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Protool Design for Dynami Delaunay Triangulation �Dong-Young Lee and Simon S. Lamfdylee, lamg�s.utexas.eduDepartment of Computer SienesThe University of Texas at AustinAbstratDelaunay triangulation (DT) is a useful geometri struture for appliations suh as routing,lustering, broadast, distributed virtual reality systems, and multiplayer on-line games. In this paperwe investigate the design of join, leave, and maintenane protools for a set of nodes to onstrut andmaintain a distributed DT dynamially. (Coneptually nodes are points in a Eulidean spae.) Wede�ne a distributed DT and present a neessary and suÆient ondition for a distributed DT to beorret. This ondition is used as a guide for protool design. We present join and leave protoolsas well as orretness proofs for serial joins and leaves. In addition, to handle onurrent joins andleaves as well as node failures, we present a maintenane protool. An auray metri is de�nedfor a distributed DT. Experimental results show that our join, leave and maintenane protools aresalable, and they ahieve high auray for systems under hurn and with node failures. To supportappliations of distributed DT, we present protools for greedy routing, lustering, broadast, andmultiast within a radius. Eah node in our greedy routing, broadast and multiast protoolsdoes not maintain any per-session state. We also disuss and prove orretness for the appliationprotools.1 IntrodutionWith almost a hundred years of history, DT [1℄ and Voronoi diagram [2℄ have been widely used in manyappliations in di�erent �elds of siene and engineering, inluding omputer siene. A triangulation in2D spae means, for a given set of nodes, onstruting edges between pairs of nodes suh that the edges�Researh sponsored by National Siene Foundation ANI-0319168 and CNS-0434515.1



form a non-overlapping set of triangles that over the onvex hull of the nodes. DT in 2D spae is usuallyde�ned as a triangulation suh that the irumirle of eah triangle does not inlude any node otherthan the vertexes of the triangle. DT an be similarly generalized for higher dimensions.An interesting property of DT is that it onnets a node to other nodes that surround the node. Thisproperty may be useful in simulation-type appliations, inluding distributed virtual reality systems andmultiplayer on-line games, sine an entity in a simulation usually interats with other entities aroundit. For example, a moleule interats with other moleules around it, and a harater in on-line gamesmostly interats with other haraters around it. Furthermore, we also design a protool to multiasta message within a given radius from the soure node, whih will be useful for many simulation-typeappliations suh as multiplayer on-line games.Another property of DT in networking ontext is that greedy routing always sueeds on a DT [3℄.In greedy routing, a node forwards a message to one of its neighbors that is losest to a given destinationnode. Note that greedy routing on an arbitrary graph is prone to the risk of being trapped at a loaloptimum, i.e., routing stops at a non-destination node that is loser to the destination than any of itsneighbors. However, on a DT it is guaranteed that greedy routing always sueeds to �nd the destinationnode. Note that greedy routing does not always �nd a shortest route. However, the quality of the greedyroute is often very good, sine the length of an optimal route between a pair of nodes on a DT is withina onstant time of the diret distane [4, 5, 6℄.While our approah is more system-oriented ompared to previous work, our protools are also basedon a rigorous theoretial foundation. In a distributed DT, eah node in a system keeps a set of itsneighbor nodes. We speify a distributed DT by the neighbor sets of all nodes. A distributed DT isorret when it is equivalent to its orresponding entralized DT. That is, a distributed DT is orretwhen eah node has the same set of neighbors as on the orresponding entralized DT.1 In setion 3, weidentify a neessary and suÆient ondition to ahieve orretness. We use this ondition as a guide fordesigning join, leave, and maintenane protools for onstruting and maintaining a distributed DT. Ourjoin and leave protools are proved to be orret in the following sense: If a distributed DT is orretwhen a new node joins or an existing node leaves and there is no other onurrent join, leave or failurethen, at the end of protool exeution, the resulting distributed DT is orret. Thus if a sequene of joinsand leaves our serially (i.e., one �nishes before another starts), the distributed DT is orret wheneverprotool exeution �nishes.1We will de�ne a distributed DT and its orretness more arefully in setion 2.2



In pratie, nodes may join and leave onurrently. Furthermore, nodes may fail at any time, im-mediately breaking orretness of the distributed DT. Our maintenane protool has been designed toaddress suh senarios. We do not have a onvergene proof for the maintenane protool. However, inevery one of a large number of experiments onduted to date, our maintenane protool onverged to aorret DT some time after a long period of system hurn during whih nodes join and leave (also fail)onurrently and frequently.Note that even in the ase of serial joins and leaves, orretness of a distributed DT is, stritlyspeaking, broken as soon as a node joins or leaves, and it is reovered only at the end of protoolexeution. Therefore a orret distributed DT is impossible to ahieve ontinually. We observe that someappliations an bene�t from an inorret distributed DT as long as it is suÆiently \aurate." Thusthe auray of a distributed DT over a long duration of time is a more useful metri in pratie thanthe notion of onvergene to orretness. We will de�ne an auray metri for a distributed DT, andshow that our protools ahieve high auray under di�erent senarios of system hurn.In addition to protools to onstrut and maintain a distributed DT, we present several appliationprotools, inluding greedy routing, lustering, broadast, and multiast within a radius. As we disussedearlier, it is known that greedy routing from a node to another node on a DT always sueeds. Thenwe prove that greedy routing an also be used to loate an existing node that is losest to a given point(or a node that is not in the system yet). As an appliation of the protool to �nd the losest existingnode, we present a node lustering protool. Given a set of nodes and an upper bound on the radius of aluster, the lustering protool partitions nodes into lusters of radii within the given upper bound. In theprotool, eah luster has a enter node and the enter nodes form a distributed DT. Similar approahesto lustering are found in prior work, based on a random graph of lusters [13℄ or a omplete graph oflusters [14℄. Note that greedy routing on a random graph is not guaranteed to sueed and a ompletegraph may result in limited salability.Our broadast protool is based on the reverse path of greedy routing, and is named GRPB (greedyreverse path broadast). GRPB does not require any knowledge of global triangulation or per-sessionstate. A node determines its next-hop nodes to forward a broadast message solely using loal information,namely the oordinates of its neighbor nodes and the soure node.We observe that the distane from a soure node monotonially inreases in GRPB, sine the distaneto a destination node dereases in greedy routing. Therefore our protool to multiast within a givenradius easily follows. RadGRPM (radius greedy reverse path multiast) is basially the same as GRPB,3



exept that it additionally heks to make sure that the next-hop nodes are within the radius fromthe soure node. RadGRPM also keeps the advantage of GRPB that it does not require any globalinformation or per-session state. RadGRPM is simple and it is useful for simulation-type appliations.For example, an explosion of a bomb in a battle�eld simulation will a�et entities within some range andwill be observed within a longer range.Experimental results show that our protools are salable, and work very well under system hurn, i.e.,when onurrent joins and leaves our frequently. Even with ungraeful node failures, whih inevitablyresult in an inorret distributed DT, the maintenane protool reovers a orret distributed DT sometime after hurn and failures stop.The organization of this paper is as follows. In setion 2, we introdue onepts and de�ntions ofdistributed DT and also present appliation protools. In setion 3, we present a neessary and suÆientorretness ondition for a distributed DT, whih was used as a guide to design our protools. Thejoin and leave protools are presented and proved orret for serial joins and leaves. Our maintenaneprotool is then presented as well as an auray metri for evaluating protool performane. In setion4, experimental results are presented to demonstrate salability of our protools and their performanefor systems under hurn and with node failures. We disuss related work in setion 5 and onlude insetion 6.2 Distributed Delaunay TriangulationIn this setion we introdue DT, Voronoi diagram and distributed DT. Consider a set of nodes. Coneptu-ally, nodes are points in a Eulidean spae. (The results and protools in this paper are for d-dimensionalspaes, where d � 2. Most previous results on distributed DT in the literature are limited to 2D[7, 10, 11℄and 3D[8℄ spaes.)We �rst de�ne Voronoi diagram of a set of given nodes and then de�ne DT as the dual of the Voronoidiagram. Note that there is another way of diretly de�ning DT using irumirles of triangles (orirum-hyperspheres of simplexes in higher dimensions), as was briey introdued in the introdution.Sine the properties of DT of interest to us ome from Voronoi diagram, we believe that this approah isappropriate in our ontext. Lastly, we de�ne distributed DT. In a distributed DT, eah node maintainsa set of its neighbor nodes. We de�ne a distributed DT by the neighbor sets of all nodes.In the seond part of this setion, appliations of DT are disussed. An important and well-known4



