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Abstract

We present an adaptive grid based algorithm to compute a family of relevant molecular surfaces. Molecular interfaces

are important in simulations and visualization involving biomolecules. The Richards surface has traditionally been used as

a good approximation to the surface, and defined as the surface formed by the inner facing part of a solvent probe atom

rolling along the van der Waals surface of the molecule. Computing and representing this surface has traditionally involved

complex geometrical data structures like alpha shapes. Adaptive and uniform trilinear grids are commonly used in various

simulations involving interactions of molecules or computation of electrostatics and other energy terms. We make use of

this grid directly to compute the Molecular Surface and properties like area, volume, curvatures, surface atoms and other

surfaces. We compare geometrical and biochemical properties with other methods as a validation.

1 Molecular Surface Definitions

Explicit surface definitions as the interface between the solvent and proteins have been given since 1970s. Since it is easier
to handle implicitly defined models mathematically, different implicit approximations to these surfaces have been developed.

1.1 van der Waals and Lee Richards Surface Definitions

The most common model for molecules is as a collection of atoms represented by spheres, with radii equal to their van der
Waals radii. The surface of the set of spheres is known as the van der Waals surface. Lee and Richards introduced the concept
of accessibility to the solvent. Proteins are not isolated, but commonly present in solutions, especially water. Also, the van
der Waals surface contained too many internal atoms and patches which are not accessible by the solvent. Hence, Lee and
Richards gave a new definition for the molecular surface as the surface accessible to the solvent [32]. They modeled water
molecules as spheres with radius 1.4Å, and considered the locus of the center of one such ‘probe’, as it rolled along the protein
surface as the Solvent Accessible Surface (SAS). Richards then gave a more commonly used definition for molecular surface
as a set of contact and reentrant patches in [42]. A probe solvent sphere, rolling over the atoms of a protein defines a region
in which none of its points pass through. The boundary of this volume is continuous and defines a new molecular surface.
This surface is composed of convex patches where the probe touches the atom surfaces, concave spherical patches when the
probe touches more than 2 atoms simultaneously and toroidal patches when the probe rolls between two atoms. Connolly
called this as an alternative definition of the SAS surface in [18], but is now commonly known as the Solvent Contact Surface
(SCS), or Solvent Excluded Surface (SES) or simply the Molecular Surface. These surfaces, for a 3 atom example is shown
as a 2D cross section in figure 1. We also provide analogous volume definitions for each surface.
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Figure 1: The different molecular surfaces and regions are shown for a 3 atom model in 2D. The SAS surface is the locus of
the center of the rolling probe sphere. The VDW surface is the exposed union of spheres representing atoms with their van
der Waals radii and contains the VDW volume. The lower side of the rolling probe defines the smooth SES which contains
parts of the VDW surface and reentrant patches. We also define the SAS volume as the region between the SAS and SES.
The region between the SAS and VDW volumes is later refered to as the SES volume.

2 Adaptive Grid Based SES Construction

We provide a new algorithm to compute the molecules SES and other related properties, which we will use in the docking
framework. Our main goals are efficient representation for operations required during docking, accurate surface definition
and ease of implementation.

2.1 Related Work

Since Richards introduced the SES definition, a number of techniques have been devised to compute the surface, both static
and dynamic, implicit and explicit. Connolly introduced two algorithms to compute the surface. First, a dot based numerical
surface construction and second, an enumeration of the patches that make up the analytical surface (See [17], [18] and his
PhD thesis). In [50], the authors describe a distance function grid for computing surfaces of varying probe radii. Our data
structure contains approaches similar to their idea. A number of algorithms were presented using the intersection information
given by voronoi diagrams and the alpha shapes introduced by Edelsbrunner [23], including parallel algorithms in [49] and
a triangulation scheme in [1]. Fast computations of SES is described in [46] and [45], using Reduced sets, which contains
points where the probe is in contact with three atoms, and faces and edges connecting such points. Non Uniform Rational
BSplines ( NURBs ) descriptions for the patches of the molecular surfaces are given in [6], [5] and [7]. You and Bashford in
[53] defined a grid based algorithm to compute a set of volume elements which make up the Solvent Accessible Region.

3 Signed Distance Function based Family of Surfaces

We define a volume function Φ and use its contours to provide a family of molecular surfaces. Consider the union of atoms
of the molecule ∪B. Inflate each atom b in this set by the probe radius (solvent radius) rp to give the new complex ∪Brp

.
Let its boundary be ΓB. Let Φ define the signed distance function of ΓB, such that the interior (closer to van der Waals) is
given a positive sign. Let all regions within the atom (see [53] for definitions) be given a constant positive high value H .

Observations and lemmas:
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• Isosurfaces SI with isovalues I : 0 ≤ I ≤ H form a family of surfaces.

