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Abstract. To reason about whole-program behavior, dynamic optimiz-
ers and analysis tools collect a dynamic call graph using sampling. Previ-
ous approaches have not achieved high accuracy with low runtime over-
head, and this problem is likely to become more challenging as object-
oriented programmers increasingly compose complex programs.
This paper demonstrates how to use static and dynamic control-flow
graph (CFG) constraints to improve the accuracy of the dynamic call
graph (DCG). We introduce the frequency dominator (FDOM) which is
a novel CFG relation that extends the dominator relation to expose rel-
ative execution frequencies of basic blocks. We combine conservation of
flow and dynamic CFG basic block profiles to further improve the accu-
racy of the DCG. Together these approaches add minimal overhead (1%)
and achieve 85% accuracy compared to a perfect call graph for SPEC
JVM98 and DaCapo benchmarks. Compared to sampling alone, accuracy
improves by 12 to 36%. These results demonstrate that static and dy-
namic control-flow information offer accurate information for efficiently
improving the DCG.

1 Introduction

Well designed object-oriented programs use language features such as encap-
sulation, inheritance, and polymorphism to achieve reusability, reliability, and
maintainability. As a result, these programs decompose functionality into many
small methods, and virtual dispatch often obscures call targets at compile time.
The dynamic call graph (DCG) records execution frequencies of call site-callee
pairs, and is the key data structure that dynamic optimizers use to analyze and
optimize whole-program behavior [2–5, 11, 23].

Prior approaches sample the DCG, trading accuracy for low overhead. Soft-
ware sampling periodically examines the call stack to construct the DCG [4,
13, 18, 22, 29]. Hardware sampling lowers overhead by examining hardware per-
formance counters instead of the call stack, but gives up portability. All DCG
sampling approaches suffer from sampling error, and timer-based sampling suf-
fers from timing bias. Arnold and Grove first measured and noted that the DCG
is not very accurate [4]. They introduce counter-based sampling (CBS) to im-
prove DCG accuracy by taking multiple samples and skipping some samples,
adding overhead. We show this approach leaves room for improvement.

Figure 8(a) (page 15) shows DCG accuracy for the SPEC JVM98 benchmark
raytrace using Jikes RVM default sampling. Each bar represents the true relative



frequency of a DCG edge (call site and callee) from a fully instrumented exe-
cution. Each dot is the frequency according to sampling. Edges are grouped by
caller and are separated by dashed lines. Notice in particular that many methods
make calls with the same frequency (i.e., the bars are the same magnitude within
a method), but sampling tells a different story (i.e., the dots are not aligned).
Sampling provides poor accuracy for many edges because of timer bias.

We present new DCG correction algorithms to improve DCG accuracy with
extremely low overhead (1% on average). Our key insight is that a program’s
static and dynamic control-flow graph (CFG) constrains possible DCG frequency
values. For example, two calls must execute the same number of times if their
basic blocks execute the same number of times. To leverage this insight, we
introduce the static frequency dominator (FDOM) relation, which extends the
dominator and strong region relations on CFGs as follows: given statements x
and y, x FDOM y if and only if x executes at least as many times as y.

We also exploit dynamic basic block profiles to improve DCG accuracy. Most
dynamic optimizers collect accurate control-flow profiles such as basic block and
edge profiles to make better optimization decisions [1, 3, 13, 17, 18]. We show how
to combine these constraints to further improve the accuracy of the DCG. Our
intraprocedural and interprocedural correction algorithms require a single pass
over the basic block profile, which we perform periodically.

We evaluate DCG correction in Jikes RVM [3] on the SPEC JVM98 and
DaCapo [8] benchmarks. We compare our approach to the default sampling con-
figuration in Jikes RVM and the CBS sampling configuration recommended by
Arnold and Grove [4]. Compared to a perfect call graph, default sampling at-
tains 52% accuracy and our DCG correction algorithms boost accuracy to 71%;
CBS by itself attains 76% accuracy and our DCG correction boosts its accu-
racy to 85%, improvements of 36% and 12% respectively. We show that each of
FDOM, dynamic intraprocedural control-flow information, and interprocedural
control-flow information improve accuracy while adding just 1% overhead.

Clients of the DCG include interprocedural analysis, such as alias and escape
analysis, and optimizations such as the selection of which methods to recompile
and inline. We evaluate the effect of more accurate DCGs on inlining, one of
its clients. The adaptive hotspot compiler in Jikes RVM periodically recompiles
and inlines hot methods. We add DCG correction immediately before the system
recompiles. We measure the potential effect on inlining using a perfect call graph,
which provides only a modest 2% average improvement in application time,
significantly improving two programs by 13% and 12%. DCG correction matches
these results on one of two: 18% and 2% respectively.

2 Background and Related Work

This section includes background material and compares dynamic call graph
(DCG) correction to previous work. We first discuss how dynamic optimizers
use sampling to collect a DCG with low overhead. We then compare the new
frequency dominator relation to previous work. Finally, we compare DCG cor-
rection to previous static compiler analyses that construct a call graph using
control-flow information.
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Fig. 1. Sampling. Filled boxes are taken samples and unfilled boxes are skipped sam-
ples. (a) One sample per timer tick. (b) CBS takes multiple samples per timer tick and
strides between samples.

2.1 Collecting Dynamic Call Graphs

Dynamic optimizers could collect a perfect DCG by profiling every call, but the
overhead is too high [4]. Some optimizers profile calls fully for some period of time
and then turn off profiling to reduce overhead. For example, HotSpot adds call
graph instrumentation only in unoptimized code [18]. Suganama et al. use code
patching to insert call instrumentation, collect call samples for a period of time,
and then remove the instrumentation [22]. These one-time profiling approaches
keep overhead down but lose accuracy when behavior changes.