property of DT is that a simple greedy routing algorithm is guaranteed to sueed on DT, without beingstuk at a loal optimum [3℄. We prove a similar property that greedy routing an also �nd the losestnode to a given point. Clustering of network nodes is an example for whih this property an be utilized.We also present protools for broadast and for multiast within a radius, and prove orretness for theprotools.2.1 Conepts and de�nitionsWe �rst de�ne a Voronoi diagram.De�nition 1. Consider a set of nodes S in a Eulidean spae. The Voronoi diagram of S is apartitioning of the spae into ells suh that a node u 2 S is the losest node to all points within itsVoronoi ell V CS(u).That is, V CS(u) = fp j D(p; u) � D(p; w); for any w 2 Sgwhere D(x; y) denote the distane between x and y. Note that a Voronoi ell in a d-dimensional spae isa onvex d-dimensional polytope enlosed by (d � 1)-dimensional faets. We say that two Voronoi ellsare neighbors of eah other if they share a ommon faet.De�nition 2. Consider a set of nodes S in a Eulidean spae. V CS(u) and V CS(v) are neighboringVoronoi ells, or neighbors of eah other, if and only if V CS(u) and V CS(v) share a faet.Figure 1(a) shows a Voronoi diagram in a 2-dimensional spae. Note that V CS(v) and V CS(w) areneighbors of V CS(u) but V CS(x) is not, sine V CS(u) and V CS(x) shares only a point. Similarly, in a3-dimensional spae, Voronoi ells that share only an edge or a point are not neighbors.Then we de�ne DT as follows.De�nition 3. Consider a set of nodes S in a Eulidean spae. The Delaunay triangulation of S is agraph on S where two nodes u and v in S have an edge between them if and only if V CS(u) and V CS(v)are neighbors of eah other.We also say that u and v are neighbors of eah other when V CS(u) and V CS(v) are neighbors ofeah other. Figure 1(b) shows the DT of nodes in Figure 1(a). Note that faets of a Voronoi ell5
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(b) Delaunay triangulationFigure 1: A Voronoi diagram and the orresponding DT in a 2-dimensional spae.perpendiularly biset edges of a DT. Therefore, a DT is the dual of a Voronoi diagram.2 Let us denotethe Voronoi diagram of S as V D(S), and the DT of S as DT (S).By a distributed DT, we mean that eah node u 2 S maintains a set Nu of its neighbor nodes.De�nition 4. A distributed Delaunay triangulation of a set of node S is spei�ed by f< u;Nu >ju 2 Sg, where Nu represents the set of u's neighbor nodes, whih is loally determined by u.De�nition 5. A distributed Delaunay triangulation of a set of nodes S is orret if and only if both ofthe following onditions hold for every pair of nodes u; v 2 S:� if there exists an edge between u and v on the global DT of S, v 2 Nu and u 2 Nv,� if there does not exist an edge between u and v on the global DT of S, v 62 Nu and u 62 Nv.That is, a distributed DT is orret when for every node u, Nu is the same as the neighbors of u onDT (S). Sine u does not have global knowledge, it is not straightforward to ahieve orretness. We willidentify the ondition to ahieve orretness for a distributed DT in setion 3.2.2 Appliations of distributed Delaunay triangulationIn this setion we present several protools to illustrate the usefulness of distributed DT for networkingappliations. We assume for now that a set of nodes S form a distributed DT. Our protools to onstrut2In geometry, polyhedra are assoiated into pairs alled duals, where the verties of one orrespond to the faes of theother. 6



and maintain a distributed DT are deferred to setion 3. We also assume that nodes are assoiated withtheir oordinates. When a node \knows" other nodes, it also knows their oordinates. That is, a nodeknows its own oordinates, its neighbor's oordinates, and the oordinates of other nodes that it knowssuh as the destination node in routing and the soure node in broadasting. The distane between anytwo nodes an be alulated from their oordinates.Greedy routingA well-known property of DT is that greedy routing always sueeds on DT [3℄. In greedy routing,a node forwards a message to the losest node to the destination among its neighbors. As with manygreedy approahes, the greedy routing algorithm is prone to risk of being stuk at a loal optimum.That is, on an arbitrary graph, a non-destination node may be loser than any of its neighbors to thedestination, thus stopping greedy routing at the node. However, on a DT, it is guaranteed that greedyrouting sueeds to deliver a message to the destination node. Furthermore, the quality of the greedyroute is often very good, sine the length of an optimal route between a pair of nodes on a DT is withina onstant time of the diret distane [4, 5, 6℄.Finding the losest existing node.Similar to the previous appliation of greedy routing, a DT may be utilized in �nding the losestexisting node to a given point. (Note that the given point may not be a node in the DT.) Finding thelosest existing node is a ommon operation in many Internet appliations, inluding server seletion,node lustering, and peer-to-peer overlay networks.Consider the problem of �nding the losest existing node (destination) d 2 S to a given point n 62 S,starting from a given node s 2 S. If there are more than one losest nodes to n, the destination may beany one of them. Let v0 be s. At vi, the greedy routing algorithm selets the next-hop node vi+1 whihis losest to n among the neighbor nodes of vi. If vi+1 is loser to n than vi, greedy routing is repeatedat vi+1. Otherwise, routing stops at vi, whih is denoted as vk. If vk is the losest node or one of thelosest nodes to n, we say the routing sueeds; otherwise we say it fails. In other words, the routingsueeds if n 2 V CS(vk).The following theorem shows that the greedy routing algorithm always sueeds as long as it is run ona DT. Bose and Morin [3℄ proved a similar theorem that greedy routing between nodes always sueedson DT. We use an approah similar to theirs to prove the following theorem.Theorem 1. Finding a losest node d 2 S to a given point n 62 S using greedy routing always sueedson a DT of S. 7



