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Abstract 

 

Life sciences identifier (LSIDs) is a formal global unique identifier standard 

intended to help rationalize the unique archival requirements of biological data.  

We describe an LSID implementation architecture such that data managed by a 

relational database management system may be integrated with the LSID protocol 

as an add-on layer.  The approach requires a database administrator (DBA) to 

specify an export schema detailing the structure of the archived data, and a 

mapping of the existing database to that schema. This specification is 

accomplished through the equivalent of SQL view definitions. In effect, we define 

a domain specific language for implementing LSIDs. We describe the mapping of 

the view definition to an implementation as a set of database triggers and a fixed 

runtime library.  This suggests a compiler for the domain specific language could 

be written that would reduce the implementation of LSIDs to the task of writing 

SQL view definitions.  
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1 Introduction 

The management of biological data is subject to a centuries old social contract [7].  Reported 

results of experimental accomplishment must be backed up with sufficient information to 

duplicate the results.  If other scientists are not able to duplicate a result, the published scientist 

may be called upon to provide further details.  Failing that, the scientist is open to accusations of 

scientific misconduct or worse.  Prior to the genomic revolution, this contract was fulfilled 

exclusively by maintaining a laboratory notebook where the design and preconditions of an 

experiment were scribed as were the measurements and observations of the experiment itself.  

Even today, the grading of undergraduate students’ laboratory notebooks is central to the training 

of experimental scientists and may take on a ceremonial quality. 

 

Modern equipment in research laboratories produce data at a rate such that data in computer files 

are supplanting laboratory notebooks.  The data may be structured and managed by a database 

management system (DBMS). Independent of structure and management, the data is often 

available through a web site for review or additional analysis. This practice, despite its 

popularity, does not fulfill the social contract, URLs become stale, and web sites regularly 

vanish.  

In May 2004, as a means to provide a contemporary method to support the social contract the 

Object Management Group (OMG) adopted the V1.0 specification of a global unique identifier 
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protocol called Life Science Identifiers, (LSIDs) [1]. The protocol specifies web services for 

authorities to establish directories of providers supporting the assignment of LSIDs, their later 

resolution to data and mapping individual LSIDs to service providers. The protocol stipulates 

that once data is associated with an LSID that data is immutable and will be forever available. 

Data may be updated through versioning, provided the integrity of old versions is also 

maintained, forever.  

 

Our perspective is that LSIDs are surrogates that can be used to reference data independent of 

time and place, reminiscent of the use of row-ids and foreign keys as surrogates in a database. 

The differences being that data is write-once and Internet protocols enable the replication and 

migration of the database servers.  The LSID protocol specification is structured such that 

individual laboratories may make a commitment to maintaining the longevity and integrity of 

their own data or data centers may accept third party data and maintain the commitments. Since 

funding and tenure of an individual laboratory is undependable there is some expectation in the 

Bioinformatics community that organizations such as the United States National Center for 

Biological Information (NCBI) and/or NSF supercomputer centers will emerge as general-

purpose archival repositories of biological data referencable by LSID. 

 

Our perspective is consistent with IBM’s LSID best practices document [2]. Where we differ is 

in our goals.  The intent of IBM’s best practices document is to illuminate and facilitate the 

implementation of the protocol by engineers (and we are indebted to its authors). 

 

A goal of our system is to facilitate the adoption of LSIDs by enabling the administrators of the 

databases that are proliferating in biology laboratories to easily add LSIDs to their publicly 

available data, and also make it convenient to move that data and their identifiers to permanent 

third-party repositories. By easy, we mean in an afternoon, and recognizing that these database 

administrators are typically graduate students in Biology whose knowledge of databases is self-

taught.  

 

To achieve these goals we define a domain-specific language that can be used to specify an 

export schema. The schema defines the records, simple or complex, that need to be assigned 

LSIDs. Our system only needs the base database schema and export schema to internally 

generate a layer on top of the existing database, which assigns LSIDs and persists data. Thus, a 

DBA only needs to specify an appropriate export schema to assign LSIDs to existing and new 

data. 

