an existing program. The burden is left on the developer, who

must carefully state a predicate that is preserved during the execution of the loop.

Our approach is different: as part of the procedure, a loop-invariant is identified a

priori, and a loop that maintains such a predicate true through the computation is
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constructed subsequently. In other words, the correctness of a given algorithm is

not established a posteriori. Instead, constraints that a correct algorithm needs to

satisfy are identified a priori, and statements that maintain these constraints are

inserted.

E.W. Dijkstra in many occasions advised the computer sciences community

on how to write programs and prove their correctness [14]:

“The old technique was to make a program and then to subject it to a

number of testcases where the answer was known; and when the testruns

produced the correct result, this was taken as a sufficient ground for

believing the program to be correct. [...] The most drastic discovery,

however, was the last one, that what we then tried, viz. to prove the

correctness of a given program, was in a sense putting the cart before

the horse. A much more promising approach turned out to be letting

correctness proof and program grow hand in hand: with the choice of

the structure of the correctness proof one designs a program for which

this proof is applicable. The fact that then the correctness concerns turn

out to act as an inspiring heuristic guidance is an added benefit.”

In this chapter we present a novel way of deriving algorithms for linear algebra

operations.1 It will become apparent that our research follows precisely Dijkstra’s

advice: our methodology consists in designing the structure of a proof of correctness

first and building a program around such a proof later.
1The level of detail of the discussion is in preparation of the next chapter, where the steps will

be made mechanical.
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2.1 Correct Loop-Based Algorithms

“[...] no loop should be written down without

providing a proof for termination nor without stating

the relation whose invariance will not be destroyed

by the execution of the repeatable statement.”

E.W. Dijkstra [13]. Turing Award lecture, 1972.

Our goal is to develop formally correct loop-based algorithms for computing a linear

algebra operation Op starting solely from a mathematical description of the opera-

tion: central to the discussion is how to specify formally linear algebra operations.

Depending on the level of abstraction and the formalism used, a given operation can

be specified in a multitude of different ways; as an example we discuss the computa-

tion of the inverse function: the notation y ← x−1 hints at the operation of inverting

the input operand x, storing the result in the output variable y. Nonetheless such

a notation does not provide specifics on the operands: it is not known whether x is

a scalar or a matrix and no information about its domain nor regarding its size or

structure or properties is given.

In order to generate formally correct algorithms, all the attributes for the

input and output operands have to be fully specified. We require an input operation

to be stated by means of three predicates: the Precondition (Ppre), the Postcondition

(Ppost) and the Partitioned Matrix Expression (PME). The precondition describes

the domain, the dimensions and the properties of the input and output operands

The postcondition defines the relations involving the input and output operands

that hold true upon completion of the operation. Finally, the partitioned matrix

expression declares how different parts of the solution can be computed in terms of

parts of the input operands.

Example 1 (Cholesky) The precondition and postcondition predicates for the
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Cholesky factorization L = Γ(A) are, respectively,

Ppre : { m(A) = n(A) = m(L) = n(L) ∧ A = Â ∧

SPD(A) ∧ LowerTriangular(L) ∧ Unknown(L) }

and

Ppost : { LLT = Â ∧ Overwrite(A,L) }.

Here, predicate SPD(M) is true iff M is a symmetric positive definite matrix, and

predicate LowerTriangular(M) returns true iff M is a square lower triangular ma-

trix.

The predicate Unknown(Z1, Z2, . . . , Zi) indicates that the matrices Z1, Z2, . . . , Zi

are unknown variables, i.e., they represent the quantities that we want to compute.

If Z is both an input and output variable, i.e., it is to be overwritten during the

computation, we use the notation Ẑ to denote the initial contents of Z.

The predicate Overwrite(Zout, Zin) indicates that variable Zin overwrites variable

Zout.

The functions m(Z) and n(Z) return the number of rows and columns of ma-

trix Z, respectively. Alternatively, Size(Z) is a function that returns the couple

m(Z)× n(Z).

The partitioned matrix expression is

PME :


 LTL 0

LBL LBR


 =


 Γ(ÂTL) 0

ÂBLL
−T
TL Γ(ÂBR − LBLLTBL)


 ∧

Size(LTL) = Size(ÂTL) = k × k, k ∈ [0,m(L)].

When partitioning a matrix, the subscript letters T,B,L and R signify Top,

Bottom, Left and Right, respectively.
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This PME indicates that independently of the partitioning size, the Top Left quad-

rant of the solution matrix L contains the Cholesky factor of the corresponding

quadrant of matrix Â: LTL = Γ(ÂTL). Similarly, the Bottom Left and Bottom

Right quadrants of L contain respectively ÂBLL−TTL and the Cholesky factor of ma-

trix ÂBR −LBLLTBL. These three relations have to be satisfied at the same time for

a matrix L to be the Cholesky factor of A.

Example 2 (Triangular Inverse) The operation that computes the inverse of a

lower triangular matrix L overwriting the input matrix is specified by the predicates:

Ppre : { Size(L) = n× n ∧ LowerTriangular(L) ∧

L = L̂ ∧ Unknown(L) ∧ Inv(L) },

Ppost : { L = L̂−1 },

PME :


 LTL 0

LBL LBR


 =


 L̂−1

TL 0

−L̂−1
BRL̂BLL̂

−1
TL L̂−1

BR


 ∧

Size(LTL) = Size(L̂TL) = k × k, k ∈ [0,m(L)].

The predicate Inv(L) is true iff the matrix L is invertible.

In the rest of the thesis, in order to remove clutter from the exposition, we omit the

clauses indicating the size and the shape of the operands whenever this information

is obvious from the context.

The specification of a target linear algebra operation Op by means of the

precondition and postcondition is a clear preparation for using Hoare’s triples for

designing a proof of formal correctness. Knowing the predicates Ppre and Ppost, the

goal is to construct an algorithm A such that the Hoare’s triple

{Ppre} A {Ppost} (2.1)
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is satisfied. If such an algorithm A can be found, then it will correctly compute the

operation Op, by construction.

We restrict ourselves to algorithms that consist of a simple initialization

followed by a loop. Such a restriction is not as severe as it may appear at first

glance. As mentioned in the introduction, the numerical linear algebra community

has made tremendous strides towards modularity and, as a consequence, almost any

linear algebra operation can be decomposed into more basic operations (building

blocks) that are meaningful linear algebra operations themselves and exhibit this

simple structure. In Section 2.6 we speculate on how our framework also covers

recursive algorithms and why loop-based algorithms are to be preferred for dense

linear algebra computations.

Expression 2.1 can be rewritten to take into account that the algorithm A
can be written as A1;A2, where A1 is an initialization statement and A2 is a loop:

{Ppre} A1; A2 {Ppost}.

The Floyd-Hoare logic tells us that this triple is satisfied if the following two triples

are in turn satisfied

{Ppre} A1 {Q}, {Q} A2 {Ppost},

for a suitable state Q. Let us now substitute A1 with the more intuitive label Init

and A2 with the explicit loop structure While G do Body end, where G is the

loop-guard and Body denotes the computation executed at each iteration of the

loop. The two triples become:

{Ppre} Init {Q}, {Q}While G do Body end {Ppost}. (2.2)

The reader may have the feeling that because of these transformations we are now
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in a more complicated situation than we were at the beginning: the state Q, rep-

resenting the postcondition for the initialization (A1) and the precondition for the

while loop (A2) is unknown. We are no longer in the pleasant situation where both

the precondition and the postcondition of a Hoare triple are known. The “Funda-

mental Invariance Theorem for Loops” comes to our rescue; here we paraphrase the

theorem from Gries and Schneider’ book A Logical Approach to Discrete Math [22].

This theorem refers to an assertion Pinv that holds before and after each

iteration (provided it holds before the first). Such a predicate is called

a loop-invariant.

(12.43) Fundamental Invariance Theorem. Suppose

1. {Pinv ∧G} S {Pinv} holds – i.e., execution of S begun in a state in

which Pinv and G are true terminates with Pinv true – and

2. {Pinv} while G do S end {true} – i.e., execution of the loop begun

in a state in which Pinv is true terminates.

Then {Pinv} while G do S end {Pinv ∧ ¬G} holds. In other words, if

the loop is entered in a state where Pinv is true, it will complete in a

state where Pinv is true and guard G is false.

The text proceeds to prove this theorem using the axiom of mathematical induction.

The theorem tells us that if we could 1) discover a loop-invariant Pinv for our loop

A2, and 2) prove the termination of such a loop, then the following Hoare’s triple

would hold true:

{Pinv}While G do Body end {Pinv ∧ ¬G}. (2.3)

The comparison of Expressions (2.2) (what we desire) and (2.3) (what the theorem

ensures) leads us to the following consideration: if the predicate {Pinv∧¬G} implies
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the postcondition Ppost, then the natural choice for the state Q is Pinv (note that

a loop-invariant is true before the loop is ever entered); this choice brings us again

to the situation of dealing with Hoare triples whose precondition and postcondition

are both known. The triples 2.2 can be rewritten as

{Ppre} Init {Pinv}, {Pinv}While G do Body end {¬G ∧ Pinv}; (2.4)

the problem of finding statements Init, G and Body satisfying these two triples is

now equivalent to building a correct algorithm A that computes Op.
Before looking more closely at the anatomy of the three statements (Init, G

and Body) composing A, we list the assumptions made so far:

1. The predicate Pinv is a loop-invariant for loop A2;

2. The loop A2, when executed in a state in which Pinv is true, terminates;

3. The predicate {¬G ∧ Pinv} implies Ppost.

A thorough discussion on how to state a loop-invariant for the loop A2 a

priori is deferred to Section 2.5; for now we simply state that a loop-invariant can

be deduced from the PME for the operation Op. In order to ensure the termi-

nation of the loop, we require the loop-guard G to measure the advancement in

the traversal of the operands and the loop-body to include statements to make

progress for traversing the operands: each iteration contains a first step in which

one or more Repartition statements expose new submatrices and subvectors of

the operands, a second step of numerical computations and a third and last step in

which Continue with statements re-assemble submatrices and subvectors to guar-

antee progress. This simple structure was already featured in the algorithm that we

presented for computing the Cholesky factor in Fig. 1.4 (a traditional derivation of

this algorithm is given in Appendix A). In that algorithm, the initialization Init is
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{Ppre}
Partition . . . ;

{Pinv}

{Pinv}
While G do

Repartition . . . ;

SU

Continue . . . ;

end

{Pinv ∧ ¬G}

Figure 2.1: Template for a formal proof of correctness for linear algebra algorithms
consisting of an initialization step followed by a loop.

a simple partitioning of the program variable (matrix A), in which no actual com-

putation performed. The loop-guard G is a comparison of the size of two matrices

(A and ATL) and it is chosen so that {¬G ∧ Pinv} implies the postcondition Ppost.

Finally, the loop-body consists of one first statement to repartition the matrix A, a

number of mathematical instructions and one last statement to reassemble A which

ensures progress towards making G false.

Let us now incorporate the facts on the nature of the statements Init, G and

Body into Expression 2.4. The result is the skeleton of a proof of correctness for a

linear algebra algorithm (Fig 2.1). In the next sections we describe how to use such

an infrastructure to derive algorithms computing a target operation.
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Step Annotated Algorithm: [D,E, F, . . .] = op(A,B,C,D, . . .)
1a { Ppre }
3

Partition
where

2 { Pinv }
4 While G do

2,4 {( Pinv ) ∧ ( G )}

5a
Repartition

where
6 { Pbefore }
8 SU
7 { Pafter }
5b Continue with

2 { Pinv }
endwhile

2,4 {( Pinv ) ∧ ¬ ( G )}
1b { Ppost }

Figure 2.2: Worksheet for developing linear algebra algorithms.

2.2 Worksheet

“[...] the programmer should let correctness proof and program grow

hand in hand. [...] If one first asks oneself what the structure of a

convincing proof would be and, having found this, then constructs a

program satisfying this proof’s requirements, then these correctness

concerns turn out to be a very effective heuristic guidance.”

E.W. Dijkstra [13]. Turing Award lecture, 1972.

Figure 2.2 shows a generic “worksheet” for deriving a large class of linear algebra

algorithms. The worksheet resembles the skeleton of a linear algebra algorithm in

the sense that it consists of an initialization step (Step 3) followed by a While

loop (Step 4) inside which operations on the input/output variables are performed
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(Steps 5a, 8 and 5b); the gray-shaded boxes contain statements that would appear in

actual code. Such a skeleton is enriched with predicates in curly brackets, expressing

the status of input/output variables at different stages in the algorithm (Steps 1a,

2, 2,4, 6, 7, 1b). The numbers in the “Step” column refer to the order in which the

worksheet is filled to generate an algorithm.

Given a target operation Op specified by the precondition Ppre and post-

condition Ppost (and the PME), in the last section we have reduced the problem of

finding an algorithm A for Op satisfying the triple {Ppre} A {Ppost} to the problem

of making the two triples in (2.4) true by finding a loop-invariant Pinv and

1. An initialization statement Init;

2. A loop-guard G involving comparisons on the size of input/output operands;

3. Statements Repartition and Continue with (part of the Body of the While

loop), responsible of 1) traversing input/output operands, and 2) ensuring

progress towards rendering the loop-guard false;

4. A set of computational statements with the property of maintaining a loop-

invariant Pinv.

The worksheet in Fig. 2.2 exhibits the same breakdown of the problem. Lines 1a

and 1b contain the predicates Ppre and Ppost respectively. The first triple from (2.4),

{Ppre} Init {Pinv}, is captured by the first three lines (Steps 1a, 3, 2), while the sec-

ond triple from 2.4 is captured in lines from the third to the next to last one (from

Step 2 to Step 2,4). There the loop-body is decomposed into three separate state-

ments (Steps 5a, 8, 5b) that are interleaved with four predicates in curly brackets

(Steps 2,4 6, 7, 2). Steps 2,4 and 2 respectively indicate that the loop-invariant

holds true at the beginning and the end of each loop iteration, while Pbefore and

Pafter at Steps 6 and 7 represent Pinv in terms of the repartitioned operands, that

is, before and after the computational statements of Step 8.
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The worksheet in Fig. 2.2 represents the “structure of a convincing proof;”

thanks to this framework, the user makes “the correctness proof and the program

grow hand in hand” by filling in the predicates and the statements. The idea is that

if it is possible to state the assertion in curly brackets first, then the statements can

be chosen so that those assertions hold true at the indicated points in the algorithm.

In the next section we give an 8-step procedure, “the Recipe,” that dictates

how to derive loop-invariant (Step 2), initialization (Step 3), loop-guard (Step 4),

statements to sweep through the operands (Steps 5a and 5b) and computational

statements (Step 8) for an algorithm once Ppre, Ppost and PME of a target operation

are given. Since all the statements are derived to satisfy Hoare triples, the final

algorithm is guaranteed to be formally correct.

2.3 An Eight-Step Recipe

Eight steps are typically sufficient to transition from the mathematical specification

of a target linear algebra operation to an algorithm that computes the operation.

We start presenting each step, with reference to Fig. 2.2, pointing out how formal

derivation techniques are used to relate predicates and statements. At the end of

the treatment it will become clear that the process of filling in the worksheet relies

entirely on the ability to determine loop-invariants. We discuss how to derive loop-

invariants in Sec. 2.5. Sec. 2.4 contains a complete example that derives algorithms

for the computation of the inverse of a triangular matrix.

1a,1b Determine Ppre and Ppost: A generic target operation is indicated by

[D,E, F, . . .] = op(A,B,C,D, . . .). Some operands may be overwritten; when

this is the case, we use the -̂notation to indicate the original contents of a

variable. Predicates Ppre, the precondition, and Ppost, the postcondition, re-

spectively describe constraints and properties of the operands, and the desired
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state upon completion of the algorithm. Ppre, Ppost and PME are the speci-

fication of the target operation and they represent the inputs for the process

of deriving N algorithms {Ai}Ni=1, such that the triple {Ppre} Ai {Ppost} is

satisfied.

2 Determine loop-invariant Pinv: The loop-invariant is a predicate that ex-

presses the state of input and output variables during the execution of the

loop and it holds true throughout the entire computation. Being able to find

a loop-invariant means that the first hypothesis of the Fundamental Invariance

Theorem [22] is satisfied: {Pinv ∧G} S {Pinv} (see Section 2.1). A posteriori

automatic detection of loop-invariants is a problem which has been deeply in-

vestigated, with results far from being generally applicable. We will show that

for a class of linear algebra operations it is possible to identify methodically

acceptable loop-invariants a priori (see Section 2.5).

3 Determine initialization: Since the loop-invariant holds true before the loop

commences, the initialization Init, Step 3 in Fig. 2.2, must have the property

that starting in the state Ppre, it sets the variables to a state in which Pinv

holds: {Ppre} Init {Pinv}. We require the initialization to consist of a (possibly

empty) list of statements to partition the operands or to set them to specific

values.

4 Determine loop-guard G: The loop-guard is the condition under which

the program enters the loop; when the loop completes ¬G holds true. If the

loop terminates, then also the second hypothesis of the Fundamental Invari-

ance Theorem is satisfied, hence the thesis of the theorem can be asserted:

(Pinv ∧ ¬G) holds true after the loop. Note that if (Pinv ∧ ¬G) implies Ppost

then we can conclude that, upon termination, the loop correctly computes

Ppost. An appropriate loop-guard can be derived comparing the loop-invariant
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Pinv and the postcondition Ppost.

5a,5b Determine how to march through the operands: Step 5a and

5b are responsible to guarantee termination of the loop by travers-

ing the operands. Step 5a exposes new regions of the operands and

Step 5b re-assembles the regions so that progress is achieved. In

terms of a Hoare triple, these two statements are chosen so that

{Pinv ∧G} while G do Step 5a; Step 5b; end {true} is satisfied. No actual

computation happens at these stages, they merely represent indexing opera-

tions.

6 Determine Pbefore: We already determined the statement for traversing the

operands (Step 5a); predicate Pbefore expresses Pinv after the repartitioning

takes place. Formally: {Pinv} Step 5a {Pbefore}.

7 Determine Pafter: Similar to the previous step, this predicate only expresses

Pinv in terms of partitioned operands: it must hold {Pafter} Step 5b {Pinv},
therefore the predicate Pafter denotes the loop-invariant before the Con-

tinue with (Step 5b) execution.

8 Determine the updates SU : The computational statements SU must be

such that the triple {Pbefore} SU {Pafter} holds true.

2.4 Example: Inverting a Triangular Matrix

We show how to apply the eight steps presented in Section 2.3 to derive algorithms

for a specific target operation. The operation we consider is the inversion of a

triangular matrix L := L−1 where L is an m×m lower triangular matrix.

