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Abstract

Constrained least squares estimation lies at the heart of many applications in fields as diverse as
statistics, psychometrics, signal processing, or even machine learning. Nonnegativity requirements on
the model variables are amongst the simplest constraints that arise naturally, and the corresponding
least-squares problem is called Nonnegative Least Squares or NNLS. In this paper we present a new,
efficient, and scalable Quasi-Newton-type method for solving the NNLS problem, improving on several
previous approaches and leading to a superlinearly convergent method. We show experimental results
comparing our method to well-known methods for solving the NNLS problem. Our method significantly
outperforms other methods, especially as the problem size becomes larger.

1 Introduction

A fundamental problem in data modeling is the estimation of a parameterized model for describing the data.
For example, imagine that several experimental observations that are linear functions of the underlying
parameters, have been made. Given a sufficiently large number of such observations, one can reliably
estimate the true underlying parameters. Let the unknown model parameters be denoted by the vector
x = [x1, . . . , xn], the different experiments relating x be encoded by the measurement matrix A ∈ Rm×n,
and the set of observed values be given by b. The aim is to reconstruct a vector x that explains the
observed values as well as possible. This requirement may be fulfilled by solving the linear system

Ax = b,

where the system may be either under-determined (m < n) or over-determined (m ≥ n). In the latter case,
the technique of least-squares proposes to compute x so that the reconstruction error

f(x) = 1
2‖Ax− b‖2, (1.1)

is minimized, where ‖ · ‖ denotes the L2 norm. However, the estimation is not always that straightforward
because in many real-world problems, the underlying parameters represent quantities that can take on only
nonnegative values, e.g., amounts of rainfall, chemical concentrations, color intensities, to name a few. In
such a case, Problem (1.1) must be modified to include nonnegativity constraints on the model parameters
x. The resulting problem is called Nonnegative Least Squares (NNLS), and is formulated as

minimize
x

f(x) = 1
2‖Ax− b‖2,

subject to x ≥ 0.
(1.2)

The NNLS problem (1.2) is fairly old and the algorithm of Lawson and Hanson [11] seems to be
apparently the first method for solving it (this algorithm is available as the lsqnonneg procedure in
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Matlab). In this paper we present a new approach based on a projected Quasi-Newton procedure that
outperforms not only lsqnonneg but also several other existing approaches. Other obvious variations of
NNLS have also been studied, for example, (a) Bounded Least Squares where x is bounded (l ≤ x ≤ u),
(b) Regularized Nonnegative Least Squares that includes a regularization term in the objective function
(beneficial for ill-conditioned problems). Our approach generalizes easily to handle both these variants.

1.1 Previous approaches

Over the years, a variety of methods have been applied to tackle the NNLS problem. Many of these
approaches are summarized in [6, Chapter 5]. The main approaches can be roughly divided into three
categories.

The first category includes methods that were developed for solving linear inequality constrained least
squares problems by transforming them into corresponding least distance problems [6, 15]. However, such
transformations prove to be costly for NNLS, and do not seem to yield much advantage, without additional
engineering efforts.

The second category of methods includes active-set methods [10] that do not involve transforming (1.2)
into a corresponding minimum distance problem. These methods are based on the observation that only
small subset of constraints are usually active (i.e., satisfied exactly) at the solution. Thus, the overall
optimization problem is approximated by solving a series of equality-constrained problems, where the
equality constraints form a working set corresponding to a predicted active set. The NNLS algorithm
of Lawson and Hanson [11] is an active set method, and was the de facto method for solving (1.2) for many
years. Recently Bro and Jong [7] modified it and developed a method called Fast-NNLS (FNNLS), which
often speeds up the basic algorithm, especially in the presence of multiple right-hand sides by avoiding
unnecessary re-computations. However, FNNLS requires the construction of AT A, which can make it
prohibitive for large-scale problems. A recent variant of FNNLS appropriately rearranges calculations to
achieve further speedups in the presence of multiple right hand sides [16]. However, all of these approaches
still depend on AT A, rendering them infeasible for large problems.

The third category of methods includes algorithms based on iterative approaches, which essentially
produce a sequence of intermediate solutions that converge to the solution of (1.2). For example, the
gradient projection method [14] and some variants have been applied to NNLS [5, 12]. The main advantage
of this class of algorithms is that by using information from the projected gradient step along with a good
guess of the active set, one can handle multiple active constraints per iteration. In contrast, the active-set
method typically deals with only one active constraint at each iteration. Some of the iterative methods are
based on the solution of the corresponding linear complementarity problem (LCP)

λ = ∇f(x) = AT Ax−AT b ≥ 0, x ≥ 0, λT x = 0, (1.3)

which is essentially the set of KKT optimality conditions for a quadratic programming reformulation
of (1.2). See §7.7 of [6] for further information.

Other approaches, that do not directly fit any of the above three categories include approaches such as
an interior point method [13]. However, for large-scale problems, such methods are usually prohibitive. In
addition, some custom designed algorithms such as Principal Block Pivoting [13] have also been developed,
though once again with limited success [6].