Many dynamic optimizers use software sampling to profile calls and identify
hot methods [4, 6, 13]. Software-based approaches examine the call stack period-
ically and update the DCG with the call(s) on the top of the stack. For example,
Jikes RVM and J9 use a periodic timer that sets a flag that triggers the system
to examine the call stack at the next yield point and update the DCG [6, 13].
These systems insert yield points on method entry and exit, and on back edges.

Figure 1(a) illustrates timer-based sampling. Arnold and Grove show that
this approach suffers from insufficient samples and timing bias: some yield points
are more likely to be sampled than others, which skews DCG accuracy. They
present counter-based sampling (CBS), which takes multiple samples per timer
tick and strides to skip some samples in the profiling window, thus reducing tim-
ing bias. Figure 1(b) shows CBS configured to take three samples for each timer
tick and to stride by three. By widening the profiling windows, CBS improves
DCG accuracy, but increases profiling overhead. They report a few percent over-
head to attain an average accuracy of 69%, but to attain 85% accuracy, they hit
some pathological case with 1000% overhead. With our benchmarks, their rec-
ommended configuration attains 76% accuracy compared to a perfect call graph,
whereas our approach improves the accuracy to 86% with an overhead of 1%.

Other dynamic optimizers periodically examine hardware performance coun-
ters such as those in Itanium to update the DCG. All sampling approaches suffer
from sampling error, and timer-based sampling approaches suffer from timing
bias as well. DCG correction can improve the accuracy of any DCG collected by
sampling and we demonstrate two in Section 6.

Zhuang et al. [29] present a method for efficiently collecting the calling con-
text tree (CCT), which represents the calling context of edges in call graph
profile. Their work is orthogonal to ours since they add another dimension to
the DCG (context sensitivity), while we improve DCG accuracy. We believe that
our correction approach would improve CCT accuracy as well.
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2.2 Constructing the DCG using Control-Flow Information

Static compilers have traditionally used control-flow information to construct
a call graph [15, 28]. Hashemi et al. use static heuristics to construct an es-
timated call frequency profile [15]. Wu and Larus construct an estimated edge
profile, which they use to construct an estimated call frequency profile [28]. These
approaches rely solely on control-flow information to estimate call frequencies,
whereas DCG correction starts with an inaccurate DCG and applies control-flow
constraints to improve its accuracy. Hashemi et al. and Wu and Larus report
high accuracy but the accuracy metric only considers the relative rank of call
sites, whereas our overlap accuracy metric uses call edge frequencies. They con-
struct profiles for C programs, while we target Java, which has richer DCGs
and multiple call targets for a call site because of virtual dispatch [14]. These
approaches use static heuristics to estimate frequencies, while DCG correction
uses static constraints and combines them with dynamic profile information.

2.3 The Dominator Relation and Strong Regions

This paper introduces the frequency dominator (FDOM) relation, which extends
dominators and strong regions [7]. Prosser first introduced dominators, which
have a rich history [10, 25]. The set of dominators and post-dominators of x is
the set of y that will execute at least once if x does. The set which frequency
dominates x, on the other hand, is the subset which executes at least as many
times as x. While strong regions find vertices x and y that must execute the
same number of times, FDOM goes further and also finds vertices x and y where
y must execute at least as many times as x.

3 Call Graph Correction Algorithms

This section describes DCG correction algorithms. We first present formal defi-
nitions for a control flow graph (CFG) and the dynamic call graph (DCG). We
introduce the frequency dominator (FDOM) and show how to apply these static
constraints to improve the accuracy of the DCG, and how to combine them with
dynamic CFG frequencies to further improve the DCG.

3.1 Terminology

A control-flow graph represents static intraprocedural control flow in a method,
and consists of basic blocks (V ) and edges (E). Figure 2 shows an example
control-flow graph CFGp that consists of basic blocks ENTRY, a, b, c, d, e, and
EXIT, as well as edges between them. A basic block profile gives the dynamic
execution frequency of each basic block from some execution.

A call edge represents a method call, and consists of a call site and a callee.
An example call edge in Figure 2 is e5, the call from csc to CFGt. The DCG of a
program includes the dynamic frequency of each call edge, from some execution.
For a call site cs, OutEdges(cs) is the set of call edges that start at call site cs.
OutEdges(csa) = {e3, e4} in Figure 2. For a method m, InEdges(m) is the set
of call edges that end at m. InEdges(CFGt) = {e4, e5} in Figure 2.
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Fig. 2. Example dynamic call graph (DCG) and control flow graphs (CFGs).

DEFINITION 1 The INFLOW of a method m is the total flow (execution
frequency) coming into m:

INFLOW(m) ≡
∑

e∈InEdges(m)

f(e)

where f(e) is the execution frequency of call edge e. INFLOW(m) in an accurate
DCG is the number of times m executes.

DEFINITION 2 The OUTFLOW of a call site cs is:

OUTFLOW(cs) ≡
∑

e∈OutEdges(cs)

f(e)

OUTFLOW(cs) in an accurate DCG is the number of times cs executes.

Because a sampled DCG has timing bias and sampling errors, the DCG yields
inaccurate OUTFLOW and INFLOW values. DCG correction corrects OUT-
FLOW using constraints provided by static and dynamic control-flow informa-
tion (doing so indirectly corrects method INFLOW as well).

DCG correction maintains the relative frequencies between edges coming
out of the same call site (which occur because of virtual dispatch), and does
not correct their relative execution frequencies. For example, DCG correction
maintains the ratio between f(e3) and f(e4) in Figure 2.

3.2 The Frequency Dominator (FDOM) Relation

This section introduces the frequency dominator (FDOM) relation, a static prop-
erty of CFGs that represents constraints on program statements’ relative execu-
tion frequencies. We show two constraints (theorems) it provides from the CFG
on the DCG, and we prove these relations in the appendix.

DEFINITION 3 Frequency Dominator (FDOM). Given statements x and y

in the same method, x FDOM y if and only if for every possible path through the
method, x must execute at least as many times as y. We also define FDOM(y)
≡ {x | x FDOM y}.