1 Determine Ppre and Ppost. In Example 2 we already discussed how to for-

mally specify this operation by means of the predicates
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Step Annotated Algorithm: L := L−1

1a
n

L = L̂
o

3

Partition

L =

„
LTL 0

LBL LBR

«
and L̂ =

 
L̂TL 0

L̂BL L̂BR

!

where LTL and L̂TL are 0× 0

2

„
LTL 0

LBL LBR

«
=

„
L−1

TL 0

−LBLL−1
TL LBR

« ff

4 While ¬SameSize(L, LTL) do

2,4

„„
LTL 0

LBL LBR

«
=

„
L−1

TL 0

−LBLL−1
TL LBR

« «
∧ ( ¬SameSize(L, LTL) )

ff

5a

Repartition
„

LTL 0

LBL LBR

«
→
0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A , . . .

where L11 and L̂11 are b× b

6

8
><
>:

0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A =

0
B@

L̂−1
00 0 0

−L̂10L̂
−1
00 L̂11 0

−L̂20L̂
−1
00 L̂21 L̂22

1
CA

9
>=
>;

8

L21 := −L21 L−1
11 (TRSM)

L20 := L20 + L21 L10 (GEMM)

L10 := L−1
11 L10 (TRSM)

L11 := L−1
11 (Matrix Inversion)

7

8
><
>:

0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A =

0
B@

L̂−1
00 0 0

−L̂−1
11 L̂10L̂

−1
00 L̂−1

11 0

−L̂20L
−1
00 − L̂21L̂

−1
11 L̂10L̂

−1
00 −L̂21L̂

−1
11 L̂22

1
CA

9
>=
>;

5b

Continue with
„

LTL 0

LBL LBR

«
←
0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A , . . .

2

„
LTL 0

LBL LBR

«
=

„
L−1

TL 0

−LBLL−1
TL LBR

« ff

endwhile

2,4

„„
LTL 0

LBL LBR

«
=

„
L−1

TL 0

−LBLL−1
TL LBR

« «
∧ ¬ ( ¬SameSize(L, LTL) )

ff

1b
n

L = L̂−1
o

Figure 2.3: Worksheet completed for the inversion of a triangular matrix.
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Ppre : { Size(L) = m×m ∧ LowerTriangular(L) ∧ L = L̂ ∧
Unknown(L) ∧ Inv(L) }, and

Ppost : {L = L̂−1}.

2 Determine loop-invariant Pinv. The partitioned matrix expression for this

operation is (from Example 2):


 LTL 0

LBL LBR


 =


 L̂−1

TL 0

−L̂−1
BRL̂BLL̂

−1
TL L̂−1

BR


 . (2.5)

This equation expresses how the quadrants of the output matrix L are func-

tions of the quadrants of the input matrix L̂. In other words the PME provides

a formula for 
 L̂TL 0

L̂BL L̂BR



−1

in terms of the quadrants L̂TL, L̂BL, L̂BR. Let us assume there exists a

loop-based algorithm that correctly computes the inverse of a matrix L̂; if

the execution of such an algorithm is interrupted at an intermediate stage

(at the beginning of an iteration) and the matrix L that is being computed

is inspected, we observe that only a subset of the operations appearing in

Equation 2.5 have been performed (otherwise the computation would have

terminated). Different loop-invariants are obtained by selecting different sub-

sets of the operations contributing to the final result; a partial list of possible

loop invariants for this operations is given in Table 2.1. In order to have a

complete list of loop-invariants one needs to consider also the ones progressing

from the BR to the TL corner, such as


 LTL = LTL 0

LBL = −L̂−1
BRL̂BLL̂

−1
TL LBR = L̂−1

BR


 ,
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# Loop− invariant

1

(
LTL = L̂−1

TL 0

LBL = L̂BL LBR = L̂BR

)

2

(
LTL = L̂−1

TL 0

LBL = −L̂BLL̂−1
TL LBR = L̂BR

)

3

(
LTL = L̂−1

TL 0

LBL = −L̂−1
BRL̂BLL̂

−1
TL LBR = L̂BR

)

4

(
LTL = L̂−1

TL 0

LBL = −L̂−1
BRL̂BL LBR = L̂BR

)

Table 2.1: Loop-invariants for computing the inverse of a triangular matrix pro-
gressing from the TL corner.

which corresponds to an algorithm that computes L one (or more) column at

a time, proceeding from the bottom of matrix L towards the top.

In the remainder of this section we concentrate on the following loop-invariant


 LTL 0

LBL LBR


 =


 L̂−1

TL 0

−L̂BLL̂−1
TL L̂BR


 ,

which becomes Pinv in the worksheet of Fig. 2.2 as illustrated in Fig. 2.3.

3 Determine initialization. The loop-invariant Pinv and the precondition

Ppre dictate the initialization. {Ppre} Init {Pinv} will be made true by means

of partitionings (indexing) only. We have:

{L = L̂} Init






 LTL 0

LBL LBR


 =


 L̂−1

TL 0

−L̂BLL̂−1
TL L̂BR






 .
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The initialization statements L =

(
LTL 0

LBL LBR

)
and L̂ =

(
L̂TL 0

L̂BL L̂BR

)
,

with LTL and L̂TL 0 × 0 quadrants, require no computation and make the

Hoare triple true.

If no initialization can be found so that {Ppre} Init {Pinv} is true then the

loop-invariant is declared infeasible.

4 Determine loop-guard G. Upon completion of the loop, the predicate

Pinv ∧ ¬G holds true (Fundamental Invariance Theorem). Thus, by choos-

ing a loop-guard G such that (Pinv ∧ ¬G) ⇒ Ppost, we guarantee that if the

loop completes, it does so in a state that implies that the desired result has

been computed. In this example we are looking for G such that:





 LTL 0

LBL LBR


 =


 L̂−1

TL 0

−L̂BLL̂−1
TL L̂BR


 ∧G


⇒ (L = L̂−1).

If the quadrant LTL encompasses the entire matrix L, it is easy to see that the

previous implication is established. Hence we choose G to be

¬SameSize(L,LTL), as illustrated in Step 4 of the worksheet in Fig. 2.3. The

function SameSize(L,LTL) returns true iff the dimensions of matrices L and

LTL are equal.

If no loop-guard can be found so that (Pinv ∧ ¬G) ⇒ Ppost, then the loop-

invariant is declared infeasible.

5 Determine how to march through the operands. The loop-guard G

and the initialization step dictate in what direction the variables need to be

repartitioned to make progress towards making the predicate G false.

Once it is known what quadrant has to eventually encompass the whole matrix,

the approach is to expose new parts of the matrix at the top of the loop (Step
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5a) and then move them to the appropriate regions at the bottom of the loop

(Step 5b), as illustrated in Fig. 2.3.

The initialization step sets LTL to be 0×0, while upon completion of the loop,

quadrant LTL has to encompass the complete matrix. Thus, the boundaries

indicating where the computation reached so far, denoted by the thick lines,

must be moved forward as part of the body of the loop with the goal of

augmenting the TL quadrant. This is achieved by exposing new parts from

the quadrants LBL and LBR first and adding them to LTL subsequently. The

statements are respectively

Repartition


 LTL 0

LBL LBR


→




L00 0 0

L10 L11 0

L20 L21 L22


,


 L̂TL 0

L̂BL L̂BR


→




L̂00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22




where L11 and L̂11 are b× b

and

Continue with


 LTL 0

LBL LBR


←




L00 0 0

L10 L11 0

L20 L21 L22


,


 L̂TL 0

L̂BL L̂BR


←




L̂00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22


.

The quantity b is the algorithmic block size: if b = 1, the algorithm proceeds

exposing one new column and row per iteration, i.e., it is “unblocked.” By

contrast, if b > 1, the algorithm is “blocked,” meaning that it operates on

several rows and columns at one time. When b is chosen to be greater or equal

to half the size of one of the operands (in this case L), the algorithm is purely

recursive (see Section 2.6).
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6 Determine Pbefore. The state Pbefore represents the loop-invariant when the

repartitionings determined in Step 5a have been applied. Executing the repar-

titioning statement corresponds to renaming or, equivalently, to performing

textual substitution. Mathematically the operation for determining Pbefore is

Simplify
(
Pinv

∣∣∣
Repartitioning

)
,

where the vertical bar signifies the application of textual substitution rules.

The Simplify function is necessary in order to derive an explicit formula for

the loop-invariant as function of the newly exposed regions. This is achievable

via algebraic manipulations and known mathematical relations.

The repartition statement for the matrix L̂ may be encoded by the following

three substitution rules:

L̂TL → L̂00, L̂BL →

 L̂10

L̂20


 , L̂BR →


 L̂11 0

L̂21 L̂22


 .

Three similar substitution rules define the repartition statement for matrix L.

The application of such rules to loop-invariant


 LTL 0

LBL LBR


 =


 L̂−1

TL 0

−L̂BLL̂−1
TL L̂BR


 ,

yields (Pinv

∣∣∣
Repartitioning

)




L00 0
 L10

L20





 L11 0

L21 L22





 =




L̂−1
00 0

−

 L̂10

L̂20


 L̂−1

00


 L̂11 0

L̂21 L̂22





 ,
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and the function Simplify returns




L00 0 0

L10

L20

L11 0

L21 L22




=




L̂−1
00 0 0

−L̂10L̂
−1
00

−L̂20L̂
−1
00

L̂11 0

L̂21 L̂22




which is the desired state Pbefore.

7 Determine Pafter.

The predicate Pafter is such that upon completion of the Continue statement

Pinv holds true. Continue with only manipulates regions of the operands.

It corresponds to a set of textual substitution rules from the set of regions

exposed by the Repartition statement into the quadrants defined by the

initialization step.

Since Pinv is known, the idea is to determine Pafter starting from the expression

of the loop-invariant and executing the converse of the Continue statement,

i.e., executing the textual substitution rules backwards. Mathematically, Pafter

is determined by

Simplify
(
Pinv

∣∣∣
Continue−1

)
.

The statement

Continue with


 L̂TL 0

L̂BL L̂BR


←




L̂00 0 0

L̂10 L̂11 0

L̂20 L̂21 L̂22



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is equivalent to the textual substitution rules


 L̂00 0

L̂10 L̂11


→ L̂TL,

(
L̂20 L̂21

)
→ L̂BL, L̂22 → L̂BR.

Therefore the rules for Continue−1 are:

L̂TL →

 L00 0

L10 L11


 , L̂BL →

(
L20 L21

)
, L̂BR → L̂22.

Three similar substitution rules define the Continue statement for matrix L.

Now Pinv

∣∣∣
Continue−1

translates into





 L00 0

L10 L11


 0

(
L20 L21

)
L22




=





 L̂00 0

L̂10 L̂11



−1

0

−
(
L̂20 L̂21

)

 L̂00 0

L̂10 L̂11



−1

L̂22



,

and simplifying (Simplify)




L00 0

L10 L11

0

0

L20 L21 L22




=




L̂−1
00 0 0

−L̂−1
11 L̂10L̂

−1
00 L̂−1

11 0

−L̂20L
−1
00 − L̂21L̂

−1
11 L̂10L̂

−1
00 −L̂21L̂

−1
11 L̂22




which is the desired state Pafter.

8 Determine the updates SU .

By comparing the state in Step 6 with the desired state in Step 7 the required

update, the statements SU given in Step 8, are determined.
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The contents of matrix L in the states Pbefore




L00 0 0

L10 L11 0

L20 L21 L22


 =




L̂−1
00 0 0

−L̂10L̂
−1
00 L̂11 0

−L̂20L̂
−1
00 L̂21 L̂22




and Pafter




L00 0 0

L10 L11 0

L20 L21 L22


 =




L̂−1
00 0 0

−L̂−1
11 L̂10L̂

−1
00 L̂−1

11 0

−L̂20L
−1
00 − L̂21L̂

−1
11 L̂10L̂

−1
00 −L̂21L̂

−1
11 L̂22




differ in the submatrices (1, 0), (1, 1), (2, 0), and (2, 1). The updates SU needed

to ensure that the triple {Pbefore} SU {Pafter} is verified are

L21 := −L21L
−1
11

L20 := L20 + L21L10

L10 := L−1
11 L10

L11 := L−1
11

The worksheet completed for the inversion of a triangular matrix is shown in Fig. 2.3

while Fig. 2.4 (left) presents the final version of the algorithm, cleaned of the asser-

tions within curly-brackets. Notice that the last computational update, L11 := L−1
11 ,

is a triangular matrix inversion itself and can be solved recursively or by means of an

unblocked algorithm. Such an algorithm can be easily derived using the worksheet

(Fig. 2.3) and forcing b to be 1 in Step 5. The right part of Fig. 2.4 illustrates the

resulting algorithm.
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Algorithm: L := TriInv blk(L)

Partition L→
„

LTL 0

LBL LBR

«

where LTL is 0× 0

While m(LTL) < m(L) do
Determine block size b
Repartition
„

LTL 0

LBL LBR

«
→
0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A

where L11 is b× b

L21 := −L21L
−1
11

L20 := L20 + L21L10

L10 := L−1
11 L10

L11 := L−1
11

Continue with
„

LTL 0

LBL LBR

«
←
0
@

L00 0 0

L10 L11 0

L20 L21 L22

1
A

endwhile

Algorithm: L := TriInv unb(L)

Partition L→
„

LTL 0

LBL LBR

«

where LTL is 0× 0

While m(LTL) < m(L) do

Repartition
„

LTL 0

LBL LBR

«
→
0
@

L00 0 0

lT10 λ11 0

L20 l21 L22

1
A

where λ11 is 1× 1

l21 := −l21/λ11

L20 := L20 + l21l
T
10

lT10 := l10/λ11

λ11 := 1/λ11

Continue with
„

LTL 0

LBL LBR

«
←
0
@

L00 0 0

lT10 λ11 0

L20 l21 L22

1
A

endwhile

Figure 2.4: Blocked (on the left) and unblocked (on the right) algorithms for com-
puting the inverse of a triangular matrix.

2.5 Partitioned Matrix Expression (PME) and Loop-

Invariants

Together with Ppre and Ppost, the PME is a predicate that specifies a target linear

algebra operation. Its role is to express different parts of the output operands in

terms of parts of the input operands. In this section we discuss how to derive a PME

and the relation between PME and loop-invariants. Since the process of filling

in the worksheet in Fig. 2.2 depends entirely on the loop-invariant, and different

loop-invariants are deduced from the PME, it is this predicate that prescribes the

generation of a family of algorithms.

Examples 1 and 2 from Section 2.1 report the PMEs for the Cholesky factor-

ization and for the triangular inversion, respectively. In this section we illustrate the
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steps to derive the PME for the Cholesky factorization (with the knowledge of Ppre

and Ppost) and how to obtain a list a loop-invariants from the PME. The treatment

of the inversion of a triangular matrix would involve analogous steps. Finally we

turn our attention to a considerably more complex problem, the triangular discrete

time Sylvester equation, which will serve as an example of an operation that admits

multiple PMEs.

Since we want to determine how different quadrants of the input operands

contribute to the computation of the output operands, we start by picking one of

the operands and by partitioning it into two submatrices, either horizontally or

vertically, or into four quadrants. The partitioning corresponds to the assumption

that algorithms progress through data in a systematic fashion. A rule of thumb is

that if a matrix has a special structure, e.g., triangular or symmetric, it is partitioned

into quadrants that are consistent with the structure. If the matrix has no special

structure, it can be partitioned vertically, horizontally, or into quadrants.

2.5.1 Example: Cholesky Factorization

In the case of the Cholesky factorization (L = Γ(A)), matrix A is symmetric, there-

fore we partition it into four quadrants

A→

 ATL ATBL

ABL ABR


 ,

where ATL and ABR are square submatrices, so that they inherit the symmetric

structure; here Size(ATL) = (k1×k1), with 0 ≤ k1 ≤ m(L). The partitioned matrix

A is substituted into the postcondition (LLT = A), inducing a partitioning of the

triangular matrix L:

L→

 LTL 0

LBL LBR



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with Size(LTL) = (k1 × k1); notice that the quadrants LTL and LBR inherit the

triangular structure. The postcondition becomes


 LTL 0

LBL LBR





 LTTL LTBL

0 LTBR


 =


 ATL ATBL

ABL ABR




and multiplying out


 LTLL

T
TL = ATL ∗

LBLL
T
TL = ABL LBLL

T
BL + LBRL

T
BR = ABR




where the ∗ indicates that the matrix is symmetric. Equation LTLL
T
TL = ATL

corresponds to the Cholesky factorization of ATL, i.e., LTL = Γ(ATL). Similarly

LBLL
T
BL + LBRL

T
BR = ABR corresponds to LBR = Γ(ABR − LBLLTBL), while equa-

tion LBLLTTL = ABL is a triangular linear system. These considerations lead to the

expression 
 LTL = Γ(ATL) ∗

LBL = ABLL
−T
TL LBR = Γ(ABR − LBLLTBL)


 , (2.6)

which is the PME for the Cholesky factorization (in order to simplify the discus-

sion, here we assume that matrix L does not overwrite A). One comment on the

partitioning: if L is the Cholesky factor of A, then the equalities in (2.6) hold

true independently of the size of quadrant ATL, as long as it is square, including

the boundary case Size(LTL) = (0× 0). This means that the PME is a recursive

definition with no constraints on the size of the subproblems (see Section 2.6).

In order to determine possible loop-invariants from (2.6), we begin by study-

ing data dependencies. Quantity LTL is only a function of ATL, therefore can be

directly computed. Quadrant LBL depends on ABL as well as LTL, so it should be

computed only once LTL is available. Likewise, LBR is a function of ABR and LBL.

This leads to a dependency chain: LTL → LBL → LBR, meaning that one quantity
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in the chain should be computed only once all the preceding quantities have been

computed.

Let us now look at the operations appearing in (2.6). We derive loop in-

variants from the PME by deciding, for each operation, whether it is performed or

not, while at the same time satisfying the dependency chain. The TL quadrant

presents only one operation, LTL = Γ(ATL), which corresponds to the first entry

in the dependency chain. Thus, in any loop-invariant, this operation needs to be

performed (otherwise no other operation can be performed). Quadrant BL also

presents one operation only, the triangular system LBLL
T
TL = ABL (LBL is the un-

known), leading to two possible loop-invariants: one in which LBL is left untouched(
LTL = Γ(ATL) 0

LBL = 0 −

)
, and another where the system is solved

(
LTL = Γ(ATL) ∗
LBL = ABLL

−T
TL −

)

(the BR quadrant shows a dash because we have not discussed it yet). Finally, the

BR quadrant contains an assignment which consists of more than a single operation:

in order to compute LBR = Γ(ABR − LBLLTBL), the update LBR = ABR − LBLLTBL
has to be performed first. In terms of loop-invariants, keeping in mind that LBR

makes use of LBL, we have the choice of a) not performing any operation on LBR,

b) performing the partial update LBR = ABR − LBLLTBL, or c) executing the full

assignment LBR = Γ(ABR − LBLLTBL):

a)


 LTL = Γ(ATL) ∗

LBL = 0 LBR = 0




b)


 LTL = Γ(ATL) ∗

LBL = ABLL
−T
TL LBR = 0




c)


 LTL = Γ(ATL) ∗

LBL = ABLL
−T
TL LBR = ABR − LBLLTBL




d)


 LTL = Γ(ATL) ∗

LBL = ABLL
−T
TL LBR = Γ(ABR − LBLLTBL)


 .
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# Loop− invariant

1
(
LTL = Γ(ATL) ∗

LBL = 0 LBR = 0

)

2

(
LTL = Γ(ATL) ∗
LBL = ABLL

−T
TL LBR = 0

)

3

(
LTL = Γ(ATL) ∗
LBL = ABLL

−T
TL LBR = ABR − LBLLTBL

)

Table 2.2: Loop-invariants for computing the Cholesky factor L of a symmetric
positive definite matrix A.

The last loop-invariant coincides with the PME and therefore is not feasible: it cor-

responds to the state in which the solution has been fully computed, which is not a

state that can be maintained true at each step of the computation. Table 2.2 sum-

marizes the three feasible loop-invariants for computing the Cholesky factorization

obtained by selecting sub-expressions of the PME.