1.2 Contributions

Our first major contribution in this paper is the derivation of a new algorithm (Section 2) that combines
the strengths of gradient projection with a non-diagonal gradient scaling scheme. In contrast to an active
set approach, gradient projection enables our method to incorporate multiple active constraints at each
iteration. By employing non-diagonal gradient scaling, our method overcomes some of the deficiencies of
a projected gradient method such as slow convergence and zigzagging. An important characteristic of our
algorithm is that despite the efficiencies that we introduce, it still remains relatively simple in comparison
with other optimization-oriented algorithms. The second important contribution comes by way of the
implementation efficiencies that we provide (Section 2.2). Despite the long history of the problem and
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a diverse pool of algorithms, there is surprisingly little publicly available software for NNLS. One may
try to use off-the-shelf optimization packages, but due to their algorithmic complexity they tend to be
computationally inefficient for NNLS. In this paper we provide a customized implementation for NNLS
that outperforms all methods known to us, while still retaining competitive accuracy. Our algorithm takes
advantage of the sparsity of the input data, especially by avoiding explicit computation of AT A, and the
corresponding speedups are reported in our experiments in Section 3.

1.3 Summary

The remainder of this paper is organized as follows. Section 2 describes our method for NNLS. Section 2.2
provides a detailed guide to the major implementation issues. In Section 2.3 we provide a proof of conver-
gence for our algorithm from a feasible direction method viewpoint uncovering connections between our
approach and previous methods. In Section 3, we compare our method to other major NNLS approaches by
showing experimental results across several data sets (both synthetic as well as from real-life applications).
Finally in Section 4, we provide our conclusions and discuss future work.

Notation

For easy reference, we summarize our notation here. Bold face lower case letters are used to denote vectors,
e.g., x,y, while bold face upper case letters denote matrices, e.g., A. The single letter P is used to denote
an orthogonal projection onto an appropriate set. Ordinary lower case letters such as s or α denote scalar
quantities. ‖ · ‖ denotes the Euclidean L2 norm. We reserve k to denote the iteration count, while i and j
represent indices of entries of vectors or matrices.

2 Algorithms and Theory

In this section we derive our algorithm for the NNLS problem, which seeks to

minimize
x

f(x) = 1
2‖Ax− b‖2,

subject to x ≥ 0.
(2.1)

Broadly speaking, our algorithm generalizes a projected gradient approach [5] to achieve its simplicity and
efficiency. The gradient information helps to identify the set of active variables more efficiently, which
impacts performance positively—if the constraints active at the final solution are known in advance, then
the original problem can be solved by simply optimizing the objective function in an unconstrained manner
over only the variables that correspond to the inactive constraints. However, despite this capability to
identify the active set, a projected gradient approach is not enough for an efficient and accurate solution,
since just like the steepest descent method, it also suffers from deficiencies such as slow convergence and
zigzagging. Fortunately, at least for unconstrained optimization problems, it is known that the use of
non-diagonal positive-definite gradient scaling matrices alleviates such problems.

For solving the NNLS Problem (2.1), we extend the idea of non-diagonal gradient scaling to constrained
minimization problems. It turns out that due to the simplicity of the nonnegativity constraints, this scaling
approach remains feasible. We describe our approach is greater detail below.

2.1 Overview of our method

We derive an iterative algorithm for solving (2.1). At each iteration, our algorithm partitions the optimiza-
tion variables (entries of the vector x) into two groups, namely, the free and the fixed variables. Then, we
consider the problem as an equality-constrained one, wherein the fixed variables must remain active even
for the next iteration. This particular equality-constrained problem is solved by simply optimizing over
the free variables alone.
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The fixed set of variables corresponds to those indexed by the set

Ik =
{

i
∣∣xk

i = 0, [∇f(xk)]i > 0
}

. (2.2)

Note that the index set Ik in (2.2) is a subset of the entire active set due to the additional positivity
requirement on the gradient. More specifically, Ik contains variables that satisfy the KKT conditions (1.3)
at the current iteration, which makes them more likely to be active at the final solution. In contrast, for a
component xk

j = 0, for which [∇f(xk)]j ≤ 0, it may be possible to optimize the objective further by making
xk+1

j > 0 and [∇f(xk+1)]j = 0 at the next iteration, thereby violating the notion of a fixed variable.
Let us denote free variables by y and fixed variables by z. Without loss of generality, we can assume

that xk and ∇f(xk) are partitioned as

xk =
[
yk

zk

]
, ∇f(xk) =

[
∇f(yk)
∇f(zk)

]
, where yk

i /∈ Ikand zk
i ∈ Ik.

Then, the equality-constrained (over the fixed variables) version of (2.1) at iteration k can be written as

minimize
y

1
2

∥∥A[y;zk]− b
∥∥2

,

subject to y ≥ 0, zk = 0,
(2.3)

or equivalently, as a problem over the free variables,

minimize
y

gk(y) = 1
2‖Āy − b‖2,

subject to y ≥ 0,
(2.4)

where Ā consists of the appropriate parts of A corresponding to the free variables.
Let ỹ denote the solution1 to (2.4). Then, we obtain the update

xk+1 =
[

ỹ
zk+1

]
=
[

ỹ
zk

]
=
[
ỹ
0

]
, (2.5)

for x, wherein the latter two equalities used the fact that zk+1 is fixed (and thus, equal to zero).
Now we show how to compute ỹ, noting that the key difference between our approach and the projected

gradient method lies in this computation. We make use of a non-diagonal gradient scaling matrix Sk, which
approximates the Hessian ∇2f = AT A at each iteration. The use of such non-diagonal gradient scaling
matrices accelerates the rate of convergence, and it is central to the success of the popular Quasi-Newton
method. We remark that the “non-diagonality” helps by pointing out that the ordinary projected gradient
method may be viewed as using Sk = I at each iteration.

We compute the vector ỹ by using the following update

ỹ = yk + α
(
γk(β;yk)− yk

)
, (2.6)

where α, β ≥ 0 are certain parameters, and the function γ(β;y) is defined as (for β ≥ 0) the projection

γk(β;yk) = P
(
yk − βS̄

k∇f(yk)
)
, (2.7)

where S̄
k is an appropriate principal submatrix of Sk, and P(·) denotes the orthogonal projection onto

Rn
+. Update (2.7) is similar to the Generalized Cauchy Point (GCP) from the projected gradient method.

