
1

OBO2OWL: Roundtrip between OBO and OWL
Syed Hamid Tirmizi, Daniel Miranker

Department of Computer Sciences
The University of Texas at Austin

{hamid, miranker} @ cs.utexas.edu

Abstract
Ontologies have traditionally been used in biomedicine for representing relationships
among biological concepts, and as a result, large knowledge-bases like Gene Ontology
(GO) have emerged. We believe use of Semantic Web technologies can allow better
querying and collaboration of biomedical ontologies. As a migration path for
biomedical ontologies, we have developed a mechanism for lossless roundtrip
transformations between Open Biomedical Ontologies (OBO) format and OWL. We
have methodically examined each of the constructs of OBO and mapped them to
constructs in the Semantic Web stack. We have also enumerated constructs in each
system that do not have simple syntactic equivalent in the other, important ones being
GUIDs, various kinds of synonyms and subsets. We have implemented a tool that uses
our transformation rules to translate OBO ontologies into OWL, and back, without loss
of knowledge.

1 Introduction

Ontologies have traditionally been used in biomedicine for representing relationships among biological
concepts. In recent years, the trend has been to harness the power of computers to build and query these
structures. The results of this trend are large knowledge-bases like Gene Ontology (GO) [23, 24] and
Zebrafish Anatomy [14], and the development of ontology representation formats (like OBO [19, 25]) and
corresponding tools specifically for the biomedical domain.

Even though the idea of Semantic Web is in its early stages, it can prove to be a useful tool for the area of
biomedicine, and can provide important features that will allow better querying and collaboration of
biomedical ontologies. However, in order to do such a migration, it is important to understand and solve
two major hurdles; (1) automatic translation of existing ontologies into Semantic Web, and (2) providing
a way of using both pre-existing OBO tools and new Semantic Web tools for editing translated
ontologies.

As a migration path for biomedical ontologies, we have developed a mechanism for lossless roundtrip
transformations between OBO and OWL. We have methodically examined each of the constructs of OBO
and mapped them to constructs in the Semantic Web stack. We find that most of OBO can be
decomposed into layers with direct correspondence to the Semantic Web layer cake (see Figure 1). In the
process we have enumerated constructs in each system that do not have a simple syntactic equivalent in
the other, and have created new elements for them. Some major features that are incompatible are:

• The lack of globally unique identifiers (GUIDs) in OBO, which are one of the building blocks of
Semantic Web technologies, and are essential for creating large scale and collaborative sources of
knowledge.

• Presence of various kinds of synonym elements in OBO, perhaps emerging from biomedical
domain, which are not clearly present in the Semantic Web languages like OWL.

• Availability of an element for defining multiple subsets of an ontology within its OBO
representation. This feature is not available in OWL.

2

We have implemented a tool that uses our translation rules to transform an OBO ontology into OWL, and
back, without loss of knowledge.

Our application context is the NSF’s “Assembling the Tree of Life” (AToL) grand challenge. The grand
challenge faced is in describing 5 to 10 million extant species, and computing and analyzing a unified
phylogenetic tree. The effort spans organisms as far ranging as bacteria, plants and mammals. Numerous
projects, organized around a particular group, e.g. fish, are organizing the terminology of their corpuses as
ontologies and working to exploit Internet technology to tie this information together and make it highly
available. A goal of our project, Morphster, includes image annotation. In our context, images are used to
document the precise meaning or a biological concept. Thus, in our ontologies, an image, or parts of an
image will become part of a concept definition. We anticipate both drawing concept labels from existing
ontologies, [14], and adding new concepts to ontologies through image-based definitions.

The remainder of this document is organized as follows. Section 2 provides background information on
key technologies under consideration. Section 3 explains the correspondence between OBO and Semantic
Web feature using layer cakes, and goes into the details of similarities and differences between the two
languages, OBO and OWL. Section 4 gives detailed listing and explanation of transformation rules,
Section 5 provides a summary of implementation methodology, Section 6 gives some examples that
explain transformations between OBO and OWL, Section 7 provides guidelines for editing the OWL
produced by the tool, so that roundtrip transformation remains possible, Section 8 discusses related work,
Section 9 talks about conclusions and possible directions for future work. Last two sections, Section 10
and 11, provide acknowledgements and references.

2 Background

Philosophically, ontology is the study of existence. For knowledge-based systems, it is a vocabulary of a
set of objects and the describable relationships among them [11].

Ontologies are extensively used in areas like artificial intelligence [3, 6], Semantic Web [10, 12] and
biology [20] as a form of knowledge representation. They generally describe individual objects (or
instances), classes of objects, attributes, relationship types, and relationships among classes and objects
within a domain. Such ontologies are also called domain ontologies (or domain-specific ontologies).

A number of formal languages for writing ontologies exist, each having a different level of expressive
power, inference capability, human readability, machine readability, and acceptance within their target
domains.