5



Like the dominator relation, FDOM is reflexive and transitive.

3.3 Static FDOM Constraints

We first propogate the FDOM constraint to DCG frequencies.

THEOREM 1 FDOM OUTFLOW Constraint: Given method m and two
call sites cs1 and cs2 in m, if cs1 FDOM cs2,

OUTFLOW(cs1) ≥ OUTFLOW(cs2)

Intuitively, the OUTFLOW constraint tells us that flow on two call edges is
related if they are related by FDOM. For example, in Figure 2, csa FDOM csc

and thus OUTFLOW(csa) ≥ OUTFLOW(csc).

THEOREM 2 FDOM INFLOW Constraint: Given method m, if cs FDOM
ENTRY (m’s entry basic block),

INFLOW(m) ≤ OUTFLOW(cs)

Intuitively, the INFLOW constraint specifies that a call site must execute at
least as many times as a method that always executes the call site.

3.4 Static FDOM Correction

Figure 3 applies the FDOM OUTFLOW constraint to a sampled DCG. The al-
gorithm FDOMOutflowCorrection identifies missing edges from sampling based
on the FDOM OUTFLOW constraint and adds these call edges by predicting
their targets and frequencies. Then, the algorithm compares the sampled OUT-
FLOW of pairs of call sites that satisfy the FDOM relation. If their OUTFLOW s
violate the FDOM OUTFLOW constraint, FDOMOutflowConstraint sets both
OUTFLOW s to the maximum of their two OUTFLOW s. After processing a
method, FDOMOutflowConstraint scales the OUTFLOW s of all the method’s
call sites to preserve the sum of the frequencies out of the method.

We also implemented correction algorithms using the INFLOW constraint,
but they degrade DCG accuracy in some cases. This class of correction algo-
rithms requires high accuracy in the initial INFLOW for a method to subse-
quently correct its OUTFLOW. In practice, we found that errors in INFLOW
information propagated to the OUTFLOW s, degrading accuracy.

3.5 Dynamic Basic Block Profile Constraints

This section describes constraints on DCG frequencies provided by basic block
profiles, and the following section shows how to correct the DCG with them.
The Dynamic OUTFLOW constraint says that the ratio between the execution
frequencies of two call sites specified by the basic block profile can be applied to
the OUTFLOW of these two call sites.

THEOREM 3 Dynamic OUTFLOW Constraint Given two call sites cs1
and cs2, and execution frequencies fbprof(cs1) and fbprof(cs2) provided by a basic
block profile,

OUTFLOW(cs1)

OUTFLOW(cs2)
=

fbprof(cs1)

fbprof(cs2)
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procedure FDOMOutflowCorrection
input:

caller: a method whose OUTFLOWs are to be corrected
FDOM(cs): a set of call sites that frequency-dominate cs
fsample(e): a function that returns the frequency of call edge e

from sampling
fsample(cs): a function that returns the frequency sum of call

edges in OutEdge(cs) from sampling
output:

fcorrected(e): a function that returns the corrected frequency for
the call edge e

1: {STEP1: Insert call edges if missing.}
2: CallSites← getCallSitesFromCallerInDCG(caller)
3: InsertedCallSites← ∅

4: for all csy ∈ CallSites do
5: for all csx ∈ FDOM(csy) do
6: if csx /∈ CallSites then
7: InsertedCallSites← InsertedCallSites ∪ {csx}
8: {Predicts the virtual target using the class hierachy analysis.}
9: callee← PredictTarget (csx)

10: AddCallEdgeToDCGIfNotExists(caller , csx, callee)
11: fsample(csx) ← max(fsample(csx), fsample(csy))
12: end if
13: end for
14: end for
15: CallSites← CallSites ∪ InsertedCallSites

16: {STEP2: Initialize outflows.}
17: sumold ← 0
18: sumnew ← 0
19: for all cs ∈ CallSites do
20: Outflow(cs) ← fsample(cs)
21: sumnew ← sumnew + Outflow(cs)
22: if cs /∈ InsertedCallSites then
23: {preserve per-method OUTFLOW.}
24: sumold ← sumold+ Outflow(cs)
25: end if
26: end for

27: {STEP3: satisfy FDOM Outflow constraint.}
28: for all csy ∈ CallSites do
29: for all csx ∈ FDOM(csy) do
30: {constraint: OUTFLOW(csx) ≥ OUTFLOW(csy)}
31: outflowold ← Outflow(csx)
32: Outflow(csx) ← max(Outflow(csx),Outflow(csy))
33: diff ← Outflow(csx) − outflowold

34: sumnew ← sumnew + diff
35: end for
36: end for

37: {STEP4: Use new outflow to derive the corrected frequency.}
38: scale← sumold/sumnew

39: for all cs ∈ CallSites do
40: for all e ∈ OutEdges(cs) do
41: fraction ← fsample(e)/fsample(cs)
42: {Preserve the call target fraction and the frequency sum.}
43: fcorrected(e) ← Outflow(cs) × scale × fraction
44: end for
45: end for

Fig. 3. DCG Correction with FDOM OUTFLOW Constraints
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The Dynamic OUTFLOW constraint can be applied to two call sites in different
methods if basic block frequencies from different methods are accurate relative to
each other (i.e., if the basic block profiles have interprocedural accuracy). In our
implementation, basic block profiles do not have interprocedural accuracy. We
experiment with using low-overhead method invocation counters to give basic
block profiles interprocedural accuracy, and in this case we do apply Dynamic
OUTFLOW to call sites in different methods (Section 4).

The Dynamic INFLOW constraint says that the call edge flow (frequency)
coming into a method with a single basic block constrains the flow leaving any
call site in the method.