Note that in (2.7) any positive definite matrix Sk is permitted, whereby one can recover the basic projected
gradient method of Bierlaire et al. [5] by setting Sk = I and α = 1.

The overall method that encapsulates all the details mentioned above is presented as Algorithm 1,
which we name PQN-NNLS (for Projected Quasi-Newton NNLS).

In Algorithm 1 any positive definite matrix may be used to initialize S0. Further, any feasible point is
permitted as an initialization for x0. However, note that the actual implementation details of Steps 3.1 and
4 are left unspecified. We describe implementation details for these two important sub-steps in Section 2.2
below.

1Problem (1.2) will have a unique solution if gk(y) is strictly-convex, i.e., Ā is of full-rank. Otherwise it can have multiple
global minima. Even then, we can just use any of the global minima.
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Algorithm 1 PQN-NNLS
Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗ = argmin ‖Ax− b‖2.
{Initialization}
x0 ∈ Rn

+, S0 ← I, and k ← 0
repeat

1. Compute fixed variable set Ik =
{

i
∣∣xk

i = 0, [∇f(xk)]i > 0
}

.

2. Partition xk = [yk; zk], where yk
i /∈ Ik and zk

i ∈ Ik.
3. Solve equality-constrained subproblem:

3.1. Find appropriate values for αk and βk.
3.2. γk(βk;yk)← P

(
yk − βkS̄

k∇f(yk)
)
.

3.3. ỹ ← yk + αk(γk(βk;yk)− yk).
4. Update gradient scaling matrix Sk to obtain Sk+1

5. Update xk+1 ← [ỹ;zk].
6. k ← k + 1

until Stopping criteria are met.

2.2 Implementation details

In this section we describe particular methods for performing line-search (Step 3.1) and gradient scaling
(Step 4) for our PQN-NNLS algorithm.

2.2.1 Line Search

First we look at how the line-search step (Step 3.1) of Algorithm 1 can be implemented. Naturally, the
parameters β and α are crucial to the update (2.6), and subsequently to the convergence speed of the
overall algorithm.

One of the most popular methods is the limited minimization rule, which computes an appropriate α
for a pre-specified (fixed) value of β by performing the following single-variable minimization

αk = argmin
α∈[0,1]

gk
(
yk + α(γk(β;yk)− yk)

)
. (2.8)

In general, the above line search for constrained optimization (2.8) is difficult to carry out. However, for
our case, since the nonnegativity constraints are particularly simple, we can derive an analytic solution.
We exploit the fact that the objective function in (2.8) is a continuous and quadratic univariate function
of α. Leting d = (γk(β;yk)− yk) and setting the derivative dgk

dα = 0, we have

dgk

dα
= dT∇gk

(
yk + αd

)
= dT Ā

T
Āyk + α‖Ād‖2 − dT Ā

T
b = 0,

which yields α =
dT
(
Ā

T
b− Ā

T
Āyk

)
‖Ād‖2

.

With the above α, we can choose the current step-size to be αk = mid(0, α, 1).
Although the limited minimization rule above yields an analytic solution for a fixed value of β, sometimes

the convergence speed of the overall algorithm can be sensitive to this pre-specified inner step-length β.
Finding a good value of β could itself be time-consuming. Hence, we also investigate an alternative method
to determine a proper step-size β at each iteration.

One choice can be the Armijo step-size rule [9], which is simple and usually works well both for un-
constrained and constrained problems. Like the limited minimization rule, it can be applied to compute
α with the pre-specified β. Bertsekas [2] proposed a variation of Armijo-like rule, called the Armijo along
projection arc (APA) rule. Interestingly, unlike the above methods, APA fixes α in (2.6) and computes
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an appropriate β for the step-size at each iteration. In our implementation of APA, we fix α = 1 in (2.6)
which leads the following changes to the update

ỹ = yk + 1 ·
(
γk(βk;yk)− yk

)
, βk ≥ 0,

= P
(
yk − βkSk∇f(yk)

)
. (2.9)

Here, the computation of βk takes the following form. Let m be the smallest non-negative integer for which

gk(yk)− gk(γk(smσ;yk)) ≥ τ∇gk(yk)T
(
yk − γk(smσ;yk)

)
, (2.10)

where σ > 0, s ∈ (0, 1) and τ ∈ (0, 1
2 ) are fixed scalars. The resulting step-size β = smσ. We provide

both limited minimization as well APA based step-size choices in our implementation. Furthermore, in
Section 2.3 we prove that these two step-size choices are well-founded by proving that our algorithm
converges to the optimum with either of these step-sizes.

2.2.2 Gradient Scaling

Now we look at how the gradient scaling step, namely Step 4 of Algorithm 1, can be implemented. In
a traditional Newton method the inverse of the Hessian of the objective function serves as the gradient
scaling matrix. However, a fundamental drawback of using the inverse Hessian for large-scale problems is
cost of computing it. For the NNLS objective function, this amounts to O(n3) in general, which can make
the overall procedure unacceptably expensive. A further drawback, especially for large-scale problems is
that the Hessian or its inverse can be ill-conditioned. This not only causes numerical difficulties, but can
also lead to a poor rate of convergence.

To circumvent some of the problems associated with the use of the full Hessian, researchers have
used the idea of approximating it in various ways. Such an approximation leads to what is known as
the Quasi-Newton or Variable Metric method—a popular and well-established method for non-linear pro-
gramming. Some common techniques for iteratively approximating the Hessian are the Powell-Symmetric-
Broyden (PSB), Davidon-Fletcher-Powell (DFP), and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) up-
dates, where the latter is believed to be the most effective in general [4, 10].