 

The following section gives an overview of the LSID protocol while Section 3 illustrates some 

use cases of LSIDs in the bioinformatics world. Section 4 details the architecture and 

implementation of our system for implementing LSIDs. Some LSID resolution and metadata 

issues are discussed in Section 5 while Section 6 gives the status our implementation. Finally, we 

conclude in Section 7 with some pseudo code in the Appendix. 

2 Overview of the Protocol  

The LSID object model specifies assignment, discovery, and resolution services and their web 

service bindings for each of, SOAP, http GET and FTP [1].  Assignment services are used to 

synthesize an LSID identifier string and associate it with a data set. The assignment services are 
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structured to enable both stand-alone implementations of the protocol or centralized third party 

implementations. For the latter a data provider submits a data record to the assignment service 

and the service returns an LSID string.   

 

Discovery services are UDDI like authorities that map LSIDs to resolution services. A single 

LSID may be supported by more than one resolution service.  These services may differ by 

location and/or syntactic interface.  Irrespective of the location or syntax, the data must be 

identical and immutable. Since the protocol stipulates that data is not updated in place, but by 

creating new versions, maintaining consistency of replicated resolution services is not difficult. 

In an effort to bootstrap the process, domain names are included in the LSID string and until 

UDDI like discovery services are established implementations simply use domain name mapping 

and SRV records as the discovery service [2].  This has had the unfortunate consequence of 

making LSIDs look like URLs rather than an arbitrary GUID string, creating confusion with 

respect to an LSIDs content and durability. See Figure 1. 

 

Resolution services dereference an LSID, yielding the archived data. The two primary resolution 

service methods are getData (LSID) and getMetaData (LSID). The specification does not specify 

the content or syntactic structure of either the data of the metadata.  Generically the specification 

anticipates that the MetaData will detail a data schema for the data expressed as RDF, XMI or 

other modeling language including XML schemas.  An assignment/resolution service structured 

this way results in an LSID encapsulating an instance of a data set and the syntax and semantics 

necessary to integrate that data into a larger computation. A single resolution service may 

provide the data and meta-data in multiple syntaxes. 

 
Format:     urn:lsid:<domainName>:<namespace>:<objectId>[:<revisionId>] 

Example:   urn:lsid:ncbi.nlm.nih.gov:pubmed:12571434        //referencing a PubMed article 

Figure 1: Format and Example of an LSID [1] 

 

“Persistence: It is intended that the lifetime of an LSID be permanent. That is, the LSID … may 

be used as a reference to an object well beyond the lifetime of the object it identifies or of any 

naming authority [1]. 
 

It follows from the protocol that once assigned an LSID, a datum is immutable and persists 

forever. Sequential versioning of data is supported.  Each version is similarly immutable and 

persistent. An updated datum results in an incremented version number.  If data for an LSID are 

requested without a version number, then the most recent data version is returned.  A version 

number may be specified, forever, and that version of the data will be returned.  

3 Use Cases 

3.1 Illustrative Use Case 

Our application context is the NSF’s “Assembling the Tree of Life " (ATOL) grand challenge. 

The grand challenge faced is in describing 5 to 10 million extant species, and computing and 

analyzing a unified phylogenetic tree.   The effort spans organisms as far ranging as bacteria, 

plants and mammals.   
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Numerous projects are currently building labeled image databases, each geared to specimens in 

their specialty e.g. mycology, the study of fungi.  Similarly, they are organizing the terminology 

of their corpuses as ontologies and working to exploit Internet technology to tie this information 

together and make it highly available. In addition to these efforts, work is underway to build web 

services for the computation of trees and the archival storage and retrieval of completed studies. 

In short, this science, Systematics, is moving toward a distributed scientific workflow. 

 

The illustrative use case concerns rendering the annotations that label the edges of computed 

phylogenetic trees.  A phylogenetic tree is, among other things, a hierarchical clustering of a data 

set. Each element of the set is a feature vector describing a specimen. Each dimension of the 

feature vector is called a character, and the value of the character for a specimen a character 

state.  The ensemble is known as a data matrix.  The set of specimens define the rows, characters 

define the columns and the matrix cells are filled with character states.  In a study each 

specimen is chosen as an exemplar of a taxon, or in lay terms, species. In informal discussions a 

set of rows may be referred to as a set of taxa. 