The presence of domain ontologies and different formats of representation makes the goal of having
standardized large-scale and collaborative ontologies quite challenging [9, 15]. As a result,
transformations between different languages of variable capabilities become important for merging pre-
existing ontologies together and with newly created knowledge.

2.1 Ontologies in the Biomedical Domain

Building ontologies is a commonplace exercise in the biomedical domain. Biologists build ontologies to
demonstrate relationships between different biological concepts like species, taxa, systems etc. Some
examples are phylogenetic relationships among taxa (or species) and anatomical relationships among
different parts of a skeleton (commonly known as a Nomina Anatomica).

3

2.2 Open Biomedical Ontologies (OBO) Flat File Format

The OBO flat file format is the most commonly used ontology representation language in the biomedical
domain. OBO emerged from the Gene Ontology effort, and is now host to over 60 different ontologies
[23, 24].

An ontology in OBO format consists of two parts; the first part contains the header tags and values, and
the other part contains the domain knowledge described using term and typedef stanzas. A stanza
generally defines a concept (term or typedef) and contains a set of tag-value pairs to describe it. The terms
and typedefs defined in OBO ontology are assigned local IDs and namespaces. Relationships between
different terms are expressed using the ‘relationship’ tag [19, 25].

The OBO flat file format is very human friendly. Therefore, it is easy for domain experts to understand it
and express their knowledge in this format. Efforts are being made, especially in the biomedical
community, for building useful GUI-based tool support for OBO format [24].

A drawback of OBO is the lack of globally unique identifiers, which makes it difficult to integrate
different knowledge sources together. Also, OBO lacks adequate query and rule language support which
is necessary to utilize the full potential of large knowledge-bases.

2.3 Semantic Web Technologies

The Semantic Web is an extension of the current World Wide Web that gives well-defined meaning to the
content and enables computer and people to work in cooperation [4]. Some key technologies for
developing the Semantic Web are described below.

• Extensible Markup Language (XML) is a language that provides arbitrary structure to documents
by allowing user-defined markup tags. These tags, however, do not say anything about the meaning
of the content.

• Resource Description Framework (RDF) is used to express meaning of data using triples. A
triple is like a binary predicate and defines a relationship between two entities. RDF triples can be
expressed using XML. The collection of XML tags for describing RDF is known as RDF/XML [1].

• Entities, either classes or relationship types, in the Semantic Web are identified using Universal
Resource Identifiers (URIs). This means that each entity gets a globally unique identifier which
can be accessed by everyone on the Web. Entities can be classified into groups using XML
namespaces.

• Ontologies are an important component of the Semantic Web. Technologies like RDF Schema
(RDF-S) and Web Ontology Language (OWL) are used for describing ontologies. RDF Schema
allows description of valid classes and relationship types for an application, and some properties
like subclasses, domains, ranges etc. OWL allows describing richer content and provides both
ontology level and concept level annotations, set combinations, equivalences, cardinalities,
deprecated content etc.

Semantic Web is currently an active area in terms of research and development of tool support.
Languages like SPARQL are available for querying RDF-based knowledge sources [22]. Other important
technologies that are a part of Semantic Web vision are rule languages, inference and proofs etc.

RDF Schema and OWL are built on top of RDF. Therefore, RDF/XML is a common syntax for these as
well. Since any XML is inherently hard to read for humans, choosing RDF/XML as a primary syntax (and
hence Semantic Web as the primary technology) becomes hard for domain specific ontology builders. In
addition, RDF/XML has high storage costs, is slower to parse than most XML, and is incompatible with
currently available XML processing technologies like XSLT etc.

4

For the rest of our work, we assume RDF/XML to be the format for Semantic Web technologies (RDF,
RDF Schema and OWL), and on occasion, we use OWL as an encompassing term for Semantic Web
languages.

3 OBO and Semantic Web Layer Cake

The Semantic Web was envisioned in the form of a layer cake [5] and apparently most research so far has
followed that roadmap.

In order to create a transformation mechanism between OBO flat files and Semantic Web technologies,
we find it useful to create a layer cake for OBO, similar to that of the Semantic Web.

3.1 OBO Layer Cake

We have methodically examined each of the constructs of OBO and mapped them to constructs in the
Semantic Web stack. We find that most of OBO can be decomposed into layers with direct
correspondence to the Semantic Web layer cake. In the process we have enumerated constructs in each
system that do not have a simple syntactic equivalent in the other. Elements of OBO “missing” in the
semantic web are few, and can still be expressed in OWL. Thus, OBO ontologies may be translated to the
Semantic Web. Further, we believe if certain ancillary information is retained during translation, the
Semantic Web representation may be translated back to OBO, and the cycle repeated without any loss of
knowledge.

OBO tags can be partitioned into three layers – OBO Core, OBO Vocabulary, and OBO Ontology
Extensions (see Figure 1a, b).

• OBO Core: In OBO terminology, a concept can either be a term (class) or a typedef (relationship
type). OBO Core deals with assigning IDs and namespaces to concepts, and representing some
knowledge about those concepts using relationships; essentially triples.