The BFGS Update. Suppose Hk is the current approximation to the Hessian. The BFGS update adds
a rank-two correction to Hk to obtain

Hk+1 = Hk − HkuuT Hk

uT Hku
+

wwT

uT w
, (2.11)

where w and u are defined as

w = ∇f(xk+1)−∇f(xk), and u = xk+1 − xk.

Let Sk denote the inverse of Hk. Then, by applying the Sherman-Morrison-Woodbury formula, up-
date (2.11) amounts to the following,

Sk+1 = Sk +

(
1 +

wT Skw

uT w

)
uuT

uT w
− (SkwuT + uwT Sk)

uT w
. (2.12)

Now we use the fact that

w = ∇f(xk+1)−∇f(xk) = AT A(xk+1 − xk) = AT Au,

to rewrite (2.12) as

Sk+1 ← Sk +

(
1 +

uT AT ASkAT Au

uT AT Au

)
uuT

uT AT Au
− (SkAT AuuT + uuT AT ASk)

uT AT Au
. (2.13)

Remark: Observe that update (2.13) can be implemented without explicitly computing AT A, because
of the matrix-vector products such as Au. However, with progressing iterations the matrix Sk becomes
denser, and must be stored.
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2.3 Convergence

We now prove that when A is of full-rank, then Algorithm 1 converges to the global-minimum of (2.1).
Throughout our proof, we assume that either the Armijo along projection arc (APA) or the limited-
minimization rule (LM) are used for computing the step-size.

Before we can state our convergence theorem, we need to prove a few supporting lemmas. Our proof is
structured as follows. First we show that the updates to x via APA or Limited Minimization (LM) ensure
a monotonic descent in the objective function value (Lemma 1 for APA, and Lemma 2 for LM). Then,
we show that the resulting sequence of iterates {xk} has a limit-point (Lemma 3). Finally, Theorem 1
shows that any limit point of the sequence {xk} is also a stationary or KKT point of (1.2), provided that
a certain gradient related condition is satisfied (Lemma 4), thereby concluding the proof. In addition to
convergence, we show optimality of the achieved iterate in Theorem 2, which shows that our algorithm
stops if and only if the current iterate is an optimum.

Lemma 1 (Descent with APA). If xk is not a stationary point of Problem (2.1), then there exists some
constant β̄ such that

f(xk+1) < f(xk), ∀β ∈ (0, β̄],

where xk+1 is given by (2.5), i.e., xk+1 = [ỹ; 0] and ỹ is given by (2.9).

Proof. By the construction of Ik, all components of yk satisfy:

either yk
i 6= 0 or [∇f(yk)]i ≤ 0.

Furthermore, since xk is not a stationary point, there exists at least one entry in yk such that

[∇f(yk)]i 6= 0.

Thus letting d = −S̄
k∇f(yk), we see that

∇f(yk)T d = −∇f(yk)T S̄
k∇f(y) < 0,

since S̄k is a principal submatrix of the positive definite matrix Sk, and is therefore itself positive definite.
This establishes the fact that d is a feasible descent direction and we can rewrite (2.7) as

γk(β;yk) = P[y + βd],

and consider partitioning the free variables into two disjoint sets of indices such that

I1 = {i|yk
i > 0 or (yk

i = 0 and di ≥ 0)},
I2 = {i|yk

i = 0 and di < 0}.

It is easy to see that there exists β1 > 0 such that ∀i ∈ I1,

yk
i + βdi ≥ 0, ∀β ≤ β1.

Let us define a new search direction d̄,

d̄i =
{

di, i ∈ I1,
0, otherwise.

Then we have
γk(β;yk) = yk + βd̄, ∀β ∈ (0, β1].

Since
[
∇f(yk)

]
i
≤ 0 and di < 0 for i ∈ I2, we get∑

i∈I2

[
∇f(yk)

]
i
· di ≥ 0.
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Now we can conclude that

∇f(yk)T d̄ =
∑
i∈I1

[
∇f(yk)

]
i
· di ≤

∑
i∈{I1∪I2}

[
∇f(yk)

]
i
· di = ∇f(yk)T d < 0.

Hence d̄ is also a feasible descent direction. Therefore, letting α = 1 as in (2.9), we get

ỹ = γk(β;yk) = yk + βd̄,

and there exists β̄ ∈ (0, β1] such that

gk(ỹ) < gk(yk), ∀β ∈ (0, β̄]

where gk is as in (2.4). From (2.5), since zk remains fixed in xk+1, we can finally conclude that

f(xk+1) < f(xk), ∀β ∈ (0, β̄].

Lemma 2 shows the limited minimization rule also leads to monotonic descent.

Lemma 2 (Descent with LM). If xk is not a stationary point of Problem (2.1), then for sufficiently small
fixed β, there exists some constant ᾱ such that

f(xk+1) < f(xk), ∀α ∈ (0, ᾱ],

where xk+1 and ỹ are given by (2.5), (2.6), and (2.7).

Proof. Note that each gk in (2.4) is convex. Since yk and γk(β;yk) are feasible, by using the convexity of
gk, it follows that

gk(yk) +∇f(yk)T
(
γk(β;yk)− yk

)
≤ gk

(
γk(β;yk)

)
.

From Lemma 1 we know that
gk
(
γk(β;yk)

)
< g(yk),

for a sufficiently small β, which implies

∇f(yk)T
(
γk(β;yk)− yk

)
≤ gk

(
γk(β;yk)

)
− g(yk) < 0.