Proof. We prove by showing that every node v 6= d in Delaunay triangulation has a neighbor that isloser to n. Suppose that v 6= d. Draw a straight line L from v to n, and let P the �rst Voronoi faetwhih L rosses. Let u be the node in the adjaent Voronoi ell whih shares P with v. Therefore thereis an edge between v and u in the Delaunay triangulation. Note that P divides the spae into two regionsSpu and Spv ; points in Spu is loser to u than to v. Sine n belongs to Spu, n is loser to u than v. Thereforeif v 6= d, v has a neighbor that is loser to n. On the other hand, if v = d, the routing stops at v. Sinethere are a �nite number of nodes, eventually a losest node d is found in a �nite number of steps.Clustering of network nodesTo illustrate an appliation of �nding the losest existing node to a given point, we present a simplelustering protool of network nodes. The protool is a distributed version of a lustering algorithmadopted from [12℄. The upper bound R of the radius of a luster is given as a parameter. Nodes areonsidered sequentially whether they should join an existing luster or reate a new luster. The �rstnode onsidered reates a new luster and beomes the enter of it, sine there is no existing luster.From the seond node on, the onsidered node is tested whether its distane to the enter of the losestexisting luster is within R or not. If so, the onsidered node joins the luster; otherwise it reates itsown luster and beomes the enter of it. The algorithm stops when all nodes are onsidered. Note thatthe result of lustering may be di�erent depending on the order in whih nodes are onsidered [12℄.Our lustering protool is a distributed version of this entralized algorithm. The main hallenge inonverting it into a distributed version is to �nd the losest existing luster without global knowledge.We solve this problem by utilizing greedy routing on a DT. Reall that eah luster has a enter node. Inour protool, existing enter nodes form a distributed DT. A non-enter node does not partiipate in thedistributed DT. When a node u joins the system, it �rst �nds the losest existing enter node by usinggreedy routing on the distributed DT of the enter nodes. Suppose that the enter node su is found. Ifthe distane from u to su is within the upper bound R, u beomes a member of the luster entered at su;otherwise u reates its own luster, beomes the enter node of the new luster, and joins the distributedDT.Other distributed approahes to lustering are found in prior work. In [13℄, lusters form a randomgraph and a joining node may fail to �nd the losest existing luster. In [14℄, every node maintains linksto every other lusters, limiting salability. The salability issue is addressed in [14℄ by introduing ahierarhy of lusters. Our protool �nds the losest luster for a joining node and is salable.Broadast using reverse path 8



As was disussed earlier, the greedy routing algorithm �nds a path from a soure node to a destination.Consider suh paths from all nodes in S to a node s. The union of the paths is a tree rooted at s. Thereforeby reversing the diretion of eah path, we get a broadast tree from a soure node s to every other nodein S. Figure 2(a) illustrates an example of a reverse path. In forward greedy routing, v selets u as thenext hop, sine u is its losest neighbor to the destination s. Thus in reverse path broadast from thesoure node s, u should forward a message to v,, below line revised if u knows that u is the next hop of vin the forward route. Note that s is the destination in forward greedy routing and the soure in reversepath broadast.
s

Destination

Source

Forward greedy routing to S

Reverse path broadcast from S

uv

(a) Forward path and reverse path
s

u

v

w

x

s

u

v

w

(b) Ambiguous situation due to limited knowledgeFigure 2: Forwarding in GRPBWe introdue a simple broadast protool whih utilizes the reverse path tree. Note that our protooldoes not require knowledge of the global triangulation over S. Eah node u is assumed only to know itsset of neighbor nodes, and determines to whih node(s) it should forward a message based on its loalknowledge. Spei�ally, node u in the previous example may not know all the neighbors of v. u onlyknows the neighbors of u, but still has to determine whether u is the losest node to s among v's neighbornodes.The idea of using reverse path for broadast goes bak to as early as 1978 [15℄. In the ontext of DT,Hyperast [7℄ is the �rst system to introdue the idea. Our protool is di�erent in that it is based ongreedy routing in an arbitrary dimension while Hyperast is based on ompass routing in 2D spae. Themajor advantage of both approahes is that a broadast tree does not need to be expliitly maintained.A node an immediately determine next-hop nodes based on the oordinates of its neighbors and thedestination node, without maintaining any per-session routing information.9



We name our broadast protool as GRPB (greedy reverse path broadast). In GRPB, a node umaintains a loal DT for u and u's neighbors. For eah neighbor v, u forwards a message from a sourenode s to v if both of the following two onditions hold:C1 u is loser to s than v is;C2 in the loal DT for u and u's neighbor nodes, there does not exist a node w 6= u suh thatC2.1 w is loser to s than u is, andC2.2 u, v and w are inluded in the same triangle (or simplex in d-dimensional spae).Condition C1 is easy to understand. Suppose C1 is true. Then u does not forward to v if u is surethat another node, say w, is the next hop of v in the forward greedy routing. The onditions for suh ware:C2.1 w is loser to s than uC2.2 u, v, and w are inluded in the same triangle (or simplex) in u's loal DTC2.3 w is a neighbor of v on the global DTNote that C2.1 and 2.3 are neessary and suÆient. However, u does not have global information andannot hek C2.3. Hene we spei�y ondition C2.2 whih inludes C2.3. C2.1 and C2.2 are neessarybut not suÆient.Note that in ase of a tie between w and u in C2.1, u must forward to v at the ost of possibledupliation, sine v may or may not hoose u as the next hop in the forward greedy routing. Note alsothat even if node w appears to be v's neighbor in u's loal DT, w may not atually be v's neighbor inthe global DT. Figure 2(b) illustrates an example in 2D spae. The left graph shows u's loal DT, inwhih v and w are neighbors. However, as shown in the right graph, there may exist a node x outsideu's loal knowledge and thus w may not atually be a neighbor of v. Without inluding C2.2 in C2, umight erroneously onlude that it does not need to forward to v, sine w appears to be the losest nodeto s among v's neighbors. C2.2 detets suh ambiguous situations and requires that u forwards to v atthe ost of possible dupliation. The protool pseudoode is given in Figure 3.The following theorem guarantees the orretness of GRPB, namely it delivers a message to all nodes inthe system. As explained before, the two onditions of GRPB are neessary, but not suÆient. Thereforesome dupliate messages may be forwarded. We performed experiments to broadast a message using10



Start broadast(msg) of node u; u is a soure nodefor all v 2 Nu doSend(v, BROADCAST(msg, u))end forOn u's reeiving BROADCAST(msg, s); u is a reipient of a BROADCAST messageDeliver(msg)for all v 2 Nu doif v satis�es onditions C1 and C2 from s thenSend(v, BROADCAST(msg, s))end ifend forFigure 3: Greedy reverse path broadast (GRPB) protool at a node u.GRPB on a distributed DT of 200 randomly plaed nodes in various dimensions. Ideally the number ofmessages for eah broadast should be the number of nodes minus 1 when there is no dupliation. In ourexperiments, the number of dupliate messages was from 3% to 10% of the number of nodes.Theorem 2. Let a set of nodes S form a orret distributed DT. The GRPB protool delivers a messagefrom a soure node s 2 S to all the other nodes in S.Proof. We prove the theorem by showing that if there exists an edge from u to v in the global reversepath tree, the GRPB protool also forwards a message from u to v.Assume that the theorem is not true. Suppose that a node u fails to forward to its neighbor v whenthere exists an edge from u to v in the global reverse path tree, that is when u is the losest node from samong the neighbors of v. Note that v is a neighbor of u on the loal Delaunay triangulation of u. Thenthere exists a node w whih is a mutual neighbor of u and v on the loal Delaunay triangulation of u,and the distane between w and s is shorter than the distane between u and s, but w is not a neighborof v on the global Delaunay triangulation. (If w is a neighbor of v, the next hop of v in the forward pathshould not be u sine u is not the losest to s among v's neighbors.) On the loal Delaunay triangulationof u, remember that there exists a simplex whih inludes u, v and w. Let the simplex p. Note that pdoes not exist on the global Delaunay triangulation, sine w is not a neighbor of v. and then the spae ofp is oupied by other simplexes. Let x one of the simplexes and whih inludes u and v. Let x1:::xk theother nodes of x other than u or v. Then x1:::xk are neighbors of u in the global Delaunay triangulationand in the loal Delaunay triangulation of u. Then on the loal Delaunay triangulation of u, sine v and11



