
Page 1 of 14

Schema Driven Assignment and Implementation of Life Science Identifiers (LSIDs)

Daniel Miranker, Sapna Bafna and Julian Humphries
∗

Department of Computer Sciences, University of Texas at Austin
∗

Department of Geological Sciences, Jackson School of Geosciences

{miranker, sapna}@cs.utexas.edu

Abstract

Life sciences identifier (LSIDs) is a formal global unique identifier standard

intended to help rationalize the unique archival requirements of biological data.

We describe an LSID implementation architecture such that data managed by a

relational database management system may be integrated with the LSID protocol

as an add-on layer. The approach requires a database administrator (DBA) to

specify an export schema detailing the structure of the archived data, and a

mapping of the existing database to that schema. This specification is

accomplished through the equivalent of SQL view definitions. In effect, we define

a domain specific language for implementing LSIDs. We describe the mapping of

the view definition to an implementation as a set of database triggers and a fixed

runtime library. This suggests a compiler for the domain specific language could

be written that would reduce the implementation of LSIDs to the task of writing

SQL view definitions.

Key words: LSID, metadata, RDF, resolution, trigger, view

1 Introduction

The management of biological data is subject to a centuries old social contract [7]. Reported

results of experimental accomplishment must be backed up with sufficient information to

duplicate the results. If other scientists are not able to duplicate a result, the published scientist

may be called upon to provide further details. Failing that, the scientist is open to accusations of

scientific misconduct or worse. Prior to the genomic revolution, this contract was fulfilled

exclusively by maintaining a laboratory notebook where the design and preconditions of an

experiment were scribed as were the measurements and observations of the experiment itself.

Even today, the grading of undergraduate students’ laboratory notebooks is central to the training

of experimental scientists and may take on a ceremonial quality.

Modern equipment in research laboratories produce data at a rate such that data in computer files

are supplanting laboratory notebooks. The data may be structured and managed by a database

management system (DBMS). Independent of structure and management, the data is often

available through a web site for review or additional analysis. This practice, despite its

popularity, does not fulfill the social contract, URLs become stale, and web sites regularly

vanish.

In May 2004, as a means to provide a contemporary method to support the social contract the

Object Management Group (OMG) adopted the V1.0 specification of a global unique identifier

Page 2 of 14

protocol called Life Science Identifiers, (LSIDs) [1]. The protocol specifies web services for

authorities to establish directories of providers supporting the assignment of LSIDs, their later

resolution to data and mapping individual LSIDs to service providers. The protocol stipulates

that once data is associated with an LSID that data is immutable and will be forever available.

Data may be updated through versioning, provided the integrity of old versions is also

maintained, forever.

Our perspective is that LSIDs are surrogates that can be used to reference data independent of

time and place, reminiscent of the use of row-ids and foreign keys as surrogates in a database.

The differences being that data is write-once and Internet protocols enable the replication and

migration of the database servers. The LSID protocol specification is structured such that

individual laboratories may make a commitment to maintaining the longevity and integrity of

their own data or data centers may accept third party data and maintain the commitments. Since

funding and tenure of an individual laboratory is undependable there is some expectation in the

Bioinformatics community that organizations such as the United States National Center for

Biological Information (NCBI) and/or NSF supercomputer centers will emerge as general-

purpose archival repositories of biological data referencable by LSID.

Our perspective is consistent with IBM’s LSID best practices document [2]. Where we differ is

in our goals. The intent of IBM’s best practices document is to illuminate and facilitate the

implementation of the protocol by engineers (and we are indebted to its authors).

A goal of our system is to facilitate the adoption of LSIDs by enabling the administrators of the

databases that are proliferating in biology laboratories to easily add LSIDs to their publicly

available data, and also make it convenient to move that data and their identifiers to permanent

third-party repositories. By easy, we mean in an afternoon, and recognizing that these database

administrators are typically graduate students in Biology whose knowledge of databases is self-

taught.

To achieve these goals we define a domain-specific language that can be used to specify an

export schema. The schema defines the records, simple or complex, that need to be assigned

LSIDs. Our system only needs the base database schema and export schema to internally

generate a layer on top of the existing database, which assigns LSIDs and persists data. Thus, a

DBA only needs to specify an appropriate export schema to assign LSIDs to existing and new

data.