Consequently, (γk(β;yk)− yk) is a feasible descent direction, whereby there exists some ᾱ > 0 such that

gk
(
yk + α(γk(β;yk)− yk)

)
< gk(yk), ∀α ∈ (0, ᾱ].

As in Lemma 1, since zk remains fixed in xk+1, we conclude that

f(xk+1) < f(xk), ∀α ∈ (0, ᾱ].

In general, to prove the convergence of an iterative algorithm, one needs to show that the sequence of
iterates {xk} generated by the algorithm converges to some limit point. Since the existence of such limit
points inevitably depends on the given problem instance, it is frequently assumed as a given. However, for
the NNLS problem we can show the existence of such a limit point. In the following lemma, we show that
our algorithm is guaranteed to have a limit point in the problem domain. That is, the limit point lies in
the feasible set.

Lemma 3 (Limit-point). Let {xk} be a sequence of points generated by (2.5) with either APA or LM.
Then, this sequence has a limit x∗. Furthermore, x∗ ≥ 0.

Proof. Assume that we start the iteration at x0 where f(x0) = M . By Lemma 1 and Lemma 2, {f(xk)}
is a monotonically decreasing sequence, whereby x0 is a maximizer of f over the M -level set of f . If a
convex quadratic function f is bounded above, its M -level set is also bounded. Denote this M -level set by
X. Then we can choose u ∈ X such that

‖u‖2 ≥ ‖x‖2,∀x ∈ X.

Thus, {xk} is bounded as 0 ≤ ‖xk‖2 ≤ ‖u‖2 for all k, and since X is compact, this sequence has a limit-
point x∗. Furthermore, since X is a compact subset of the feasible region and it contains every iterate of
the algorithm, it also contains the limit-point x∗.
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For the subsequent lemmas, we consider the set X as the domain of Problem 2.1. Lemma 4 below
proves a certain gradient related condition that is essential to the proof of convergence. This condition is
frequently found in convergence proofs of iterative methods, and it essentially ensures that the step-sizes
are “big” enough to guarantee convergence.

Lemma 4 (Gradient Related Condition). Let {xk} be a sequence generated by (2.5). Then, for any
subsequence {xk}k∈K that converges to a non-stationary point,

lim sup
k→∞,k∈K

‖xk+1 − xk‖ <∞, (2.14)

lim sup
k→∞,k∈K

∇f(xk)T (xk+1 − xk) < 0. (2.15)

Proof. Lemma 3 tells us that {xk}k∈K is a converging sequence over a compact domain, hence xk+1 − xk

is also bounded for all k, therefore (2.14) holds. To show (2.15), consider a Taylor-series expansion of f at
xk,

f(xk+1) = f(xk) +∇f(xk)T (xk+1 − xk) + 1
2 (xk+1 − xk)T∇2f(xk)(xk+1 − xk). (2.16)

Since f is quadratic (2.16) holds with equality for all k. Furthermore, since A has full-rank, ∇2f(xk) =
AT A is positive definite, whereby the third term on the right hand side is positive if and only if xk+1 6= xk.
Combining this with either Lemma 1 or Lemma 2, we obtain

f(xk+1)− f(xk) = ∇f(xk)T (xk+1 − xk) + εk < 0,

where
εk = 1

2 (xk+1 − xk)T∇2f(xk)(xk+1 − xk). (2.17)

Equivalently,
∇f(xk)T (xk+1 − xk) < −εk, ∀k ≥ 0.

By taking limits, we obtain

lim sup
k→∞,k∈K

∇f(xk)T (xk+1 − xk) < − lim
k→∞,k∈K

εk. (2.18)

Note that Lemma 1 or Lemma 2 ensure that xk+1 6= xk for all k ∈ K since xk is non-stationary. We can
see that εk in (2.17) is positive and the right-hand side of (2.18) is negative, hence (2.15) holds.

Finally we are ready to prove the main convergence theorem. We remark that by Lemma 4, for the
LM case, it is possible to invoke a general convergence proof for the feasible direction method. However,
the following theorem provides a convergence proof for both APA and LS in a somewhat simplified way by
exploiting properties of our quadratic objective function.

Theorem 1 (Convergence). Let {xk} be a sequence of points generated by (2.5). Then every limit point of
{xk} is a stationary point of Problem (2.1), and hence optimal since the original problem is strictly convex.

Proof. Our proof is by contradiction. Assume that {xk} converges to a non-stationary point x̃. We show
that this assumption violates the gradient-condition of Lemma 4. We consider any step-size selection rule
that satisfies the descent Lemma 1. By rearranging (2.16),

f(xk)− f(xk+1) = −∇f(xk)T (xk+1 − xk)− εk > 0, (2.19)

where εk = 1
2 (xk+1−xk)T∇2f(xk)(xk+1−xk), as before. Taking both sides of (2.19) to the limit we have,

lim
k→∞

(
f(xk)− f(xk+1)

)
= − lim

k→∞
∇f(xk)T (xk+1 − xk)− lim

k→∞
εk > 0. (2.20)

Since f is continuous over X, from Lemmas 1,2 and 3, we see

lim
k→∞

f(xk) = f(x̃).

9



Consequently,
lim

k→∞

(
f(xk)− f(xk+1)

)
= 0, (2.21)

which implies
lim

k→∞
‖xk − xk+1‖ = 0.