x1:::xk are neighbors of u, there exists the same simplex x. It is impossible that x and p o-exist on theloal Delaunay triangulation of u, sine they overlap.Multiast within a radiusIn a distributed virtual reality system or a multiplayer on-line game, an entity or a player interatswith other entities or players that are loated around it in the virtual spae. Suppose that entities orharaters in a distributed virtual reality system or a multiplayer on-line game are represented as nodes.Then the DT of the nodes is a good interonnetion topology sine neighbors of a node in DT are nodesthat surround the node in the virtual spae.In addition to interation between neighboring nodes, multiast within a given radius from a pointis another ommon operation, sine an event may a�et nodes within some distane. For example, in awar simulation, an explosion of a bomb will be seen only by soldiers within some distane, and will a�etthose within a shorter distane. We observe that in the GRPB protool the distane from the souremonotonially inreases, sine the distane to the destination monotonially dereases in the forwardgreedy routing. We utilize this observation in our multiast protool within a given radius.In our radius greedy reverse path multiast (RadGRPM) protool from a soure node s to all theother nodes within a radius r, s �rst sends the message to all its neighbors within the radius r. Then foreah neighbor node v, a node u forwards a message to v if the following ondition holds as well as C1and C2 in GRPB:C3 the distane from s to v does not exeed the radius r.Essentially the protool is the same as the original GRPB protool, exept that forwarding stopswhen the distane from the soure exeeds the given radius in C3. Pseudoode of the protool is given inFigure 4. Theorem 3 guarantees that RadGRPM delivers the message to all nodes within a given radius.The proof is straightforward sine the distane from the soure node monotonially inreases wheneverthe message is forwarded by GRPB.Theorem 3. Let a set of nodes S form a orret distributed DT. The RadGRPM protool delivers amessage from a soure node s 2 S to all nodes within a radius r from s.Proof. By Theorem 2, the original GRPB protool delivers a message to all the other nodes in S. Sinethe distane from s monotonially inreases whenever a message is forwarded and the forwarding stopswhen the distane from s exeeds r, all the nodes along the original multiast path after stopping have12



Start radius broadast(msg, rad) of node u; u is a soure nodefor all v 2 Nu within rad from u doSend(v, BROADCAST(msg, rad, u))end forOn u's reeiving BROADCAST(msg, rad, s); u is a reipient of a BROADCAST messageDeliver(msg)for all v 2 Nu doif v satis�es onditions C1, C2 and C3 from s thenSend(v, BROADCAST(msg, rad, s))end ifend forFigure 4: The radius greedy reverse path multiast(RadGRPM) protool at a node u.distanes longer than r from s. Therefore the RadGRPM protool delivers the message to all the nodeswithin the radius r.3 Protool DesignOur distributed DT protools onsist of a join, a leave, and a maintenane protool. Our join protoolensures that a joining node obtains enough information to identify its orret neighbors and that thejoining of the new node is noti�ed to all existing nodes a�eted by the joining node, so that the resultingdistributed DT is orret after protool exeution. Similarly, our leave protool noti�es the deletion of aleaving node to all a�eted nodes so that the resulting distributed DT is orret after protool exeution.Our join and leave protools are proved to be orret only for serial joins and leaves.We assume that nodes may join, leave or fail at any time. In addition to node failures, whihinevitably result in an inorret distributed DT, onurrent joins and leaves of multiple nodes may resultin an inorret distributed DT as well. To address suh senarios, we introdue a maintenane protoolwhih is run periodially to detet and repair any errors in the system state. (When the distributedDT of a set of nodes is inorret, for onveniene, we say \the system state is inorret" or \the systemstate has errors.") Lastly, to simplify our protool desriptions, we assume reliable delivery of protoolmessages. In a real implementation, additional mehanisms suh as ARQ or simply TCP an be used toensure reliable message delivery.33Due to the overhead of opening and losing onnetions, TCP may not be a pratial hoie.13



3.1 System modelOur approah to onstrut a distributed DT is as follows. We assume that eah node is assoiated with itsoordinates in a d-dimentional Eulidean spae. Eah node has prior knowledge of its own oordinates,as is assumed in previous work [7, 8, 9, 10, 11℄. The mehanism to obtain oordinates is beyond thesope of this study. Coordinates may be given by an appliation, a GPS devie[18℄, or topology-awarevirtual oordinates[19℄.4 Also when we say a node u knows another node v, we assume that u knows v'soordinates as well.Let S be a set of nodes to onstrut a distributed DT. We will present protools to enable eah nodeu 2 S to get to know a set of its nearby nodes inluding u itself, denoted as Cu, to be referred to as u'sandidate set. Then u determines the set of its neighbor nodes Nu based on Cu. Spei�ally, u determinesNu by alulating a loal DT of Cu, denoted by DT (Cu). That is, v 2 Nu if and only if there exists anedge between u and v on DT (Cu).3.2 Corretness ondition for a distributed Delaunay triangulationReall that a distributed DT is orret when for every node u, Nu is the same as the neighbors of uon DT (S). Sine Nu is the set of u's neighbor nodes on DT (Cu) in our model, to ahieve a orretdistributed DT, the neighbors of u on DT (Cu) must be the same as the neighbors of u on DT (S). Notethat Cu is loal information of u while S is global knowledge. Therefore in designing our protools, weneed to ensure that Cu is \enough" for u to orretly identify its global neighbors. If Cu is too limited,u annot identify its global neighbors. For the extreme ase of Cu = S, u an identify its neighbors onthe global DT sine DT (Cu) = DT (S); however, the ommuniation overhead for eah node to aquireglobal knowledge would be extremely high. Before we present Theorem 4, whih identi�es a neessaryand suÆient ondition for a distributed DT is orret, we present several lemmas for onveniene ofproof.Lemma 1. Let S be a set of nodes. Let v 2 S be a neighbor node of u 2 S on DT (S). Then there existsa point p in V CS(u) suh that D(p; u) < D(p; v) < D(p; w) for any other node w 2 S;w 6= u;w 6= v.Proof. Consider a point p0 on the shared faet of V CS(u) and V CS(v). Then D(p0; u) = D(p0; v) <D(p0; w) for any other node w 2 S;w 6= u;w 6= v. Let w1 be the third losest node from p0 in S and let� = D(p0; w1)�D(p0; v). Let p be the point that is �4 away from p0 toward u. Then D(p; u) < D(p; v) <4Appliation performane on a DT may be a�eted by the auray of virtual oordinates.14