THEOREM 4 Dynamic INFLOW Constraint: Given a method m with a
single basic block and a call site cs in m,

INFLOW(m) = OUTFLOW(cs)

The Dynamic INFLOW constraint is useful for methods with a single basic block
because the Dynamic OUTFLOW constraint cannot constrain the OUTFLOW
of call sites in the single basic block (when basic block profiles do not have
interprocedural accuracy). The Dynamic INFLOW constraint uses the total
flow (frequency) coming into the method to constrain call sites’ OUTFLOW.

3.6 Dynamic Basic Block Profile Correction

Figure 4 presents the algorithm for applying the Dynamic OUTFLOW con-
straint. DynamicOutflowCorrection sets the OUTFLOW of each call site cs to
fbprof(cs), its frequency from the basic block profile. The algorithm then scales
all the OUTFLOW values so that the method’s total OUTFLOW is the same
as before. This scaling helps to maintain the frequencies due to sampling across
disparate parts of the DCG. Like FDOMOutflowCorrection in Figure 3, the Dy-
namicOutflowCorrection can insert a call edge if its basic block profile frequency
is higher than some threshold. For simplicity, we do not include this scheme in
Figure 4.

Figure 5 presents the algorithm for applying the Dynamic INFLOW con-
straint to the DCG. For each method with a single basic block, DynamicInflow-
Correction sets the OUTFLOW of each call site in the method to the INFLOW
of the method. As in the case of the FDOM INFLOW constraint, we do not use
the Dynamic INFLOW constraint together with an intraprocedural edge profile.
However, with an interprocedural edge profile, INFLOW is accurate enough to
improve overall DCG accuracy.

4 Implementing DCG Correction

Dynamic compilation systems perform profiling while they execute and optimize
the application, and therefore DCG correction needs to be done at the same time
with minimal overhead.

We minimize DCG correction overhead by limiting its frequency and scope.
We limit correction’s frequency by delaying it until the optimizing compiler re-
quests DCG information. The correction overhead is thus proportional to the

8



procedure DynamicOutflowCorrection
input:

CallSites: a set of call sites whose OUTFLOWs are to be
corrected

fbprof(cs): a function that returns the frequency of the call site cs
from basic block profiles

fsample(e): a function that returns the frequency of call edge e
from sampling

fsample(cs): a function that returns the frequency sum of call
edges in OutEdge(cs) from sampling

output:
fcorrected(e): a function that returns the corrected frequency for

the call edge e

1: {STEP1: Iterate call sites to find scale factor from basic block profile count to the
sample count.}

2: sumsample ← 0
3: sumbprof ← 0
4: for all cs ∈ CallSites do
5: sumsample ← sumsample + fsample(cs)
6: sumbprof ← sumbprof + fbprof(cs)
7: end for
8: scale← sumsample/sumbprof

9: {STEP2: assign corrected call edge frequency.}
10: for all cs ∈ CallSites do
11: for all e ∈ OutEdges(cs) do
12: fraction = fsample(e) /fsample(cs)
13: {constraint: OUTFLOW(cs) /fbprof(cs) is constant }
14: {Preserve the call target fraction and the frequency sum}
15: fcorrected(e) ← fbprof(cs) ×scale× fraction
16: end for
17: end for

Fig. 4. DCG Correction with Dynamic OUTFLOW Constraints

Correction algorithm Correction unit Algorithms

Static FDOM Call sites within a method FDOMOutflowCorrection
CF Correction to be optimized

Dynamic Intraprocedural Call sites within a method DynamicOutflowCorrection
CF Correction to be optimized

Dynamic Interprocedural All call sites in the DCG DynamicOutflowCorrection &
CF Correction DynamicInflowCorrection

Table 1. Call Graph Correction Implementations

number of times the compiler selects optimization candidates during an execu-
tion. Correction overhead is thus naturally minimized when the dynamic opti-
mizer is selective about how often and which methods to recompile.

We limit the scope of DCG correction by localizing the range of correction.
When the compiler optimizes a method m, it does not require the entire DCG,

9



procedure DynamicInflowCorrection
input:

p: a single basic block procedure whose OUTFLOWs are
to be corrected

fsample(e): a function that returns the frequency of call edge e
from sampling

fsample(cs): a function that returns the frequency sum of call
edges in OutEdge(cs) from sampling

output:
fcorrected(e): a function that returns the corrected frequency for

the call edge e

1: CallSites← getCallSitessInsideProcedure(p)
2: {STEP1: Compute maxflow for the procedure p.}
3: inflow← 0
4: for all e ∈ InEdges(p) do
5: inflow← inflow + fsample(e)
6: end for
7: maxoutflow← maxcs∈CallSites fsample(cs)
8: maxflow← max(inflow, maxoutflow)

9: {STEP2: assign corrected frequency.}
10: for all cs ∈ CallSites do
11: for all e ∈ OutEdges(cs) do
12: fraction← fsample(e) / fsample(cs)
13: {constraint: INFLOW(p) = OUTFLOW(cs)}
14: fcorrected(e) ← maxflow× fraction
15: end for
16: end for

Fig. 5. DCG Correction with Dynamic INFLOW Constraints

but instead considers a localized portion of the DCG relative to m. Because we
preserve the call edge frequency sum in the OUTFLOW correction algorithm,
we can correct m and all the methods it invokes without compromising the
correctness of the other portions of the DCG. Because we preserve the DCG
frequency sum, the normalized frequency of a call site in a method remains
the same, independent of whether call edge frequencies in other methods are
corrected or not.

For better interaction with method inlining, one of the DCG clients, we limit
correction to nontrivial call edges in the DCG. Trivial call edges by definition
are inlined regardless of their measured frequencies because they are so small
that inlining them always reduces the code size. To exclude trivial call edges
from correction, the inliner informs DCG correction of the trivial edges.