2.5.2 Feasible Loop-Invariants

Different loop-invariants are derived from the PME by considering individual oper-

ations that contribute to the final result. Each such operation may or may not have

been performed at an intermediate stage: a loop-invariant is a subset of the opera-

tions appearing in the PME. On the other hand, not every subset of the operations

from the PME (or simply a ‘subset’ from now on) yields a feasible loop-invariant.

We have already seen that the PME carries information about dependencies among

quadrants: one condition for a subset to be feasible is that it must satisfy the de-
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pendency chains. As an example, the subset


 LTL = 0 ∗

LBL = ABLL
−T
TL LBR = 0




is not a loop-invariant for the Cholesky factorization because the BL quadrant

contains an expression that refers to the quantity LTL which has not been computed

yet (LTL = 0). Generally, a subset may not be feasible for one of the following

reasons:

1. No simple initialization exists such that {Ppre} Init {Pinv}.

This is the case for the subset marked as d) for the Cholesky factorization (in

order to satisfy the triple, the statement LTL = Γ(A) should be part of the

initialization):


 LTL = Γ(ATL) ∗

LBL = ABLL
−T
TL LBR = Γ(ABR − LBLLTBL)


 .

2. No loop guard exists such that (Pinv ∧ ¬G)⇒ Ppost.

One example is given by the subset that computes nothing, the “empty sub-

set:” 
 LTL = 0 ∗

LBL = 0 LBR = 0


 .

3. Data dependency. A loop-invariant which does not satisfy the dependency

chains would result in an algorithm performing extra computations and/or

overwriting data that is subsequently needed.

4. Extra storage. The subexpression is not of the same size as the quadrants or

overwrites data that is subsequently needed.
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A theory providing necessary and sufficient conditions for a subset to be a

feasible loop-invariant is a future research goal, not within the scope of this disser-

tation.

2.5.3 Example: Triangular Discrete Time Sylvester Equation

The operation is defined as

Ppre : { UpperTriangular(A) ∧ Size(A) = (m×m) ∧

LowerTriangular(B) ∧ Size(B) = (n× n) ∧

Size(C) = (m× n) ∧ Size(X) = (m× n) ∧

Output(X) ∧ . . . };

Ppost : { AXB −X = C }.

The dots in the precondition indicate that more conditions should be listed to ensure

the existence of a solution. We will use the notation X = Ψ(A,B,C) to denote that

the matrixX is a solution for the triangular discrete time Sylvester (DTSY) equation

AXB −X = C. We want to determine the PME for this operation.

Matrix A is triangular, so we partition it into four quadrants

A→

 ATL ATR

0 ABR




where ATL and ABR are square submatrices, so that they possess the upper trian-

gular structure: Size(ATL) is (k1 × k1), with 0 ≤ k1 ≤ m.

When the partitioned matrix A is substituted into the postcondition, the

partitionings of the other variables are induced. In order for the product AX (from

the postcondition) to be well defined, matrix X has to be partitioned vertically into
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two submatrices or into four quadrants

X →

 XT

XB


 or X →


 XTL XTR

XBL XBR


 ,

with m(XT ) = k1, Size(XTL) = (k1 × k2) and 0 ≤ k2 ≤ n. Matrices B and C

are then partitioned accordingly. It should not come as a surprise the fact that

there may exist more than one PME for a target operation: depending on how the

operands are partitioned, more than one expression can be derived. In our example,

if we partition X vertically, then matrix B has to remain unpartitioned and matrix

C has to be partitioned vertically, whereas if X is partitioned into quadrants, then

matrices B and C have to be partitioned into four quadrants too. Let us examine

the first scenario

B → B and C →

 CT

CB


 ,

with m(CT ) = k1; it follows that matrices C and X are partitioned the same way.

Substituting the repartitioned matrices into the postcondition


 ATL ATR

0 ABR





 XT

XB


B −


 XT

XB


 =


 CT

CB


 ,

and multiplying the operands out and adding together gives


 ATLXTB +ATRXBB −XT = CT

ABRXBB −XB = CB


 . (2.7)

This expression indicates how the submatricesXT and XB of the solution matrix are

related to the submatrices of the input variables. Equation 2.7 can be rewritten in
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# Loop− invariant

1
(

XT = 0
XB = Ψ(ABR, B,CB)

)

2
(
XT = CT −ATRXBB

XB = Ψ(ABR, B,CB)

)

Table 2.3: Loop-invariants for computing the solution of the triangular discrete time
Sylvester equation.

terms of Ψ noticing that the matrices ABR and ATL are upper triangular, obtaining


 XT = Ψ(ATL, B, CT −ATRXBB)

XB = Ψ(ABR, B,CB)


 , (2.8)

which is one PME for the DTSY equation. Eqn. (2.8) indicates that given a vertical

partitioning of the solution matrix X, the bottom part XB, regardless of its size,

always contains the solution of another triangular Sylverster equation, and the same

for XT . Furthermore, the PME reveals that XB is defined only in terms of input

variables (ABR, B and CB), while XT is a function of input variables (ATL, ATR,

B, CT ) as well as XB. Therefore XT should be computed after XB: XB → XT .

An analysis of the operations appearing in the PME, together with the de-

pendency chain, results in two loop-invariants, as displayed in Table 2.3.

Recall that in the derivation of the PME we could have made a different

choice regarding the partitioning of matrix X. Let us now examine the case in

which matrix X is partitioned into four quadrants: this forces matrices B and C to

be partitioned into quadrants too

X →

 XTL XTR

XBL XBR


 , B →


 BTL 0

BBL BBR


 and C →


 CTL CTR

CBL CBR


 ,
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where Size(XTL) = (k1 × k2), Size(BTL) = (k2 × k2) and Size(CTL) = (k1 × k2).

The quadrants ATL, ABR, BTL and BBR are triangular matrices. Substituting the

repartitioned matrices into the postcondition:
(
ATL ATR

0 ABR

)(
XTL XTR

XBL XBR

)(
BTL 0

BBL BBR

)
−

(
XTL XTR

XBL XBR

)
=

(
CTL CTR

CBL CBR

)
,

and multiplying the operands out and adding together




(ATLXTL +ATRXBL)BTL+

(ATLXTR +ATRXBR)BBL−
XTL= CTL

(ATLXTR +ATRXBR)BBR−
XTR= CTR

ABR(XBLBTL +XBRBBL)−
XBL= CBL

ABRXBRBBR −XBR = CBR




;

since the diagonal quadrants of A and B are triangular, we can rewrite the expression

in terms of Ψ functions




XTL =

Ψ(ATL, BTL,

CTL −ATRXBLBTL −
ATLXTRBBL −ATRXBRBBL)

XTR =

Ψ(ATL, BBR,

CTR −ATRXBRBBR)

XBL =

Ψ(ABR, BTL, CBL −ABRXBRBBL)
XBR = Ψ(ABR, BBR, CBR)




(2.9)

which is another PME for the DTSY equation. It illustrates that the solution X of

equation AXB − X = C has the following property: when X is divided into four

regions, each region, independently of the size, contains the solution of a DTSY

equation defined by quadrants of matrices A, B, C and X. Equation (2.9) not

only expresses how the four different quadrants can be computed, but it also reveals

the dependencies among the quadrants of X: XBR can be computed directly in
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terms of input variables (ABR, BBR and CBR), both XBL and XTR depend on

XBR and quadrant XTL depends on XTR, XBL and XBR. This can be summarized

by the two dependency chains XBR → XBL → XTL and XBR → XTR → XTL. As

a consequence, the computation of X has to begin from the BR corner (XBR =

Ψ(ABR, BBR, CBR)) and proceeds by expanding the BR quadrant towards the TL

corner.

By looking at (2.9) it is not hard to guess that this operation is exceptionally

rich in loop-invariants: quadrants BL, TR and TL need to be updated before the

corresponding Sylvester equation can be solved (quadrant TL in particular needs

to be updated with the contributions by the other three quadrants). This means

that different loop-invariants are generated depending on whether each quadrant a)

is not updated, b) is partially computed (updated to some extent), or c) is fully

computed. A careful enumeration that takes dependencies into account unveils 32

different variants.

For completeness we mention that yet another partitioning of matrices A,B,

C and X is feasible, resulting in a third PME for the DTSY equation:

X →
(
XL XR

)
, B →


 BTL 0

BBL BBR


 and C →

(
CL CR

)
,

with A left unpartitioned. The PME is

(
XL = Ψ(A,BTL, CL −AXRBBL) XR = Ψ(A,BBR, CR)

)
, (2.10)

from which two feasible loop-invariants can be identified.
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2.6 Loop-based and Recursive Algorithms

The worksheet in Fig. 2.2 is a skeleton for loop-based algorithms: it consists of an

initialization followed by a while loop. It is easy to jump to the wrong conclusion

that our methodology does not cover recursive algorithms. In reality, a recursive

algorithm is equivalent to a blocked algorithm in which b —the block size— is

chosen so that the problem is split in halves.2 With reference to Fig 2.2, depending

on the choice of parameter b in the Repartition statement (Step 5a), the worksheet

generates algorithms that are unblocked (b = 1), blocked (b > 1) or recursive (b =

m(X)/2 or b = n(X)/2, where X is one of the operands).

Despite the iterative nature of our methodology, recursion plays an important

role: it is typical that in computing an operation Op, the same Op is performed with

smaller operands. The algorithm for computing the inverse of a triangular matrix

that we derived in Fig. 2.3 serves as an example: at each iteration, the triangular

submatrix L11 has to be inverted. The computation of the Cholesky factor in Fig 1.4

(right) exhibits the same observation: one of the updates requires the computation

of the Cholesky factorization of submatrix A11. For both examples, the subproblem

may be solved in different ways according to its size (submatrix L11 for the triangular

inversion, A11 for the Cholesky factorization): when L11 and A11 are 1×1 matrices,

the subproblems reduce to scalar operations; if instead the matrix size (> 1) is such

that the problem fits in cache, then unblocked algorithms are often deployed; finally,

if the problem is size is so large that does not fit in cache, then blocked algorithms

are used. The latter two cases involve a recursive call.

In general, it is the PME that dictates whether one algorithm has recursive

calls or not: the PME illustrates how one operation Op can be solved by assembling

the solutions of subproblems. Often times these subproblems require the computa-
2We are intentionally ignoring tail-recursive algorithms, as they are easily expressed as iterative

algorithms.
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tion of Op itself, hence the recursive calls. Since the PME is a recursive definition of

the target operation, devising recursive algorithms is straightforward (the converse

is also true). The rationale for loop-based algorithms is high-performance.

A loop-based approach allows the users to carefully select the size of the

submatrices exposed by the Repartition statement. Since it is these submatrices

that are involved in the computational statements, selecting their size is crucial to

attain high-performance: a block size too small prevents the cost for data movement

to be amortized by computations (the BLAS does not reach peak performance),

while a block size that is too big causes excessive data movement (the cache memory

is not big enough to contain the operands). The optimal block size depends on the

operation performed and the target architecture. A purely recursive approach does

not naturally permit such block size fine-tuning.

A question is whether our methodology covers every recursive algorithm:

given an operation Op and a known recursive algorithm AR computing Op, can an

iterative version of AR be obtained by filling in the worksheet? The answer is yes, if

the recursive algorithm does not require fixed sizes for the subproblems: in this case,

algorithm AR corresponds to a PME (see Section 2.5), therefore the methodology

can be applied. One example of recursive algorithm with no size constraints on the

subproblems is Mergesort: the output sorted array results from merging two sorted

sub-arrays, independently of their size. Therefore it is possible to derive a loop-

based Mergesort. By contrast, Strassen’s algorithm for multiplying two matrices

requires that at each step the matrices are partitioned into four quadrants of equal

size. This prevents the operands from being traversed incrementally; consequently

our methodology cannot be applied.
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2.7 Summary

We proposed a framework for systematic derivation of programs that exploits the

typical structure of loop-based linear algebra algorithms. The framework itself ex-

ploits the Floyd-Hoare logic for proving correctness of programs. Central to this

logic are the concepts of Hoare triple and loop-invariant. This chapter expands

upon our paper published in the ACM Transactions on Mathematical Software [5]

which itself was a refinement of an earlier paper by Gunnels et al. [24]. It places

the derivation process within the rigid setting of formal methods, as advocated by

pioneers like E.W. Dijkstra and C.A.R. Hoare. The result is a template of a proof

of correctness that serves as a worksheet for deriving algorithms.

Highlights to take away from this chapter follow:

• The procedure for deriving algorithms is fully determined once a loop-invariant

is identified. The derivation is therefore systematic.

• The PME is the predicate that allows us to systematically devise —a priori—

loop-invariants for algorithms for the target operation.

• Since typically many loop-invariants can be identified from the PME, our

methodology yields many algorithms for a given target operation.

This chapter contributes to the field of formal derivation by demonstrating

that, for a class of linear algebra operations, it is possible to systematically build

correct loop-based algorithms starting solely from the mathematical definition of

the operations. The proof of correctness guides the algorithm construction, instead

of following it.

With respect to dense linear algebra libraries, we provided evidence that the

systematic derivation of families of correct algorithms is achievable. This is a first

step towards a mechanical system for deriving libraries.
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Chapter 3

Mechanical Derivation of

Algorithms

In Chapter 2 we have demonstrated how formal derivation techniques can be applied

to linear algebra to derive formally correct families of loop-based algorithms. The

block variants of these algorithms can attain high-performance by virtue of the fact

that most computation is cast in terms of matrix-matrix operations, like the ones

included in the level 3 BLAS library. Our next goal is to mechanically generate

linear algebra algorithms starting from the mathematical specification of the target

operation only. Ultimately, one should be able to visit a website, fill in a form with

information about the operation to be performed, choose a programming language,

click the SUBMIT button, and receive a library of routines that compute the op-

eration. This chapter provides evidence that for a large number of operations this

vision in within reach.

While the derivation procedure discussed in Chapter 2 ensures the derived

algorithm is correct, it is the application of the methodology itself that is error prone

when performed by a human. It involves tedious algebraic manipulations. As the

complexity of the target operation increases, it becomes more cumbersome to fill in
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the worksheet by hand. Furthermore, in order to generate families of algorithms,

the worksheet has to be completed as many times as the number of loop-invariants

that the PME admits.

It is important to realize that the procedure itself does not introduce unnec-

essary elements of confusion. Operations once deemed “for experts only” can now

be tackled by undergraduates, leaving more ambitious problems for the experts. A

concrete example is given by the operation that computes the solution to the trian-

gular Sylvester equation AX +XB = C. A few algorithms for solving the Sylvester

equation have been known for about 30 years [2]. Nonetheless, new variants are still

discovered and published with some regularity [31, 29]. Our derivation methodology

has been applied to this operation yielding a family of 16 algorithms, including the

algorithms that were already known as well as many undiscovered ones [34]. The

complication lies in that, as part of the derivation, complex matrix expressions are

introduced that require simplification, providing an opportunity for algebra mistakes

to be made by a human. Indeed, one of the variants derived in [34] did not return

the correct outcome when implemented and executed. Mistakes in the simplifica-

tions involved in Step 8 (determining the updates) were only pinpointed when the

updates were re-derived with the aid of the mechanical system that we describe in

this chapter (Section 3.2).

Before diving into the details of our mechanical system, we want to clar-

ify again the difference between the concepts of automatic tuning and mechanical

derivation of algorithms. Tuning is a process that begins with a parameterized rou-

tine and attempts to automatically determine optimal parameters [11, 38, 42]. Our

mechanical derivation of algorithms is a process that takes the mathematical specifi-

cation of a target operation as input (instead of an algorithm), and returns a family

of formally correct algorithms for the input operation. There is early evidence that

indicates that our derivation methodology yields a larger family of algorithms than
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those obtained by applying compiler transformations to an individual member of

the family. This topic is still an active research question beyond the scope of this

dissertation.

3.1 Towards a Mechanical Procedure

Once a loop-invariant has been selected (Pinv in Step 2), all the following steps in the

procedure presented in Sec. 2.3 are completely determined: they can be expressed as

functions of the predicates Ppre, Ppost, PME and Pinv. Here we revisit the eight steps

with an eye on opportunities for mechanization. Throughout this section, the boxed

text refers to the triangular discrete time Sylvester equation (DTSY, Sec. 2.5.3),

which we use as example target operation. The derivation of algorithms for this

operation is then completed in the next section, with the help of a mechanical

system that we developed.

1 Ppre and Ppost and PME. The precondition, the postcondition and the PME

are given as part of the specifications for the operation that we want to imple-

ment. They are the input to a mechanical system; no computation is required.

For the DTSY equation, Ppre and Ppost are:

Ppre : { UpperTriangular(A) ∧ Size(A) = (m×m) ∧

LowerTriangular(B) ∧ Size(B) = (n× n) ∧

Size(C) = (m× n) ∧ Size(X) = (m× n) }

Output(X) ∧ . . . },

Ppost : { AXB −X = C }.

The three PMEs are given in Section 2.5.3.
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In actuality, the PMEs are not arguments to be passed to a mechanical sys-

tem as input. Instead, they constitute a library of definitions, in the form of

rewrite rules that specify how the solution to one problem can be computed

by solving simpler sub-problems. A mechanical system should have the capa-

bility of deducing this information for the basic operations, like matrix-matrix

multiplications and additions. For more complex operations, a database of

PMEs can serve as knowledge to decide how to decompose the computation

of an operation into simpler operations.

In general, the derivation of algorithms for an operationOp requires knowledge

of more PMEs than just those for Op. As an example, we consider a special

case of the DTSY equation. Let us assume thatB equals AT , then the equation

reduces to AXAT −X = C, that is the triangular discrete time Lyapunov

equation. The derivation of algorithms for this equation involves its PME as

well as the PMEs for the DTSY equation. The list of PMEs needed to derive

algorithms for Op is determined by looking at Op’s PMEs.
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We present here the PMEs, in the form of rewrite rules, for the DTSY

equation. Recall that the notation X = Ψ(A,B,C) denotes that matrix

X is a solution for the equation AXB −X = C. In Section 2.5.3 we had

established that if A is partitioned into four quadrants, C and X are

partitioned vertically and B is left unpartitioned, then (Eqn. (2.8))
(

XT = Ψ(ATL, B,CT −ATRXBB)

XB = Ψ(ABR, B, CB)

)
,

which is a PME for the DTSY equation. This PME can also be written as

XT

XB


=Ψ





ATL ATR

0 ABR


, B,


CT

CB





=


 Ψ(ATL, B, CT −ATRXBB)

Ψ(ABR, B, CB)


, (3.1)

which represents a rewrite rule for the function Ψ: every time Ψ is invoked

with arguments having the structure described in Eqn. (3.1), it can be re-

placed by the right hand side of Eqn. (3.1).
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Similarly, the second and third PMEs (Eqns. (2.9) and (2.10)) can respec-

tively be written as

(
XTL XTR

XBL XBR

)
=Ψ

((
ATL ATR

0 ABR

)
,

(
BTL 0

BBL BBR

)
,

(
CTL CTR

CBL CBR

))
= (3.2)




Ψ(ATL, BTL,

CTL −ATRXBLBTL −
ATLXTRBBL −ATRXBRBBL)

Ψ(ATL, BBR,

CTR −ATRXBRBBR)

Ψ(ABR, BTL,

CBL −ABRXBRBBL)
Ψ(ABR, BBR, CBR)




and

(
XL XR

)
=Ψ

(
A,

(
BTL 0

BBL BBR

)
,
(
CL CR

))
=

(
Ψ(A,BTL, CL −AXRBBL) Ψ(A,BBR, CR)

)
.