D(p; w) for any other node w 2 S;w 6= u;w 6= v.Lemma 2. Let S be a set of nodes. If there exists a point p in V CS(u) suh that D(p; u) < D(p; v) <D(p; w) for any other node w 2 S;w 6= u;w 6= v, Then u; v 2 S are neighbors of eah other on DT (S).Proof. Consider a line from p toward v. As a point p0 moves along the line, D(p0; v) will derease toward0 while D(p0; u) � 0. In addition, D(p0; v) dereases faster than D(p0; w) dereases for any other nodew 2 S;w 6= u;w 6= v. Therefore there must be a point where D(p0; u) = D(p0; v) < D(p0; w) for any othernode w 2 S;w 6= u;w 6= v, whih means that p0 belongs to exatly two Voronoi ells V CS(u) and V CS(v),but not other Voronoi ells. By Observation ??, p0 is on the shared faet of V CS(u) and V CS(v).Lemma 3. Let S be a set of nodes. Let u 2 C, v 2 C, and C � S. If v is a neighbor of u on DT (S), vis also a neighbor of u on DT (C).Proof. By Lemma 1, there exists a point p where D(p; u) < D(p; v) < D(p; w) for any other nodew 2 S;w 6= u;w 6= v. Sine C � S, D(p; u) < D(p; v) < D(p; w) for any other node w 2 C;w 6= u;w 6= v.Therefore by Lemma 2, v is a neighbor of u on DT (C).Lemma 4. Let S be a set of nodes. Let u 2 S and Cu � S inlude all the neighbor nodes of u on DT (S).If v 2 Cu is a neighbor of u on DT (Cu), then v is also a neighbor of u on DT (S).Proof. When v 2 S is a neighbor of u on DT (Cu), by Lemma 1, there exists a point p in V CCu(u)suh that D(p; u) < D(p; v) < D(p; w) for any other node w 2 Cu; w 6= u;w 6= v. Now, supposethat v is not a neighbor of u on DT (S). Then there must be a node x 2 S; x 62 Cu; x 6= u; x 6= vthat satis�es D(p; v) � D(p; x). Let x1; :::; xk be those nodes whih satisfy suh ondition. That is,D(p; u); D(p; x1); :::; D(p; xk) < D(p; w) for any other node w 2 S;w 6= u;w 6= xi; 1 � i � k. We showbelow that there exists a node xi; 1 � i � k whih is a neighbor of u on DT (S). Sine xi 62 Cu, it isontraditory to the assumption that Cu inludes all the neighbor nodes of u on DT (S). Therefore v isa neighbor of u on DT (S).Case A-1. Suppose that D(p; u) < D(p; x1) < D(p; w) for any other node w 2 S;w 6= u;w 6= x1.Then by Lemma 2, x1 is a neighbor of u on DT (S).Case A-2. Suppose that D(p; u) < D(p; x1) = ::: = D(p; xh) < D(p; w1) � D(p; w) for any other nodew 2 S;w 6= u;w 6= w1; w 6= xi; 1 � i � h. Let � = D(p; w1) � D(p; x1). Consider a point p0 whih is�=4 away from p toward x1. Then D(p0; u) < D(p; x1) < D(p; w), where w 2 S;w 6= u;w 6= x1. Then byLemma 2, x1 is a neighbor of u on DT (S). 15



Case B. Suppose that D(p; u) = D(p; x1) = ::: = D(p; xh) < D(p; w1) � D(p; w) for any other nodew 2 S;w 6= u;w 6= w1; w 6= xi; 1 � i � h. Let � = D(p; w1)�D(p; x1). Consider a point p0 whih is �=4away from p toward u. Then D(p0; u) < D(p; xi) < D(p; w); 1 � i � h, where w 2 S;w 6= u;w 6= xi; 1 �i � h. Let x0 be xi with smallest D(p; xi); 1 � i � h. Then x0 is a neighbor of u on DT (S), similarly toin the ases A-1 or A-2.Case C. Suppose that D(p; x1); :::; D(p; xh) < D(p; u) � D(p; w) for any other node w 2 S;w 6= u;w 6=xi; 1 � i � h. Consider a point p0 whih moves from p toward u. Sine D(p0; u) dereases the fastest,D(p0; u) � D(p0; w) for any other nodes w 2 S;w 6= u;w 6= xi; 1 � i � h is preserved. Moreover, theremust be a point where D(p0; x0) < D(p0; u) � D(p0; w) for any other node w 2 S;w 6= u;w 6= x0, where x0is one of xi; 1 � i � h. Then x0 is a neighbor of u on DT (S), similarly to in the ases A-1 or A-2.Theorem 4 (Corretness Condition). Let S be a set of nodes and for eah node u 2 S, u 2 Cu andCu � S. Let Nu, u 2 S be the set of u's neighbor nodes on DT (Cu). A distributed DT of S is orret ifand only if, for every u 2 S, Cu inludes all the neighbor nodes of u on DT (S).Proof. (only if) Suppose that Cu does not inlude a node v that is a neighbor node of u on DT (S).Clearly, Nu annot inlude v and the distributed Delaunay triangulation is not orret.(if) Suppose that for every u 2 S, Cu inludes all the neighbor nodes of u on DT (S). We show thatv 2 S is a neighbor of u on DT (Cu) if and only if v is a neighbor of u on DT (S). i) Consider a neighborv of u on DT (S). Sine Cu � S, by Lemma 3, v is a neighbor of u on DT (Cu). ii) Consider a neighborv of u on DT (Cu). By Lemma 4, v is a neighbor of u of DT (S).Theorem 4 identi�es a neessary and suÆient ondition for a distributed DT is orret, namely: theandidate set of eah node must ontain all of its global neighbors. In the following subsetions, we usethe above orretness ondition as a guide to design our protools.3.3 Join protoolIn our join protool, we assume that a joining node n is �rst led to the nearest existing node u, whihis guaranteed to be found using greedy routing by Theorem 1. Cn is initialized as fng, and n sends aNEIGHBOR SET REQUEST messages to u. When u reeives NEIGHBOR SET REQUEST from n, uputs n into Cu, updates Nu by realulating DT (Cu), omputes Nun whih is the set of the neighbornodes of n on DT (Cu), and replies Nun to n. When n reeives the reply, Cn is updated to inlude allnodes in the reply, and n determines its neighbor nodes again using the updated Cn. If n �nds any new16



neighbor nodes, n sends NEIGHBOR SET REQUEST messages to them. This proess is repeated untiln does not �nd any new neighbor node. The protool pseudoode is given in Figure 5.Join(v) of node u; Input: u is the joining node, if u is the only node in the system, v = NULL;otherwise v is the losest existing node to u.Cu  fugNu  ;if v 6= NULL thenSend(v, NEIGHBOR SET REQUEST)end ifOn u's reeiving NEIGHBOR SET REQUEST from wif w 62 Cu thenCu  Cu [ fwgUpdate Neighbors(Cu, Nu)end ifNuw  fx j x is a neighbor of w on DT (Cu)gSend(w, NEIGHBOR SET REPLY(Nuw))On u's reeiving NEIGHBOR SET REPLY(Nwu ) from wCu  Cu [NwuUpdate Neighbors(Cu, Nu)Update Neighbors(Cu, Nu) of node uNoldu  NuNu  neighbor nodes of u on DT (Cu)Nnewu  Nu �Noldufor all v 2 Nnewu doSend(v, NEIGHBOR SET REQUEST)end for Figure 5: Join protool at a node uTheorem 5 guarantees that the join protool, if run on a orret distributed DT, results in a orretdistributed DT for a single join. The main ideas of the proof are the following: i) the losest existingnode will be a neighbor of a joining node (Lemma 5), ii) all neighbor nodes of the joining node areonneted by existing neighbor relations, thus it is possible to �nd them all by following the neighborrelations (Lemma 8), and iii) the neighbor nodes of the joining node are also noti�ed of the joining node'saddition in the proess. Note that this proof is based on Theorem 4, whih determines the onditionwhen a distributed DT is orret.Lemma 5. Let S0 = SSfng and u be the losest node to n in S. Then u is a neighbor of n on DT (S0).Proof. Consider n, whih is in V CS0(n). D(n; n) < D(n; u) < D(n;w), for any other node w 2 S0; w 6=17