Table 1 summarizes the correction algorithms and their scope. They take
as input the set of call sites to be corrected. Clearly, for FDOM correction, the
basic unit of correction is the call sites within a procedure boundary. For dynamic
basic block profile correction, there are two options. The first one limits the call
site set to be within a procedural boundary, and the second one corrects all
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the reachable methods. Since many dynamic compilation systems support only
high precision intraprocedural basic profiles, the first configuration indicates how
much DCG correction would benefit these systems.

Because our system does not collect interprocedural basic block profiles, we
implement interprocedural correction by adding method counters. DCG correc-
tion multiplies the counter value by the normalized intraprocedural basic block
frequency. We find this mechanism is a good approximation to interprocedural
basic block profiles.

5 Methodology

This section describes our benchmarks, platform, implementation, and VM com-
piler configurations. We describe our methodologies for accuracy measurements
against the perfect dynamic call graph (DCG), overhead measurements, and
performance measurements.

We implement and evaluate DCG correction algorithms in Jikes RVM 2.4.5,
a Java-in-Java VM, in its production configuration [3]. This configuration pre-
compiles the VM methods (e.g., compiler and garbage collector) and any li-
braries it calls into a boot image. Jikes RVM contains two compilers: the baseline
compiler and optimizing compiler with three optimization levels. (There is no
interpreter in this system.) When a method is first executed, the baseline com-
piler generates assembly code (x86 in our experiments). A call-stack sampling
mechanism identifies frequently executed (hot) methods. Based on these method
sample counts, the adaptive compilation system then recompiles methods at pro-
gressively higher levels of optimization. Because it is sample based, the adaptive
compiler is non-deterministic.

Jikes RVM runs by default using adaptive methodology, which dynamically
identifies frequently executed methods and recompiles them at higher optimiza-
tion levels. Because it uses timer-based sampling to detect hot methods, the
adaptive compiler is non-deterministic. To measure performance, we use replay
compilation methodology, which is deterministic. Replay compilation forces Jikes
RVM to compile the same methods in the same order at the same point in execu-
tion on different executions and thus avoids high variability due to the compiler.

Replay compilation uses advice files produced by a previous well-performing
adaptive run (best of twenty five). The advice files specify (1) the optimization
level for compiling each method, (2) the dynamic call graph profile, and (3)
the edge profile. Fixing these inputs, we execute two consecutive iterations of
the application. During the first iteration, Jikes RVM optimizes code using the
advice files. The second iteration executes only the application at a realistic mix
of optimization levels.

We use the SPEC JVM98 [20] benchmarks, the DaCapo benchmarks (beta-
2006-08) [8], and ipsixql [9]. We omit the DaCapo benchmarks lusearch, pmd and
xalan because we could not get them to run correctly. We also include pseudojbb
(labeled as jbb), a fixed-workload version of JBB2000 [21].

We perform our experiments on a 3.2 GHz Pentium 4 with hyper-threading
enabled. It has a 64-byte L1 and L2 cache line size, an 8KB 4-way set associative
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L1 data cache, a 12Kµops L1 instruction trace cache, a 512KB unified 8-way set
associative L2 on-chip cache, and 2GB main memory, and runs Linux 2.6.0.

Accuracy Methodology. To measure the accuracy of our technique against the
perfect DCG for each application, we first generate a perfect DCG by modifying
Jikes RVM call graph sampling to sample every method call (instead of skipping).
We also turn off the adaptive optimizing system to eliminate non-determinism
due to sampling and since call graph accuracy is not influenced by code quality.
We modify the system to optimize (at level 1) every method and to inline only
trivial calls. Trivial inlining in Jikes RVM inlines a callee if its size is smaller than
the calling sequence. The inliner therefore never needs the frequency information
for these call sites. When program execution ends, the sampler has collected the
perfect call graph. We restrict the call graph to the application methods by
excluding all call edges with both the source and target in the boot image, and
calls from the boot image to the application. We include calls edges into the
boot image, since these represent calls to libraries that the compiler may want
to inline into the application.

To measure and compare call graph accuracy, we compare the final perfect
DCG to the final corrected DCG generated by our approach. Because DCG
clients use incomplete graphs to make optimization decisions, we could have
compared the accuracy of the instantaneous perfect and corrected DCGs as a
function of time. However, we follow prior work in comparing the final graphs [4]
rather than a time series, and believe these results are representative of the
instantaneous DCGs.

Overhead Methodology. To measure the overhead of DCG correction without
including its influence on optimization decisions, we configure the call graph
correction algorithms to do correction but report old frequency information. We
report the first iteration time because the call graph correction is triggered only
during the compilation time. We report the execution time as the median of 25
trials to obtain a representative result not swayed by outliers.

Performance Methodology. We use the following configuration to measure the
performance of using corrected DCGs to drive inlining. We correct the DCG as
the VM optimizes the application, providing a realistic measure of DCG cor-
rection’s ability to affect inlining decisions. We measure application-only perfor-
mance by using the second iteration time. We report the median of 25 trials.

6 Results

This section evaluates the accuracy, overhead and performance effects of the
DCG correction algorithms.

We use the notation CBS(SAMPLES, STRIDE) to refer to an Arnold-Grove
sampling configuration [4]. To compare the effect of the sampling configura-
tion on call graph correction, we use two sampling configurations: CBS(1,1)
and CBS(16,3). The default sampling configuration is CBS(1,1) in Jikes RVM.
Arnold and Grove recommend CBS(16,3), which takes more samples to increase
accuracy, but keeps average overhead down to 1-2%.
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Fig. 6. Accuracy of DCG correction over the CBS(1,1) configuration.
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Fig. 7. Accuracy of DCG correction over the CBS(16,3) configuration

6.1 Accuracy

We use the overlap accuracy metric from prior work to compare the accuracy of
DCGs [4].

overlap(DCG1, DCG2) =∑
e∈CallEdges min(weight(e,DCG1), weight(e, DCG2))

where CallEdges is the intersection of the two call edge sets in DCG1 and DCG2

respectively, and weight(e, DCG i) is the normalized frequency for a call edge e

in DCG i. We use this function to compare the perfect DCG to other DCGs.
Figures 6 and 7 show how DCG correction boosts accuracy over CBS(1,1) and

CBS(16,3) sampling configurations. The perfect DCG is 100% (not shown). The
graphs compare the perfect DCG to the base system (No Correction), Static
FDOM CF Correction, Dynamic Intraprocedural CF Correction and Dynamic
Interprocedural CF Correction. Arnold and Grove report an average accuracy
of 50% on their benchmarks for CBS(1,1), and 69% for CBS(16,3) for 1 to 2%
overhead [4]. We show better base results here with an average accuracy of 52%
for CBS(1,1), and 76% for CBS(16,3).