Since ∇2f(xk) = AT A is a constant regardless of xk, and εk = 1
2‖A(xk+1 − xk)‖2,

L · ‖xk+1 − xk‖2 ≥ 1
2‖A‖

2‖xk+1 − xk‖2 ≥ εk > 0, ∀k ≥ 0

where L is any constant larger than 1
2‖A‖

2. On the other hand, we have

lim
k→∞

L · ‖xk+1 − xk‖2 = 0,

due to Lemma 4, which implies
lim

k→∞
εk = 0. (2.22)

Combining the results (2.21) and (2.22) with (2.20) we obtain

lim
k→∞

∇f(xk)T (xk+1 − xk) = 0,

which contradicts (2.15) in Lemma 4. Hence, the original assumption was false and x̃ must be a stationary,
hence optimal, point.

Since the active set method identifies one active constraint at each iteration, it is guaranteed to identify
all active constrains at the final solution after a finite number of iterations, though it could be a pro-
hibitively large number of iterations. Our algorithm naturally incorporates multiple active constraints at
each iteration, and we proved that the sequence of iterates {xk} converges to a stationary point x∗.

In Theorem 1 we showed that the algorithm is guaranteed to decrease the objective if the current iterate
is not a stationary point. The next theorem describes the behavior of our algorithm at the optimum, proving
that it stops if and only if the current iterate is a stationary point (hence an optimum) of the problem.

Theorem 2 (Optimality with APA).

x∗ =
[
y∗

z∗

]
=
[
P
[
y∗ − βS̄

∗∇f(y∗)
]

0

]
, ∀β > 0, (2.23)

if and only if x∗ is a stationary point of Problem (2.1).

Proof. Since the problem is strictly convex (because we assumed A to be of full-rank), this stationary point
will also be the minimum.

To show that x∗ as given by (2.23) is a stationary point, it is enough to show that x∗ satisfies the KKT
conditions

x∗ ≥ 0, ∇f(x∗) ≥ 0 and ∇f(x∗)T x∗ = 0.

It is obvious that x∗ ≥ 0. To see that ∇f(x∗) ≥ 0, consider y∗, so that

y∗ = P
[
y∗ − βS̄

∗∇f(y∗)
]
, ∀β > 0,

which implies
βS̄

∗∇f(y∗) = 0, ∀β > 0. (2.24)

Thus, ∇f(y∗) = 0. Combining this with ∇f(z∗) > 0 (by construction), we obtain ∇f(x∗) ≥ 0. Finally,

∇f(x∗)T x∗ = ∇f(y∗)T y∗ +∇f(z∗)T z∗ = 0T y∗ +∇f(z∗)T 0 = 0.
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Conversely, suppose that x∗ satisfies KKT conditions. Then,

0 = ∇f(x∗)T x∗ = ∇f(y∗)T y∗ +∇f(z∗)T z∗ = ∇f(y∗)T y∗.

Thus, if y∗i 6= 0, then ∇f(y∗)i = 0. On the other hand by the construction of y∗, if y∗i , then ∇f(y∗)i = 0.
Hence, ∇f(y∗) = 0. Therefore,[

P
[
y∗ − βS̄

∗∇f(y∗)
]

0

]
=
[
P
[
y∗
]

0

]
=
[
y∗

z∗

]
= x∗, ∀β > 0.

Corollary 1 (Optimality wih LM).

x∗ =
[
y∗

z∗

]
=
[
y∗ + α

(
P
[
y∗ − βS̄

∗∇f(y∗)
]
− y∗

)
0

]
, ∀α > 0, (2.25)

if and only if x∗ is a stationary point of Problem (2.1).

Proof. From (2.25) we have
y∗ = y∗ + α

(
P
[
y∗ − βS̄

∗∇f(y∗)
]
− y∗

)
,

which implies that for some fixed β > 0,

y∗ = P
[
y∗ − βS̄

∗∇f(y∗)
]
.

Now, we can invoke the proof of Theorem 2.

Remarks: If A is not of full-rank, our method can still be shown to converge to a global minimum of
(2.1). Naturally, this minimum need not be unique.

2.4 Relationship to Other Methods

It is also interesting to explore the connection between our approach and other methods. We derived
our method by appropriately modifying the general gradient projection method. The works of Bierlaire
et al. [5] and Bertsekas [3] are particularly relevant. The former utilizes the projection step to enforce the
feasibility of solution, while the latter employs a Newton-type method in addition to the projection for
simply constrained problems (e.g., nonnegativity, boundedness of solution, and linear constraints).

2.4.1 Gradient Projection Approaches

Consider the following update from the gradient projection method.

φk(β;xk) = P
(
xk − β∇f(xk)

)
,

xk+1 = xk + α
(
φk(β;xk)− xk

)
, α ≥ 0. (2.26)

The key differences between this gradient projection method and our approach are: (a) (2.26) does not use
non-diagonal gradient scaling, and (b) it does not use a fixed (or free) variable set. Clearly, our updates
(2.7) and (2.6) reduce to (2.26), by fixing the gradient scaling matrix Sk = I at each iteration. In contrast
to our approach (2.26) updates the entire solution vector xk instead of using only the free variables.
Viewed as a reduction of our method, this anonymous update is possible due to its special choice of the
gradient scaling matrix, namely, the identity matrix. The underlying rationale is as follows. Suppose we
are computing the fixed set at each iteration of the gradient projection method. Then at iteration k we
have some i ∈ Ik. The i-th element in the next iterate xk+1 would then be computed as

[φ(βk;xk)]i = P
(
xk

i − βk[∇f(xk)]i
)

= P
(
−βk[∇f(xk)]i

)
= 0, ∀βk > 0,

so that xk+1
i = xk

i + α
(
[φk(βk;xk)]i − xk

i

)
= 0, α ≥ 0.
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Therefore, the xk
i are automatically fixed in our context.