n;w 6= u. Therefore, by Lemma 2, u is a neighbor of n on DT (S0).Lemma 6. Let u0 and v0 be two points on an n-dimensional onvex polytope Pn, n � 2. Then thereexists a path from u0 to v0 on the surfae of Pn, whih goes through adjaent faets of Pn.Proof. On 2-dimensional onvex polygon, there exists a path from u0 to v0 whih goes along the edges ofthe polygon. Suppose that the lemma holds for k-dimensional onvex polytope, k � 2, and onsider twopoints u0 and v0 on an (k + 1)-dimensional onvex polytope Pk+1. Consider a ross setion of the Pk+1whih ontains u0 and v0. The ross setion is an k-dimensional onvex polytope and there exists a pathfrom u0 to v0 on the surfae of the polytope, whih goes through adjaent faets. Note that eah faet ofthe ross setion is a part of a orresponding faet of Pk+1, and two adjaent faets of the ross setionorrespond to adjaent faets of Pk+1. Therefore the path is also on the surfae of Pk+1, going throughits adjaent faets. By indution, the lemma holds for n-dimensional polytopes, n � 2.Lemma 7. Let S0 = SSfng. If u 2 S and v 2 S are two neighbor nodes of n on DT (S0) and V FS0(n; u)and V FS0(n; v) are adjaent, u and v are neighbors on DT (S).Proof. Let p0 be a point where V FS0(n; u) and V FS0(n; v) meet. That is, D(p0; n) = D(p0; u) = D(p0; v).Let w1 2 S be the losest node to p0 exept for n, u and v, and � = D(p0; w1) � D(p0; n). Considera point p whih is �4 away from p0 toward u. Then D(p; u) < D(p; v) < D(p; w), for any other nodew 2 S;w 6= u;w 6= v. By Lemma 2, v is a neighbor node of u on DT (S).Lemma 8. Let S0 = SSfng and u be a neighbor node of n of DT (S0). Then for any neighbor v of n onon DT (S0), there exists a series of nodes < p0 = u; :::; pk = v >, where pi; 0 � i � k, is a neighbor of non DT (S0), and pi and pi+1, 0 � i � k � 1, are neighbors on DT (S).Proof. Note that V CS0(n) is a onvex polytope enlosed by faets and eah faet orresponds to a neighbornode of n. Also note that two neighbors of n are de�ned adjaent when their orresponding faets areadjaent on V CS0(n). Let u0 be a point on the faet whih orresponds to u and v0 be a point on thefaet whih orresponds to v. By Lemma 6, there exists a path from u0 to v0 whih goes through adjaentfaets of V CS0(n). That is, there exists a series of nodes < p0 = u; :::; pk = v >, where pi; 0 � i � k,is a neighbor of n on DT (S0) and V FS0(n; pi) and V FS0(n; pi+1), 0 � i � k � 1, are adjaent. And byLemma 7, pi and pi+1 are neighbors on DT (S).
18



Lemma 9. Let n denote a newly joining node, S be the set of existing node, and S0 = SSfng. Supposethat the existing distributed Delaunay triangulation for S is orret. Then when the join protool �nishes,Cn inludes all the neighbor nodes of n on DT (S0).Proof. By Lemma 5, u is a neighbor node of n on DT (S0). For any neighbor node v of n on DT (S0),by Lemma 8, there exists a series of nodes < p0 = u; :::; pk = v >, where pi; 0 � i � k, are neighborsof n on DT (S0) and pi and pi+1, 0 � i � k � 1, are neighbors on DT (S). First u reeives NEIGH-BOR SET REQUEST from n. Sine p1 is a neighbor of u on DT (S), Cu inludes p1, and p1 is alsoinluded in Nun by Lemma 3 sine p1 is also a neighbor of n on DT (S0). After n reeives Nun from u, Cninludes p1.Suppose that pi is inluded in Cn. By Lemma 3, pi is also inluded in Nn, and n sends NEIGH-BOR SET REQUEST to pi. Sine pi+1 is a neighbor of pi on DT (S), Cpi inludes pi+1, and pi+1 is alsoinluded Npin by Lemma 3, sine pi+1 is also a neighbor of n on DT (S0). After n reeives Npin from pi,Cn inludes pi+1.Therefore, within k iterations, Cn will inlude pk = v.Theorem 5. Let S be a set of existing nodes and the distributed DT of S be orret. Let a node n 62 Sjoin to the distributed DT using our join protool. Assume that there is no other join, leave, or failure.After the join protool �nishes, the updated distributed DT is orret.Proof. Lemma 9 shows that when the join proess �nishes, Cn will inlude all of its neighbor nodes onDT (S0). Also, whenever n disovers a neighbor node v of itself during the proess, n sends NEIGH-BOR SET REQUEST to v so that v inludes n into Cv . Therefore the andidate sets of all nodes areproperly updated, and the updated distributed Delaunay triangulation is orret.Though the join protool ahieves a orret distributed DT after it �nishes, the transient states arenot orret, whih may result in malfuntion of upper-layer appliations. For example, a new node inan early stage of the joining proess may not have a omplete set of neighbors and may not be able toproperly forward a message for greedy routing. To address suh situations, we introdue a mehanismfor a joining node to defer to be a part of the system until it establishes its omplete set of neighbornodes. When an existing node reeives NEIGHBOR SET REQUEST, it does not immediately update itsneighbor set. When the joining node n �nishes its joining proess, it then noti�es all its neighbors thatit is safe to update their andidate sets and their neighbor sets to inlude n. Due to delay of noti�ation19



message delivery, some transient states may still be inorret. However, greedy routing will work welleven with imperfet states, as to be shown in setion 4.Also note that the join protool is proved to be orret only for serial joins. In ase of onurrentjoins, the protool may not result in a orret distributed DT. Suh imperfetion is addressed by themaintenane protool to be presented in setion 3.5.3.4 Leave protoolWe �rst address the ase of graeful leaves. The ase of ungraeful leaves or failures is addressed by ourmaintenane protool in setion 3.5.A straightforward approah to address graeful leave would be that a leaving node, before it leaves,noti�es all of its neighbors that it is about to leave. This simple noti�ation is, however, not enough tomaintain a orret distributed DT.Suppose that a node u leaves and it noti�es a neighbor node v that it is leaving. Then v shouldremove u from Cv and update Nv. The problem is that in some ases v may have a new neighbor w thatwas not previously a neighbor of v and may not be in Cv. In suh ases, the straightforward approahmay resulting in an inorret distributed DT. However, we observe that suh w is always a neighbor of u.Therefore it is possible for u to notify v that u is leaving and also introdue w to v, resulting in a orretdistributed DT.When a node u leaves, u alulates a loal DT of its neighbor nodes, but not inluding itself. Thenu noti�es eah of its neighbors, say v, that u is leaving as well as a list of the neighbors of v on the loalDT of u. Upon reeiving suh noti�ation, v updates its andidate set and neighbor set. In addition,a DELETE message that u is leaving is propagated using GRPB. Note that even if u is not a neighbornode of another node x, x may have u in Cx. The DELETE message ensures that u is removed fromsuh Cx, if any. The protool pseudoode is given in Figure 6.The following theorem assures that the leave protool is orret for serial leaves. The theorem isbased on the previous observation that if a node w beomes a new neighbor of v after u leaves, w was aneighbor of u before u leaves.Lemma 10. Let S0 = S � fug. Let v be a neighbor node of u on DT (S). If w is a neighbor node of von DT (S0), then w is a neighbor node of u on DT (S) or w is a neighbor node of v on DT (S).Proof. Sine w is a neighbor of v on DT (S0), by Lemma 1, there exists a point p suh that D(p; v) <20