• OBO Vocabulary: OBO Vocabulary allows annotating concepts with information like names,
definitions and comments. In addition, it supports describing sub-class and sub-property
relationships, as well as the domains and ranges of typedefs.

• OBO Ontology Extensions: In contrast to the previous two layers, which define tags with
concept-level scope only, OBO Ontology Extensions (OBO-OE) layer defines tags for expressing
metadata on the entire ontology as well. It also allows defining synonyms, equivalences and
deprecation of OBO concepts. Using OBO Ontology Extensions, we can also express specific
properties of OBO terms (e.g. set combinations, disjoints etc.), and typedefs (e.g. transitivity,
uniqueness, symmetry, cardinalities...).

3.2 Correspondence between OBO and Semantic Web Cakes

In our work, we define a set of transformation rules for converting OBO files to OWL. Since we have a
mostly exact mapping of layers between the two formats (see Figure 1c), deciding which constructs to use
for each kind of transformation becomes a lot easier. In other words, OBO Core tags can be transformed
using RDF, OBO Vocabulary tags require using RDF Schema constructs, and OBO Ontology Extensions
tags require us to use constructs defined in OWL.

5

3.3 Incompatibilities between OBO and OWL

We classify incompatibilities between the two formats into one of the two categories. First, in certain
cases, the semantic equivalent of a construct in one format is missing from the other format. Second,
sometimes the semantics of constructs in OBO are not well-defined or documented, which forces us to
define new equivalent constructs in OWL in order to allow the lossless transformation. Major examples of
incompatibilities are the following:

• Entities in OWL are identified using URIs. However, OBO has very simple local identifier scheme.
Transforming OBO into OWL requires transforming the OBO identifiers into globally unique IDs
(GUIDs). Also, in order to make the roundtrip possible, it is necessary to extract the local identifier
from the GUID.

• OBO format has the ‘subset’ construct, which does not have any equivalent construct in OWL. An
OBO subset is a collection of terms, and is defined as a part of an ontology. An ontology can
contain multiple subsets and each term can be a part of multiple subsets. In order to make the
transformation possible, we need to define an OWL construct equivalent to OBO subset, and some
relationship concepts to represent terms being in a subset, and a subset being a part of an ontology.

• There are multiple kinds of synonym tags in OBO, as well as a way of expressing synonym
relationship or equivalence using external database references (dbxrefs). The differences between
these constructs and their usage are not very well documented. This requires defining new concepts
in OWL which can later be mapped to new or already existing constructs in OWL.

The presence of such incompatibilities requires us to make some complex choices regarding the
transformation process. Our solutions to these problems are explained in detail later in the document.

3.4 OBO and Different Flavors of OWL

Our investigation shows that a major portion of OBO Ontology Extensions maps to OWL Lite and
provides similar level of expressiveness. Overall, OBO features match well with OWL DL.

In OBO the definition of a term, or a typedef, is rigid and not as expressive as OWL Full. OWL Full
allows restrictions to be applied on the language elements themselves [8, 16]. In other words, an OWL
Full Class can also be an OWL Full Property and an Instance and vice versa. Such features are not
supported in OBO.

Trust

Proof

Logic

OWL

RDF Schema

RDF

XML + Namespaces

S
i
g
n

URI & Unicode

OBO Ontology Extensions

OBO Vocabulary

OBO Core

Ontology Annotations, Equivalences,
Synonyms, Deprecations, Cardinality,

Richer Properties, Set Combinations etc.

Term / Typedef Names, Sub-classes, Sub-
properties, Annotations, Domains, Ranges

Identifiers, Namespaces, and
Relationships (triples)

(a) Examples (c) Semantic Web layer cake (b) OBO layer cake

Figure 1: A layer cake for OBO, with some examples and a comparison with Semantic Web layers.

6

Recall, the primary concern is the migration of legacy OBO ontologies and their constituencies to the
Semantic Web. Thus, that OBO is less expressive than OWL Full is the convenient direction of
containment. It does mean that round trips can not be supported unless the editing of an OBO ontology
while in OWL representation is restricted. We talk about editing in OWL format in the later sections.

4 Transformation Metadata and Rules

In this section, we list the rules for transformation of OBO ontology header and content into OWL,
additional OWL tags defined for transformation and their usage, and for more complex transformations
we describe the transformations and explain our approach.

4.1 Meta-OBO Tags for Semantic Web

In order to facilitate the transformation of OBO to OWL format, we define a set of OWL classes, object
properties and annotation properties that correspond to OBO tags (see Table 1 and Table 2).