The following section gives an overview of the LSID protocol while Section 3 illustrates some

use cases of LSIDs in the bioinformatics world. Section 4 details the architecture and

implementation of our system for implementing LSIDs. Some LSID resolution and metadata

issues are discussed in Section 5 while Section 6 gives the status our implementation. Finally, we

conclude in Section 7 with some pseudo code in the Appendix.

2 Overview of the Protocol

The LSID object model specifies assignment, discovery, and resolution services and their web

service bindings for each of, SOAP, http GET and FTP [1]. Assignment services are used to

synthesize an LSID identifier string and associate it with a data set. The assignment services are

Page 3 of 14

structured to enable both stand-alone implementations of the protocol or centralized third party

implementations. For the latter a data provider submits a data record to the assignment service

and the service returns an LSID string.

Discovery services are UDDI like authorities that map LSIDs to resolution services. A single

LSID may be supported by more than one resolution service. These services may differ by

location and/or syntactic interface. Irrespective of the location or syntax, the data must be

identical and immutable. Since the protocol stipulates that data is not updated in place, but by

creating new versions, maintaining consistency of replicated resolution services is not difficult.

In an effort to bootstrap the process, domain names are included in the LSID string and until

UDDI like discovery services are established implementations simply use domain name mapping

and SRV records as the discovery service [2]. This has had the unfortunate consequence of

making LSIDs look like URLs rather than an arbitrary GUID string, creating confusion with

respect to an LSIDs content and durability. See Figure 1.

Resolution services dereference an LSID, yielding the archived data. The two primary resolution

service methods are getData (LSID) and getMetaData (LSID). The specification does not specify

the content or syntactic structure of either the data of the metadata. Generically the specification

anticipates that the MetaData will detail a data schema for the data expressed as RDF, XMI or

other modeling language including XML schemas. An assignment/resolution service structured

this way results in an LSID encapsulating an instance of a data set and the syntax and semantics

necessary to integrate that data into a larger computation. A single resolution service may

provide the data and meta-data in multiple syntaxes.

Format: urn:lsid:<domainName>:<namespace>:<objectId>[:<revisionId>]

Example: urn:lsid:ncbi.nlm.nih.gov:pubmed:12571434 //referencing a PubMed article

Figure 1: Format and Example of an LSID [1]

“Persistence: It is intended that the lifetime of an LSID be permanent. That is, the LSID … may

be used as a reference to an object well beyond the lifetime of the object it identifies or of any

naming authority [1].

It follows from the protocol that once assigned an LSID, a datum is immutable and persists

forever. Sequential versioning of data is supported. Each version is similarly immutable and

persistent. An updated datum results in an incremented version number. If data for an LSID are

requested without a version number, then the most recent data version is returned. A version

number may be specified, forever, and that version of the data will be returned.

3 Use Cases

3.1 Illustrative Use Case

Our application context is the NSF’s “Assembling the Tree of Life " (ATOL) grand challenge.

The grand challenge faced is in describing 5 to 10 million extant species, and computing and

analyzing a unified phylogenetic tree. The effort spans organisms as far ranging as bacteria,

plants and mammals.

Page 4 of 14

Numerous projects are currently building labeled image databases, each geared to specimens in

their specialty e.g. mycology, the study of fungi. Similarly, they are organizing the terminology

of their corpuses as ontologies and working to exploit Internet technology to tie this information

together and make it highly available. In addition to these efforts, work is underway to build web

services for the computation of trees and the archival storage and retrieval of completed studies.

In short, this science, Systematics, is moving toward a distributed scientific workflow.

The illustrative use case concerns rendering the annotations that label the edges of computed

phylogenetic trees. A phylogenetic tree is, among other things, a hierarchical clustering of a data

set. Each element of the set is a feature vector describing a specimen. Each dimension of the

feature vector is called a character, and the value of the character for a specimen a character

state. The ensemble is known as a data matrix. The set of specimens define the rows, characters

define the columns and the matrix cells are filled with character states. In a study each

specimen is chosen as an exemplar of a taxon, or in lay terms, species. In informal discussions a

set of rows may be referred to as a set of taxa.