(3.3)

Eqns. (3.3), (3.3) and (3.3) are rewrite rules for function Ψ, when invoked

with arguments A,B and C partitioned as indicated above. These rewrite

rules are necessary definitions needed by a mechanical system.

2 Determine Pinv. Loop-invariants are identified by selecting a subset of the

operations that appear in the PME. In Section 2.5.2 we pointed out that not

every subset leads to a viable algorithm: dependencies and the dimensions of

the sub-expressions need to be taken into account. A mechanical system can

build the dependency chain and keep track of the dimensions for each PME

subexpression, thus discarding infeasible choices of loop-invariants.

In our example we will focus on the the following loop-invariant

Pinv :

(
XTL = ĈTL XTR = Ψ(ATL, BBR, ĈTR −ATRXBRBBR)

XBL = ĈBL XBR = Ψ(ABR, BBR, ĈBR)

)
, (3.4)
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corresponding to an algorithm that computes the solution matrix X column-

wise, from left to right, overwriting matrix C: notice that both the BR and

TR quadrants contain the corresponding expression in the PME, while the

BL and TL are left untouched (they contain the initial values ĈBL and ĈTL,

respectively).

3 Determine the initialization. Since the derivation methodology requires

no computation to be performed at this stage, the initialization reduces to

partitioning some or all the variables (from Ppre) in such a way that, for

each variable that is partitioned, at least one of the submatrices (vectors are a

special case of matrices) is null.1 A mechanical system can exhaustively try out

all the possible partitionings (conformally to the matrix properties describes

in Ppre), selecting the ones that render true the implication Ppre =⇒ Pinv. If

no such partitioning is found, the loop-invariant is labelled as infeasible and

no further steps are executed.

The loop-invariant that we selected is originated from the second

PME (Eqn. (2.9)), which comes about when the operands A,B,C

and X are all partitioned into quadrants. Once the dimen-

sion for the partitioning of X is specified (X →
(

XT L XT R

XBL XBR

)
, with

Size(Xxy) = 0× 0, for a choice of xy ∈ [TL, TR, BR, BL]), the dimensions

for the partitioning of all the other matrices are determined. Out of the four

alternatives, only the partitioning

X →
(

XTL XTR

XBL XBR

)
where XBR is 0× 0

is such that the precondition implies Pinv.

1A matrix is null if one or both its dimensions are zero.
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By virtue of conformal partitioning, the corresponding initialization state-

ments for the other variables are

A→
(

ATL ATR

0 ABR

)
, B →

(
BTL 0

BBL BBR

)
, C →

(
CTL CTR

CBL CBR

)

where ABR, BBR, CBR are 0× 0

4 Determine loop-guard G. The variables that have been partitioned as part

of the initialization contain at least one null submatrix. At each iteration of

the loop, one of the empty submatrices is expanded, until it encompasses the

entire matrix. The loop-guard is given by a predicate of the form “the null

submatrix Zxy is not equal in size to the entire matrix Z;” the submatrix

xy can be found by a system, testing exhaustively all the alternatives and

selecting one for which the implication Pinv ∧ ¬G =⇒ Ppost is true. If no

such partitioning is found, the loop-invariant is labelled as infeasible and no

further steps are executed.

We determined that partitioningX into four quadrants withXBR being 0× 0

is one of the initialization statements. QuadrantXBR grows at each iteration,

therefore the predicate Size(XBR) 6= Size(X) can be used as loop-guard.

5 Determine how to move boundaries. How to traverse through the vari-

ables follows directly from the initialization and the loop-guard. The Repar-

tition and Continue statements are responsible to make progress towards

making G false by increase the size of the initially null matrix in G. Every

other variable is then re-partitioned conformally. Furthermore, operands with

a particular structure (triangular, symmetric, diagonal) can only be parti-

tioned and traversed in a way that preserves the structure. This analysis can

be made mechanically.
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Matrix X is traversed by first exposing new regions (Repartition) from

the TL, TR and BL quadrants, and then adding them to the BR quadrant

(Continue). This is accomplished by the statements

Repartition

(
XTL XTR

XBL XBR

)
→




X00 X01 X02

X10 X11 X12

X20 X21 X22




and

Continue with

(
XTL XTR

XBL XBR

)
←




X00 X01 X02

X10 X11 X12

X20 X21 X22


 .

Similar statements are derived for matrices A,B and C.

6 Determine Pbefore. This predicate is the loop-invariant expressed in terms of

newly exposed parts of the operands, right after the Repartition statements.

The expression for Pbefore is computed by 1) applying the textual substitution

rules dictated by Repartition to the Pinv, 2) expanding by means of the

rewrite rules defined by the PMEs and linear algebra and, 3) simplifying.

Performing the textual substitution is straightforward, while the expansion

and simplification of the expressions requires powerful symbolic computation

tools.

The last three steps for the DTSY equation are performed with the aid of a

mechanical system that is the topic of the next section.

7 Determine Pafter. The computation of this predicate in analogous to the

computation of Pbefore except for that the textual substitution rules are dic-

tated by the Continue statements.

8 Determine the update SU . The updates are determined by a comparison

of the states Pbefore and Pafter. This step involves a great deal of pattern

matching. It can be made mechanical by using a symbolic system with pattern

matching capabilities.
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3.2 A Mechanical System

We present here a prototype mechanical system that requires limited human inter-

vention. We describe in details the steps that a user has to follow in order to use

the system for the generation of algorithms and routines. A list of examples follows.

3.2.1 Generating Algorithms

Not every step in the derivation procedure is complex. Step 1 requires no compu-

tation. The task of identifying one or more loop-invariants from the PME (Step 2)

is relatively simple. Once Pinv is selected, Steps 3, 4 and 5 not only are trivial, but

often times they are equal across many algorithms in the family. The bulk of the

complexity lies with Steps 6, 7 and 8; these steps require symbolic computations

and are different for each loop-invariant. The predicate Pbefore (Step 6) expresses

the contents of the output operands at the top of each iteration (current state);

Pafter (Step 7) indicates what the output operands need to contain at the bottom of

the loop, and SU (Step 8) contains the computational statements to transition from

Pbefore to Pafter.

In order to facilitate the computation of Pbefore, Pafter and SU , we devel-

oped a prototype mechanical system. We started implementing an environment to

perform symbolic operations with blocked matrices.2 Then we wrote a system for

manipulating matrix functions by means of substitution rules, simplifications and

pattern matching. Finally we added a graphical output to display algorithms in a

format that closely resembles the worksheet (Fig. 2.2). We chose Mathematica [41]

as the programming environment and language because of its powerful symbolic

computation and pattern matching capabilities.

In this section we illustrate the steps that a user has to execute in order to
2A matrix is blocked if the entries are also matrices (including the boundary cases of vectors,

scalars and null matrices). Regardless of whether the target algorithm is blocked or unblocked, its
derivation involves computations with blocked matrices.

68



generate algorithms for the DTSY equation. The input to the system is a loop-

invariant and Ppre; the output is either the description of an algorithm or a routine

computing the target operation (see Sec. 3.2.2). As we pointed out in the last

section, the operation’s PMEs are needed in the form of rewrite rules.

DTSY[

{{aTL_, aTR_},

{0, aBR_}},

{{bTL_, 0},

{bBL_, bBR_}},

{{cTL_, cTR_},

{cBL_, cBR_}}

] :=

Module[{xBR, xTR, xBL, XTL},

xBR = DTSY[aBR, bBR, cBR];

xTR = DTSY[aTL, bBR, cTR - prod[aTR, xBR, bBR]];

xBL = DTSY[aBR, bTL, cBL - prod[aBR, xBR, bBL]];

xTL = DTSY[aTL, bTL, cTL - prod[aTR, xBL, bTL] -

prod[aTL, xTR, bBL] -

prod[aTR, xBR, bBL]];

{{xTL, xTR},

{xBL, xBR}}

]

Figure 3.1: Mathematica definition for PME (3.2).

We start by discussing how to define PMEs as rewrite rules. In Fig. 3.1 we

show a definition, in Mathematica, corresponding to the PME (2.9). Notice the

close similarity with (3.2): the top part of the definition (before the “:=”) specifies

the name of the function (DTSY, corresponding to Ψ) and the structure of the

arguments that has to be satisfied for the right hand side to be evaluated. In this

case the definition of DTSY applies only when the following three conditions are met

simultaneously: 1) the first argument is a partitioned 2× 2 upper triangular matrix
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(the BL quadrant is explicitly 0), 2) the second argument is a partitioned 2×2 lower

triangular matrix, 3) the third argument is a partitioned 2 × 2 matrix. The body

of the function (after the “:=”) consists of a preparative sequence of assignments to

variables xBR, xTR, xBL, xTL (corresponding to quadrants XBR, XTR, XBL, XTL,

respectively), followed by the return value. The assignments mirror the expressions

in (2.9): xBR = DTSY[aBR, bBR, cBR], for instance, is the translation for XBR =

Ψ(ABR, BBR, CBR). Finally, the return value is assembled by the construct

{{xTL, xTR},

{xBL, xBR}}
which corresponds to the 2× 2 result matrix


 XTL XTR

XBL XBR


.

Similar definitions are specified for the other two PMEs (Eqns. (2.8) and (2.10)).

DTSY1[

{{aTL_, aTR_},

{0, aBR_}},

{{bTL_, 0},

{bBL_, bBR_}},

{{cTL_, cTR_},

{cBL_, cBR_}}

] :=

Module[{xBR, xTR},

xBR = DTSY[aBR, bBR, cBR];

xTR = DTSY[aTL, bBR, cTR - prod[aTR, xBR, bBR]];

{{cTL, xTR},

{cBL, xBR}}

]

Figure 3.2: Mathematica definition for loop-invariant (3.4).

The definition for DTSY1, corresponding to the loop-invariant (3.4), is simi-

larly given: Fig. 3.2. This definition is created by deleting parts from Fig. 3.1, much

like a loop-invariant is created by selecting a subset of a PME. The function DTSY1
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is the first argument to the mechanical system.

The PMEs have been encoded as rewrite rules and the loop-invariant has

been defined; we are just one step away from being able to invoke the mechanical

system: we only have to pass the information contained in Ppre as input. The second

argument to the system is a list that describes the properties of each variable in Ppre:3

Pre = {{"A", "UpperTriangular", "TL"},

{"B", "LowerTriangular", "TL"},

{"C", "TL", "Overwrite"}};

The mechanical system can now be invoked via the call

worksheet[DTSY1, Pre];

and the output is a worksheet completed like the one in Fig. 2.3. Unfortunately, in

this particular example, the expressions for Pbefore, and especially for Pafter, are so

long that they would not fit this page even when typeset with the smallest readable

font; this is exactly why a mechanical system is needed! Fortunately, the resulting

update statements (Step 8) are manageable. In Fig. 3.3 we display the blocked

algorithm, derived by the mechanical system, corresponding to loop-invariant (3.4).

The function DTSY is invoked in the updates: this could be a recursive call to the

blocked algorithm or a call to an unblocked algorithm. Unblocked algorithms are

also derived with our methodology, setting the block size to 1.

In the next section we present routines, mechanically generated, implement-

ing the algorithm in Fig. 3.3. Examples and screen-shots of algorithms mechanically

derived are given in Section 3.2.3.
3Strictly speaking, the second argument also contains a flag ("TL" in the DTSY example) about

the initial partitioning of each operand, which is a piece of information not present in the precon-
dition.
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Algorithm: C := DTSY blk(A, B, C)

Partition C→
„

CTL CTR

CBL CBR

«
, A→

„
ATL ATR

0 ABR

«
, B→

„
BTL 0

BBL BBR

«

where CBR, ABR, BBR are 0× 0

While m(CBR) < m(C) do
Determine block sizes bm and bn

Repartition
„

CTL CTR

CBL CBR

«
→
0
@

C00 C01 C02

C10 C11 C12

C20 C21 C22

1
A,

„
ATL ATR

0 ABR

«
→
0
@

A00 A01 A02

0 A11 A12

0 0 A22

1
A, . . .

where A11 is bm × bn

C21 := DTSY(A22, B11, C21 −A22C22B21)

C11 := DTSY(A11, B11, C11 −A11C12B21 −A12C21B11 −A12C22B21)

C01 := DTSY(A00, B11, C01 −A00C02B21 −A01C11B11 −A01C12B21−
A02C21B11 −A02C22B21)

Continue with
„

CTL CTR

CBL CBR

«
←
0
@

C00 C01 C02

C10 C11 C12

C20 C21 C22

1
A,

„
ATL ATR

0 ABR

«
←
0
@

A00 A01 A02

0 A11 A12

0 0 A22

1
A, . . .

endwhile

Figure 3.3: Mechanically derived blocked algorithm for computing the solution of
the DTSY equation: loop-invariant (3.4).

3.2.2 Generating Code

Every algorithm derived with the FLAME methodology contains a combination of

instructions to partition and repartition variables, one While loop, and computa-

tional statements. The FLAME APIs (Sec. A.2) [8] provide the users with the Part,

Repartition, and Continue constructs for a number of different languages. It is

possible to envision a modification of the mechanical system that returns routines

for the derived algorithms. This goal can be accomplished by defining rewrite rules

that translate the partitioning and repartitioning statements, the loop-skeleton and

create the function’s prototype into a target language. The remaining step, i.e.,

the translation of computational statements into a target language, is where the
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challenge lies.

We extended our mechanical system to return Matlab (“FLAME@lab”) or

C (“FLAME/C”) code. In Figs. 3.4 and 3.5 we display Matlab and C routines

resulting from the Mathematica invocation of worksheetMF[DTSY1, Pre] and

worksheetCF[DTSY1, Pre], respectively (in the function call, M stands for Matlab,

C indicates the C language, and the final F redirects the output to a file).4

The Matlab routine in Fig. 3.4 is executable once the function DTSY (in-

voked in the updates) is a known routine (one easy choice would be the unblocked

version of the same algorithm). Scientific languages like Matlab and Mathematica

are able to interpret and execute high level matrix expressions involving opera-

tions like multiplication, addition, transposition, inversion as well as function calls.

Therefore the computational statements can be directly translated into these lan-

guages. On the contrary, the C routine in Fig. 3.5 requires editing: in order to

attain high-performance, the updates should be written as a sequence of calls to

the BLAS library. The translation of a matrix expression into a sequence of BLAS

calls currently has to be performed by the user. Our system generates C routines

annotated with the Matlab updates (as comments) to assist the user.

3.2.3 Examples

This section is a brief parade of mechanically generated algorithms and worksheets.

In Fig. 3.3 we presented the algorithm for the DTSY equation, concluding the

derivation process for loop-invariant (3.4). Let us now consider a different loop-

invariant for the same operation:

(
XTL = ĈTL XTR = ĈTR

XBL = ĈBL XBR = Ψ(ABR, BBR, ĈBR)

)
. (3.5)

4The routines have been edited to nicely format the updates and to shorten the code: we included
only the partitioning and repartitioning statements for matrix C.
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function [C] = DTSY1( A , B , C , nb )

[..]

[ CTL, CTR, ...

CBL, CBR ] = FLA_Part_2x2( C,0,0,’FLA_BR’);

%% Loop Invariant

%% CTL=CTL

%% CTR=DTSY[ATL, BBR, CTR - ATR . DTSY[ABR, BBR, CBR] . BBR]

%% CBL=CBL

%% CBR=DTSY[ABR, BBR, CBR]

while( size(CBR,1) ~= size(C,1) | size(CBR,2) ~= size(C,2) )

b = min( nb, min( size(CTL,1), size(CTL,2) ));

[..]

[ C00, C01, C02, ...

C10, C11, C12, ...

C20, C21, C22 ] = FLA_Repart_2x2_to_3x3(CTL, CTR,...

CBL, CBR,...

b, b, ’FLA_TL’);

%* *********************************************************** *%

C21 = DTSY(A22, B11, C21 - A22 * C22 * B21);

C11 = DTSY(A11, B11, C11 - A11 * C12 * B21 - A12*C21*B11 -

A12*C22*B21 );

C01 = DTSY(A00, B11, C01 - A00 * C02 * B21 - A01 * C11 * B11 -

A01 * C12 * B21 - A02 * C21 * B11 -

A02 * C22 * B21 );

%* *********************************************************** *%

[..]

[ CTL, CTR, ...

CBL, CBR ] = FLA_Cont_with_3x3_to_2x2(C00, C01, C02, ...

C10, C11, C12, ...

C20, C21, C22, ...

’FLA_BR’);

end;

C = CBR;

return;

Figure 3.4: Mechanically generated FLAME@lab routine for computing the solution
of the DTSY equation: loop-invariant (3.4).
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void DTSY1( FLA_Obj A , FLA_Obj B , FLA_Obj C , int nb )

{ int nb;

[..]

FLA_Obj CTL, CTR, C00, C01, C02,

CBL, CBR, C10, C11, C12,

C20, C21, C22;

[..]

FLA_Part_2x2( C, &CTL, /**/ &CTR,

/* ************** */

&CBL, /**/ &CBR,

0, /* by */ 0, /* submatrix */ FLA_BR );

%% Loop Invariant

%% CTL=CTL

%% CTR=DTSY[ATL, BBR, CTR - ATR . DTSY[ABR, BBR, CBR] . BBR]

%% CBL=CBL

%% CBR=DTSY[ABR, BBR, CBR]

while( FLA_Obj_length(CBR) != FLA_Obj_length(C) )

{

b = min( nb, FLA_Obj_length(CTL) );

[..]

FLA_Repart_2x2_to_3x3( CTL, /**/ CTR, &C00, &C01, /**/ &C02

/**/ &C10, &C11, /**/ &C12,

/* ************ */ /* ******************** */

CBL, /**/ CBR, &C20, &C21, /**/ &C22,

/*with*/ b, /*by*/ b, /* C11 split from */ FLA_TL);

%* ******************************************************************* *%

/* C21 = DTSY(A22, B11, C21 - A22 * C22 * B21); */

/* C11 = DTSY(A11, B11, C11 - A11 * C12 * B21 - A12 * C21 * B11 -

A12 * C22 * B21 ); */

/* C01 = DTSY(A00, B11, C01 - A00 * C02 * B21 - A01 * C11 * B11 -

A01 * C12 * B21 - A02 * C21 * B11 -

A02 * C22 * B21 ); */

%* ******************************************************************* *%

[..]