Tag Type Comments

mo:name Annotation Property Name of a term or typedef

mo:comment Annotation Property Comments about a term or typedef

mo:formatVersion Annotation Property Version of OBO format in which the
ontology was originally written

mo:dataVersion Annotation Property Version of data in the ontology

mo:savedDateTime Annotation Property Date/time of last edit/save

mo:savedBy Annotation Property User who last edited/saved the ontology

mo:autoGeneratedBy Annotation Property The program used to generate the ontology

mo:remark Annotation Property General comments on the ontology

mo:definedNamespace Object Property A namespace defined for use in the ontology

mo:defaultNamespace Object Property Default namespace for the ontology

mo:Subset Class Subset of OBO terms from the ontology

mo:definedSubset Object Property Subset defined for the ontology

Table 1: Meta-OBO tags for header elements with types and definitions

4.2 Simple Transformation Rules

Most of the transformations follow simple rules. For most header and term/typedef tags, there is a one-to-
one correspondence between OBO tags and OWL elements, either pre-existing or defined as Meta-OBO
tags. In this section, we list the elements with this kind of simple transformation.

7

Tag Type Comments

mo:inSubset Object Property Declares a term or typedef to be in a subset

mo:alternateID Annotation Property Alternate ID for a term or typedef

mo:definition Annotation Property Definition of the term or typedef

mo:xrefAnalogous Annotation Property Analogous external reference

mo:xrefUnknown Annotation Property External reference of unknown type

mo:synonym Annotation Property Synonym to a term or typedef

mo:relatedSynonym Annotation Property Related synonym to a term or typedef

mo:exactSynonym Annotation Property Exact synonym to a term or typedef

mo:broadSynonym Annotation Property Broad synonym to a term or typedef

mo:narrowSynonym Annotation Property Narrow synonym to a term or typedef

mo:isCyclic Annotation Property Cyclic property of a typedef

mo:isSymmetric Annotation Property Symmetric property of a typedef

mo:isTransitive Annotation Property Transitive property of a typedef

Table 2: Meta-OBO tags for terms and typedefs

4.2.1 Header

The set of tag-value pairs at the start of an OBO file, before the definition of the first term or typedef, is
the header of the ontology. The tags shown in Table 3 are common OBO header tags.

When translated into OWL format, each of the OBO header tags gets translated into the corresponding
OWL markup element. The whole ontology header is contained between owl:Ontology tags in the new
OWL file, and can appear anywhere within the file, as opposed to the start of file in OBO format.

4.2.2 Terms

The concept of a term in OBO is similar to an OWL class. So, a term is translated into an owl:Class
element (Table 5), and the tags associated with a term are contained within this element.

OBO terms and typedefs have a lot of metadata tags in common, shown in Table 4. Some other tags that
are specific to OBO terms are shown in Table 5. Most of these tags have straightforward transformations
to OWL elements.

Some important transformations among these are:

• The name and comments about a term are translated into mo:name and mo:comment elements.
These elements are defined to be equivalent to RDF Schema elements rdfs:label and
rdfs:comment respectively.

• The subclass relationship, defined using the ‘is_a’ tag in OBO, is translated into
rdfs:subClassOf element defined in RDF Schema.

8

In some cases, however, like transformations of OBO’s local IDs into globally unique OWL ID’s,
namespaces and deprecated content, more complex transformations are required. Each of these cases is
explained in a dedicated section of this document.

OBO Tag OWL Markup

format-version <mo:formatVersion> … </mo:formatVersion>

typeref <owl:imports> … <owl:imports>

version <mo:dataVersion> … </mo:dataVersion>

date <mo:savedDateTime> … </mo:savedDateTime>

saved-by <mo:savedBy> … </mo:savedBy>

auto-generated-by <mo:autoGeneratedBy> … </mo:autoGeneratedBy>

default-namespace <mo:defaultNamespace> … </mo:defaultNamespace>

remark <mo:remark> … </mo:remark>

Table 3: OBO tags and corresponding OWL elements for header section

OBO Tag OWL Markup

id / namespace rdf:ID (See more on identifiers and namespaces in section 4.3)

name <mo:name> … </mo:name>

alt_id <mo:alternateID> … </mo:alternateID>

def <mo:definition> … </mo:definition>

comment <mo:comment> … </mo:comment>

synonym <mo:synonym> … </mo:synonym>

related_synonym <mo:relatedSynonym> … </mo:relatedSynonym>

exact_synonym <mo:exactSynonym> … </mo:exactSynonym>

broad_synonym <mo:broadSynonym> … </mo:broadSynonym>

narrow_synonym <mo:narrowSynonym> … </mo:narrowSynonym>

xref_analog <mo:xrefAnalogous> … </mo:xrefAnalogous>

xref_unknown <mo:xrefUnknown> … </mo:xrefUnknown>

Table 4: OBO tags common to terms and typedefs, and corresponding OWL elements

9

OBO Tag OWL Markup

[TERM] <owl:Class> … </owl:Class>

is_a <rdfs:subClassOf rdf:resource = “…”/>

is_obsolete owl:DeprecatedClass (See more on obsolete in section 4.6)

Table 5: OBO tags specific to terms, and corresponding OWL elements

4.2.3 Typedefs

Typedefs in OBO are similar to object properties in OWL. Therefore, a typedef stanza in an OBO file is
translated into an owl:ObjectProperty element in OWL. The other information associated with the
typedef is expressed as elements within this element. OBO tags and their corresponding OWL elements
are shown in Table 6.