Character states may be the labels for individual residues in gene or protein sequences (e.g.

A,C,G,T) or they may be integer coded descriptions of morphological properties e.g. the shape of

a tooth, or the range of motion of a joint. While gene sequences are proving most effective at

resolving the structure of a phylogenetic tree, much of the biological interpretation still rests on

the richer description of the specimens. Ultimately, the connection of molecular phenomenon

with the evolutionary development of phenotype promises to be a watershed of information. For

example, a study may reveal differences in metabolic pathways that distinguish cacti from

tropical plants and suggest ways of genetically engineering drought resistant food crops.

A present difficulty in the analysis of a computed tree is that there is no operable linkage

between the trees and the wealth of information concerning the taxa and their state definitions.

When visualizing a tree this problem manifests as integers and letters serving as edge labels. This

is important as those labels represent the distinguishing character states separating one group of

organisms from one another, at least one for each vertex in the tree. The scientific importance of

each split can only be, (and must be), evaluated with respect to the definition of the character

states, e.g. plants with wide leaves vs. narrow leaves. In the current infrastructure, an evaluation

can only be made by accessing source material. Although systematic biologists no longer have to

go to walk to a library to locate the supporting information, that is their only progress into

distributed Internet computing.

LSIDs are emerging as the method of choice for creating the operable linkages across this

workflow. Since an LSID is a string of fixed length, extending regularly structured coded

information, (i.e. integer coded matrices) retains a regular structure, facilitating the upgrade of

legacy software.

3.2 UT CT LSID Prototype

The University of Texas UTCT Data Archive (UTCT) [8] is an advanced prototype of the well-

known Digimorph [9] repository. It stores metadata about specimens and both metadata and

actual slice images from high-resolution X-ray computed tomographic scans of those specimens.

Page 5 of 14

Image data are stored in an SQL server database and currently comprise over 130k images.

 Since UTCT serves as a good archival database of biological specimens we are experimenting

with our LSID prototype utilizing this system.

For our LSID prototype we furnish a hierarchy of archived data. We export each specimen as its

Darwin Core record [12]. Darwin Core is a simple set of data element definitions designed to

support the sharing and integration of primary biodiversity data. It is a standard supported by the

Global Biodiversity Information Facility (GBIF), an organization sponsored by an international

treaty concerning biodiversity. A goal of Darwin Core is to support the integration of the

world’s biological collections’ on-line biodiversity catalogs.

Figure 2: Data model of the relevant portions of the UT CT database schema, we wish to embellish with LSIDs. In

the source UTCT tables, the associations are implemented using foreign keys, in the traditional way. The mapping

between the two schemas is discussed in the next section. In the archive version, associations are also implemented

as foreign keys, but the key values are LSIDs. Even within our single collection of data we are beginning the

creation of complex distributed data structures, linked by LSID.

4 Method

4.1 Specifying the Structure and Content of Archived Data

Our premise is that adding LSIDs to an existing database means declaring the structure of the

Page 6 of 14

data to be archived as an export-schema, and specifying a mapping of the contents of an existing

database to the export schema. This function is commonly fulfilled by SQL view definitions

[13]. Thus, we define a domain specific language that is the syntactic subset of SQL used for

such view definitions.

In our architecture, new tables are created from the view definitions. These tables are segregated

from the run-time database and archived data is copied (materialized) into these tables. The

additional tables and redundant storage of data greatly simplifies the implementation of a number

of requirements of the LSID protocol. Perhaps the single most important simplification is that

replication of archived data to multiple resolution services can be implemented using existing

database replication products.

Figure 3, illustrates the LSID view definitions for two of the three records in our prototype. Due

to its simplicity, the SpecimenImage view will be our primary example. The declaration

provides that two attributes of each row of the Specimen table will be archived and assigned an

LSID.