• ΓB = S0, as defined by Lee and Richards, is the SAS of the molecule.

• Srp
is the SES.

• Sx→H− is the van der Waals surface.

• {x : 0 ≤ Φ(x) ≤ H} defines a volume exclusion function, which can be convenient to use in electrostatic computations.

• The region {x : −rp ≤ Φ(x) ≤ rp} has a high probability for the presence of surface atoms of a protein docked to the
current one.

The above observations point to the obvious advantages in using such a definition for our molecular structure representation
for docking. Let us further examine some of them in detail.

ΓB = S0 is the SAS, and Srp is the SES: By definition of the SAS, it is the locus of the center of the probe as it rolls
over the spherical atoms of the protein. But it should be noted that the grid based definition also includes holes, which may
be removed if necessary. The SES surface is always defined by points on the probe. It is in fact the boundary of the region
accessible to any part of the probe radius. Hence, it is always at a constant distance of rp away from the locus of the center.
Therefore, our third observation follows. Again, holes are included in our definition and need to be removed if required.

{x : 0 ≤ Φ(x) ≤ H} provides a volume exclusion function: Volume exclusion functions are used in setting up dielectric
constant for electrostatic computations. The twin requirements of smoothness at the boundary and accuracy in modeling
the SES are not met by many of the definitions in practise today. Our definition is provides a ‘sufficiently’ smooth function
around the SES (Φ is smooth in the radial direction), and contains the SES within it.

Isosurfaces SI with isovalues I : 0 ≤ I ≤ H form a family of surfaces At the extremes isovalues, we have the SAS
and the VDW surfaces, and the SES lies in between them at an isovalue of rp. We show the SES surface and other surfaces
surrounding it in figure 5.

Interface of docked ligand is in the region {x : −rp ≤ Φ(x) ≤ rp} : For good shape complementarity, as observed in
docked complexes, atoms of the ligand must lie close to the surface of the protein. The above ‘skin’ definition provides a
functional representation for such a region, as it defines the region where a probe sphere is in touch with the protein.

4 Algorithm

Let us consider a grid G in which the molecule is embedded to have a maximum and minimum grid spacing, hmax, hmin. Let
the dimension with the lower resolution be N3. Initially, the grid is uniformly divided using hmax as the grid spacing. Then:

• Top down subdivision:

1. Insert each atom bi, i = 1..M into G, subdividing if necessary.

2. With each insertion, update locally, points ~p ∈ G as belonging to VSAS , VV DW .

3. Compute the boundaries SV DW , SSAS.

• Bottom up collapse

1. New points created by the previous steps in the grid, and buried in atoms interiors are collapsed to make the grid
sparser in a bottom up fashion.
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• For each point ~p around a point classified as SV DW , search in a local region with extent rp for a SSAS boundary cell.
Find the closest distance of the point from the SSAS boundary.

Details on each step is given below.

1. Vertex classification Each atom is inserted into the grid. If we start with a single node in the adaptive mesh,
subdivision is performed as we insert each atom in an adaptive manner. With the insertion of each atom, the vertices
around the center of the atom are classified as belonging to inside the VSAS or the VV DW . Vertices classified as VV DW

are fixed while vertices marked VSAS could be updated with the insertion of new atoms. We use the method described
by [2] for sphere-cube intersection tests. The cost of this insertion is linear in the number of atoms and cubic in the
resolution of the grid: O(Mh3

max).

2. Boundary cell detection We examine the classification of the eight corners of each cell of the grid. If some vertices
belong to the inside of a volume and others to the outside, we mark the cell as a boundary cell. This operation is linear
in the number of cells of the grid O((N − 1)3). Each boundary cell is given an index.

3. Adaptive subdivision of SSAS Each boundary cell which contains more than three atoms contributing to it is
subdivided up to a user defined resolution. The index of each atom intersecting a cell is kept in a linked list associated
with that cell. Using that list, we classify each subdivided vertex as belonging to the interior of the VSAS or not. Using
a technique similar to obtain boundary cells, we generate a list of finer boundary cells in the subdivided cells. The
maximum cost of this operation is O((N − 1)3(hmax/hmin)3), although the average case cost should be much smaller
as only the boundary cells are involved.

4. SSES computation

The cells around each vertex in VSAS and SV DW is searched for the SSAS . If there is a cell with only one intersecting
atom, we find the exact distance from the vertex to the spherical patch of SSAS in that cell and stored at the vertex.
If a closer distance it is found, the stored distance is updated. If we are searching a cell which contained more than
one atom, and hence subdivided, we just take the minimum distance from the center of all the subdivided cell to the
vertex in question as the distance of the spherical patch in the cell to the vertex. The cost of this search will vary as
r3
p, the number of boundary van der Waals cells in the volume and the accuracy desired (as provided by hmin).