FLA_Cont_with_3x3_to_2x2( &CTL, /**/ &CTR, C00, /**/ C01, C02,

/* ************** */ /* ****************** */

/**/ C10, /**/ C11, C12,

&CBL, /**/ &CBR, C20, /**/ C21, C22,

/*with C11 added to submatrix */ FLA_TR);

}

}

Figure 3.5: Mechanically generated C routine for computing the solution of the
DTSY equation: loop-invariant (3.4).
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Operation:      [C] =SYDT2(A   B   C)

Partition

A ® J ATL ATR
0 ABR

N B ® J BTL 0

BBL BBR
N C ®

i
k
jjjjj
C
`

TL C
`

TR

C
`

BL C
`

BR

y
{
zzzzz

where ABR BBR CBR are empty

While CBR <> C

Repartition

9J ATL ATR
0 ABR

N ®
i

k

jjjjjjj
J A00 A01
0 A11

N J A02
A12
N

0 A22

y

{

zzzzzzz, J
BTL 0
BBL BBR

N ®
i

k

jjjjjjj
J B00 0
B10 B11

N 0

H B20 B21 L B22

y

{

zzzzzzz,
i
k
jjjjj
C
`

TL C
`

TR

C
`

BL C
`

BR

y
{
zzzzz ®

C12 := SYDT@A11, B22, -A12.C22.B22 + C12D
C21 := SYDT@A22, B11, -A22.C22.B21 + C21D
C11 := SYDT@A11, B11, -A11.C12.B21 - A12.C22.B21 - A12.C21.B11 + C11D

Continue with

9
i

k

jjjjjjj
A00 H A01 A02 L
0 J A11 A12

0 A22
N
y

{

zzzzzzz ® J
ATL ATR
0 ABR

N,
i

k

jjjjjjj
B00 0

J B10
B20
N J B11 0

B21 B22
N
y

{

zzzzzzz ® J
BTL 0
BBL BBR

N,
i

k

jjjjjjjjjjjj

C
`

00 H C`

i
k
jjjjj
C
`

10

C
`

20

y
{
zzzzz
i
k
jjjjj
C
`

C
`

end while

SYDT−LYDT.nb 1

Figure 3.6: Mechanically derived blocked algorithm for computing the solution of
the DTSY equation: loop-invariant (3.5).

Fig. 3.6 contains the algorithm, derived from this loop-invariant, as returned by our

system. Predictably, the algorithms only differ in the updates, in Steps 6, 7 and 8

of the worksheet. Some variables in the updates are marked in gray or in red; the

coloring refers to the availability of data at the moment in which the updates are

executed. A gray quantity is presently available in the matrix. The boxes in first

update

C12 := DTSY(A11, B22, C12 −A12 C22 B22)
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indicate that the two quantities needed in the assignment are available in subma-

trices C12 and C22 right after the repartitioning. Only submatrices of matrix C are

highlighted, because C is the only matrix that is overwritten as the computation

unfolds. Data from matrices A and B is available throughout the entire computa-

tion. Notice that the result of the first assignment is stored into submatrix C12;

this means that once that assignment is executed, the quantity C12 is not available

anymore.

A red submatrix indicates that the quantity needed is not present in the

submatrix after the repartitioning. It needs to be computed first to avoid redundant

computations. The third statement

C11 := DTSY(A11, B11, C11 −A11 C12 B21 −A12 C22 B21 −A12 C21 B11)

refers to two red variables: C12 and C21 ; these two submatrices need to be updated

before their contents can be used as part of the third assignment. For this reason

the updates are ordered so that C11 follows the assignments to C12 and C21. Our

mechanical system automatically identifies dependencies among the submatrices and

orders the updates accordingly.

In Section 2 we completed the worksheet to derive one algorithm for com-

puting the inverse of a triangular matrix (Fig. 3.7). We used the loop-invariant


 LTL 0

LBL LBR


 =


 L−1

TL 0

−LBLL−1
TL LBR


 . (3.6)

In Fig. 3.7 we show the same worksheet, as generated by our system. The similarity

is noticeable. Fig. 3.8 refers to the same derivation: it shows how the Pafter is

manipulated to find the updates (Step 8). The predicate in the figure corresponds

to Pafter after two passes of pattern matching: after the first pass Pafter is expressed in

terms of Pbefore (grey boxes), and in the second pass the system looks for quantities
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Figure 3.7: Mechanically completed worksheet for the computation of the inverse of
a triangular matrix: loop-invariant (3.6).
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Figure 3.8: Inversion of a triangular matrix: The predicate Pafter now contains the
updates for loop-invariant (3.6).

common to different submatrices, so that computations can be saved (red boxes).

Finally, we consider a different loop-invariant for computing the inverse of a

triangular matrix:


 LTL 0

LBL LBR


 =


 L−1

TL 0

−L−1
BRLBLL

−1
TL LBR


 . (3.7)

The corresponding algorithm, mechanically generated, is displayed in Fig. 3.9. Again,

the structure is the same as for the algorithm in Fig. 3.7, the difference being in the

updates.

3.3 Scope and Limitations

Let Op be a target dense linear algebra operation and assume that the FLAME

methodology for deriving algorithms applies to Op. Evidence suggests that the

family of algorithms resulting from the application of the derivation methodology to

Op can be generated by a mechanical system. Our mechanical system, in particular,

has been successfully employed in a number of different situations [7, 9, 6]:

• As part of the development of a full Level-3 BLAS library, a family of routines

has been generated for each operation and for each parameter combination

(transpose/no-transpose, upper/lower triangular, etc.). This project resulted

in more than 300 mechanically derived algorithms. In addition, the system
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Figure 3.9: Mechanically derived blocked algorithm for inverting a triangular matrix:
loop-invariant (3.7)
.

has been used to generate algorithms for the Cholesky and LU matrix factor-

izations. All the so-derived algorithms are available as part of a library.

• Computation of the covariance matrix. This operation has particular value

to the Earth science and aerospace communities. In a collaborative effort,

we derived families of algorithms for the operations required to compute the

inverse of a symmetric positive definite matrix [6].

• Our prototype system has been extensively tested on control theory operations
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from the RECSY library; we identified dozens of algorithms for each of these

operations, including the particularly challenging triangular coupled Sylvester

equation





AX + Y B = C, A,B,D,E are triangular matrices,

DX + Y E = F, X, Y are the unknowns,

for which we found more than 50 algorithms.

At the same time we have encountered situations in which our system does not

produce the desired results. In general, we observed the following two distinct

scenarios.

• Pattern matching. The system correctly computes the predicates Pbefore and

Pafter, but it fails to find updates in terms of Pbefore. This is due to the fact

that no canonical form has yet been identified for the symbolic expressions

involved in the computation. The situation is best explained by an example.

The next table shows possible expressions for the contents of Pbefore and Pafter

and the result of a pattern matching process (executed with Mathematica).

Pafter Pbefore Pattern Matching Result

1) (a c + b c) a c (a c + b c) /. {a c → x} x + b c

2) (a c + b c) a + b (a c + b c) /. {a + b → x} a c + b c

3) (a + b) c a c (a + b) c /. {a c → x} (a + b) c

4) (a + b) c a + b (a + b) c /. {a + b → x} x c

The “flat” representation (a c + b c) is suitable if we are looking for the ex-

pression (a c); by contrast, the factor a + b is found in (a c + b c) only if

Pafter is represented in “compact” form, as (a + b) c. This is a combinatorial

problem. The QR factorization is one operation in which such a situation

occurs.
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• Operands with special properties. The matrices involved in a linear algebra

computation might have a particular structure or property. When one such

matrix is partitioned, some of these properties and structures are inherited by

the submatrices. Example: If L is lower triangular and L is partitioned as(
LTL 0

LBL LBR

)
where LTL is square, then LTL and LBR are also lower trian-

gular. The current version of the prototype system does not have a mechanism

to pass properties from a matrix to submatrices.

Similarly, matrices with special structures may be traversed in a particular

fashion. An example is given by the permutation matrix resulting from the

LU factorization with pivoting; this matrix comes from the product of many

permutation matrices with a distinctive structure. This structure needs to be

encoded in order to mechanically derive algorithms for the LU factorization

with pivoting.

3.4 Summary

We introduced a prototype mechanical system for deriving algorithms for dense

linear algebra operations. The input to our prototype is a loop-invariant for the

target operation together with the operands specifications. The output is either an

algorithm description or an implementation. The system makes use of a database

of PMEs for expressing the target operation in terms of simpler operations.

The following is a list of contributions made in this chapter.

• Necessary information. Each step of the derivation procedure is dictated by

the input predicates Ppre, Ppost and PME. We have shown that the information

necessary for algorithms and routines to be generated mechanically is encoded

in these three predicates.

• Mechanical derivation. Our mechanical systems requires little human inter-
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vention. This attests to the systematic nature of our methodology for deriving

formally correct algorithms, by demonstrating that it can be made mechanical.

• Linear algebra libraries. Our prototype system has been successfully applied

to derive algorithms and routines for a large number of operations of different

complexity. These range from BLAS3 operations and their variations, to com-

plex control theory related operations, for which many previously unknown

algorithms were discovered.

The ultimate goal is to let the users specify a target operation through an

interface (or a website) and mechanically generate optimized dense linear algebra

libraries at the push of the button. Our prototype system is an important advance

towards this goal.
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Chapter 4

Systematic Error Analysis

“One of the major difficulties in a practical analysis is that of description.

An ounce of analysis follows a pound of preparation.”

B.N. Parlett [Matrix Eigenvalue Problems. Amer. Math. Monthly, 1965.]

Chapters 2 and 3 covered the problem of deriving families of algorithms for

a target linear algebra operation. Our methodology guarantees that each algorithm

in the family is formally correct, i.e., it computes the exact solution in a framework

with exact arithmetic (a framework where no roundoff error occurs sometimes is

also referred to as infinite precision arithmetic). The situation is different when

computations are instead performed with finite precision arithmetic. Under these

circumstances two formally correct algorithms may yield very different numerical

results, possibly far from the exact solution to the problem. As a consequence, the

numerical properties of every algorithm need to be investigated, in the attempt to

set accuracy bounds that are always met by the computed solution. In Section 1.2.3

we have defined stability as a property that numerical algorithms need to possess

in order to be considered useful.1

1Throughout the chapter we use the words “stability analysis” and “error analysis” interchange-
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The study of stability properties of numerical algorithms is a challenging

task. Quoting Higham [27]:

“Two reasons why rounding error analysis can be hard to understand

are that, first, there is no standard notation and, second, error analyses

are often cluttered with re-derivations of standard results.”

With our approach we also face another adversity: given a target operation, it is

not uncommon for our methodology to produce families of a dozen or even more

algorithms. While this abundance certainly represents one of the strengths of the

FLAME methodology, at the same time it highlights the need for new tools, sys-

tematic if not mechanical, to approach the problem of identifying stable algorithms.

This chapter introduces extensions to the FLAME worksheet and to the

procedure, presented respectively in Fig. 2.2 and Section 2.3, to perform stability

analyses; the input for the procedure is now a target linear algebra operation to-

gether with a formula —to be proved— representing the desired stability result for

the generated algorithm. The extended procedure consists of three stages: Stage 1 is

the standard FLAME algorithm derivation; Stage 2 is a procedure similar to Stage 1

to prove a stability formula, and finally, in the third and last stage, error bounds

are generated.

The primary two messages of this chapter follow.

1. The high level notation that abstracts from indices encourages and supports

modular stability analysis. In the next sections we derive analyses incremen-

tally, starting from basic operations which will constitute the building blocks

for the analyses of subsequent operations.2 We will provide multiple results

for the same operation. This approach corresponds to building a library of

known stability results, to be used as modules.

ably.
2In our treatment we only focus on the propagation of errors due to floating point arithmetic;

we assume that situations of over-flow or under-flow do not occur.

85



2. The stability analysis of algorithms generated through our derivation method-

ology (or our mechanical system), can be made systematic; to this end we

provide an extended derivation procedure to take into account the effects of

inexact arithmetic.

The novelty of this chapter does not lie with the error analyses that we derive,

but with the methodology for deriving the analyses. We present a framework and a

procedure to be followed that demonstrate that a systematic approach to stability

analysis is feasible. This is a first step towards an eventual mechanical system.

4.1 Extended Worksheet and Procedure

Starting from a description of a target linear algebra operation the goal is now not

only to derive an algorithm for the operation, but also to prove a certain formula

(given as input) related to the stability of the algorithm. Fig. 4.1 is an extended ver-

sion of the FLAME worksheet (Fig. 2.2) which consists of two sides: the Derivation

side on the left and the Error or Stability side on the right. The program statements

(Partition, While, Repartition, Continue) are common to both sides. The

field labeled “Error Analysis for the Updates” is the link between the derivation of

an algorithm and its stability: it dictates how the analysis of the algorithm on the

right side can be expressed in terms of the analysis of the updates on the left side.

4.1.1 The Derivation Side

The left side of the Fig. 4.1 is no different than the FLAME worksheet, with the

exception that now we take roundoff error into account: the computation of a math-

ematical formula is not guaranteed to return the exact result. The immediate conse-

quence is that the expressions that we used as loop-invariants are not mathematically

correct anymore. We introduce notation to distinguish between exact and computed
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Derivation side Error side
LA Operation Stability formula Step

Partition

Operands Error Operands
where

3

{ Loop-Invariant } { Error Invariant } 2
while G do { } 4

Repartition
Operands Error Operands

where
5a

{ Loop-Invariant } { Error Invariant } 6

Updates Error Analysis
for the Updates

Error Updates 8

{ Loop-Invariant } { Error Invariant } 7

Continue with
Operands Error Operands 5b

enddo

Figure 4.1: Extended worksheet for proving stability analyses.

quantities; loop-invariants will then be re-expressed in terms of the computed re-

sults.

Notation:

• The function fl
(
expression

)
returns the result of the evaluation of expression,

where every operation is executed in floating point arithmetic.

Note that fl(x+ y + z/w) = fl(fl(fl(x) + fl(y)) + fl(fl(z)/fl(w))).

• The notation
[
expression

]
is shorthand for fl

(
expression

)
.

• lhs = rhs, denotes the equality relation between the quantities lhs and rhs.

• lhs := rhs, denotes the assignment lhs← rhs. Formally, using a Hoare triple,
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{True} lhs := rhs {lhs = [rhs]}.

• In the context of a program, the statements lhs := rhs and lhs := [rhs] are

equivalent.

• Given an assignment κ := exp, we use the notation κ̌ to denote the quantity

resulting from fl(exp), which is actually stored in the variable κ.

• Given a vector v ∈ Rn, |v| corresponds to the vector (|v1|, . . . , |vn|)T . Similarly

for matrices: |A| =



|α11| . . . |α1n|

...
. . .

|αm1| . . . |αmn|


, where A ∈ Rm×n.

• The notation δξ, where the symbol δ is connected to a scalar variable ξ, in-

dicates a perturbation associated to the variable ξ. Similarly, ∆X (∆ is con-

nected with X) indicates a perturbation matrix associated to X. Vectors are

special cases of a matrix.

In Chapter 2 we assumed that the computation was performed in exact

arithmetic. In the setting of floating point arithmetic, the expressions that we used

as loop-invariants are not appropriate anymore. Accurate formulae for the loop-

invariants can be written by making use of the ˇ and [ ] notations.

Example 3 (
∑
x) Let us consider the problem of adding all the entries of a vector

x and accumulating the result in the variable κ; we denote this operation as κ :=
∑
x.

Partitioning x as
(

xT

xB

)
, a possible loop-invariant for this operation is κ =

∑
xT , corresponding to the algorithm ASum that traverses the vector x from the top

to the bottom, exposing at each iteration one or more entries from xB and adding

them up to the current contents of variable κ.

The loop-invariant expression κ =
∑
xT is appropriate only if the entries

of vector x are such that no error is introduced when the additions are performed
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(assuming that no overflow occurs). The quantity stored in κ is then precisely
∑
xT .

This is typically not true when x contains general floating point numbers.

Since floating point operations are inexact, the quantity stored in the variable

κ is not
∑
xT , but [

∑
xT ]; this is indicated by the expression κ̌ = [

∑
xT ] which is

read as “the variable κ contains the quantity κ̌ resulting from the execution of

algorithm ASum to evaluate
∑
xT using floating point arithmetic.”

Example 4 (TRSV) We examine the solution of a triangular system Lx = b. The

operation is identified by the predicates

Ppre : { Size(L) = (m×m) ∧ LowerTriangular(L) ∧

Size(b) = (m× 1) ∧ Size(x) = (m× 1) ∧ Inv(L) ∧

Output(L) ∧ x = x̂ }

and

Ppost : { Lx = b }, alternatively written as : { x = TRSV(L, b) }.

The PME for this operation is


 xT = L−1

TLbT

xB = L−1
BR(bB − LBLxT )


 ,

or equivalently 
 xT = TRSV(LTL, bT )

xB = TRSV(LBR, bB − LBLxT )


 .

A possible loop-invariant is


 xT = L−1

TLbT

xB = x̂B


 , which corresponds to


 xT = TRSV(LTL, bT )

xB = x̂B


 ;
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in the presence of roundoff, the accurate expressions for this loop-invariant are


 x̌T = [L−1

TLbT ]

x̌B = x̂B


 , or


 x̌T = [TRSV(LTL, bT )]

x̌B = x̂B


 .

Formulating loop-invariants by means of ˇ-quantities and [ ] does not affect

the derivation process discussed in Chapter 2 (a loop invariant remains a subset of

the PME, in terms of executed operations). The modification merely regulates the

relation between the loop-invariant and the variables used to store the computed

result.

Assessing properties and bounds relative to ˇ-quantities (κ̌ and x̌ in the

examples) is the goal of an error analysis. In the extended procedure we initiate

such a study by performing the error analysis (central field in Step 8 of Fig. 4.1) for

the updates from the Derivation side and propagating it to the Error side.

4.1.2 The Error Side

It is important to realize that the error analysis for a linear algebra operation

algorithm is an operation itself, where the quantity to be computed is the ma-

trix/operand expressing how error accumulates in the algorithm. We will call this

matrix the Error matrix (or, more generally, operand). On the Error side, the

FLAME methodology for deriving algorithms is applied to such an operation.

Example 5 (TRSV, continued) An algorithm that computes the operation Lx =

b is said to be backward stable if the computed vector x̌ is the exact solution of a

linear system “close” to the original one. Closeness here indicates small, possibly

null, relative perturbations to the input operands L and b. It can be proved (and

we provide a proof in this chapter) that the algorithms generated by the FLAME

procedure for computing the solution of a triangular system are stable: the computed

vector x̌ is the exact solution to a problem (L+∆L)x = b where ∆L is a matrix whose
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entries represent small relative perturbations to L. The operation (L + ∆L)x̌ = b

represents the stability analysis for an algorithm computing the TRSV operation,

and ∆L is the unknown error matrix.

The right side of the worksheet in Fig. 4.1, the Error side, has the same

structure as the Derivation side, but deals with the operation that characterizes the

error analysis for the algorithm appearing in the left side. We call Error Invariant a

loop-invariant for this operation, referring to the fact that it is a loop-invariant for

an operation expressing the result of an error analysis. The process of deriving the

Error side can be described by the two alternatives:

1. finding an algorithm for computing the Error matrix, or

2. generating an inductive proof of the stability formula (input), Step 6 symbol-

izes the inductive hypothesis, Step 7 is the thesis and Step 8 contains the facts

to proceed from the former to the latter.

Example 6 (TRSV, continued) Let us assume the Derivation side of Fig. 4.1

had been completed already, generating algorithm ATRSV for computing Lx = b. The

formula we want to prove is (L + ∆L)x̌ = b, where ∆L is unknown. One algorithm

for computing ∆L can be found by filling in the Error side: this same process can be

also described as the construction of an inductive proof.

The PME for the operation (L+ ∆L)x = b is


 (LTL + ∆LTL)x̌T = bT

(LBR + ∆LBR)x̌B = bB − LBLx̌T


 ,

and an error invariant we will use is


 (LTL + ∆LTL)x̌T = bT

x̌B = 0


 .
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We want the error invariant to be true at the beginning and the end of each

loop iteration. The core of the proof is in Steps 6, 7 and 8.