Some important cases in typedef transformations are:

• OBO typedefs can have associated domains and ranges. These are expressed by ‘domain’ and
‘range’ tags. These tags are translated into RDF Schema defined elements rdfs:domain and
rdfs:range respectively.

• Typedefs may be cyclic (‘is_cyclic’ tag), transitive (‘is_transitive’ tag) or symmetric
(‘is_symmetric’ tag). Corresponding OWL elements are mo:isCyclic, mo:isTransitive and
mo:isSymmetric respectively. All these elements specify Boolean values. Although special
properties tags like owl:TransitiveProperty etc. are available in OWL, we have not focused
on them because of relatively very simple nature of existing OBO ontologies.

• Just like subclasses for terms, a property can be a sub-property to another property. A sub-property
relationship is expressed using the ‘is_a’ tag in a typedef stanza. This tag is translated into an
rdfs:subPropertyOf element defined in RDF Schema.

Other important cases, like identifiers and namespaces etc are similar to that of terms and are explained in
detail in later sections.

OBO Tag OWL Markup

[TYPEDEF] <owl:ObjectProperty> … </owl:ObjectProperty>

is_a <rdfs:subPropertyOf rdf:resource = “…”/>

is_obsolete owl:DeprecatedProperty (See more on obsolete in section 4.6)

domain <rdfs:domain rdf:resource = “…”/>

range <rdfs:range rdf:resource = “…”/>

is_cyclic <mo:isCyclic> … </mo:isCyclic>

is_transitive <mo:isTransitive> … </mo:isTransitive>

is_symmetric <mo:isSymmetric> … </mo:isSymmetric>

Table 6: OBO tags specific to typedefs, and corresponding OWL elements

10

4.3 Transforming Identifiers and Namespaces

Each term or typedef in an OBO ontology has a locally unique identifier and belongs to a particular
namespace. The identifier is expressed in the OBO file using the ‘id’ tag, and the namespace for a term or
typedef is expressed using ‘namespace’ tag. An OBO ontology usually has a default namespace expressed
using the ‘default-namespace’ tag. Every term or typedef for which a namespace is not explicitly
specified is considered to be within the default namespace.

When translated into OWL, all the namespaces that exist in the ontology are translated into XML
namespaces and are declared at the start of the file within the rdf:RDF element. Since OBO namespaces
are locally unique strings, we transform them into globally unique names (URNs) by adding the prefix
‘urn:obo-res:’ to every namespace identifier string. The default namespace is defined using the
xml:base attribute.

In addition, all namespaces are declared within the owl:Ontology element using
mo:definedNamespace elements. This is redundant information but is necessary for translating the
ontology back into OBO. Similarly, the default namespace in OBO ontology is declared using
mo:defaultNamespace element in the corresponding OWL version.

The identifier for a term or typedef (in OBO) is expressed in OWL using the rdf:about attribute of the
owl:Class or owl:ObjectProperty element. The complete ID is the concatenation of namespace
URN and local identifier separated by the ‘#’ character. For example, a term in OBO with ID
‘Alpha:123’ and namespace ‘TestNS’ gets an ID of the format ‘urn:obo-res:TestNS#Alpha:123’
in the corresponding OWL translation.

In case a term or typedef belongs to the default namespace, it is not necessary to start the OWL ID with
the URN for the namespace. It is sufficient to start the ID with the ‘#’ sign, e.g., ‘#Alpha:123’.

4.4 Transformation of Subsets

Terms in an OBO ontology can be organized into subsets of the ontology. A term can belong to multiple
subsets. In order to declare a subset, a value for the tag ‘subsetdef’ is specified in the OBO ontology
header. This value consists of a subset ID (or subset name) and a quoted description about the subset. A
declared subset can then be used to assign terms.

A term can be assigned to a subset using the ‘subset’ tag. The value of this tag must be a subset ID as
defined in the ontology header. Multiple ‘subset’ tags are used to assign the term to multiple subsets of
the ontology.

Note that the subset definition is not assigned to a particular namespace in the OBO ontology. For
simplicity of translation, we assume that the subsets belong to the default namespace.

When translated into OWL, the declaration of a subset becomes slightly more complex. The local ID (or
name) assigned to the subset, which is locally unique, becomes the OWL ID of a subset resource. A
subset resource is declared using mo:Subset element, and is assigned to the default namespace in the
OWL ontology. The quoted description of the subset is expressed using the mo:comment element within
mo:Subset.

We have defined mo:inSubset annotation tags to assign terms to a subset. Within the definition of a
term, i.e. owl:Class element, the property mo:inSubset is mentioned with the appropriate
mo:Subset element ID.

11

4.5 Transformation of Relationships

Relationships between OBO terms can be defined using the ‘relationship’ tag. A defined relationship is
like a binary predicate and consists of a subject (the term being described in the stanza), a relationship
type and an object. An example is given in Table 1.