We remark that with α = 1 in (2.26), the gradient projection method presented above subsumes the
method of Bierlaire et al. [5], which is a projected gradient method for NNLS; so does our approach.

2.4.2 Bertsekas Newton-type method

The work of Bertsekas [3] is even more relevant to our algorithm. If we confine our attention to the
NNLS problem, then Bertsekas’ method can be considered as an immediate generalization of the projected
gradient method for NNLS [5]. Like the projected gradient method, Bertsekas also updates the entire
solution vector xk. That is,

xk+1 = P
(
xk − βkSk∇f(xk)

)
, k = 0, 1, · · ·

where βk is determined by the APA rule [2]. After the computation of xk, Bertsekas’ method also identifies
a subset of the active constraints, namely,

I+ =
{

i
∣∣0 ≤ xk

i ≤ εk, [∇f(xk)]i > 0
}
,

where
εk = min

{
ε,
∥∥xk −P[xk −M∇f(xk)]

∥∥}
for some pre-specified small ε > 0 and a diagonal positive-definite matrix M . In his method, the gradient
scaling Sk is reset to the inverse of the Hessian (∇2f(xk))−1 at every iteration, followed by the modification

Sk(i, j) = Sk(j, i) = 0, ∀i ∈ I+, j = 1, 2, · · · , n, j 6= i.

The only difference between the set I+ and our fixed set Ik is that the former has a relaxed condition
on xk

i (our method uses xk
i = 0 for i ∈ Ik), which is crucial for proving the identification property of his

method. As shown above, we can avoid such a relaxation while solving NNLS. Similar to the case of the
projected gradient method, assume that we have some i ∈ I+ at iteration k, then

xk+1
i = P

(
xk

i − βkSk(i, :)∇f(xk)
)

= P
(
xk

i − βkSk(i, i)∇f(xk)i

)
=
(
−βkSk(i, i)∇f(xk)i

)
= 0, ∀β > 0.

Again, the xk
i are fixed in our context, and under the assumption that we set α = 1 and Sk = (∇2f(xk))−1,

our method is equivalent to performing optimization only upon the free variables not belonging to I+ .

3 Numerical Results

In this section, we present numerical results illustrating the performance of our algorithm on both synthetic
(§3.1) as well as real-world data (§3.2). We implemented our algorithm in Matlab (PQN-NNLS). The other
implementations that we test against are

1. lsqnonneg—Matlab’s implementation of the original Lawson and Hanson active set method [11].

2. fnnls—Bro and Jong’s [1997] improved version of the Lawson-Hanson procedure in Matlab.

3.1 Experiments with Synthetic Data

Our first set of experiments is with synthetic data. These experiments are targeted at assessing the per-
formance of our method mainly by showing that it is faster than the other approaches. These experiments
involve the following two problem sets:

12



• P1: random dense matrices with varying sizes, and

• P2: large random sparse matrices with varying sparsity.

Test matrices A and vectors b for problem set P1 are fully dense and are generated using Matlab’s rand
function. Table 1 shows the number of rows m and columns n in A along with the condition number κ(A)
of A. The length of b equals the number of rows m.

Matrix P1-1 P1-2 P1-3 P1-4 P1-5
m 2800 3600 4400 5200 6000
n 2000 2400 2800 3200 3600
κ(A) 494 459 450 452 460

Table 1: The size and condition number of the test matrices A in problem set P1.

For problem set P2, we fix the size of A to be 12000×6400 and vary the sparsity using Matlab’s sprand
function. For each A, however, the corresponding b remains fully dense. Table 2 enlists the matrices in
this set. Note that by sparsity we mean the ratio of zero entries to the number of all entries in the given
matrix; Matlab’s sprand takes an argument density, which is nothing but 1− sparsity.

Matrix P2-1 P2-2 P2-3 P2-4 P2-5 P2-6
Sparsity 0.998 0.996 0.994 0.992 0.99 0.988

Table 2: The sparsity of the test matrices A (12000× 6400) in problem set P2.

Table 3 shows the running times of Matlab’s lsqnonneg, fnnls, and our PQN-NNLS method for the
matrices in problem set P1. The experiments were performed on an Intel Xeon 3.2GHz Linux machine
with 8GB RAM. The CPU times reported were measured using the cputime function of Matlab and
the objective function values achieved by the various programs agreed to 6 significant digits. The timing
results that we report were averaged over 20 different random runs. That is, for each problem in the set
we generated a matrix of the specified size, and then ran the three methods on it 20 times to report the
average running time values. We remark that fnnls requires the inputs in the form of AT A and AT b,
hence we included the time for these computations while reporting results for fnnls. On some mid-sized
matrices, e.g., 2800×2000 (P1-1) and 3600×2400 (P1-2), fnnls and PQN-NNLS were competitive with each
other. However, with increasing matrix sizes, the running time of fnnls increased drastically while that of
PQN-NNLS altered only linearly. Consequently, for the largest matrix in the problem set (P1-5), PQN-NNLS
outperformed fnnls significantly as can be seen in Table 3. Observe that lsqnonneg was certainly inferior
to the other two methods, and we were unable to obtain results with it in a reasonable amount of time.

Method P1-1 P1-2 P1-3 P1-4 P1-5
lsqnonneg hours hours hours hours hours
fnnls 49.36 144.90 424.54 2097.8 3075.9
PQN-NNLS 86.84 164.83 202.03 229.59 294.02

Table 3: Comparison between Matlab implementations: lsqnonneg, fnnls, and PQN-NNLS in terms of
elapsed CPU time (seconds) with varying matrix sizes (Problem set P1).