These results show that our correction algorithms improve over both of the
sampled configurations, and that each of the algorithm components contributes
to the increase in accuracy (for example, raytrace in Figure 6 and jack in Fig-
ure 7), but their importance varies with the program. FDOM and intraproce-
dural correction are most effective when the base graph is less accurate as in
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CBS(1,1) because they improve relative frequencies within a method. Interpro-
cedural correction is relatively more effective using a more accurate base graph
such as CBS(16,3). This result is intuitive; a global scheme for improving accu-
racy works best when its constituent components are accurate.

Figure 8 shows how the correction algorithms change the shape of the DCG
for raytrace for CBS(1,1), our best result. The vertical bar presents normalized
frequencies of the 150 most frequently executed call edges from the perfect DCG.
The call edges on the x-axis are grouped by their callers, and the vertical dashed
lines show the group boundaries. The dots show the frequency from the sampled
or corrected DCG. In the base case, call edges have different frequencies due to
timing bias and sampling error. Static FDOM CF Correction eliminates many
of these errors and improves the shape of the DCG; Figure 8(b) shows that
FDOM eliminates frequency variations in call edges in the same routine. Since
FDOM takes the maximum of edge weights, it raises some frequencies above
their true values. Dynamic Intraprocedural CF Correction further improves the
DCG because it uses fractional frequency between two call sites, while FDOM
gives only relative frequency. We can see in Figure 8(c) several frequencies are
now closer to their perfect values. Finally, Interprocedural CF Correction further
improves the accuracy by eliminating interprocedural sampling bias. The most
frequently executed method calls, on the left of Figure 8(d), show particular
improvement.

6.2 Overhead

Figure 9 presents the execution overhead of DCG correction, which occurs each
time the optimizing compiler recompiles a method. Correction could occur on
every sample, but this approach aggregates the work and eliminates repeatedly
correcting the same edges. We take the median out of 10 trials (shown as dots).
Static FDOM Correction and Dynamic Intraprocedural CF Correction add no
detectable overhead. The overhead of the interprocedural correction is on average
1% and at most 3% (on jython). This overhead stems from method counter
instrumentation (Section 4).

6.3 Performance

We evaluate the costs and benefits of using DCG correction to drive one client,
inlining. We use the default inlining policy with CBS(1,1). Figure 10 shows
application-only performance (median of 10 trials) with several DCG correction
configurations. The graphs are normalized to the execution time without correc-
tion. We first evaluate feeding a perfect DCG to the inliner at the beginning of
execution (Perfect DCG). The perfect DCG improves performance by a mod-
est 2.3% on average, showing that the Jikes RVM’s inliner does not currently
benefit significantly from high-accuracy DCGs. Static FDOM CF Correction
shows the improvement from static FDOM correction, which is 1.1% on average.
Dynamic Intraprocedural CF Correction improves performance by 1.7% on aver-
age. Dynamic Interprocedural CF Correction shows 1.3% average improvement.
However, a perfect call graph does improve two programs significantly: raytrace
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Fig. 8. Call graph frequencies for raytrace in CBS(1,1) configuration

ipsixql by 13% and 12% respectively, and DCG correction gains some of these
improvements: 18% and 2% respectively.

7 Conclusion

This paper introduces dynamic call graph (DCG) correction, a novel approach
for increasing DCG accuracy with existing static and dynamic control-flow in-
formation. We introduce the frequency dominator (FDOM) relation to constrain
and correct DCG frequencies, and also use intraprocedural and interprocedural
basic block profiles to correct the DCG. By adding just 1% overhead on average,
we show that DCG correction increases average DCG accuracy over sampled
graphs by 12% to 36% depending on the accuracy of the original. We believe
DCG correction will be increasingly useful in the future as object-oriented pro-
grams become more complex and more modular.
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A Computing FDOM

The next two subsections present our algorithm for computing the frequency
dominator (FDOM) relation. We first show a correlation between simple cycles
and FDOM that applies to both irreducible and reducible graphs. We then a
present our algorithm for computing FDOM, which applies to reducible graphs
only. Both algorithms assume the existence of a back edge from EXIT to ENTRY.
This edge simplifies the analysis but does not affect the FDOM relation, since
following this edge is equivalent to re-calling the method.

General Control Flow Graphs

In this section, we show that the FDOM relation relates to simple cycles for
general CFGs (both irreducible and reducible). This relation could be used to
compute FDOM for irreducible CFGs. However, we only present FDOM com-
putation for reducible CFGs. Lemma 1 shows that FDOM can be computed by
considering cycles in the CFG.

LEMMA 1 Given vertices x, y ∈ CFG, x FDOM y, if and only if x is contained
in every cycle containing y.

Proof. Show both forward and backward directions.
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(⇒) (by contradiction) Suppose there is a cycle that contains y but not x.
Let this cycle be cy = 〈a, . . . , y, . . . , a〉. From the definition of CFG, there is
one path from ENTRY to a and another path from a to EXIT. By concate-
nating these three paths, we can build a path from ENTRY to EXIT, c′y =
〈ENTRY, . . . , a, . . . , y, . . . , a, . . . ,EXIT〉. If x is not in c′y then y is already exe-
cuted more times than x, a contradiction. So let x belong to some execution path
that includes c′y and executes n times, then we can repeat cyn+1 times, resulting
in y being executed more times than x, a contradiction.