 

Character states may be the labels for individual residues in gene or protein sequences (e.g. 

A,C,G,T) or they may be integer coded descriptions of morphological properties e.g. the shape of 

a tooth, or the range of motion of a joint.  While gene sequences are proving most effective at 

resolving the structure of a phylogenetic tree, much of the biological interpretation still rests on 

the richer description of the specimens. Ultimately, the connection of molecular phenomenon 

with the evolutionary development of phenotype promises to be a watershed of information. For 

example, a study may reveal differences in metabolic pathways that distinguish cacti from 

tropical plants and suggest ways of genetically engineering drought resistant food crops. 

 

A present difficulty in the analysis of a computed tree is that there is no operable linkage 

between the trees and the wealth of information concerning the taxa and their state definitions. 

When visualizing a tree this problem manifests as integers and letters serving as edge labels. This 

is important as those labels represent the distinguishing character states separating one group of 

organisms from one another, at least one for each vertex in the tree.  The scientific importance of 

each split can only be, (and must be), evaluated with respect to the definition of the character 

states,  e.g. plants with wide leaves vs. narrow leaves.  In the current infrastructure, an evaluation 

can only be made by accessing source material. Although systematic biologists no longer have to 

go to walk to a library to locate the supporting information, that is their only progress into 

distributed Internet computing.   

 

LSIDs are emerging as the method of choice for creating the operable linkages across this 

workflow. Since an LSID is a string of fixed length, extending regularly structured coded 

information, (i.e. integer coded matrices) retains a regular structure, facilitating the upgrade of 

legacy software.  

3.2 UT CT LSID Prototype 

The University of Texas UTCT Data Archive (UTCT) [8] is an advanced prototype of the well-

known Digimorph [9] repository. It stores metadata about specimens and both metadata and 

actual slice images from high-resolution X-ray computed tomographic scans of those specimens. 



Page 5 of 14 

Image data are stored in an SQL server database and currently comprise over 130k images. 

 Since UTCT serves as a good archival database of biological specimens we are experimenting 

with our LSID prototype utilizing this system. 

 

For our LSID prototype we furnish a hierarchy of archived data. We export each specimen as its  

Darwin Core record [12]. Darwin Core is a simple set of data element definitions designed to 

support the sharing and integration of primary biodiversity data. It is a standard supported by the 

Global Biodiversity Information Facility (GBIF), an organization sponsored by an international 

treaty concerning biodiversity.  A goal of Darwin Core is to support the integration of the 

world’s biological collections’ on-line biodiversity catalogs. 

 

 

Figure 2: Data model of the relevant portions of the UT CT database schema, we wish to embellish with LSIDs. In 

the source UTCT tables, the associations are implemented using foreign keys, in the traditional way. The mapping 

between the two schemas is discussed in the next section. In the archive version, associations are also implemented 

as foreign keys, but the key values are LSIDs.  Even within our single collection of data we are beginning the 

creation of complex distributed data structures, linked by LSID. 

 

4 Method 

4.1 Specifying the Structure and Content of Archived Data 

Our premise is that adding LSIDs to an existing database means declaring the structure of the 
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data to be archived as an export-schema, and specifying a mapping of the contents of an existing 

database to the export schema. This function is commonly fulfilled by SQL view definitions 

[13]. Thus, we define a domain specific language that is the syntactic subset of SQL used for 

such view definitions.   

 

In our architecture, new tables are created from the view definitions.  These tables are segregated 

from the run-time database and archived data is copied (materialized) into these tables. The 

additional tables and redundant storage of data greatly simplifies the implementation of a number 

of requirements of the LSID protocol. Perhaps the single most important simplification is that 

replication of archived data to multiple resolution services can be implemented using existing 

database replication products.   