In Table 4 we show running time comparisons analogous to those in Table 3, except that the matrices
used were sparse. As shown in the table, PQN-NNLS generally outperforms fnnls for sparse matrices, and
the difference becomes starker with increasing sparsity. For example, the running time of PQN-NNLS on the
sparsest matrix (Problem P2-1) is approximately 600 times shorter than that of fnnls!
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Method P2-1 P2-2 P2-3 P2-4 P2-5 P2-6
lsqnonneg N/A N/A N/A N/A N/A N/A
fnnls 66790 56148 43840 11695 12332 11525
PQN-NNLS 96.37 154.71 159.03 224.18 230.73 282.02

Table 4: Comparison between Matlab implementations: lsqnonneg, fnnls, and PQN-NNLS in terms of
elapsed CPU time (seconds) with varying matrix sizes (Problem set P2).

3.2 Experiments with Real-World Data

Our next set of experiments is on data drawn from real world applications. Through these experiments
we demonstrate two things. First, that our method runs much faster than the competing approaches, and
second, that the objective function values achieved by it are also competitive.

We show results below on two data sets that we chose to be representative of typical real-world datasets,
in the sense that: i) they echo the results observed on synthetic data, thereby validating our experiments
with synthetic data, and ii) the characteristics of these datasets are general enough to represent a class of
similar matrices from real world applications. The problem P3 is a mid-scale proplem which is sparser than
the problem P2-3 but denser than P2-2, and the problem P4 is large enough compared to the problem set
P2. Both datasets can be downloaded from the University of Florida Sparse Matrix Collection where one
can see even larger and sparser matrices, and as our experiments indicate, our method will perform even
better on these data.

The datasets that we use for this set of experiments are:

• P3 : LPnetlib/lp pilot87 dataset. A NETLIB problem that has size 2030× 6680 and 74949 nonzero
entries (approximately 0.9945 sparsity).

• P4 : Gset/G60 dataset. 7000×7000 random graph generated by rudy, an automatic graph generator.
Approximately 0.035% of the upper triangle entries are nonzero (0.99965 sparsity). 2

Method Elapsed CPU Time Objective Function Value
P3 P4 P3 P4

lsqnonneg hours hours N/A N/A
fnnls 4.26× 104 7.27× 103 1.28× 10−10 1.62× 102

PQN-NNLS 3.93× 104 2.04× 102 3.72× 10−10 1.62× 102

Table 5: Comparison between Matlab implementations: lsqnonneg, fnnls, and PQN-NNLS in terms of
elapsed CPU time (seconds) and final objective function value on Problem sets P3 and P4.

As before, we were not able to run lsqnonneg for Problems P3 and P4. For a mid-scale sparse matrix,
e.g. LPnetlib/lp pilot87, fnnls and PQN-NNLS are competitive with each other, both in terms of the elapsed
CPU time and the final objective function value. However, as observed in the experiments on artificial
matrices, PQN-NNLS starts excelling as the problem size becomes larger (and sparser). From Table 5 we
can see that PQN-NNLS runs approximately 35 times than fnnls, while both algorithms agree to 8 digits in
the objective function value (only 3 digits shown for brevity).

4 Discussion and Future work

In this paper we proposed a projection method with non-diagonal gradient scaling to solve the nonnegative
least squares problem. Our method (PQN-NNLS) avoids the pre-computation of AT A and AT b, which is
required for the state of the art active set method fnnls but prohibitive for large-scale problems. It also

2Both LPnetlib/lp pilot87 and Gset/G60 matrices can be downloaded from the University of Florida Sparse Matrix Col-
lection (http://www.cise.ufl.edu/research/sparse/matrices/list by nnz.html), id 525 and 656 respectively.
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retains the simplicity of the popular projected gradient method, while overcoming deficiencies such as slow
convergence rate. Our experiments showed that our method outperforms other standard approaches to
solving the NNLS problem, especially for larger scale problems.

4.1 Extensions

Although we presented our method with only nonnegativity constraints in this report, with a few minor
changes we can extend it to handle bound constraints such as a � x � b. Specifically, if we define a
projection P∗(·) and an index set I∗(x) as follows

P∗(xi) =

 ai : xi ≤ ai

xi : ai < xi < bi

bi : bi ≤ xi

(4.1)

I∗(x) =
{

i
∣∣∣xi = ai,

∂f(x)
∂xi

> 0 or xi = bi,
∂f(x)
∂xi

< 0
}

(4.2)

then, we can obtain the desired method by substituting above definitions for P(·) and I(x) respectively.
Another interesting extension considers the case with multiple right-hand sides. That is, solving the

problem

minimize
x

‖Ax− bi‖2

subject to x ≥ 0,

where bi for 1 ≤ i ≤ N are varied. Naturally, since A remains fixed, the first simple attempt just solves
the problem for b1, and then retains the approximation to the Hessian, and solves the subsequent problems
without having to recompute this approximation. However, more work is needed to determine if this
approach can be improved.

4.2 Future Work

In addition to the least squares to measure the proximity of two vectors, other convex distortion measures
such as the Kullback-Leibler divergence can be used as objective functions. Since the algoritmic frame-
work of PQN-NNLS remains same for any convex objective functions, it is natural to extend our method
to such problems. It is also an interesting problem to incorporate linearly constrained least-squares prob-
lems without breaking the simplicity of algorithm (by passing to the dual problem). Further algorithmic
improvements to the crucial line-search steps of our algorithm are needed to fully automate the solution
without requiring any parameter selection or tuning on part of the user remain the subject of future
research.
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