(⇐) (by contrapositive) Suppose there is a path p from ENTRY to EXIT
where the number of executions of y exceeds that of x. For the number of y to ex-
ceed x, p must contain at least one y. If the number of executions of y in the path
is n, then path p should be of the form, p = 〈ENTRY, . . . , y1, . . . , y2, . . . , yn, . . . ,EXIT〉,
where each occurrence of y is subscripted. The path p can be divided into (n+1)
subpaths: 〈ENTRY, . . . , y1〉, 〈y1, . . . , y2〉, . . . , 〈yn, . . . ,EXIT〉. Because there are
fewer executions of x than y in p, x appears in all of the subpaths less than or
equal to (n − 1) times. From the pigeonhole principle, there exist at least two
x-free subpaths. If one of the two x-free subpaths is 〈yi, . . . , yi+1〉, this x-free
subpath contradicts our assumption that there exists no cycle containing y and
not x. If two subpaths are 〈ENTRY, . . . , y1〉 and 〈yn, . . . ,EXIT〉, another x-free
cycle 〈yn, . . . ,EXIT,ENTRY, . . . , y1〉 can be constructed since we have a back
edge from EXIT to ENTRY, again a contradiction.

Lemma 1 states that FDOM can be computed by considering every cycle in the
CFG. However, it is impractical to check if x is contained in every cycle that
contains y because the number of cycles may be unbounded. The number of
simple cycles in a method is bounded, and Lemma 2 shows that simple cycles
are sufficient.

LEMMA 2 Given vertices x, y ∈ CFG, x is in every cycle containing y if and
only if x is in every simple cycle containing y.

Proof. Forward direction is trivial because every simple cycle is a cycle. To show
the backward direction:

(⇐)(by contradiction) Suppose that x is in every simple cycle containing
y, but there exists an x-free cycle c that contains y, c = 〈a, . . . , y, . . . , a〉 or
c = 〈y, . . . , y〉. By assumption, c cannot be simple, so there must exist some
element in c other than the beginning or end. There exists a cycle, therefore, in c

that is from 〈w, . . . , w〉 that is simple, which we will call c′. Since by assumption,
x is in every simple cycle containing y, if there exists a y in c′, then there also
exists an x, and since c′ is simple, there can exist at most one of each. Therefore
if c is a valid cycle including c′, then another valid cycle is c with c′ replaced with
the single element w. Further, this new c still has the property that there exists
an x-free cycle that contains y. Since c is of finite length, this process can be
continued until there are no simple cycles left in c. Note that c still contains an
x-free path that contains y, but now c is simple too, a contradiction. This proof
holds for the entire program because there exists a back edge, by assumption, from
EXIT to ENTRY, and hence it is a cycle.
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Theorem 5 provides a method for computing FDOM by enumerating simple
cycles [24, 26, 27], and is easily proved from the lemmas.

THEOREM 5 Given vertices x, y ∈ CFG, x FDOM y, if only if x is in every
simple cycle containing y.

Proof. From Lemma 1 and Lemma 2.

Reducible Control Flow Graphs

loophead(y) = loop entry of innermost loop that contains y

backsrcs(y) = backsrcs∗(loophead(y))

natloop(y) = natloop∗(loophead(y))

exits(y) = exits∗(loophead(y))

Ball defines “w pd v with respect to a set of vertices V ” to capture post dom-
inance within a natural loop [7]. For our algorithm, we only use two sets of
vertices, back edges and loop exits for a given natural loop. Thus we use PDBE
y to mean backsrcs(y) and PDLE y to mean exits(y). We combine these terms
and make a new term, PDL y ≡ PDBE y and PDLE y.

DEFINITION 4 Post dominator with respect to loop (PDL). Given two ver-
tices x, y ∈ CFG, x PDL y if and only if every possible path from y to any
innermost loop back source or exit ( backsrcs(y) ∪ exit(y) ) must include x.

Theorem 6 defines FDOM in terms of other CFG properties. Ball [7] and
Johnson et al. [16] use sufficient and necessary conditions for FDOM in Lemma 1
to characterize control regions [12]. The algorithm in this section is motivated
by Ball’s paper [7].

THEOREM 6 Given two vertices x, y ∈ CFG, x FDOM y, if and only if
x ∈ natloop(y) and (x DOM y or x PDL y).

Proof. (⇒) If x is not in natloop(y), then there exists an x-free cycle that
contains y, a contradiction due to Lemma 1. So suppose that x DOM y or
x PDL y is not true. If x DOM y is not true, then there exists a path from
loophead(y) to y that does not include x. If x PDL y is not true, then there
exists a path from y to either a back edge or an exit of natloop(y). Hence there
exists either a path 〈loophead(y), . . . , y, . . . , exits(y)〉, which means there exists
a path from ENTRY to EXIT that includes y and not x, or there exists a cy-
cle 〈loophead(y), . . . , y, . . . , b(∈ backsrcs(y)), loophead(y)〉, which is a cycle that
includes y and not x, also a contradiction. Hence x DOM y or x PDL y must
also be true.

(⇐) Show that every cycle that starts and ends at y, contains x. Let hy be
loophead(y), and every path from y to y is one of this form, cy = 〈y, . . . , z, . . . , hy, . . . , y〉,
where z is in backsrcs(y)∪exits(y). Suppose that x ∈ natloop(y), and x DOM y,
then every path from hy to y must contain x. If x PDL y, then path 〈y, . . . , z〉 ⊂
cy always contains x. Therefore cy contains x if either of the two conditions is
satisfied.
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FDOM(y) is the set of all x s.t. x FDOM y. From Theorem 6, the following
equations hold:

FDOM(y) = natloop(y) ∩ (DOM(y) ∪ PDL(y))

= FDOMD(y) ∪ FDOMP (y)

FDOMD(y) = natloop(y) ∩ DOM(y)

FDOMP (y) = natloop(y) ∩ PDL(y)

We create an algorithm that can compute FDOMD(y) and FDOMP (y) in near-
linear time.