{} { Error Invariant } 6R

Updates Error Analysis

for the Updates

Error Updates
8R

{} { Error Invariant } 7R

Step 6R contains the error invariant before algorithm ATRSV executes the updates:

in this example, the expression




(L00 + ∆L00)x̌0 = b0

χ̌1 = 0

x̌2 = 0


 (4.1)

encodes the assumption that the error invariant is currently satisfied, i.e., it is an

inductive hypothesis. Step 7R contains the expression for the error invariant that

needs to be true after the execution of the computational updates:




(L00 + ∆L00)x̌0 = b0

(lT10δl
T
10)x̌0 + (λ11δλ11)χ̌1 = β1

x̌2 = 0


 ; (4.2)

in other words, it is the thesis to be proved.

We are seeking error updates (matrix ∆L is the unknown) such that the error

invariant is satisfied throughout the computation; this is possible if at each iteration,

algorithm ATRSV produces errors that can be accumulated into ∆L.

Step 8 (left) contains the statements performed by the algorithm under con-

sideration, in this case the assignment χ1 := fl

(
β1 − lT10x0

λ11

)
. A study of the errors
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introduced appears in the center field. The right field (Step 8R) contains assign-

ments necessary to collect the errors into the Error operand (∆L). While here we

are only outlining the procedure, Sec. 4.4 and Fig. 4.3 will provide the complete proof

for the backward stability of the algorithm ATRSV.

4.1.3 Three Stages

Let us consider a target operation OP for which algorithms can be constructed by

applying the methodology described in Chapter 2, and a stability formula F .

Stage 1 of the extended procedure consists of generating one algorithm A
computing OP: this is achieved by filling in the Derivation side in Fig. 4.1. In

Step 8 the updates for algorithm A are identified: these are the computational

statements involving floating point operations; they produce inexact results.

In Stage 2 we try to accumulate the errors produced by the computational

statements into the error matrix/operands. This is accomplished by

a) choosing an error analysis for each of the updates,

b) selecting an Error invariant for the stability formula, and

c) distributing the errors identified in a) into the error invariant to maintain its

truth at the end of each iteration. If this is possible then the formula for the

stability is proved, otherwise new choices for a) or b) can be attempted.

In Stage 3 numerical bounds for the error operands are established. Since

Stage 2 provides a recursive definition for the error operands, the numerical bounds

we are looking for can be expressed as the solution of a recurrence relation.

The main focus of this chapter is the propagation of errors, i.e., Stage 2.

For the operations that we analyze we also provide a brief treatment of numerical

bounds for the performed analyses (Stage 3).
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4.2 Stability Analysis: Preliminaries

In the next sections we build up a small library of error results for linear algebra

operations, focusing mainly on the second stage of the extended procedure. We

start from the simplest operation, the inner product, to advance to more complex

operations, making use of the analyses we have already proved. First we briefly

introduce definitions and results regarding floating point arithmetic needed in this

chapter.

1. Machine Precision: the quantity u is called machine precision or unit roundoff

and normally is of the order of 10−8 and 10−16 for single and double preci-

sion arithmetic, respectively.3 The unit roundoff is defined as the maximum

positive floating point number which can be added to the number stored as 1

without changing the number stored as 1: fl(1 + u) = 1.

2. Standard Computation Model (SCM): for any two floating point numbers x

and y, we assume that the basic arithmetic operations satisfy the equality

[
x op y

]
= (x op y)(1 + ε), |ε| ≤ u, and op ∈ {+,−, ∗, /}.

The quantity ε is function of x, y and op. In the remainder of this chapter we

will add a subscript (ε+, ε∗, . . . ) to make clear what operation generated the

(1 + ε) error factor. From now on we will assume that all the input variables

are, or consist of, floating point numbers.

3. Alternative Computational Model (ACM) [27]: For certain problems it is con-

venient to also assume the following properties for the basic arithmetic oper-
3u is machine dependent; it is a function of the parameters characterizing the machine arithmetic:

u = 1
2
β1−t, where β is the base and t is the precision of the floating point number system for the

machine.
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ations.
[
x op y

]
=
x op y
1 + ε

, |ε| ≤ u, and op ∈ {+,−, ∗, /}.

As for the standard computation model, the quantity ε is a function of x, y

and op. Note that the ε’s produced using the standard and alternative models

are not necessarily equal.

4. When n ∈ N and nu < 1, we define γn :=
nu

1− nu .

Although the factor γi appears in basically every error analysis, its subscript

is of little use. Specifically, when working on error bounds, the exact value of

the constant does not play a crucial role. Because of this observation the γi

factors are often all rounded up to a common γn to facilitate grouping.

Lemma 1 Let εi ∈ R, 0 ≤ i ≤ n− 1, and |εi| ≤ u. Then ∃ θn ∈ R such that

n−1∏

i=0

(1 + εi)±1 = 1 + θn, with |θn| ≤ γn.

Proof: See [27, Lemma 3.1]. ¦
The quantity θn will be used throughout this chapter. For simplicity of expres-

sions, it is not to be intended as a specific number, but as an order of magnitude

identified by the subscript n. This subscript measures how many error factors of

the form (1 + εi) or 1
(1+εi)

are grouped together. Two instances of the symbol

θn, appearing even in the same expression, do not represent the same

number!

Lemma 2 (Distribution of Error) Let α, β and λ be scalars and consider the

assignment σ :=
α+ β

λ
; the following three relations are satisfied:

1. σ̌ =
(α+ δα) + (β + δβ)

λ
, where |δα| ≤ γ2|α| and |δβ| ≤ γ2|β|;

2. σ̌ =
α+ β

(λ+ δλ)
, where |δλ| ≤ γ2|λ|;
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3. |α+ β − σ̌λ| = |θ2σ̌λ| ≤ γ2|σ̌||λ|.
Hence σ̌λ = α+ β + E, with |E| ≤ γ2|σ̌||λ|.

If in the above assignment λ = 1, then the results hold with γ1 in place of γ2.

This lemma states that the quantity σ̌ resulting from the evaluation of
α+ β

λ
is

the exact solution of close problems. It also indicates how the error generated in

performing such an assignment can be accumulated in different ways.

Proof: Result 1. follows directly from the definition of STC (Preliminary

#2), while 3. is an immediate consequence of 2. Here we provide a proof of 2.:

σ̌ =
[
α+ β

λ

]
=

[
[α+ β]
λ

]

=
[

α+ β

λ(1 + ε+)

]
ACM (Preliminary #3)

=
α+ β

λ(1 + ε+)(1 + ε/)
ACM (Preliminary #3)

=
α+ β

λ(1 + θ2)
=
α+ β

λ+ δλ
Lemma 1 ¦

4.3 Inner Product: κ := xTy, κ := α+xT y
λ

We consider the operation κ := xT y, where x and y are vectors in Rn. Because of

floating point arithmetic, any algorithm for computing κ returns a quantity κ̌ which

is not necessarily equal to xT y; the question is whether κ̌ is the exact solution for

a nearby problem: κ̌ ?= x′T y′, where the vectors x′ and y′ are close to or equal to x

and y.

Let A be the algorithm that computes the inner product xT y by sweeping

x and y from the top down. The error analysis we will prove is expressed by the

following theorem.
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Theorem 1 Let x, y ∈ Rn, and let κ := xT y be computed by algorithm A. Then

κ̌ =
[
xT y

]
= xT∆y, where

∆ = ∆{n} = I + Θ{n} =




1 + θn

1 + θn

1 + θn−1

. . .

1 + θ2




, (4.3)

and |θi| ≤ γi = iu
1−iu (Preliminary #4).

The superscript in ∆{n} and Θ{n} indicates the dimensions of the matrix and it is

included only when the size is not obvious from the context. We remind that the

θn quantities appearing in the matrix ∆ do not represent the same number. The

theorem says that the quantity κ̌ is the exact solution for two problems: κ := x′T y,

where x′T = xT∆ and κ := xT y′, where y′ = ∆y. In both cases, the input vectors

(x′ and y′) are close to the original inputs (x and y).

We present two different proofs for this theorem. The first is a standard

proof by induction, while the second is obtained by filling in the FLAME extended

worksheet (Fig. 4.1).

Proof: Standard Approach (induction).

Base case. n = 1: the vectors x and y are scalars; from the definition of the

standard computation model (Preliminary # 2) and using Lemma 1:

[xT y] = xy(1 + ε∗) = x(1 + θ1)y.

Inductive step. Inductive hypothesis (n = k): assume x, y ∈ Rk, then

[xT y] = xT∆{k}y. The result for n = k+1 must be proved: if two vectors x, y ∈ Rk+1,
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then
[
xT y

]
= xT∆{k+1}y. Partition vectors x and y as

x→
(

x0

χ1

)
, y →

(
y0

µ1

)

where x0, y0 ∈ Rk and χ1 and µ1 are scalars. The thesis can be rewritten as

[xT y] =
[
[xT0 y0] + [χT1 µ1]

]
. Using the inductive hypothesis first and then Prelimi-

nary # 2 (twice)

[xT y] =
[
xT0∆

{k}y0 + [χT1 µ1]
]

=
[
xT0∆

{k}y0 + χT1 (1 + ε∗)µ1

]

= xT0∆
{k}(1 + ε+)y0 + χT1 (1 + ε∗)(1 + ε+)µ1

which can be written as

[xT y] =


 x0

χ1



T 

 ∆{k}(1 + ε+)

(1 + ε∗)(1 + ε+)





 y0

µ1


 .

The equality (from Lemma 1)

∆{k+1} =


 ∆{k}(1 + ε+)

(1 + ε∗)(1 + ε+)




leads to the formula [xT y] = xT∆{k+1}y, which proves the theorem. ¦

Proof: New Approach (FLAME extended worksheet).

In the standard approach we only gave a sketch of the algorithm A computing

κ := xT y; in Stage 1 of the extended procedure the algorithm is formally framed

within the FLAME worksheet. This is done in the left side of Fig. 4.2. The loop

guard and the partitioned (and repartitioned) variables apply to the Error side too.

The theorem can be posed as the solution of the equation κ̌ = xT∆y, where
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the diagonal matrix ∆ is the unknown. Such an equation corresponds to a linear

algebra operation for which algorithms can be derived using the FLAME method-

ology: a PME and a valid loop-invariant for this operation can be identified. The

PME is

κ̌ =


 xT

xB



T 

 ∆T

∆B





 yT

yB


 = xT∆T yT + xB∆B yB

and κ̌ = xTT∆T yT is a viable error invariant. Such an error invariant can now be

entered on the Error side of the worksheet to derive one algorithm (Fig. 4.2).

We already know from the Derivation side that A proceeds by traversing

the vectors x and y top down. The partitioning and repartitioning of matrix ∆

follows conformally. The important steps of the derivation are Steps 6R through 8R.

Step 6R is the Error invariant at the top of the iteration, expressed in terms of

repartitioned operands; it represents the theorem’s inductive hypothesis: at the top

of the loop κ̌ can be written as xT0 ∆0y0, in other words, we are assuming that the

computation performed so far produced an error that can be accumulated into a

diagonal matrix ∆0. The question is whether the same structure can be maintained

after the execution of the statement in Step 8.

Step 7 contains the expression for the loop-invariant that needs to be true

at the bottom of the iteration; it characterizes the thesis to be proved:

κ̌ = xT0 ∆{k}0 y0 + χ1δ1ψ1, or in other words, after the execution of the statement in

Step 8, the error generated in the computation can still be accumulated into a

diagonal matrix. Here the matrix ∆{k}0 and the scalar δ1 are the unknowns.

It remains to 1) analyze the error produced by κ := κ + χ1ψ1, and 2) find

a way for assigning the error to the variables ∆{k}0 and δ1. The error generated

executing κ := κ + χ1ψ1 is easily determined by applying the formula from the

99



Derivation side Error side

κ := xT y κ̌ = xT∆y Step

Partition

x→
(
xT
xB

)
, y →

(
yT
yB

)
∆→

(
∆T 0
0 ∆B

)

where xT is empty

3

{
κ̌ =

[
xTT yT

]} {
κ̌ = xTT∆T yT

}
2

while m(xB) > 0 do {k = m(xT )} 4

Repartition
„

xT

xB

«
→
0
@

x0

χ1

x2

1
A ,

„
yT

yB

«
→
0
@

y0
ψ1

y2

1
A ,

(
∆T 0

0 ∆B

)
→

(
∆0 0 0

0 δ1 0
0 0 ∆2

)

where

5a

{
κ̌ =

[
xT0 y0

]} {
κ̌ = xT0 ∆0y0 = xT0 ∆{k}0 y0

}
6

κ := κ+ χ1ψ1

κ̌ =(
κ̌+ χ1ψ1(1 + ε∗)

)
(1 + ε+)

= xT
0 ∆{k}0 (1 + ε+)y0+
χ1(1 + ε∗)(1 + ε+)ψ1

∆0 := ∆0(1 + ε+)

δ1 := (1 + ε+)(1 + ε∗)
8

{
κ̌ =

[
xT0 y0 + χ1ψ1

]}




κ̌ =
(
x0

χ1

)T (
∆{k}0

δ1

)(
y0
ψ1

)
=

= xT
0 ∆{k}0 y0 + χ1δ1ψ1





7

Continue with(
xT

xB

)
←

(
x0

χ1

x2

)
,
(

yT

yB

)
←

(
y0
ψ1

y2

)
,

(
∆T 0

0 ∆B

)
←

(
∆0 0 0
0 δ1 0

0 0 ∆2

)
5b

enddo

Figure 4.2: Extended worksheet completed to prove the backward stability of the
Inner Product.

standard computation model (Preliminary # 2), twice:

κ̌ = [κ̌+ χ1ψ1] =
[
κ̌+ [χ1ψ1]

]

=
[
κ̌+ χ1ψ1(1 + ε∗)]

=
(
κ̌+ χ1ψ1(1 + ε∗)

)
(1 + ε+).
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It is now time to use the inductive hypothesis from Step 6 κ̌ = xT0 ∆0y0 = xT0 ∆{k}0 y0;

replacing κ̌, we get

κ̌ = xT0 ∆{k}0 (1 + ε+)y0 + χ1(1 + ε∗)(1 + ε+)ψ1

from which it is straightforward to identify the assignments

∆0 := ∆0(1 + ε+)

δ1 := (1 + ε+)(1 + ε∗)

that maintain the Error invariant true at the bottom of the iteration. This concludes

the proof that [xT y], computed by algorithm A, can be written as xT∆y where ∆

is a suitable diagonal matrix. The complete extended worksheet for algorithm A
together with the proof of its analysis κ̌ = [xT y] is shown in Fig. 4.2.

The third stage of the procedure concerns finding quantitative bounds for

the error matrix. In this case, the magnitude of the entries of matrix ∆ is easily

determined thanks to the following inductive relation; we omit the formal steps.

∆{k+1} =


 ∆{k}(1 + ε+)

(1 + ε∗)(1 + ε+)


 ¦

Since κ̌ = [xT y] = xT∆y = xT y + xTΘy, it follows that κ̌ = (xT + δxT )y =

xT (y + δy), where the vectors δx and δy contain small relative perturbations (entry-

wise) of vectors x and y respectively.

Theorem 1 allows us to state results concerning the backward and forward

stability of the inner product, independently of the order of evaluation.

Corollary 1 (Backward Analysis).

a) fl(xT y) = x′T y, with x′ = (x + δx)T and δxT = xTΘ. Independently of the
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order of evaluation, |δx| ≤ γn|x| holds.

b) fl(xT y) = xT y′, with y′ = (y + δy) and δy = Θy. Independently of the order

of evaluation, |δy| ≤ γn|y| holds.

Corollary 2 (Forward Analysis). For any order of evaluation:

|κ− κ̌| = |xT y − fl(xT y)| ≤ γn|x|T |y| or

κ̌ = κ+ E , where |E| ≤ γn|x|T |y|.

The last two corollaries can be grouped together to state how the error produced in

the computation of κ := xT y can be accumulated into the quantities ǩ, x and y.

Lemma 3 (Distribution of Error). Let x, y ∈ Rn, and κ := xT y. The following

equalities are satisfied:

1. κ̌ = (x+ δx)T y, with |δx| ≤ γn|x|;

2. κ̌ = xT (y + δy), with |δy| ≤ γn|y|;

3. κ̌+ Eκ̌ = xT y, with |Eκ̌| ≤ γn|x|T |y|;

The following theorem represents the analysis for the assignment σ :=
α+ β

λ
(already considered in Lemma 2), in the special case when β corresponds to an inner

product −xT y. Notice that upon completion, in exact arithmetic, the quantity α

would equal vT z where v =
(

x

λ̌

)
and z =

(
y

κ

)
. Because of roundoff error, the

equality does not hold; the theorem also gives a measure of the distance between α

and the computed vT z.

Theorem 2 Let α and λ be scalars, x and y be vectors in Rk−1; consider the

assignment κ :=
α− xT y

λ
and the quantity κ̌ computed as (α−(xT y))

λ . Then:

1. κ̌ =
α− (x+ δx)T y

(λ+ δλ)
, with δx = Θ{k−1}x (matrix Θ is defined in Eqn. (4.3)),

and δλ = θ2λ.
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In general, independently of the order in which the factor (α− xT y) is computed:

2. κ̌ =
α− (x+ δx)T y

(λ+ δλ)
, with |δx| ≤ γk|x|, and |δλ| = γk|λ|;

3. |α − xT y − κ̌λ| ≤ γk(|x|T |y| + |κ̌||λ|) = γk|v|T |z|, where v =
(

x

λ̌

)
and

z =
(

y

κ

)
.

Moreover:

4. κ̌ =
(α+ δα)− (x+ δx)T y

λ
, where |δα| ≤ γk|α| and |δx| ≤ γk+1|x|, and

κ̌ =
(α+ δα)− (x+ δx)T y

(λ+ δλ)
, where |δα| ≤ γk−1|α|, |δx| ≤ γk|x| and |δλ| ≤ γ1|λ|.

The theorem holds true (with minor modifications to the γ factors) also when there

is no division in the assignment (λ = 1).

Proof:

1. κ̌1 =
[
α− xT y
λ11

]

=

[[
α− [xT y]

]

λ11

]

=

[
[α− xT∆{k−1}y]

λ11

]
Theorem 1

=
α− xT∆y
λ11(1 + θ2)

Lemma 2 (Part 2)

The thesis is obtained using Eqn. (4.3) and expanding.

2. For the ordering considered in Part 1, the proof is straightforward. The oppo-

site ordering, corresponding to the inner product of vectors v =
(

α

−x

)
and

z =
(

1

y

)
, is more tedious. A sketch of the proof follows:

κ̌ =
[
[vT z]
λ

]
=

[
vT∆{k}z

λ

]
,
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where the top-left entry of ∆ is actually 1 + θk−1; v, z and ∆ are partitioned

to expose the first entry. The proof is completed by dividing by the first entry

of ∆ and using Lemma 1.

3. Using Part 2 of this theorem,

κ̌λ+ κ̌δλ = α− xT y − δxT y,

from which

|α− κ̌λ− xT y| = |κ̌δλ+ δxT y| ≤ γk(|λ||κ|+ |xT ||y|).

4. A particular ordering in the computation of (α − xT y) corresponds to the

product of the vectors 

−xT

α

−xB




T 


yT

1

yB


 ,

where x =

(
xT

xB

)
and y =

(
yT

yB

)
. A direct application of Theorem 1 to

these vectors proves the thesis.