The second view definition, DarwinCoreRecord, is more complicated, but reveals the power of

the approach with respect to its accessibility to biology labs. In UTCT, the data for a standard

GBIF Darwin Core record comes from three sources. UTCT tables Specimen and Scan_Info are

two of the sources. The individual fields of the Darwin Core record are populated using a

conventional select/from/where query. Note, the AS clauses map UTCT attribute names to the

names specified by the GBIF standard. String constants in the record are specified as well. Thus,

any SQL programmer already familiar with a database, (e.g. the DBA), may make quick work of

defining the archived portions of the database.

Besides inventing a new reserved word, LSIDVIEW the specification language changes SQL

syntax in only one other place. The first line of the select clause for the Darwin Core Record

specifies, “SpecimenImage.LSID AS GlobalUniqueIdentifier”. SpecimenImage.LSID refers to

the LSID for the archived version of the row in the specimen table. The expression is out of

scope, referring to an attribute of a table in the archival database, and since the table was not

declared in the FROM clause it is also syntactically incorrect. Since the statement is

unambiguous, the semantics of our language already depart from SQL semantics, and the cure is

worse than the defect, we leave well enough alone. When necessary, refer to our declarations as

SQL-like and not SQL.

CREATE LSIDVIEW SpecimenImage AS

SELECT scientific_name, specimen_image

FROM Specimen

a) An LSIDVIEW definition specifying a subset of the columns of a single table as the contents of a table in the

export schema

CREATE LSIDVIEW DarwinCoreRecord AS

SELECT SpecimenImage.LSID AS GlobalUniqueIdentifier

 scan_date AS DateLastModified,

 'ct dataset' AS BasisOfRecord,

 'utexas' AS InstitutionCode,

 'utct' AS CollectionCode,

Page 7 of 14

 specimen_id AS CatalogNumber,

 scientific_name AS ScientificName,

 'http://utct-test.tacc.utexas.edu/data.php?specimen_id=’ +
specimen_id AS ImageURL,

 ‘’ AS RelatedInformation

FROM Specimen, Scan_Info

WHERE Specimen.id = Scan_Info.specimen_id

b) An LSIDVIEW definition detailing the mapping of records in two database tables to a single record defined by

the Darwin Core standard and compliant with the standard, including, the LSID of the specimen record linking in

additional data about the specimen. In effect, even within a standalone export schema LSIDs serve as foreign keys.

Figure 3: Sample LSIDVIEW Definitions

The differences in the semantics of our view definitions from SQL are required by the LSID

semantics of versioning. In our system, views are always materialized and an LSID assigned to

each record. Records are never removed from the materialized view. Inserts into the base tables

may materialize additional records in the export database. Updates to the base tables may

propagate new versions of the data. In that case, the assignment mechanism must recognize the

update as such, reuse an existing LSID, but increment a version number.

We implement LSID assignment using triggers. Triggers are SQL procedures that are executed

each time a table row is inserted or updated. It follows that on-insert triggers create new

archived data, on-update triggers usually create new versions. The use of trigger-based methods

to maintain the contents of materialized views after updates to base tables is well understood [3].

The LSID requirement that old versions persist simplifies these methods, as one need not

determine which records may have to be removed.

If the database is a proxy for a laboratory notebook and only serves as an archive for voluminous

output of high-throughput biology, we can exploit a simplifying assumption; a correction in the

data means a change in the process which results in an entirely new data set. Thus, data is write-

once and need only consider on-insert triggers. Such an implementation need simply, on each

insert, generate an LSID string, write it and a copy of the archived data to the export database.

Updates, if allowed, are more complicated. The LSID for the prior version must be determined

and reused. Also, sometimes data is accumulated in the database and not archived until it is

“complete”. If so, an update may simply mark data as complete and instigate the first and

possibly only insertion of the data into the archive. Of the first, this is the case and will be

detailed for the Darwin Core record defined in Figure 3b.

4.2 Architecture

There are three main components of the system; Figure 4. A compiler translates the external

schema declaration into a set of triggers that monitor the database and implement the assignment

service. The compiler also generates the schema for a set of tables that are populated by the

triggers, and implementing dynamic storage needed for the protocol. Note, the existing database

catalog is also an argument to the compiler as data types and related constraints must be included

as part of the definition of the additional tables.