 

Figure 3, illustrates the LSID view definitions for two of the three records in our prototype. Due 

to its simplicity, the SpecimenImage view will be our primary example.  The declaration 

provides that two attributes of each row of the Specimen table will be archived and assigned an 

LSID. 

 

The second view definition, DarwinCoreRecord, is more complicated, but reveals the power of 

the approach with respect to its accessibility to biology labs.  In UTCT, the data for a standard 

GBIF Darwin Core record comes from three sources.   UTCT tables Specimen and Scan_Info are 

two of the sources.  The individual fields of the Darwin Core record are populated using a 

conventional select/from/where query.  Note, the AS clauses map UTCT attribute names to the 

names specified by the GBIF standard. String constants in the record are specified as well.  Thus, 

any SQL programmer already familiar with a database, (e.g. the DBA), may make quick work of 

defining the archived portions of the database. 

 

Besides inventing a new reserved word, LSIDVIEW the specification language changes SQL 

syntax in only one other place. The first line of the select clause for the Darwin Core Record 

specifies, “SpecimenImage.LSID AS GlobalUniqueIdentifier”. SpecimenImage.LSID refers to 

the LSID for the archived version of the row in the specimen table. The expression is out of 

scope, referring to an attribute of a table in the archival database, and since the table was not 

declared in the FROM clause it is also syntactically incorrect. Since the statement is 

unambiguous, the semantics of our language already depart from SQL semantics, and the cure is 

worse than the defect, we leave well enough alone. When necessary, refer to our declarations as 

SQL-like and not SQL. 

 

CREATE  LSIDVIEW SpecimenImage AS 

SELECT  scientific_name, specimen_image 

FROM   Specimen 

a) An LSIDVIEW definition specifying a subset of the columns of a single table as the contents of a table in the 

export schema 

CREATE  LSIDVIEW DarwinCoreRecord AS 

SELECT  SpecimenImage.LSID AS  GlobalUniqueIdentifier  

            scan_date    AS  DateLastModified, 

            'ct dataset'   AS  BasisOfRecord,  

            'utexas'   AS InstitutionCode, 

            'utct'   AS CollectionCode,  
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            specimen_id   AS  CatalogNumber,  

            scientific_name  AS ScientificName,  

           'http://utct-test.tacc.utexas.edu/data.php?specimen_id=’ + 
specimen_id   AS ImageURL,  

            ‘’    AS  RelatedInformation 

FROM   Specimen, Scan_Info 

WHERE  Specimen.id = Scan_Info.specimen_id 

b) An LSIDVIEW definition detailing the mapping of records in two database tables to a single record defined by 

the Darwin Core standard and compliant with the standard, including, the LSID of the specimen record linking in 

additional data about the specimen. In effect, even within a standalone export schema LSIDs serve as foreign keys. 

Figure 3: Sample LSIDVIEW Definitions 

 

The differences in the semantics of our view definitions from SQL are required by the LSID 

semantics of versioning.  In our system, views are always materialized and an LSID assigned to 

each record. Records are never removed from the materialized view. Inserts into the base tables 

may materialize additional records in the export database. Updates to the base tables may 

propagate new versions of the data.  In that case, the assignment mechanism must recognize the 

update as such, reuse an existing LSID, but increment a version number. 

 

We implement LSID assignment using triggers.  Triggers are SQL procedures that are executed 

each time a table row is inserted or updated.  It follows that on-insert triggers create new 

archived data, on-update triggers usually create new versions. The use of trigger-based methods 

to maintain the contents of materialized views after updates to base tables is well understood [3]. 

The LSID requirement that old versions persist simplifies these methods, as one need not 

determine which records may have to be removed. 

 

If the database is a proxy for a laboratory notebook and only serves as an archive for voluminous 

output of high-throughput biology, we can exploit a simplifying assumption; a correction in the 

data means a change in the process which results in an entirely new data set.  Thus, data is write-

once and need only consider on-insert triggers. Such an implementation need simply, on each 

insert, generate an LSID string, write it and a copy of the archived data to the export database. 