¦

4.4 TRSV: Lx = b

Next, we analyze the stability of the algorithms for computing the solution of the

triangular system Lx = b. A formal specification for the operation is provided in

Examples 4 through 6 in this chapter. The goal is to prove that the algorithms for

computing the vector x are backward stable, i.e., the solution x̌ satisfies the equality

(L + ∆L)x̌ = (b + δb), where ∆L and δb contain small relative perturbations of the
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entries of L and b respectively. Thus, (L + ∆L)x̌ = (b + δb) is the stability formula

that we want to prove. In fact, we show that the vector or perturbation δb is zero,

meaning that the roundoff error can be entirely accumulated into the matrix ∆L.

The algorithm corresponding to loop-invariant


 xT = L−1

TLbT

xB = x̂B




is derived in the left side of Fig. 4.3. Such an algorithm computes the vector x

from the top to the bottom, keeping the top part of x fully computed and the

bottom part untouched. At each iteration it performs the numerical update (Step 8),

χ1 :=
β1 − lT10x0

λ11
, which is the statement that introduces errors due to floating point

arithmetic.

On the Error side we consider the error invariant


 (LTL + ∆LTL)x̌T = (bT + δbT )

x̌B = 0




which corresponds to the fact that the top portion of x that has been computed so

far is the solution of a nearby problem. In Steps 6 and 7 the invariant is expressed

in terms of the repartitioned operands:




(L00 + ∆L00)x̌0 = (b0 + δb0)

χ̌1 = 0

x̌2 = 0


 ,




(L00 + ∆L00)x̌0 = (bT + δb0)

(lT10δl
T
10)x̌0 + (λ11δλ11)χ̌1 = (βT + δβ1)

x̌2 = 0


 .

We seek error updates (Step 8R) to transition from the former to the latter, thus

proving that the error invariant is true at the beginning and at the end of each

iteration. The two expressions for the error invariant differ only in the row relative

to χ̌: this is a natural consequence of the fact that the update in Step 8 (left) assigns
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Derivation side Error side
Lx = b (L+ ∆L)x̌ = b Step

Partition

L→
(
LTL 0
LBL LBR

)
, x→

(
xT
xB

)
, b→

(
bT
bB

)
, ∆L→

(
∆LTL 0
∆LBL ∆LBR

)

where LTL is 0× 0, . . .

3

{(
x̌T = [L−1

TLbT ]
x̌B = 0

)} {(
(LTL + ∆LTL)x̌T = bT

x̌B = 0

)}
2

while m(xB) > 0 do {k = m(xT )} 4

Repartition
„

LTL 0

LBL LBR

«
→
0
@

L00 0 0

lT10 λ11 0
L20 l21 L22

1
A

„
xT

xB

«
→
0
@

x0

χ1

x2

1
A ,

„
bT
bB

«
→
0
@

b0
β1

b2

1
A ,

(
∆LTL 0
∆LBL ∆LBR

)
→




∆L00 0 0
δlT10 δλ11 0
∆L20 δl21 ∆L22




where

5a








x̌0 = [L−1
00 b0]

χ̌1 = 0
x̌2 = 0















(L00 + ∆L00)x̌0 = b0
χ̌1 = 0
x̌2 = 0






 6

χ1 :=
β1 − lT10x0

λ11

χ̌1λ11(1 + θ2) =
β1 − lT10(I + Θ)x̌0

δlT10 := lT10Θ
δλ11 := θ2λ11

8








x̌0 = [L−1
00 b0]

χ̌1 = [λ−1
11 (β1 − lT10x̌0)]
x̌2 = 0














(L00 + ∆L00)x̌0 = b0
(lT10 + δlT10)x̌0 + (λ11 + δλ11)χ̌1 = β1

x̌2 = 0





 7

Continue with

. . .

(
∆LTL 0
∆LBL ∆LBR

)
←




∆L00 0 0
δlT10 δλ11 0
∆L20 δl21 ∆L22


 5b

enddo

Figure 4.3: Lx = b: FLAME extended worksheet for proving the backward stability
of variant 1.
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a new value to χ1 only. Before the execution of the update we know (inductive

hypothesis) that χ̌1 = 0; we are left to prove that after the execution the relation

(expanded)

λ11χ̌1 + δλ11χ̌1 + lT10x̌0 + δlT10x̌0 = β1 + δβ1. (4.4)

is also true. Remember that the unknown is the matrix ∆LTL and specifically the

variables δlT10 and δλ11 here.

The analysis for the update in Step 8, χ1 :=
β1 − lT10x0

λ11
, is given in Part 1 of

Theorem 2:

χ̌ =
β1 − lT10∆x0

λ11(1 + θ2)
,

and since ∆ = I + Θ, expanding,

λ11χ̌1 + λ11θ2χ̌1 + lT10x̌0 + lT10Θx̌0 = β1, (4.5)

which appears in the central field of Step 8. From a comparison between equa-

tions 4.5 and 4.4 it is recognized that the assignments δlT10 := lT10Θ, δλ11 := θ2λ11

make the error invariant in Step 7R true. This proves that the error invariant is

maintained true at the beginning and the end each iteration of the algorithm, thus

after completion, too, implying the stability formula for this operation. Moreover,

since neither δb0 nor δβ1 are ever assigned, we conclude that the error vector δb is

identically zero, resulting in the formula (L+∆L)x̌ = b. To avoid clutter, in Fig. 4.3

we do not display the vector δb.

A few words on the magnitude of the entries of matrix ∆L. The diagonal

entries are set by the assignment δλ11 := θ2λ11, while the sub-diagonal entries are

set one row at a time by means of the assignment δlT10 := lT10Θ. Therefore matrix
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∆L = has the following structure

∆L =




θ2λ11

θ1λ21 θ2λ22

θ2λ31 θ2λ32 θ2λ33

θ3λ41 θ3λ42 θ2λ43 θ2λ44

...
...

...
. . .

θi−1λi1 θi−1λi2 θi−2λi3 θ2λii
...

...
...

. . .

θn−1λn1 θn−1λn2 θn−2λn3 . . . θ2λn(n−1) θ2λnn




(4.6)

representing small relative entry-wise perturbations of the of matrix L (λij is the (ij)

entry of matrix L). A convenient entry-wise bound for matrix ∆L = is |∆L| ≤ θn|L|.
The next theorems establish the backward stability of all the algorithms

derived by the FLAME methodology.

Theorem 3 Let ATRSV1 be the algorithm for solving Lx = b identified by the loop-

invariant

(
x̌T = [L−1

TLbT ]

x̌B = x̂B

)
. Then the vector x̌ computed by algorithm ATRSV1

satisfies the equality

(L+ ∆L)x̌ = b

where matrix ∆L is as in 4.6; therefore |∆L| ≤ θn|L|.

Proof: See Fig. 4.3. ¦

Theorem 4 Let ATRSV2 be the algorithm for solving Lx = b identified by the loop-

invariant

(
x̌T = [L−1

TLbT ]

x̌B = [−LBLx̌T ]

)
. Then the vector x̌ computed by algorithm ATRSV2

satisfies the equality (L+ ∆L)x̌ = b, where |∆L| ≤ θn|L|.

Theorem 5 Let ATRSV3 be the algorithm for solving Lx = b identified by the
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loop-invariant

(
x̌T = [L−1

TLbT ]

x̌B = [bB − LBLx̌T ]

)
. Then the vector x̌ computed by algorithm

ATRSV3 satisfies the equality (L+ ∆L)x̌ = b, where |∆L| ≤ θn|L|.

These last two theorems are proved with analogous techniques. We omit the work-

sheets corresponding to these proofs.

Finally we state a corollary that will be used in the analysis of the LU

factorization.

Corollary 3 The vector x̌ computed by any of the algorithmic variants mentioned

in the three theorems above satisfies |Lx̌− b| = |∆Lx̌| ≤ γn|L||x̌|.

4.5 LU Factorization: LU = A

We are now ready to tackle the analysis of the LU factorization. The operation is

defined as

Ppre : { Size(A) = (m×m) ∧ Output(L,U) ∧

Size(L) = (m×m) ∧ UnitLowerTriangular(L) ∧ L = 0 ∧

Size(U) = (m×m) ∧ UpperTriangular(U) ∧ U = 0 ∧ . . . }

and

Ppost : { LU = A }, alternatively written as :
{{L\U} = LU(A)

}
,

where the predicate UnitLowerTriangular(L) is true when the matrix L is lower

triangular with ones on the diagonal. The dots indicate that the conditions on
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matrix A to ensure the existence of the LU factorization are missing. The PME is


 {L\U}TL = LU(ATL) UTR = L−1

TLATR

LBL = ABLU
−1
TL {L\U}BR = LU(ABR − LBLUTR)


 ,

where the notation {L\U}xy = LU(M) signifies that matrices Lxy and Uxy are the

result of the LU factorization of matrix M (here xy = TL or BR). In this section

we focus our attention on the loop-invariant


 {Ľ\Ǔ}TL = [LU(ATL)] ǓTR = [Ľ−1

TLATR]

ĽBL = [ABLǓ−1
TL] {Ľ\Ǔ}BR = 0




corresponding to the Crout variant ALU1 for computing the LU factorization of a

matrix A. The derivation of the algorithm is in Fig. 4.4. The information that we

need for the error analysis is given by the three updates

µ11 := α11 − lT10u01, uT12 := aT12 − lT10U02, l21 :=
a21 − L20u01

µ11
.

The goal is to show that algorithm ALU1 is backward stable, in the sense

that the computed factors Ľ and Ǔ satisfy the equality ĽǓ = A+ ∆A: they are the

exact L and U factors of a matrix close to A.

In Fig. 4.5, we show only the error side of the extended worksheet (to save

space) with the error invariant


 {ĽǓ}TL = (ATL + ∆ATL) ǓTR = Ľ−1

TL(ATR + ∆ATR)

ĽBL = (ABL + ∆ABL)Ǔ−1
TL {ĽǓ}BR = 0


 ,

showing what the inductive hypothesis and thesis are (Step 6 and Step 7). Matrix

∆A is the error operand: it represents the unknown where we want to accumulate

the errors produced by the updates. In order to complete the error analysis we need

to find error updates for this matrix.

We start by comparing the expressions for the error invariant at Step 6 and
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Step LU = A

3

Partition

L→
(

LTL 0

LBL LBR

)
, U→

(
UTL UTR

0 UBR

)
, A→

(
ATL ATR

ABL ABR

)

where LTL, UTL, ATL, are 0× 0
4 While m(ABR) > 0 do

5a

Repartition
(
LTL 0

LBL LBR

)
→

(
L00 0 0

lT10 1 0
L20 l21 L22

)
,
(
UTL UTR

0 UBR

)
→

(
U00 u01 U02

0 µ11 uT
12

0 0 U22

)

where

6







{Ľ\Ǔ}00 = [LU(A00)] ǔ01 = [Ľ−1

00 a01] Ǔ02 = [Ľ−1
00 A02]

ľT10 = [aT
10Ǔ

−1
00 ] µ̌11 = 0 ǔT

12 = 0
Ľ20 = [A20Ǔ

−1
00 ] ľ21 = 0 {Ľ\Ǔ}22 = 0







8

µ11 := α11 − lT10u01

uT12 := aT12 − lT10U02

l21 :=
a21 − L20u01

µ11

7







{Ľ\Ǔ}00 = [LU(A00)] ǔ01 = [Ľ−1

00 a01] Ǔ02 = [Ľ−1
00 A02]

ľT10 = [aT
10Ǔ

−1
00 ] µ̌11 = [α11 − ľT10ǔ01] ǔT

12 = [aT
12 − ľT10Ǔ02]

Ľ20 = [A20Ǔ
−1
00 ] ľ21 = [(a21 − Ľ20ǔ01)/µ̌11] {Ľ\Ǔ}22 = 0







5b
Continue with
(
LTL 0

LBL LBR

)
←

(
L00 0 0

lT10 1 0

L20 l21 L22

)
,
(
UTL UTR

0 UBR

)
←

(
U00 u01 U02

0 µ11 uT
12

0 0 U22

)

endwhile

Figure 4.4: LU = A. Left side of the FLAME extended worksheet: Crout variant.

Step 7: they differ only in submatrices (1, 1) µ11, (1, 2) uT12 and (2, 1) l21. It is not

by accident: the computational statements update the same three quadrants.

Position (1, 1): The element µ11 is only affected by the statement

µ11 := α11 − lT10u01. The appropriate form for the analysis of this statement is evi-

dent when looking at the difference between the inductive thesis and the inductive

hypothesis: the hypothesis tells us that µ11 has no error associated with it (in fact
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Derivation side Error side

LU = A ĽǓ = (A+ ∆A)

Partition

∆A→
(

∆ATL ∆ATR

∆ABL ∆ABR

)

where
{( {ĽǓ}TL = (ATL + ∆ATL) ǓTR = Ľ−1

TL(ATR + ∆ATR)
ĽBL = (ABL + ∆ABL)Ǔ−1

TL {ĽǓ}BR = 0

)}

while m(ABR) > 0 do {k = m(ATL)}
Repartition

(
∆ATL ∆ATR

∆ABL ∆ABR

)
→




∆A00 δa01 ∆A02

δaT
10 δα11 δaT

12

∆A20 δa21 ∆A22




where






{Ľ\Ǔ}00 = LU(A00+∆A00) ǔ01 = Ľ−1

00 (a01+δa01) Ǔ02 = Ľ−1
00 (A02+∆A02)

ľT10 = (aT
10+δaT

10)Ǔ
−1
00 µ̌11 = 0 ǔT

12 = 0
Ľ20 = (A20+∆A02)Ǔ−1

00 ľ21 = 0 {Ľ\Ǔ}22 = 0







µ11 := α11 − lT10u01

uT12 := aT12 − lT10U02

l21 :=
a21 − L20u01

µ11

µ̌11 = α11 − ľT10ǔ01 + E11

ǔT12 = aT12 − ľT10Ǔ02 + ET12

ľ21µ̌11 = a21 − Ľ20ǔ01 + E21

δα11 = E11

δaT12 = ET12

δa21 = E21

{( {Ľ\Ǔ}00 = LU(A00+∆A00) ǔ01 = Ľ−1
00 (a01+δa01) Ǔ02 = Ľ−1

00 (A02+∆A02)

ľT10 = (aT
10+δaT

10)Ǔ
−1
00 µ̌11 = (α11+δα11)− ľT10ǔ01 ǔT

12 = (aT
12+δaT

12)− ľT10Ǔ02

Ľ20 = (A20+∆A20)Ǔ
−1
00 ľ21 = (a21+δa21 − Ľ20ǔ01)/µ̌11 {Ľ\Ǔ}22 = 0

)}

Continue with (
∆ATL ∆ATR

∆ABL ∆ABR

)
←




∆A00 δa01 ∆A02

δaT
10 δα11 δaT

12

∆A20 δa21 ∆A22




enddo

Figure 4.5: LU = A. Right side of the extended worksheet for proving the backward
stability of the LU factorization computed via the Crout variant. Step 6 contains
the inductive hypothesis and Step 7 the thesis. The center field of Step 8 con-
tains the error analysis for the computational updates and the right field shows the
assignments that maintain the error invariant true.
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its value is still 0), while the thesis

µ̌11 = α11 − ľT10ǔ01 + δα11.

indicates that once the update is performed, µ̌11 contains the quantity α11 − ľT10ǔ01

plus the error term δα11. Thus, δα11 is the difference between µ̌11 and α11 −
ľT10ǔ01. A bound for such difference is given in Theorem 2 (Part 3, with λ = 1):

E11 = µ̌11 − α11 + ľT10ǔ01, and |E11| ≤ γk
∣∣∣∣∣

(
ľ10

1

)∣∣∣∣∣

T ∣∣∣∣∣

(
ǔ01

µ̌11

)∣∣∣∣∣, where k = m(ATL).

Position (1, 2): Submatrix uT12 is updated by the assignment uT12 := aT12 − lT10U02.

The inductive thesis requires the error to be accumulated into vector δaT12. The

analysis is the same as the one for position (1, 1), given that every element of uT12 is

updated the same way that µ11 is. The vector δaT12 is the difference ET12 between ǔT12

and aT12 − ľT10Ǔ02. Applying Part 3 of Theorem 2, we conclude that an entry-wise

bound for |ET12| is γk

(
|ľ10|
1

)T(
|Ǔ02|
|ǔT

12|

)
.

Position (2, 1): The error invariant for quadrant l21 dictates that

ľ21 =
a21 + δa21 − Ľ20ǔ01

µ̌11
,

which means that δa21 is the difference E21 between the vectors ľ21µ̌11 and Ľ20ǔ01 − a21.

Part 3 of Theorem 2 gives us an entry-wise bound for vector E21:

|E21| ≤ γk
(
|Ľ20| |ľ21|

)(
|ǔ01|
|µ̌11|

)
.

A comment on the size of the entries of matrix ∆A follows. At each iterate,

the computational updates on Step 8 guarantee that the following relations are
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satisfied
α11 = lT10u01 + µ11,

aT12 = lT10U02 + uT12,

a21 = L20u01 + l21µ11,

(4.7)

so that upon termination, the loop computes matrices L and U such that LU = A.

Conversely, at each iteration the Error updates compute the matrix ∆A that satisfies

δα11 = E11 ∧ |E11| ≤ γk
(|ľT10||ǔ01|+ |µ̌11|

)
,

δaT12 = ET12 ∧ |ET12| ≤ γk
(|ľT10||Ǔ02|+ |ǔT12|

)
,

δa21 = E21 ∧ |E12| ≤ γk
(|Ľ20||ǔ01|+ |ľ21||µ̌11|

)
,

(4.8)

where k ranges from 1 to n = n(A) and the ≤ relation holds entry-wise. From a

comparison of Eqns. (4.7) and (4.8) it is clear that if we ignored the γk factors,

matrix |∆A| would be entry-wise bounded by |Ľ||Ǔ |. In general, taking the γk’s into

account, |∆A| ≤ γn|Ľ||Ǔ |.

Theorem 6 Let ALU1 be the algorithm for computing the LU factorization identified

via the loop-invariant

 {Ľ\Ǔ}TL = [LU(ATL)] ǓTR = [Ľ−1

TLATR]

ĽBL = [ABLǓ
−1
TL] {Ľ\Ǔ}BR = 0


 ,

which is also known as the Crout variant. Then the computed factors Ľ and Ǔ are

such that:

ĽǓ = A+ δA

where |δA| ≤ γn|Ľ||Ǔ |.

Proof: From Figs. 4.4, 4.5. ¦
Note: the backward stability result we just proved, ĽǓ = A + δA with

|δA| ≤ γn|Ľ||Ǔ |, agrees with the one that Nick Higham proves in [27]. In the
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analysis of the updates (central field of Step 8 in Fig. 4.5) we could have used Part 4

of Theorem 2 (the error is accumulated in δα too) instead of Part 3. In that case

we would have obtained the slightly weaker bound

|δA| ≤ γn(|A|+ |Ľ||Ǔ |),

which is the result that Golub and Van Loan present in [20].

It is well known that there exist five algorithmic variants to compute the

LU factorization; our methodology captures them all: the PME for this operation

admits five feasible loop-invariants. Every treatment of the backward stability for

the LU factorization is specific to one variant only, although similar bounds result.