4.1 Spherical Patch Intersection

Let us define a sphere as having a center ~c = {cx, cy, cz} and radius r. Define a cube with points ~a1, ..,~a8

Equation of arc of intersection of sphere and face of cube The intersection is always an arc of a circle. We will obtain
the center, radius of the circle and the intersection points. We will consider only a face parallel to the xy plane. Other cases
should follow similarly. The point of projection of ~c to the plane containing the face is ~p = {cx, cy, z coordinate of face}.

This point is the center of the circular arc. The radius using Pythagoras theorem is
√

r2 − dist(~p,~c)2. The intersection
points on the edges, if any is now the intersection of this circle with the line containing the edge, and checking whether the
points lie within the edge.

Shortest distance of point to a circular arc Let the point be ~p, the center, radius of the arc be ~p1, ~r and the two end
points of the arc be ~p2 and ~p3.

Lemma The shortest distance of a point ~q in a plane to a circular arc in the plane is:

• Point is outside the infinite sector defined by the arc. The shortest distance is : |~r − dist(~q, p1)|.

• Otherwise, the shortest distance = min(dist(q, p2), dist(q, p3)).

Let ~q be the projection of ~p to the plane containing the circle. Let d1 be the dist(~p, ~q) and d2 be the shortest distance of
the arc from ~q. Thus, the shortest distance from ~p to the circular arc is

√

(d1)2 + (d2)2.
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Shortest distance of point to a spherical patch Here the spherical patch is in a cube, bounded by circular arcs.
Consider the circle a boundary arc is part of. The center of the sphere and this circle will form an infinite cone. Hence the
collection of boundary arcs form a collection of infinite cones.

Lemma The shortest distance of a point ~p to a spherical patch in a cube is:

• Point is inside each of the infinite cones. The shortest distance is : |~r − dist(~p,~c)|.

• Otherwise, the shortest distance is the minimum of the shortest distances of the point to each of the bounding arcs.

4.2 Complexity

For M atoms (including B boundary atoms), smallest grid spacing h, grid length N , VDW radius r and solvent radius rp,
the timing complexity is

• SDF initialization: O(N3)

• Insertion of atoms: O(M(
2(r+rp)

h
)3)

• Boundary atom detection:

– Uniform grid traversal: O(N3)

– Sphere traversal: O(M(
2(r+rp)

h
)3)

– Octree traversal: O(log(N3)B) ≤ O(log(N3)M)

• Patch voxel distance computation: O(M(
2(r+rp)

h
)6C), C is cost(dist(patch, voxel))

• Isocontouring for visualization: O(N3)

4.3 Self Intersections in Patch Complex Model

A patch complex (consisting of convex, concave and toroidal patches) can be derived using our adaptive grid structure and
SAS sphere intersection enumeration. But the patch complex is known to have problems of bad intersections. According to
lemma 3, 4, 5, 6 and 7 from Bajaj et al [9], there are only two possible self intersections that occur in the commonly used
rolling ball model:

• A toroid can self intersect with itself (Figure 10(a) in [9]).

• A concave patch can intersect with another in the case of a 3 atom model (Figure 9 in [9]).

In figure 2, we show the surface computed when two atoms are present, and moved close till they form a single surface
patch. In the case of surfaces computed from the rolling ball model, we would instead get a self intersecting toroidal patch
when the gap between the atoms becomes smaller than the diameter of the probe radius. This can be computed by looking
at all pairs of intersecting SAS spheres, which is already given in our adaptive grids. To examine the intersection of two
concave patches, we look at the three atoms model as shown in figure 3. Again, we get similar results compared to [9]. This
case occurs when there are three intersecting SAS atoms, and can be enumerated by our grid.
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(a) The toroidal patch is disjoint and there is no
self intersection.

(b) As the atoms come closer, a well defined
toroidal patch is created.

Figure 2: The solvent excluded surfaces of two atoms which come closer.

(a) The 2 concave patches are disjoint and
there is no wrong intersection.

(b) As the atoms come closer, a well de-
fined patch, similar to the approxima-
tions in [9] is created.

(c) At mutually closer distances,
the topology changes and the
center hole disappears.

Figure 3: The solvent excluded surfaces of three atoms which come closer.

5 Operations Supported by the Adaptive Grid

1. Surface atoms detection

Surface atoms are defined as those within a certain distance from the Molecular Surface. To obtain these atoms, we
first compute the Molecular Surface. Next we search locally around each atom to find the distance of the atom from
the surface. This operation is linear in the number of atoms and cubic in the resolution of the grid.