Page 8 of 14

A fixed runtime system, whose only database parameters are the additional tables and their

contents, implements the resolution service.

Figure 4: Domain Specific Language Based Implementation of LSIDs

4.3 Supporting Table Structures and the Semantics of Versioning

Most of the persistent state of the LSID implementation resides in database tables. A master

table contains a complete list of LSID object identifiers, (lsObjID). An attribute of the master

table indicates which table contains the data for a particular LSID. The indirection supported by

the master table hides the internal structure of the data storage. The LSID specification stipulates

that the LSID string obscure the internal mechanisms of the LSID authority. An alternative

would be to include the table name in an internal version of the LSID string and then use an

encrypted version of that string as the “official” representation of the LSID.

Two tables, data and key, are created for each LSIDView. Archived data is materialized in the

data tables with the associated lsObjID and a version number. The lsObjID and version number

form the primary key. The second table, the key table, has the same primary key as the data table,

but contains the primary key value of the archived record. The data in these two tables is one-to-

one and in principle there should only be one table. By organizing it as two tables, the data table

contains precisely the archival record. The key table enables a vendor independent method for

on-update trigger to determine a record’s value, prior to update. The tables generated for the

LSIDView in Figure 3a are illustrated in Figure 5.

LSIDTable

lsObjID Primary key

tableName SpecimenImage / Other View

names

Page 9 of 14

Figure 5: The LSIDTable is part of the runtime system and is common and fixed to all implementations. Two

additional tables, SpecimenImageKey and SpecimenImageData correspond to the implementation of the

LSIDVIEW of Figure 3a. A copy of the exported specimen data will be maintained in the data table. The key table

enables the implementation to avoid some vendor specific implementation details of triggers. By segregating the

archived data from the ancillary information used to implement the protocol, commodity database replication

software can be used to maintain consistency among multiple resolution services.

4.4 LSID Assignment as Triggers

We will first consider the simple case that an LSIDView contains a subset of the attributes of a

single table. See Figure 3a. The triggers become more complicated when the views span multiple

tables, a database join. See Figure 3b. In both cases, the greater challenge is in monitoring table

updates and correctly creating new records using an existing LSID with an incremented version

number.

4.4.1 Assigning an LSID for Single Tables

In this, the simplest case, as typified by the LSIDView in Figure 3a, a trigger is evaluated each

time a row is inserted into a table. Pseudo code for the on-insert trigger:

1. Initialize a new LSID identifier string, lsObjID

2. Insert a record in the LSID table comprising the pair lsObjID and the archived table

name, SpecimenImage

3. Copy the data to be archived by inserting a record into the SpecimenImageData table. In

addition to the archived data, the record contains the lsObjID, the version number, which

is one, and any additional attributes that form the primary key of the original table

4. Insert an entry in the SpecimenImageKey table for the new lsObjID and the original

primary key of the data

The identification and replication of attribute values to be archived is accomplished by macro-

SpecimenImageKey

lsObjID

version

Primary key

origPK Primary key of original data,

required for versioning.

SpecimenImageData

lsObjID

version

Primary key

scientific_name Attribute from original

database

specimen_image Attribute from original

database

Page 10 of 14

substitution of the select/from/where query in the LSIDView definition into the body of the

trigger. The additional attributes are integral to the implementation of versioning, which

happens only on updates. Pseudo-code for the trigger is illustrated above. A full implementation

comprises some vendor specific code, particularly in regard to determining the value of the

primary key. Our first implementation has been for SQL Server 2000. Appendix 1 contains the

full SQL Server definition of this trigger. An ancillary paper contains complete the complete

trigger definitions for the prototype [6].