We conclude the chapter by proving that the “bordered” variant for comput-

ing the LU factorization is also backward stable, and satisfies the same bounds as

the Crout Variant. The computational updates for this variant include the solution

of a triangular system. As a consequence we will make use of the stability results

that we have proved in the former section (in particular Corollary 3). The stability

of the other three variants can be proved by applying similar techniques.

Theorem 7 Let ALU2 be the algorithm for computing the LU factorization identified

by loop-invariant


 {Ľ\Ǔ}TL = [LU(ATL)] ǓTR = 0

ĽBL = 0 {Ľ\Ǔ}BR = 0


 ,

which is also known as the “bordered” or “lazy” variant. Then the computed factors

Ľ and Ǔ satisfy

ĽǓ = A+ δA,

where |δA| ≤ γn|Ľ||Ǔ |.
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Proof: The core of the proof is given in Fig. 4.7; the error invariant is


 {ĽǓ}TL = (ATL + ∆ATL) ǓTR = 0

ĽBL = 0 {Ľ\Ǔ}BR = 0


 .

Fig. 4.6 shows the derivation side of the extended worksheet. ¦

4.6 Summary

We presented extensions to the worksheet introduced in Chapter 2 that support

error analyses of algorithms derived with our methodology. This chapter makes the

following contributions to the field of numerical analysis.

• An alternative notation that hides explicit loop indexing.

• Raising the level of abstraction at which to reason about dense linear algebra

algorithms leads to modularity. We showed that the stability analyses of

simple operations constitute a library of building blocks for the analyses of

more complex operations.

• Systematic error analysis. The investigation of numerical properties can be

made systematic by employing the same classical computer science concepts

that lead to the systematic derivation of algorithms.

These advances provide evidence that, for a class of dense linear algebra operations,

we can hope to make stability analysis mechanical.
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Derivation side Error side

LU = A

Partition

L→
(

LTL 0
LBL LBR

)
, U →

(
UTL UTR

0 UBR

)
, A→

(
ATL ATR

ABL ABR

)
, . . .

where LTL, UTL, ATL, are 0× 0
{( {Ľ\Ǔ}TL = [LU(ATL)] ǓTR = 0

ĽBL = 0 {Ľ\Ǔ}BR = 0

)}
{}

while m(ABR) > 0 do {}
Repartition
(
LTL 0

LBL LBR

)
→

(
L00 0 0

lT10 1 0

L20 l21 L22

)
,
(
UTL UTR

0 UBR

)
→

(
U00 u01 U02

0 µ11 uT
12

0 0 U22

)
, . . .

where





{Ľ\Ǔ}00 = [LU(A00)] ǔ01 = 0 Ǔ02

ľT10 = 0 µ̌11 = 0 ǔT12

Ľ20 = 0 ľ21 = 0 {Ľ\Ǔ}22 = 0








{}

u01 := L−1
00 a01

lT10 := aT10U
−1
00

µ11 := α11 − lT10u01







{Ľ\Ǔ}00 = [LU(A00)] ǔ01 = [Ľ−1

00 a01] Ǔ02

ľT10 = [aT10Ǔ
−1
00 ] µ̌11 = [α11 − ľT10ǔ01] ǔT12

Ľ20 = 0 ľ21 = 0 {Ľ\Ǔ}22 = 0








{}

Continue with(
LTL 0

LBL LBR

)
←

(
L00 0 0

lT10 1 0

L20 l21 L22

)
,
(
UTL UTR

0 UBR

)
←

(
U00 u01 U02

0 µ11 uT
12

0 0 U22

)

enddo

Figure 4.6: LU = A: FLAME extended worksheet for proving the backward stability
of the LU factorization (bordered variant). Fig. 4.7 contains Steps 6, 7 and 8.
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ľT 1

0
∆
Ǔ
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ľT 1

0
ǔ
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\Ǔ
} 0

0
=

L
U

(A
0
0
+

∆A
0
0
)

ǔ
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Chapter 5

Conclusions

In this thesis we focused on the derivation and the analysis of formally correct

algorithms for dense linear algebra operations. Our goal was to achieve systematic

derivation and analysis of algorithms. Succeeding in this goal represents a significant

step forward towards a more ambitious project: the development of a mechanical

system for the generation of linear algebra libraries. The inputs for such a mechanical

system would be the mathematical specifications of a dense linear algebra operation,

a programming language, and (a model of) a target architecture. At the press of a

button, the system would return:

• A family of formally correct algorithms that compute the operation;

• A corresponding family of routines, implemented in the language of choice and

optimized for the target architecture;

• Documentation for each algorithm in the family, consisting of stability and

performance analyses.

The primary contribution of this thesis is to provide evidence that such a mechanical

system can, to a large degree, be achieved. The results of our research and references
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to our research publications are presented in the next section. We conclude with a

discussion on potential future research directions.

5.1 Results

Here we summarize the main contributions of this thesis within the field of computer

sciences.

• Systematic derivation of formally correct algorithms [4, 5]. Proving

the formal correctness of loop-based algorithms is a process that involves the

determination of a loop-invariant. No general procedure is known to deter-

mine loop-invariants. We showed that for a class of linear algebra operations,

given the mathematical specification of the operation, it is possible to iden-

tify —a priori— a family of loop-invariants for algorithms that compute the

operation. This result was facilitated by the choice of an appropriate level of

abstraction, and a corresponding notation, for dealing with dense linear alge-

bra algorithms [10]. This enabled us to develop a systematic procedure for

building one algorithm corresponding to a given loop-invariant by applying

formal derivation techniques and by exploiting the structure of dense linear

algebra algorithms. The formal correctness of the resulting algorithm is guar-

anteed by construction [9]. Since there is a one-to-one correspondence between

loop-invariant and algorithm, our methodology yields a family of algorithms

for a given operation. In brief, we introduced a systematic procedure for deriv-

ing families of formally correct algorithms for dense linear algebra operations.

• Mechanical generation of formally correct algorithms [7]. A procedure

is truly systematic if it can be executed by a mechanical system. Moreover, the

execution of the derivation procedure by hand leads to complex matrix opera-

tions; such a process is error prone. We presented a prototype of a mechanical
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system that implements the aforementioned derivation procedure. The system

operates with limited human intervention: it takes a loop-invariant as input

and returns a formally correct algorithm. Alternatively, it outputs a rou-

tine that, by means of high-level APIs [8], mirrors the algorithm description.

This prototype system further demonstrates that our derivation procedure is

systematic. Since we also reasoned that loop-invariants can be mechanically

derived from the operation specifications, we conclude that for a class of dense

linear algebra operations, formally correct algorithms can be generated me-

chanically.

• Systematic stability analysis of algorithms [9]. We have established that

formally correct algorithms can be systematically and even mechanically gen-

erated. Unfortunately, since we are dealing with floating point computations,

formal correctness does not translate into accuracy. A stability analysis of

every generated algorithm is needed. To this end we extended the derivation

procedure to investigate numerical properties. The procedure is systematic

and modular: the error analysis for one algorithm builds upon the analyses

for the linear algebra operations appearing in the loop-body of the algorithm.

This thesis also contributes to the field of computational science, through

the algorithms and libraries it enables.

• Families of algorithms. A library should provide the users with many al-

gorithmic variants for computing the same operation. In the introduction we

illustrated that top performance is attained by different variants in different

scenarios. Our methodology returns a family of algorithms (in some cases

a family may include dozens of variants). As an example of successful col-

laboration, our prototype mechanical system was used to derive families of

algorithms for all the operations necessary for computing the covariance ma-

trix [6]; this project was motivated by research in Earth science and aerospace
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engineering. The system has also been applied to several operations included

in LAPACK.

• Libraries. Ultimately, computational scientists need a library. If a library in-

cluded a family of algorithmic variants for every operation, as we advocate, its

development would represent a daunting task for a human. Mechanical gener-

ation of routines is necessary. As part of the development of a complete set of

BLAS3 programs, our prototype system was employed to generate more than

300 routines. The system has also been shown to apply to all the operations

included in RECSY, a library targeting control theory applications [29, 30];

for these operations, our methodology typically yields dozens of variants.1

Thus, the generation —systematic and mechanical— of formally correct al-

gorithms is the contribution of this dissertation to computer science, while the al-

gorithms and libraries generated by our methodology and tools represent the con-

tribution to the computational sciences and engineering.

5.2 Future Work

Here we propose possible directions to expand and strengthen the results achieved

in this dissertation.

• Mechanical derivation. Our prototype system does not fully implement

the procedure for deriving algorithms. It leaves the task of selecting loop-

invariants to the user. The limitations of our prototype system have been

discussed in Chapter 3. In order to expand the scope of the system, matri-

ces with other structures (in addition to triangular and symmetric) should

be incorporated. We believe that our system could be improved, addressing
1RECSY normally includes only three variants per operation.
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both these issues (derivation of loop-invariants and structured matrices), by

explicitly keeping track of the partitioning sizes.

• Performance analysis. Having a family of algorithms at hand is disorienting

for the user who simply wants to attain the maximum performance on a target

architecture.

In Chapter 4 we have shown how the derivation procedure can be extended

to study stability properties. We believe that the procedure can be extended

in a similar fashion to study performance. The same way a loop-invariant

describes the content of the variables during the computation, there could be

a cost-invariant which holds at the same points where the loop-invariant does.

The cost for the algorithm would then be expressed as a recurrence relation

for which Mathematica can, in principle, find a closed form solution.

A different approach for determining the best performing algorithmic variant

in a specific situation would be by developing an intelligent system. Such a

system would be responsible to run and time the different variants for the

target operation and for the operations appearing in the loop-bodies. This

would result in combinatorial tree to be traversed and pruned by using artificial

intelligence techniques.

• SCOPE. We have established that the PME contains the necessary informa-

tion for a mechanical system in order to generate algorithms. We would like to

investigate the class of operations that admit a PME. The ideas employed in

the derivation procedure are not restricted to the field of linear algebra only.

We have mentioned already that formally correct algorithms for sorting can be

derived with a similar methodology. The same is true for problems in compu-

tational geometry. A precise characterization of the scope of the methodology

is missing.
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• Mechanical stability analysis. The most ambitious part in the mechanical

development of linear algebra libraries lies with the mechanical derivation

of stability analysis. This dissertation provides evidence that for a class of

operations, a user-suggested result can be proved systematically. Whether a

stability formula can be assessed mechanically is an open question. One of the

limitations of the methodology is that the execution of the extended procedure

leads to complicated matrix expressions. This opens up the possibility of

mechanical error analysis.
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Appendix A

Cholesky Factorization

A.1 Derivation and FLAME Notation

Here we illustrate the FLAME notation [10] by deriving and representing algorithms

to compute the Cholesky factorization of a matrix. Given a symmetric positive

definite matrix A, the operation is defined as the computation of a lower triangular

matrix L such that LLT = A. We denote this operation by A := Γ(A), which

should be read as “the matrix A is overwritten by its Cholesky factor L.” Since A is

symmetric, typically only the lower or upper triangular part is stored, and it is that

part that is then overwritten with the result. In this discussion, we assume that the

lower triangular part of A is stored and overwritten.

One algorithm for computing A := Γ(A) can be derived as follows. Consider

the equation A = LLT and partition the matrices A and L as

A =


 α11 ?

a21 A22


 and L =


 λ11 0

l21 L22


 . (A.1)

The ? signifies that the symmetric part of A is neither stored nor updated.
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We adopt the commonly used convention that Greek lower case letters refer to

scalars, lower case letters refer to vectors, and upper case letters refer to matrices.

Substituting the partitioned matrices (A.1) into the equation A = LLT , we find


 α11 ?

a21 A22


=


 λ11 0

l21 L22





 λ11 0

l21 L22



T

=


 λ2

11 ?

λ11l21 l21l
T
21 + L22L

T
22


,

from which we conclude


 λ11 =

√
α11 ?

l21 = a21/λ11 L22 = Γ(A22 − l21l
T
21)


 .

These equalities motivate the following algorithm.

Algorithm 1 (Cholesky unblocked).

1. Partition A→

 α11 ?

a21 A22


.

2. Overwrite α11 := λ11 =
√
α11.

3. Overwrite a21 := l21 = a21/λ11.

4. Overwrite A22 := A22− l21l
T
21 (updating only the lower triangular part of A22).

5. Continue with A = A22. (Back to Step 1).

Pictorially the algorithm can be described by a sequence of pictures as shown in

Fig. A.1.

a) The matrix is seen as composed by four quadrants: A =

(
ATL ?

ABL ABR

)
,

where T,B,L,R signify Top, Bottom, Left, Right, respectively. Quadrant

ATR is not labelled because it is not stored and it is never referenced or
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done

done

done

partially
updated

a) Beginning of iteration

ATL

ABL

?

ABR

↓ ↓

b) Repartition

(Step 1)

A00 ? ?

aT
10

α11 ?

A20 a21 A22

↓ ↓

UPD.

UPD. UPD.

c) Update

(Steps 2, 3 and 4)

√
α11

a21
α11

A22−
a21a

T
21

↓ ↓

@@R

done

done

done

partially
updated

d) End of iteration

(Step 5)

ATL

ABL

?

ABR

Figure A.1: Left: Progression of pictures that explain the algorithm for comput-
ing the Cholesky factorization. Right: Same pictures, annotated with labels and
updates.

updated. The algorithm is at the stage in which quadrants ATL and ABL

have been computed, i.e., they contain the final result, while quadrant ABR

still remains to be computed.
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for j = 1 : n
αj,j :=

√
αj,j

for i = j + 1 : n
αi,j := αi,j/αj,j

end

for k = j + 1 : n
for i = k : n

αi,k := αi,k − αi,jαk,j

end
end

end

for j = 1 : n
αj,j :=

√
αj,j

9
=
; αj+1:n,j := αj+1:n,j/αj,j

9
>>>>=
>>>>;

αj+1:n,j+1:n :=
αj+1:n,j+1:n − tril(αj+1:n,jα

T
j+1:n,j)

end

Figure A.2: Formulations of the Cholesky factorization that expose indices. The
function tril(X) denotes the lower triangular part of matrix X.

b) Quadrant ABR is partitioned as in Step 1 of the algorithm, and quadrants ABL

and ATR are partitioned accordingly. ABR and ABL, respectively, become(
α11 ?

a21 A22

)
and

(
aT
10

A20

)
.

c) Regions α11, a21 and A22 are updated performing the computations deduced

at Steps 2, 3 and 4.

d) Quadrant ATL is expanded, to keep track of the progress made: it now includes

the regions aT10 and α11 too. As a consequence, quadrant ABR, which remains

to be factored, shrinks down. The other quadrants are updated accordingly.

Algorithm 1 is typically represented using a combination of nested loops and

indicating entry by entry the operations performed: see Fig. A.2 (left). In the same

figure, on the right, the same algorithm is presented in a more concise way, using

the popular “Matlab-like” notation to compact operations on vectors and matrices

into a single statement by means of the : operator. In both cases it is difficult

to catch the relation between the steps given in Algorithm 1 or Fig. A.1 and the

representation in Fig. A.2. The problem lies in the fact that the level of abstraction

used to derive and describe the algorithm is different from the level of abstraction
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for j = 1 : n in steps of nb

b := min(n− j + 1, nb)

Aj:j+b−1,j:j+b−1 := Γ(Aj:j+b−1,j:j+b−1)

Aj+b:n,j:j+b−1 := Aj+b:n,j:j+b−1A
−T
j:j+b−1,j:j+b−1

Aj+b:n,j+b:n := Aj+b:n,j+b:n − tril(Aj+b:n,j:j+b−1A
T
j+b:n,j:j+b−1)

end

Figure A.3: Blocked algorithm for computing the Cholesky factorization. Here nb
is the block size used by the algorithm.

used to represent it.

The relation between the algorithm and its representation becomes even more

obscure when a blocked algorithm is considered (see Fig. A.3). The intricate indexing

makes it impossible to create a picture of what parts of the matrix are used and

or updated. In contrast, by observing that the entries of matrix A are used in a

consistent way, only depending on the region they belong to, it comes natural to

try to identify what the different regions are. FLAME employs a notation that

exposes the regions of matrices which are handled in the computations [10]. This

is accomplished by means of the three constructs Partition, Repartition and

Continue with, as shown in Fig. A.4. On the left and the right of the picture

we display, respectively, the unblocked and blocked versions of Algorithm 1 using a

high level notation, contrasting the explicit indexing used in Figures A.2 and A.3.

Although the algorithms in Figure A.4 are not as concise as the Matlab-like

ones, they exhibit the structure common to both the unblocked and blocked versions1

and they capture to a large degree the verbal description of the algorithm; we believe

that our notation reduces both the effort required to interpret the algorithm and the

need for additional explanations. Furthermore, the notation in Figs. A.1 and A.2
1The same structure is shared by a family of algorithms computing the same operation (see

Chapter 2).
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Algorithm: A := Chol unb(A)

Partition A→
„

ATL ?

ABL ABR

«

where ATL is 0× 0

While m(ATL) < m(A) do

Repartition
„

ATL ?

ABL ABR

«
→
0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

where α11 is 1× 1

α11 :=
√

α11

a21 := a21/α11

A22 := A22 − tril(a21a
T
21)

Continue with
„

ATL ?

ABL ABR

«
←
0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

endwhile

Algorithm: A := Chol blk(A)

Partition A→
„

ATL ?

ABL ABR

«

where ATL is 0× 0

While m(ATL) < m(A) do
Determine block size b
Repartition
„

ATL ?

ABL ABR

«
→
0
@

A00 ? ?

A10 A11 ?

A20 A21 A22

1
A

where A11 is b× b

A11 := Γ(A11)
A21 := A21 tril(A11)

−T

A22 := A22 − tril(A21A
T
21)

Continue with
„

ATL ?

ABL ABR

«
←
0
@

A00 ? ?

A10 A11 ?

A20 A21 A22

1
A

endwhile

Figure A.4: Unblocked and blocked algorithms for computing the Cholesky factor-
ization.

allows one to easily express the contents of matrix A at the beginning of the iteration:

A =


 ATL ?

ABL ABR


 =


 LTL ?

LBL ÂBR − tril(LBLLTBL)


 ,

where LTL = Γ(ÂTL), LBL = ÂBLL
−T
TL , and ÂTL, ÂBL and ÂBR denote the initial

contents of the quadrants ATL, ABL and ABR, respectively. This feature will prove

to be fundamental in our research, as it allows us to formally prove the correctness

of the algorithms we generate.

A.2 Application Program Interfaces (APIs)

In the numerical dense linear algebra community it is customary to code algorithms

by either a Matlab-like entry-by-entry notation (Figs. A.2 and A.3) or by explicitly
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invoking BLAS routines (Fig. 1.6). In both cases, it is difficult to relate the code to

the algorithm description, and tasks like debugging, code maintenance, and porting

are challenging even for the experts.

Our approach is different: in the previous section we identified the level of

abstraction at which it is convenient to reason about linear algebra algorithms; now

we want use programming APIs to code algorithms at the same level of abstraction.

The goal is achieved by implementing the constructs FLA_Part*, FLA_Repart*,

and FLA_Cont_with*, and using an object oriented approach to represent matrices

(vectors and scalars are special instances of a matrix) [8]. Figs. 1.5 and 1.7 con-

tain the Matlab and C implementations of Algorithm 1 for computing the blocked

Cholesky factorization; notice the resemblance with the algorithm description in

Fig. A.4 (right).
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