 

Updates, if allowed, are more complicated. The LSID for the prior version must be determined 

and reused. Also, sometimes data is accumulated in the database and not archived until it is 

“complete”.  If so, an update may simply mark data as complete and instigate the first and 

possibly only insertion of the data into the archive. Of the first, this is the case and will be 

detailed for the Darwin Core record defined in Figure 3b.  

4.2 Architecture 

There are three main components of the system; Figure 4.  A compiler translates the external 

schema declaration into a set of triggers that monitor the database and implement the assignment 

service.  The compiler also generates the schema for a set of tables that are populated by the 

triggers, and implementing dynamic storage needed for the protocol.  Note, the existing database 

catalog is also an argument to the compiler as data types and related constraints must be included 

as part of the definition of the additional tables. 
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A fixed runtime system, whose only database parameters are the additional tables and their 

contents, implements the resolution service. 

 

 

Figure 4: Domain Specific Language Based Implementation of LSIDs 

4.3 Supporting Table Structures and the Semantics of Versioning 

Most of the persistent state of the LSID implementation resides in database tables.  A master 

table contains a complete list of LSID object identifiers, (lsObjID). An attribute of the master 

table indicates which table contains the data for a particular LSID. The indirection supported by 

the master table hides the internal structure of the data storage. The LSID specification stipulates 

that the LSID string obscure the internal mechanisms of the LSID authority.  An alternative 

would be to include the table name in an internal version of the LSID string and then use an 

encrypted version of that string as the “official” representation of the LSID. 

 

Two tables, data and key, are created for each LSIDView. Archived data is materialized in the 

data tables with the associated lsObjID and a version number.  The lsObjID and version number 

form the primary key. The second table, the key table, has the same primary key as the data table, 

but contains the primary key value of the archived record. The data in these two tables is one-to-

one and in principle there should only be one table.  By organizing it as two tables, the data table 

contains precisely the archival record.  The key table enables a vendor independent method for 

on-update trigger to determine a record’s value, prior to update. The tables generated for the 

LSIDView in Figure 3a are illustrated in Figure 5.  
 

 

 
 

 

LSIDTable 

lsObjID Primary key 

tableName SpecimenImage / Other View 

names 
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Figure 5: The LSIDTable is part of the runtime system and is common and fixed to all implementations. Two 

additional tables, SpecimenImageKey and SpecimenImageData correspond to the implementation of the 

LSIDVIEW of Figure 3a. A copy of the exported specimen data will be maintained in the data table. The key table 

enables the implementation to avoid some vendor specific implementation details of triggers. By segregating the 

archived data from the ancillary information used to implement the protocol, commodity database replication 

software can be used to maintain consistency among multiple resolution services. 

4.4 LSID Assignment as Triggers 

We will first consider the simple case that an LSIDView contains a subset of the attributes of a 

single table. See Figure 3a. The triggers become more complicated when the views span multiple 

tables, a database join.  See Figure 3b. In both cases, the greater challenge is in monitoring table 

updates and correctly creating new records using an existing LSID with an incremented version 

number. 

4.4.1 Assigning an LSID for Single Tables 

In this, the simplest case, as typified by the LSIDView in Figure 3a, a trigger is evaluated each 

time a row is inserted into a table.  Pseudo code for the on-insert trigger: 

 

1. Initialize a new LSID identifier string, lsObjID 

2. Insert a record in the LSID table comprising the pair lsObjID and the archived table 

name, SpecimenImage 

3. Copy the data to be archived by inserting a record into the SpecimenImageData table.   In 

addition to the archived data, the record contains the lsObjID, the version number, which 

is one, and any additional attributes that form the primary key of the original table 

4. Insert an entry in the SpecimenImageKey table for the new lsObjID and the original 

primary key of the data 

 

The identification and replication of attribute values to be archived is accomplished by macro-

SpecimenImageKey 

lsObjID 

version 

Primary key 

origPK Primary key of original data, 

required for versioning. 