4.4.2 Updating and Maintaining Versions for Project Only Views

The single challenge in versioning updates is to determine and reuse the LSID for the prior

version. Once again, the issue is that, nominally, the scope of the trigger is within the original

database and the LSIDs are only present in the archival database. The solution is the key tables

in the archival database. The first operation of the on-update triggers is, using the primary key

values of the updated row, prior to update, query the respective key table to determine the

existing LSID. Pseudo-code for the on-update trigger:

1. Extract the primary key of the updated tuple and locate the latest version in the

supporting table, identified by its LSID and version number

2. Extract attributes (per the view definition) from the updated tuple

3. Store a new copy of these attributes with the LSID and incremented version number

in the supporting table defined for the view

4. Store an entry in the key table for the new copy

4.4.3 Complex Cases

There are two features that may complicate the LSIDVIEW definitions and implementation as

triggers. First, it may not be desired that all rows in a table be made available for archival

purposes, or there may be reason (e.g. pending publication) to delay public access to archive

data. Second, archived data may be sourced from more than one table. It may simply not be

possible to create the archive version of the record until the last of a number of inserts is

processed across a number of tables. In the example of the UTCT both the Specimen record and

the supporting CAT-scan slices must be in the database in order to form the Darwin Core record,

Thus, these two issues are not separable.

In the situation represented by the UTCT Darwin Core record, correct behavior can be

implemented by correctly defining the triggers, the details of which, though not trivial, have been

understood for sometime [4]. If data is to be made available pending publication and there is

provision in the existing database to record the publication information, the LSIDVIEW

definitions can be conditioned on the insertion of the publication information. As in the UTCT

Darwin Core record, until the publication information is inserted, the predicates making up the

triggers could remain unsatisfied and no records copied into the archive. It is also possible a

DBA could add a column to a table, call it ‘archiveFlag’, and only when the flag is set will the

row be archived. Figure 6 illustrates how that would change the definition in Figure 3a.

CREATE LSIDVIEW SpecimenImage AS

SELECT scientific_name, specimen_image

Page 11 of 14

FROM Specimen

WHERE Specimen.archiveFlag = TRUE;

Figure 6: The LSIDVIEW definition of Figure 3a augmented with an explicit test for archiving a row.

Pseudo code for on-insert trigger on an LSIDView involving more than one table:

1. Execute a join on the tables involved in the view, using only the inserted tuple in

place of the entire table

2. For each tuple in the join:

a. Initialize a new LSID

b. Insert a record in the LSID table comprising the pair lsObjID and the

archived table name

c. Copy the data to be archived by inserting a record into the supporting table

defined for the view

d. Insert an entry in the key table

4.4.4 Updating and Maintaining Versions for Complex View Definitions

The updates defined on complex views are similar to those for similar views, with the exception

that a single record is not updated, but all records in the join affected by updated record need to

be re-versioned. Pseudo code of on-update trigger for complex views:

1. Execute a join on the tables involved in the view, using only the updated tuple in

place of the entire table

2. For each tuple in the join:

a. Extract the primary key of the updated tuple and locate the latest version in

the supporting table, identified by its LSID and version number

b. Extract attributes (per the view definition) from the updated tuple

c. Store a new copy of these attributes with the LSID and incremented version

number in the supporting table defined for the view

d. Store an entry in the key table for the new copy

5 LSID Resolution and Meta-Data Syntax

The LSID protocol does not stipulate a preferred structure or syntax of the data or the metadata.

In fact a single resolution service may provide both the data and metadata in more than one

representation. The protocol specifies methods that enable clients to query a resolution service,

asking which representations its supports. A client chooses among those to define how the

information it receives is served.

There are many technologies competing to become the standard for Internet data exchange.

These include, XML with or without schema definitions expressed as document data types

(DTDs) or XML schemas (XSD), and the stack of representations connected with the semantic

web, meaning RDF to OWL.

As this architecture speaks to relational data representations, a kind of least-common

denominator, mapping the data and its metadata to any and all of these representations is

Page 12 of 14

possible. The architecture specifies that data retrieval methods can return metadata in different

formats, depending on the ‘accepted_formats’ parameter [1]. Alternately, abstract LSIDs can be

used to support multiple representations [2].

6 Implementation Status and Discussion

We have a live implementation of the assignment and resolution services [10]. We chose the

UTCT database as the archive and defined three LSIDViews. We then created a set of tables and

triggers based on the view definitions. The triggers act as the LSID assigning service. An LSID

resolution service has been written in PHP [11] that internally uses the LSID table definitions to

compose the results for getData () and getMetadata () queries.