Pingali and Bilardi give the paradox of linear computation time for super-
linear-sized relations such as control dependence and post-dominance [19]. This
paradox is resolved by the fact that these relations are transitive and can be
factored into the transitive reduction form. The preprocessing time is used to
construct some data structure that describes this reduction form, and a query
is performed on this data structure. For instance, the post-dominance relation
is transitive, and its transitive reduction form is a post-dominator tree, which
can be computed in O(E) time.1 We describe an algorithm that computes an
FDOM data structure in near-linear time, but retrieving FDOM for all nodes
potentially takes super-linear time.

procedure setupFDOM (G:CFG)

1: Compute LoopStructureTree(G)
2: Compute DominatorTree(G)
3: Transform(G)
4: Compute PostdominatorTree(G)

procedure Transform(G:CFG)

1: for all loop header h in G do
2: Create tempnodeh

3: {Redirect each exit edge to go through the temp node.}
4: for all exit edges b→ k for natloop(h) s.t. b and k 6= tempnodeh do
5: remove b→ k
6: add b→ tempnodeh

7: add tempnodeh → k
8: end for
9: {Redirect each back edge to go through the temp node.}

10: for all back edges b→ h s.t. b 6= tempnodeh do
11: remove b→ h
12: add b→ tempnodeh

13: add tempnodeh → h
14: end for
15: end for

Fig. 11. FDOM setup algorithm

1 Cooper et al. describe the history of algorithms for dominance relation in detail [10].
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procedure retrieveFDOM (y:Vertex):Set

1: s←{y}
2: {Compute FDOMD(y)}
3: current ← dominatorParent(y)
4: while current 6= null and current 6= loophead(y) do
5: s← s ∪ {current}
6: current ← dominatorParent(current)
7: end while
8: {Compute FDOMP (y)}
9: current ← postdominatorParent(y)

10: while current 6= null and current 6= tempnode(y) do
11: s← s ∪ {current}
12: current ← postdominatorParent(current)
13: end while
14: return s

Fig. 12. FDOM retrieval algorithm

The following theorem shows that we can compute PDL(y) inside a loop by
applying the post-dominator algorithm on a CFG transformed by Transform(G)
in Figure 11.

THEOREM 7 Given two vertices x, y ∈ CFG G, x ∈ L = natloop(y) and the
transformed CFG, Transform(G) as defined in Figure 11, then x PDL y in G,
if and only if x PDOM y in Transform(G).

Proof. For both directions, let tempnodeL be a newly added vertex for the natural
loop, L, during the transformation from G to Transform(G).

(⇒) Assume x PDL y in G is true. In G, there is no x-free path from y to
any z in backsrcs(y) ∪ exit(y). In Transform(G), there is no x-free path from y

to tempnodeL. In Transform(G), since tempnodeL postdominates every vertex
in L, there is no x-free path from y to EXIT. Therefore, x postdominates y in
Transform(G).

(⇐) (by contrapositive) Suppose that x PDL y in G is false. In G, there is
an x-free path from y to some z in backsrcs(y) ∪ exits(y). In Transform(G),
there is an x-free path from y to tempnodeL. Since x is inside the loop L and
tempnodeL is the exit of the loop L in Transform(G), there is an x-free path
from y to EXIT. Therefore, x PDOM y does not hold in in Transform(G).

Figure 11 shows an algorithm that computes FDOM(y) in near-linear time using
Theorems 6 and 7. The algorithm first computes the dominator tree and the loop
structure tree for the CFG, then applies the transformation Transform(G) to the
CFG and computes the post-dominator tree on the new graph. The transforma-
tion creates a single vertex per loop that the loop exits and back edges all go
through. The computation is near-linear time since it is dominated by the time
complexity of constructing the loop structure tree, or O(V + Eα(E, V )) [7]. If
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the loop structure tree has already been computed, as in many compilers, then
the algorithm adds O(E) time.

Figure 12 shows an efficient algorithm for retrieving FDOM. To retrieve
FDOM(y) for a given vertex y, we simply iterate up the dominator tree from
y until we hit y’s loop header. We then iterate up the post-dominator tree on
the transformed graph until we hit y’s tempnode. We are guaranteed that from
y to loophead(y) in the dominator tree and from y to tempnode(y) in the post-
dominator tree, we will not leave natloop(y). Further, once we go beyond these
nodes, we will no longer be in natloop(y). Hence we are only considering the set
x s.t. x ∈ natloop(y). Retrieving FDOM for all nodes potentially takes O(V 2)
time since there is potentially O(V 2) information.

References

1. J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A.
Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Con-
tinuous Profiling: Where Have All the Cycles Gone? In Symposium on Operating
Systems Principles, pages 1–14, 1997.

2. M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney. A comparative study of static
and profile-based heuristics for inlining. pages 52–64, Boston, MA, July 2000.

3. M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization
in the Jalapeño JVM. In ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 47–65, Minneapolis, MN, October
2000.

4. M. Arnold and D. Grove. Collecting and exploiting high-accuracy call graph profiles
in virtural machines. In Symposium on Code Generation and Optimization, pages
51–62, Mar. 2005.

5. M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented
code. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Pro-
gramming language design and implementation, pages 168–179, New York, NY,
USA, 2001. ACM Press.

6. M. Arnold and P. F. Sweeney. Approximating the calling context tree via sampling.
Technical Report RC 21789, IBM T.J. Watson Research Center, July 2000.

7. T. Ball. What’s in a region?: or computing control dependence regions in near-
linear time for reducible control flow. ACM Letters on Programming Languages
and Systems, 2(1-4):1–16, 1993.

8. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
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