OBO Format OWL Format

[TERM]
id: SUB001
relationship: part_of OBJ001

<owl:Class rdf:about= “#SUB001”>
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource = “#part_of” />
 <owl:someValuesFrom rdf:resource = “#OBJ001” />
 </owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Table 7: Example of OBO relationship and transformation to OWL

There are multiple kinds of restrictions on relationships that can be expressed using OWL. OBO
specifications [25] do not specify any formal semantics of the ‘relationship’ tag that match a specific
relationship type restriction defined in OWL. Therefore, we have selected the most general restriction to
transform an OBO relationship into OWL.

As shown in Table 7, a ‘relationship’ tag is transformed into a combination of rdfs:subClassOf,
owl:Restriction, owl:onProperty, and owl:someValuesFrom elements. The
owl:someValuesFrom element specifies the type of restriction that is applied to the OWL relationship.
This restriction is similar to the existential quantifier of predicate logic [1, 8], and the transformed
example can be read as, “there exists an instance of OBJ001, such that an instance of SUB001 is a part of
(part_of) it”.

4.6 Transformation of Deprecated Content

OBO flat file format supports deprecated (or obsolete content). A term or typedef can be marked as
obsolete using the ‘is_obsolete’ tag with a ‘true’ Boolean value. Obsolete terms and typedefs are not
allowed to have any relationships with other terms or typedefs, including the subclass and sub-property
relationships.

In order to specify a term or typedef that is to be considered equivalent (or a replacement) to the
deprecated term or typedef, the ‘use_term’ tag is used. The value of this tag is the ID of the equivalent (or
replacing) term or typedef. The ‘use_term’ tag is not allowed for terms and typedefs that do not have the
value ‘true’ associated with the ‘is_obsolete’ tag.

When translated into OWL, an obsolete term is transformed into a deprecated class using
owl:DeprecatedClass element. The ‘use_term’ references to the term in OBO are then translated into
owl:equivalentClass elements in OWL.

12

Similarly, an obsolete OBO typedef is transformed into a deprecated property using the
owl:DeprecatedProperty element. The ‘use_term’ references to the typedef in OBO are then
translated into owl:equivalentProperty elements in OWL.

5 Implementation Details

There are three main components of the transformation system (see Figure 2), described as follows:

• Ontology Model: The Ontology Model component provides the data structures for internal storage
and representation for data received as a part of an OBO or OWL ontology. The internal data
structures are closer in nature to OBO file format. Some part of the source code for these data
structures has been imported from OBO-Edit (specifically, from the older version known as DAG-
Edit) [7, 18], which is a useful tool for viewing and editing OBO ontologies. In addition to having
the data structures, the Ontology Model component provides appropriate interfaces for generating
OBO or OWL representation of the ontology provided to the system.

• OBO Parser: The OBO Parser component parses files (ontologies) provided in OBO flat file
format and forwards them to the Ontology Model. We have used a javacc grammar [20] to
produce the parser for OBO file format.

• OWL Parser: The OWL Parser component reads OWL ontologies using Jena API for OWL [13],
and provides the data to the Ontology Model. The system uses a subset of OWL to represent the
ontologies transformed from OBO, and it is important that the parser allows only the same subset
in order to make roundtrip transformations without any problems.

6 Examples of Roundtrip Transformations

In this section, we provide different example sets in order to clarify the transformation of different kinds
of elements in an OBO ontology into OWL (see Table 8).

OBO Parser

OWL Parser

OBO Interface

OWL Interface

Ontology

Model

OBO File

OWL File

Ontology

Data

OBO File

OWL File

Figure 2: Components of the system with corresponding input and outputs.

13

OBO Format OWL Format

format-version: 1.0
date: 05:09:2006 17:28
saved-by: midori
auto-generated-by: OBO-Edit 1.002
subsetdef: goslim_plant "Plant GO slim"
subsetdef: goslim_yeast "Yeast GO slim"
default-namespace: gene_ontology
remark: cvs version: $Revision: 4.75 $

<owl:Ontology rdf:about="#OBO">
<mo:formatVersion>1.0</mo:formatVersion>
<mo:savedDateTime>05:09:2006 17:28</mo:savedDateTime>
<mo:savedBy>midori</mo:savedBy>
<mo:autoGeneratedBy>OBO-Edit 1.002</mo:autoGeneratedBy>
<mo:defaultNamespace>gene_ontology</mo:defaultNamespace>
<mo:definedSubset rdf:resource="#goslim_yeast"/>
<mo:definedSubset rdf:resource="#goslim_plant"/>
<mo:remark>cvs version: $Revision: 4.75 $</mo:remark>
</owl:Ontology>

<mo:Subset rdf:about="#goslim_yeast"><mo:comment>"Yeast
GO slim"</mo:comment></mo:Subset>
<mo:Subset rdf:about="#goslim_plant"><mo:comment>"Plant
GO slim"</mo:comment></mo:Subset>