Leave() of node uCalulate DT (Nu) ; Note: u 62 Nufor all v 2 Nu doNuv  fw j w is a neighbor of v on DT (Nu)gSend(v, LEAVE(Nuv ))end forOn u's reeiving LEAVE(Nvu) from vCu  Cu � fvg [NvuNu  neighbor nodes of u on DT (Cu)for all w 2 Nu doif w satis�es onditions C1 and C2 from v thenSend(w, DELETE(v))end ifend forOn u's reeiving DELETE(w) from vCu  Cu � fwgfor all x 2 Nu doif x satis�es onditions C1 and C2 from w thenSend(x, DELETE(w))end ifend for Figure 6: Leave protool at a node uD(p; w) < D(p; x), for any other node x 2 S0; x 6= v; x 6= w.Case A) D(p; w) < D(p; u). Sine S = S0 [ fug, D(p; v) < D(p; w) < D(p; x), for any other nodex 2 S. Then by Lemma 2, v and w are neighbors on DT (S).ase B) D(p; u) � D(p; w). Then onsider a point p0 whih moves from p toward w. Sine D(p0; w)dereases faster than D(p0; x), x 2 S; x 6= u; x 6= v; x 6= w, as p0 moves and D(p0; u) � 0 and D(p0; v) � 0,there must be a point whereD(p0; v) < D(p0; w) < D(p0; u) < D(p0; x) orD(p0; u) < D(p0; w) < D(p0; v) <D(p0; x), for any other node x. Then by Lemma 2, v and w are neighbors on DT (S) or u and w areneighbors on DT (S).Theorem 6. Let S be a set of nodes and the distributed DT of S be orret. Let a node u 2 S leave thedistributed DT using our leave protool. Assume that there is no other join, leave, or failure. After theleave protool �nishes, the updated distributed DT is orret.Proof. Let S0 = S�fug. Consider a node v 2 S0. First, u is removed from Cv by propagation of LEAVEand DELETE messages. Therefore Cv � S0. 21



Case A) Suppose that v is not a neighbor of u on DT (S). Consider a node w 2 S0; w 6= v. If w is aneighbor of v on DT (S0), w is also a neighbor of v on DT (S) by Lemma 3. If w is a neighbor of v onDT (S), w is also a neighbor of v on DT (S0) by Lemma 4. Therefore the neighbors of v on DT (S) arethe same as the neighbors of v on DT (S0) and v is not a�eted by leave of u.Case B) Suppose that v is a neighbor of u on DT (S). Consider a node w 2 S0; w 6= v. If w is aneighbor of v on DT (S0), by Lemma 10, either w is already in Cv or v is noti�ed of w by u. ThereforeCv will inlude all the neighbor nodes of v on DT (S0).Note that the leave protool is orret only for serial leaves. Similar to the ase of onurrent joins,onurrent leaves may result in an inorret distributed DT. Suh ases are addressed by our maintenaneprotool, to be disussed in the next subsetion. In our implementation, propagation of a DELETEmessage is stopped when the message arrives at a node that does not have the leaving node in itsandidate set. This modi�ation greatly redues ommuniation ost, without a�eting orretness ofthe leave protool in almost all ases. A very rare ase where a left node remains in a andidate set andauses inorretness an be addressed by the maintenane protool.Also, similar to the ase of a join, transient inorret states during a leave may result in malfuntionof upper-layer appliation. In the ase of a leave, it is desirable for a leaving node to defer leaving aftermaking sure that eah of its neighbors has updated its neighbor set. This may be ahieved by requiringan aknowledgement of a LEAVE message.3.5 Maintenane protoolThe join and leave protools are proved orret only for serial joins and leaves, assuming that there is noother onurrent join, leave, or failure. In pratie, however, nodes may join and leave onurrently, oreven fail at any time, ausing errors in the system state. Therefore an additional mehanism is neededto repair errors in the system state. To address system hurn and failures, we present a maintenaneprotool, whih is run periodially to detet and repair errors, if any, in the system state.From De�nition 5, for a distributed DT to be orret, two onditions must be satis�ed: i) Eah nodeu must inlude in its neighbor set Nu all of its neighbors on the global DT, and ii) Nu must not ontainany node that is not in the system.To satisfy the �rst ondition, a node periodially exhanges information with eah of its neighbors.Spei�ally, a node u informs its neighbor node v the neighbors of v on u's loal DT. Note that the22



proess is essentially the same as what is done when a node joins, sine the goals of the two protools aresame i.e. eah node learns its neighbors on the global DT.To satisfy the seond ondition, a node probes its neighbors by sending ping messages periodially.If a probed node does not reply, the node is onsidered to be not in the system and removed from theandidate set. This mehanism also addresses the ase of ungraeful node failures. Note that this probingan be easily integrated with the exhange of information for the �rst ondition.The maintenane protool is as follows. A node u sends out NEIGHBOR SET REQUEST to itsneighbor node v. When v reeives the request, it replies with Nvu , whih is the set of neighbors of uon DT (Cv). That is, Nvu is the set of u's neighbors in v's loal view. v also heks whether u is in itsandidate set Cv. If u 62 Cv , v puts u in Cv . When u reeives the reply Nvu , u heks whether Nvu � Cu. Ifthere exists any node in Nvu that is not in Cu, it is added to Cu. In ase u does not reeive a reply from vbefore TIMEOUT, v is onsidered to have failed and removed from Cu. u also propagates the deletion of vsimilarly as in the leave protool. One Cu is updated, u realulates the loal DT and determines its setof neighbor nodes Nu. If there are any new neighbor nodes in Nu, u sends NEIGHBOR SET REQUESTto them. The protool pseudoode is given in Figure 7.From a large number of simulation experiments, we found that the maintenane protool onverged toa orret distributed DT in every experiment, for di�erent dimensionalities (2D to 6D), numbers of nodes(200 to 800), senarios (random initial graph, severe hurn with node failures) as long as the system isnot partitioned. Note that it is extremely diÆult to prove orretness of the maintenane protool forany ombinations of onurrent joins, leaves and failures. Furthermore, in an environment where systemhurn ours ontinually, another join or leave may our before the system onverges to a orret state.As a result, onvergene to a orret system state may be impossible during system hurn. Fortunately,some appliations an still bene�t from an imperfet DT as long as it is \aurate" enough. Thereforethe auray of a distributed DT over time is more important in pratie than eventual onvergene toa orret distributed DT for systems under hurn.We found that our maintenane protool onverged to a orret distributed DT some time after hurnand failure have stopped in every one of our experiments. However this does not mean that our join andleave protools are no longer needed. Note that it takes time for the maintenane protool to detet andrepair errors, resulting in a lower average auray. Furthermore, the maintenane protool requires amuh higher ommuniation overhead than those of the join and leave protools, and thus should be runonly periodially, with the period being a design parameter to be tuned.23