While we envision, given community interest, creating a compiler based implementation, the

current implementation represents a first effort hand compiled implementation and a feasibility

prototype. Among the three LSIDViews the trigger contents are vendor-specific but repetitious.

We found the SQL Server implementation details straightforward. Thus, we deem compiler-

based implementation is feasible.

The metadata and data, stored in relational databases are wrapped in RDF and then returned to

the clients. This translation of database schema, for metadata and relational data to RDF is hand-

written, based on Relational.OWL [5]. The implementation of a translation engine is underway.

Note that with the use of triggers, any update to the data will induce a new version consistent

with LSID versioning semantics. This assumption may be relaxed if the DBA can develop a

predicate that is satisfied when, and only when data is ready to be committed to a permanent

public archive. If not, the system will still function but our claim that the system can be

implemented on a legacy database without any alteration of the legacy system may no longer

apply; the DBA may have to add a column to flag the intention to commit the record to the

archive and the trigger can check this flag before executing any action.

7 Conclusion

We have defined a domain-specific SQL-like language to implement LSIDs for existing data

stores. The language constructs can be used to define an export schema for a database detailing

the objects that need LSIDs. Given these view definitions and the database catalog, a compiler

can generate the required ancillary tables and triggers. The triggers are executed on the current

data (archive) to assign LSIDs and persist the data versions. With this, we have defined an easy

mechanism to implement LSIDs.

Acknowledgements

This research is funded by the National Science Foundation grant IIS-0531767.

References

[1] Life sciences identifiers specification. http://www.omg.org/docs/dtc/04-05-01.pdf

Page 13 of 14

[2] Smith, D. and Szekely, B. LSID best practices.

http://www-128.ibm.com/developerworks/opensource/library/os-lsidbp/

[3] Adelberg, B., Garcia-Molina, H., and Widom, J. The STRIP rule system for efficiently

maintaining derived data. Proceedings of the ACM SIGMOD International Conference on

Management of Data, 147-158, Tucson, Arizona, May 1997

[4] Garcia-Mollina, Ullman and Widom. Database Systems: The Complete Book. Prentice Hall

[5] de Laborda, C. P. and Conrad, S. 2005. Relational.OWL: a data and schema representation

format based on OWL. 2
nd

 APCCM2005, Vol. 43

[6] Bafna, S. and Miranker, D. LSID Specification Language for Relational Databases based on

SQL Server 2000. The University of Texas at Austin, Department of Computer Sciences,

Technical Report TR-06-51, October 16, 2006

[7] Holmes, F. Reworking the Bench. Springer

[8] http://utct.tacc.utexas.edu

[9] http://digimorph.org

[10] http://utct-test.tacc.utexas.edu/authority

[11] http://biodiv.hyam.net/authority/readme.html

[12] http://darwincore.calacademy.org/

[13] http://www.w3schools.com/sql/sql_view.asp

Appendix

CREATE TRIGGER PopulatePersistentSpecimenTables

ON Specimen

INSTEAD OF INSERT

AS

BEGIN

DECLARE @lsObjID INT

DECLARE @newTuplePK INT

DECLARE @scientific_name VARCHAR(256)

/* Get primary key of the tuple in newTuplePK */

SELECT @newTuplePK=id

FROM INSERTED

/* Get maximum lsObjID from LSID table */

SELECT @lsObjID=MAX(lsObjID)

FROM LSIDTable

IF @lsObjID IS NULL

SET @lsObjID = 0

/* Insert a new tuple in SpecimenImageLSIDTable with incremented lsObjID,
version number 1, original PK and new attribute values) */

SET @lsObjID = @lsObjID + 1

SELECT @scientific_name=scientific_name

FROM INSERTED

Page 14 of 14

INSERT INTO SpecimenImageLSIDTable

SELECT @lsObjID, 1, @newTuplePK, @scientific_name, specimen_image

FROM INSERTED

INSERT INTO LSIDTable

VALUES (@lsObjId, 'SpecimenImageLSIDTable')

/* Insert new tuple in the Specimen table. Required because of use of instead
of trgiger, in order to support images */

INSERT INTO Specimen

SELECT *

FROM INSERTED

END