(a) Header Information, containing subset definitions as well
[Term]
id: GO:0008029
name: pentraxin receptor activity
def: "Combining with a pentraxin to
initiate a change in cell activity."
[GOC:add, ISBN:0781735149 "Fundamental
Immunology"]
comment: Note that pentraxins include
such proteins as serum amyloid P
component (SAP) and C-reactive protein
(CRP).
namespace: molecular_function
exact_synonym: "pentaxin receptor" []
is_a: GO:0001864
is_a: GO:0001847

<owl:Class rdf:about="urn:obo-
res:molecular_function#GO:0008029">
<mo:name>pentraxin receptor activity</mo:name>
<mo:definition>"Combining with a pentraxin to initiate a
change in cell activity." [GOC:add, ISBN:0781735149
"Fundamental Immunology"]</mo:definition>
<mo:comment>Note that pentraxins include such proteins
as serum amyloid P component (SAP) and C-reactive
protein (CRP).</mo:comment>
<mo:exactSynonym>"pentaxin receptor" []
</mo:exactSynonym>
<rdfs:subClassOf rdf:resource="urn:obo-
res:molecular_function#GO:0001847"/>
<rdfs:subClassOf rdf:resource="urn:obo-
res:molecular_function#GO:0001864"/>
</owl:Class>

(b) Term definition, showing subclass relationships, namespace, and a kind of synonym
[Typedef]
id: part_of
name: part of
is_transitive: true

<owl:ObjectProperty rdf:about="#part_of">
<mo:name>part of</mo:name>
<mo:isTransitive>true</mo:isTransitive>
</owl:ObjectProperty>

(c) Typedef definition, showing transitivity property
[Term]
id: GO:0008041
name: storage protein of fat body
(sensu Insecta)
namespace: molecular_function
is_obsolete: true

<owl:DeprecatedClass rdf:about="urn:obo-
res:molecular_function#GO:0008041">
<mo:name>storage protein of fat body (sensu Insecta)
</mo:name>
</owl:DeprecatedClass>

(c) Transforming an obsolete (deprecated) term
[Term]
id: GO:0008047
name: enzyme activator activity
namespace: molecular_function
subset: gosubset_prok

<owl:Class rdf:about="urn:obo-
res:molecular_function#GO:0008047">
<mo:name>enzyme activator activity</mo:name>
<mo:inSubset rdf:resource="#gosubset_prok"/>
</owl:Class>

(d) Transforming a subset entry
Table 8: Examples of transformations between OBO and OWL formats

14

7 Rules for Editing of OWL Output

As discussed earlier, the set of constructs for ontology representation provided by OWL is considerably
larger than the set of constructs provided by OBO. Therefore, in order to allow roundtrip transformations
on OBO ontologies, it is important to restrict the editing of an OBO ontology according to some
guidelines while it is in OWL format.

Following are some of the guidelines for editing OWL produced by our system:

• Any new namespace that is added to the ontology using XML namespaces must be explicitly added
to the document by adding the mo:definedNamespace tag to the ontology header. Naming of the
new namespace should follow the methodology described in Section 4.3 regarding namespace
transformations.

• New terms and typedefs should be defined using only the owl:Class and owl:ObjectProperty
tags. Sometimes, OWL ontologies use RDF and RDF Schema tags like rdf:Description and
rdfs:Class. Such tags should not be used. Also, special properties tags like
owl:TransitiveProperty and owl:SymmetricProperty etc. may not be used. Such
properties of typedefs should be expressed using tags like mo:isTransitive.

• Only the relationships with existential quantification should be used. In other words, when creating
or editing existing relationships between classes, only the owl:someValuesFrom element should be
used to restrict the relationship. Other kinds of restrictions are not supported.

• Our transformations deal only with OBO format version 1.0. Features like Boolean combinations
etc. are not present in this version of OBO. Therefore, use of features and constructs should be
restricted to the ones mentioned in this document.

8 Related Work

The only publicly available work concerning OBO and OWL mapping are Mungall’s effort [17]. Their
work describes a transformation from a small subset of OBO version 1.2 to W3C recommended OWL
format. The technology used for making transformations in their work is XSLT. This mapping deals with
very basic OBO elements like terms, typedefs, relationships, subclasses, etc. Transformations of a number
of metadata tags and more complex elements like subsets, deprecated content and synonyms etc. have not
been attempted in their work so far.

There are various kinds of differences between this work and our approach. First, we have concentrated
on providing a migration path from existing OBO content to OWL in order to integrate the knowledge-
bases of the two worlds. Since OBO 1.2 is still very new, and almost all OBO content is in OBO 1.0
format, we have focused on providing a much greater level of completeness in terms of metadata
elements and other constructs provided by OBO 1.0. Second, we have approached the problem with the
methodology of identifying correspondences between OBO and OWL. This way, we have been able to
identify clearly matching elements between the two formats; we have also been able to list the features in
OBO that require constructing new elements in OWL. The result of this methodology is that we have
created bidirectional transformation rules which can provide lossless roundtrips between OBO 1.0 and
OWL.