SpecimenImageData 

lsObjID 

version 

Primary key 

scientific_name Attribute from original 

database 

specimen_image Attribute from original 

database 
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substitution of the select/from/where query in the LSIDView definition into the body of the 

trigger.  The additional attributes are integral to the implementation of versioning, which 

happens only on updates.  Pseudo-code for the trigger is illustrated above.  A full implementation 

comprises some vendor specific code, particularly in regard to determining the value of the 

primary key. Our first implementation has been for SQL Server 2000. Appendix 1 contains the 

full SQL Server definition of this trigger.  An ancillary paper contains complete the complete 

trigger definitions for the prototype [6].  

4.4.2 Updating and Maintaining Versions for Project Only Views 

The single challenge in versioning updates is to determine and reuse the LSID for the prior 

version.  Once again, the issue is that, nominally, the scope of the trigger is within the original 

database and the LSIDs are only present in the archival database.  The solution is the key tables 

in the archival database.  The first operation of the on-update triggers is, using the primary key 

values of the updated row, prior to update, query the respective key table to determine the 

existing LSID. Pseudo-code for the on-update trigger: 

 

1. Extract the primary key of the updated tuple and locate the latest version in the 

supporting table, identified by its LSID and version number 

2. Extract attributes (per the view definition) from the updated tuple 

3. Store a new copy of these attributes with the LSID and incremented version number 

in the supporting table defined for the view 

4. Store an entry in the key table for the new copy 

4.4.3 Complex Cases 

There are two features that may complicate the LSIDVIEW definitions and implementation as 

triggers.  First, it may not be desired that all rows in a table be made available for archival 

purposes, or there may be reason (e.g. pending publication) to delay public access to archive 

data. Second, archived data may be sourced from more than one table.  It may simply not be 

possible to create the archive version of the record until the last of a number of inserts is 

processed across a number of tables. In the example of the UTCT both the Specimen record and 

the supporting CAT-scan slices must be in the database in order to form the Darwin Core record, 

Thus, these two issues are not separable. 

 

In the situation represented by the UTCT Darwin Core record, correct behavior can be 

implemented by correctly defining the triggers, the details of which, though not trivial, have been 

understood for sometime [4]. If data is to be made available pending publication and there is 

provision in the existing database to record the publication information, the LSIDVIEW 

definitions can be conditioned on the insertion of the publication information.  As in the UTCT 

Darwin Core record, until the publication information is inserted, the predicates making up the 

triggers could remain unsatisfied and no records copied into the archive.  It is also possible a 

DBA could add a column to a table, call it ‘archiveFlag’, and only when the flag is set will the 

row be archived.  Figure 6 illustrates how that would change the definition in Figure 3a.  

 

CREATE  LSIDVIEW SpecimenImage AS 

SELECT  scientific_name, specimen_image 
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FROM   Specimen 

WHERE  Specimen.archiveFlag = TRUE; 

Figure 6: The LSIDVIEW definition of Figure 3a augmented with an explicit test for archiving a row. 

Pseudo code for on-insert trigger on an LSIDView involving more than one table: 

 

1. Execute a join on the tables involved in the view, using only the inserted tuple in 

place of the entire table 

2. For each tuple in the join:  

a. Initialize a new LSID 

b. Insert a record in the LSID table comprising the pair lsObjID and the 

archived table name  

c. Copy the data to be archived by inserting a record into the  supporting table 

defined for the view 

d. Insert an entry in the key table 

4.4.4 Updating and Maintaining Versions for Complex View Definitions 

The updates defined on complex views are similar to those for similar views, with the exception 

that a single record is not updated, but all records in the join affected by updated record need to 

be re-versioned. Pseudo code of on-update trigger for complex views: 

 

1. Execute a join on the tables involved in the view, using only the updated tuple in 

place of the entire table 

2. For each tuple in the join:  

a. Extract the primary key of the updated tuple and locate the latest version in 

the supporting table, identified by its LSID and version number 

b. Extract attributes (per the view definition) from the updated tuple 

c. Store a new copy of these attributes with the LSID and incremented version 

number in the supporting table defined for the view 

d. Store an entry in the key table for the new copy 

5 LSID Resolution and Meta-Data Syntax 

The LSID protocol does not stipulate a preferred structure or syntax of the data or the metadata.  