On u's expiration of PERIOD TIMERfor all v 2 Nu doSend(v, NEIGHBOR SET REQUEST)Set TIMEOUT TIMERv as T + TO; T is urrent time. TO is the timeout value.end forSet PERIOD TIMER as T + P; T is urrent time. P is the period of maintenane protool.On u's expiration of TIMEOUT TIMERvCu  Cu � fvgUpdate Neighbors(Cu, Nu)for all w 2 Nu doSend(w, DELETE(v))end forOn u's reeiving NEIGHBOR SET REQUEST from vif v 62 Cu thenCu  Cu [ fvgUpdate Neighbors(Cu, Nu)end ifNuv  fw j w is a neighbor of v on DT (Cu)gSend(v, NEIGHBOR SET REPLY(Nuv ))On u's reeiving NEIGHBOR SET REPLY(Nvu) from vCu  Cu [NvuUpdate Neighbors(Cu, Nu)Figure 7: Maintenane protool at a node u. Update Neighbors(Cu, Nu) is the same as the one spei�edin Figure 5.We de�ne an auray metri of a distributed DT as follows, whih is used for all of our experiments.Let DDTS be a distributed DT of a set of in-system nodes S. We onsider a node to be in-system fromwhen it �nishes joining to when it starts leaving. (Note that some nodes may be in the proess of joingor leaving and not inluded.) Let Norret(DDTS) be the number of orret neighbor entries of all nodesand Nwrong(DDTS) be the number of wrong neighbor entries of all nodes on DDTS . A neighbor entry vof a node u is orret when v is a neighbor of u on the global DT (namely, DT (S)), and wrong when uand v are not neighbors on the global DT. Let N(DT (S)) be the number of edges on DT (S). Note thatedges on a global Distributed triangulation are undiretional and thus are ounted twie to be ompared
24



with neighbor entries. The auray of DDTS is de�ned as follows:auray(DDTS) = Norret(DDTS)�Nwrong(DDTS)2�N(DT (S)) :A distributed DT is orret if and only if its auray is 1.To demonstrate auray and e�etiveness of the maintenane protool, we designed a \ring" senariobeginning with a barely onneted graph in whih eah node initially knows only one other node. Thatis, node pi, i � 1, has only pi�1 in its andidate set and its neighbor set. Figure 8 shows auray ofthe distributed DT versus time as the maintenane protool runs. Note that the maintenane protoolahieved a orret distributed DT within a few rounds of protool exeution. The onvergene is fasterin a higher dimension spae, sine nodes have more neighbors and information is exhanged faster.
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To address this issue, we introdue a lok Tu at eah node u. The lok value is inremented wheneveru sends out a message. Any information regarding a node is timestamped with its lok. In addition,a node u maintains the latest timestamp T uv of the information regarding another node v it knows of.When a node u reeives any information regarding a node v from another node w, the timestamp of theinformation Twv is ompared with the latest timestamp T uv at node u. If Twv < T uv (that is, the reeivedinformation is older), the information is disarded; otherwise it is aepted and the latest timestamp isupdated (T uv = Twv ).4 Experimental results4.1 SalabilityThe per-node ommuniation ost of our distributed DT protools largely depends on the average numberof neighbors per node. Sine the number of neighbors of a node on a DT is independent of the number ofnodes in the system, the salability of our distributed DT protools is generally very good. However, thereare two minor fators that a�et the per-node ost as the system size inreases. First, greedy routing toloate the losest existing node in the join proess will take O( dpn) steps, where d is the dimensionality ofthe spae and n is the number of nodes in the system. In addition, nodes on the boundary of a DT havefewer neighbors than those in the middle. When the network size is smaller, the fration of boundarynodes is larger, making the average number of neighbors smaller. Figure 9(a) and Figure 9(b) show thenumber of messages and the amount of messages (in Kbytes) versus system size in 3D. The join and leaveurves represent the osts of 100 joins and 100 leaves respetively, and are more or less independent ofsystem size showing very good salability. The per-round ost of the maintenane protool for all nodesinreases linearly with system size; thus the average ost per node is onstant versus system size.4.2 Performane under hurnFigure 10(a) shows auray of a distributed DT as a funtion of time for a system under hurn, morespei�ally, when nodes are joining and leaving onurrently but not failing. Initially, the sytem has 200,400, or 800 nodes with a orret distributed DT. Then 1 node joins and 1 node graefully leaves oneevery seond on the average until time 110 seond, using our join and leave protools. Our maintenane
26
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(b) The amount of messages.Figure 9: The ommuniation ost of protools versus number of nodes in 3D. The join and leave urvesrepresent the total osts of 100 serial joins and 100 serial leaves, respetively. The maintenane urverepresents the per-round ost for all nodes to run the maintenane protool.protool is run one every 10 seonds.5 In spite of the hurn, auray of the distributed DT remainsvery high. The small error is due to onurrent joins and leaves, and is repaired by our maintenaneprotool periodially. Figure 10(b) shows the suess rate of a greedy routing protool for a system underhurn while running our join, leave and maintenane protools. Note that the suess rate is muh higherthan the auray value, due to areful design of our join and leave protools. In our join protool, theneighbor nodes of a joining node defer adding the joining node to their neighbor sets until the joiningnode �nishes its joining proess and is ready to funtion properly. Similarly, in our leave protool, aleaving node ontinues servie until all of its neighbors are noti�ed.4.3 Performane with node failuresFigure 11(a) and Figure 11(b) show auray of distributed DT and greedy routing suess rate fora system in whih nodes join and fail onurrently. Exept for nodes failing instead of leaving, thesimulation parameters are the same as in the previous set of system hurn experiments. Initially, thesystem has 200, 400, or 800 nodes with a orret distributed DT. Then, 1 node joins and 1 node failsone every seond on the average until time 110 seond, and our maintenane protool is run one every10 seonds.Both auray and greedy routing suess rate are muh worse than in the previous ase of system5By Little's Law, for an initial system size of 200, the average lifetime of a node is 200 seonds. For P2P systems, thisis a very high hurn rate[16℄. Note that auray in Figure 10(a) improves as the system size inreases.27
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5 Related workThe �rst protool to onstrut DT was proposed by Liebeherr and Nahas [7℄. The protool utilizesthe loally equiangular property of DT in 2D spae. Nodes are assumed to have pre-assigned logialoordinates in 2D spae. Eah node heks whether the equiangular property holds among itself andits neighbor nodes. Whenever a violation is deteted, the node ips triangles to maintain a orret DT.Their appliation was appliation-layer multiast, alled HyperCast. Sine ompass routing on DT isguaranteed to sueed, a multiast tree an be impliitly determined for a given soure using reversepath.Steiner and Biersak [8℄ proposed a distributed approah to onstrut DT in 3D spae. In their work,the tetrahedron whih inludes a joining node is determined and split. Then the new tetrahedra areheked whether they inlude any nodes in their irumspheres and ipped if neessary.Simon et al. [9℄ proposed a similar approah in d-dimensional spae. They also addressed the ase ofnode departures as well as arrivals. They assume that no d + 1 nodes are on the same hyperplane andno d+ 2 nodes are on the same hypersphere. It is also assumed that a new node is in the interior of theonvex hull of existing nodes.While DT has been extensively studied in omputational geometry, most work in the �eld fouses onentralized algorithms. Ohnishi et al. [10℄ proposed an inremental algorithm to onstrut a distributedDT in 2D spae. Yoo et al. [11℄ proposed a distributed algorithm to maintain DT for moving nodes in2D spae.Loating the losest node to a given point is a ommon problem in many appliations. Wong et al.[17℄ proposed a solution alled Meridian, whih uses multi-resolution rings. While Meridian is eÆientsine it requires O(logN) steps, where N is number of nodes in the system, it does not guarantee to �ndthe losest node.6 ConlusionsWhile DT has been known and used for a long time, the design of protools for onstruting and main-taining a DT for a dynami system has not reeived muh attention. In this paper, we investigate thedesign of join, leave and maintenane protools for a set of nodes to onstrut and maintain a distributedDT dynamially, as well as some appliation-level protools to support DT appliations.We de�ne a distributed DT and present a neessary and suÆient ondition for a distributed DT to29
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