Mungall’s transformation builds on the work of Aitken [1], which proposes a minimal OWL Full
ontology for OBO and Gene Ontology (GO) terms. Aitken’s work provides OWL constructs for some
common OBO relationship types and also describes formal semantics for them.

15

9 Conclusion and Future Work

Building ontologies is not a new idea for the biology community. However, the utility of ontologies has
not been fully realized due to wide acceptance of weaker but more readable languages like OBO. OBO
does not provide global naming schemes, and there is lack of language support for querying OBO
ontologies and performing rule-based inferences on them.

Semantic Web is the idea that once fully realized, can solve these problems. The use of URIs for
assigning globally unique identifiers to concepts is one of the foundations of Semantic Web. Querying
languages like SPARQL for ontologies expressed in RDF, and work is in progress on defining languages
for rules and inference on the Semantic Web ontologies.

We believe our work is an important step towards building interoperable knowledge-bases, and that it
draws an easy picture of the Semantic Web world to other communities that require them.

In future, we would like to extend this work to make it compatible with OBO 1.2 and provide a higher
level of completeness. We would also like to allow more flexibility in editing the OWL version of the
transformed ontologies, and make our tools richer enough to handle it.

Currently, we have simple checks in place to identify loss of knowledge in terms of size of the ontology.
Successfully making the roundtrips with Gene Ontology (GO) which has more than 21 thousand terms
gives us a reasonable level of confidence. However, having a formal way of proving the correctness of
our roundtrip transformation rules according to the semantics of both OBO and OWL is another
interesting direction for future work.

10 Acknowledgements

This research is supported by the National Science Foundation through grants IIS-0531767 and IIS-
0325116.

11 References

1. Aitken, S. 2003. A Minimal Ontology for OBO and GO. http://www.aiai.ed.ac.uk/resources/go/

2. Antoniou, G., van-Harmelen, F. eds. 2004. A Semantic Web Primer. MIT Press.

3. Barker, K., Porter, B., Clark, P. 2001. A Library of Generic Concepts for Composing Knowledge
Bases. First International Conference on Knowledge Capture.

4. Berners-Lee, T., Hendler, J., Lassila, O. 2001. The Semantic Web. Scientific American, 284(5):34-43,
May 2001.

5. Berners-Lee, T. 2003. Semantic Web Status and Direction. International Semantic Web Conference
(ISWC2003) Keynote.

6. Clark, P., Porter, B. 1997. Building Concept Representations from Reusable Components. Fourteenth
National Conference on Artificial Intelligence (AAAI ‘97).

7. DAG-Edit User Guide. http://www.godatabase.org/dev/java/dagedit/docs/index.html

8. Dean, M., Schreiber, G., editors. 2004. OWL Web Ontology Language Reference. W3C
Recommendation, 10 Feb 2004. http://www.w3.org/TR/2004/REC-owl-ref-20040210/

16

9. Farquhar, A., Fikes, R., Rice, J. 1997. The Ontolingua Server: a Tool for Collaborative Ontology
Construction. Technical Report KSL-96-26, Knowledge Systems Laboratory, Computer Science
Department, Stanford University, September 1996.

10. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F. 2001. OIL: an
ontology infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2):38-45.

11. Gruber, T.R. 1993. A Translation Approach to Portable Ontology Specification. Knowledge
Acquisition 5: 199-220.

12. Hendler, J. 2001. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30-37.

13. Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/

14. Mabee, P.M., Haendel, M.A., Arratia G., Coburn M.M., Hilton E.J., Lundberg J.G., Mayden R.L.
2006. ZFIN Anatomy Working Group: Skeletal System. Manually curated data.

15. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S. 2000. An Environment for Merging and Testing
Large Ontologies. Principles of Knowledge Representation and Reasoning: Proceedings of the
Seventh International Conference (KR2000).

16. McGuinness, D.L., van Harmelen, F., editors. 2004. OWL Web Ontology Language. W3C
Recommendation, 10 Feb 2004. http://www.w3.org/TR/2004/REC-owl-features-20040210/

17. Mungall, C. 2005. Mapping OBO to OWL. Berkeley Drosophila Genome Project.
http://www.godatabase.org/dev/doc/mapping-obo-to-owl.html

18. OBO-Edit, Gene Ontology Tools. http://www.geneontology.org/GO.tools.shtml

19. Open Biomedical Ontologies. http://obo.sourceforge.net/

20. Project Home for javacc. https://javacc.dev.java.net/

21. Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall, C., Neuhaus, F.,
Rector, A.L., Rosse, C. 2005. Relations in Biomedical Ontologies. Genome Biology, 6(5):R46.

22. SPARQL Query Language for RDF. 2006. W3C Candidate Recommendation.
http://www.w3.org/TR/rdf-sparql-query/

23. The Gene Ontology. http://www.geneontology.org/

24. The Gene Ontology Project. http://geneontology.sourceforge.net/

25. The OBO Flat File Format Specifications. http://www.geneontology.org/GO.format.shtml