In fact a single resolution service may provide both the data and metadata in more than one 

representation. The protocol specifies methods that enable clients to query a resolution service, 

asking which representations its supports.  A client chooses among those to define how the 

information it receives is served. 

 

There are many technologies competing to become the standard for Internet data exchange.  

These include, XML with or without schema definitions expressed as document data types 

(DTDs) or XML schemas (XSD), and the stack of representations connected with the semantic 

web, meaning RDF to OWL.    

 

As this architecture speaks to relational data representations, a kind of least-common 

denominator, mapping the data and its metadata to any and all of these representations is 
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possible. The architecture specifies that data retrieval methods can return metadata in different 

formats, depending on the ‘accepted_formats’ parameter [1]. Alternately, abstract LSIDs can be 

used to support multiple representations [2]. 

 

6 Implementation Status and Discussion  

We have a live implementation of the assignment and resolution services [10]. We chose the 

UTCT database as the archive and defined three LSIDViews. We then created a set of tables and 

triggers based on the view definitions. The triggers act as the LSID assigning service. An LSID 

resolution service has been written in PHP [11] that internally uses the LSID table definitions to 

compose the results for getData () and getMetadata () queries. 

 

While we envision, given community interest, creating a compiler based implementation, the 

current implementation represents a first effort hand compiled implementation and a feasibility 

prototype.  Among the three LSIDViews the trigger contents are vendor-specific but repetitious. 

We found the SQL Server implementation details straightforward.  Thus, we deem compiler-

based implementation is feasible.  

 

The metadata and data, stored in relational databases are wrapped in RDF and then returned to 

the clients. This translation of database schema, for metadata and relational data to RDF is hand-

written, based on Relational.OWL [5]. The implementation of a translation engine is underway. 

 

Note that with the use of triggers, any update to the data will induce a new version consistent 

with LSID versioning semantics. This assumption may be relaxed if the DBA can develop a 

predicate that is satisfied when, and only when data is ready to be committed to a permanent 

public archive. If not, the system will still function but our claim that the system can be 

implemented on a legacy database without any alteration of the legacy system may no longer 

apply; the DBA may have to add a column to flag the intention to commit the record to the 

archive and the trigger can check this flag before executing any action. 

7 Conclusion 

We have defined a domain-specific SQL-like language to implement LSIDs for existing data 

stores. The language constructs can be used to define an export schema for a database detailing 

the objects that need LSIDs. Given these view definitions and the database catalog, a compiler 

can generate the required ancillary tables and triggers. The triggers are executed on the current 

data (archive) to assign LSIDs and persist the data versions. With this, we have defined an easy 

mechanism to implement LSIDs. 
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Appendix 

CREATE TRIGGER PopulatePersistentSpecimenTables 

ON   Specimen 

INSTEAD OF INSERT 

AS 

 

BEGIN 

 

DECLARE @lsObjID   INT 

DECLARE  @newTuplePK  INT 

DECLARE @scientific_name VARCHAR(256) 

 

/* Get primary key of the tuple in newTuplePK */ 

SELECT  @newTuplePK=id 

FROM  INSERTED 

 

/* Get maximum lsObjID from LSID table */ 

SELECT  @lsObjID=MAX(lsObjID)  

FROM   LSIDTable 

IF  @lsObjID IS NULL 

SET   @lsObjID = 0 

 

/* Insert a new tuple in SpecimenImageLSIDTable with incremented lsObjID, 
version number 1, original PK and new attribute values) */ 

SET  @lsObjID = @lsObjID + 1 

 

SELECT  @scientific_name=scientific_name 

FROM   INSERTED 
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INSERT  INTO SpecimenImageLSIDTable 

SELECT @lsObjID, 1, @newTuplePK, @scientific_name, specimen_image  

FROM  INSERTED 

 

INSERT  INTO LSIDTable  

VALUES  (@lsObjId, 'SpecimenImageLSIDTable') 

 

/* Insert new tuple in the Specimen table. Required because of use of instead 
of trgiger, in order to support images */ 

INSERT INTO Specimen 

SELECT  *  

FROM  INSERTED 

END 