2. Population of skin region

We define the skin region of one molecule as the region belonging to the probe as it rolls on the surface, and defined as
Solvent Accessible Surface 2 Volume (VSAS2). We define the skin implicitly as a set of spheres packing the region. The
packing density is itself chosen to approximately equal the packing of the atoms belonging to the molecular surface.
The region is defined over a trilinear grid in which the molecule is embedded. The grid spacing h is chosen to preserve
the features of the molecule. Assuming that the interatomic distance is ∼ 1Å, we can use h = 0.5Å. By finding the
boundary vertices of the SAS, we can obtain potential centers for the skin spheres. A packing algorithm decides, based
on the packing density required, if a potential center should contain an atom or not.

3. Area volume computations

We use primal contouring to define the surface and volumes. The area under the surface is approximated by piece-
wise linear elements of the isocontour. The volume is approximated by the volume enclosed by that piecewise linear
approximation. This cost is linear in the size of the grid.

4. Curvature and normal computations
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3 atoms showing different sur-
faces and regions. SSAS : dark
blue, VSAS : pink, SSES : red,
VSES : light blue, SV DW : yellow
and VV DW : green

Table 1: A 2D cross section of the adaptive grid classification on a 3atom model.

These differential properties are computed using a two step process. Initially, when we propagate the distance from
the SSAS , we also store whether the nearest patch is the intersection of one, two or more spheres. In each case, we can
analytically provide the answer to the curvatures. For example, for a sphere with radius r, the Mean and Gaussian
curvatures are −1/r and 1/r2 respectively. In the second step, we compute the derivatives from the isocontour. At points
where the two vary significantly, we choose to keep the value provided by the differencing scheme as the signed-distance
algorithm used is only an approximation.

6 Results

Region classification and construction of molecular surfaces Before we provide timing, geometric and functional
properties and skin, surface regions, we present the results of our classification and signed distance function on a 3 atom
model in figure 1. Using a relatively high resolution grid of 1283, we classify grid points depending on the volume and surface
it is part of, giving priorities of surface class over volumes and SES class over other surfaces. The figure is a 2D cross section
of a volume rendering of the classified volume.

The Solvent Excluded Surface The solvent excluded surface is obtained as an isocontour with value equal to probe
radius. In figure 4, we show colored visualizations of four different molecules.

Family of surfaces In figure 5, we show four different surfaces computed from the adaptive grid, at four different isovalues.
The myoglobin molecule, 101m.pdb, is used as a test case. At a distance of 0, we get the SAS surface, which is the union
of spheres model, with each atom represented as a sphere with radius equal to the sum of its radius and a probe radius. In
this example, we used a probe radius of 1.4Å. As we go further away, we get a smooth deformation of the SAS surface to the
SES surface, as shown in the different figures. Since we are interested in the SES, we do not compute further in practise, but
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PDB Id Number of atoms time (643) time (1283)

3sgb 1912 11 85
1brc 2197 6 58
2ptc 2243 6 53
2kai 2267 7 74
3tpi 2313 6 54
1tab 2387 9 72
1ppf 2520 7 63
4cpa 2739 10 85
1mkw 4844 8 60

Table 2: Times (in seconds) taken to compute the adaptive grid based surfaces and volume regions for different initial grids
which are adaptively subdivided to a depth of 3.

in theory, higher isovalues will take us closer to the van der Waals surface. This example shows the utility of our method as
a volume exclusion function for computing electrostatics, which needs a smooth decay at the SES boundary.

Timing The cost of the algorithm depends on the depth of the adaptive grid, the resolution of the initial base grid and
the size of the molecule. In table 2, we provide the time taken to compute the properties on the grid, including surfaces
and demarking volumetric regions for different molecules and grid sizes. As the number of atoms increase, the time taken
increases, but the fixed output grid size reduces the number of relevant search points within the SAS and VDW regions.
Hence there is no direct correlation seen between the two. If the grid resolution can be chosen depending on the molecule
size, then the time would increase monotonically with the number of atoms for molecules with similar distribution of atoms
(say for a set of globular proteins).

Surface atoms detection The surface atoms of three proteins from the complexes, anti-idiotypic fab (1iai.pdb), hemag-
glutinin (2vir.pdb) and bob-white quail lysosyme (1bql.pdb) are visualized in figure 6. The interior atoms are colored by the
residue they belong to while the outer surface atoms all have an orange color. We show a cutoff of the three molecules to
reveal the surface and interior.

SAS2 skin region construction From the same above three complexes (1iai,2vir and 1bql), we extract the second protein
and compute the skin regions (see figure 7) defined by the volume where the probe is present and touching the molecule.
This region is used later in docking as it represents a volume where the interface atoms from the docking protein have a high
probability of being present.

7 Geometric and Functional Comparison of Molecular Surfaces

Results from the surface construction algorithms are compared using both geometric and electrostatic properties. In each
case, we compare the values to either exact known analytical solutions, or output from standard software. Four different
surfaces are constructed:

1. Solvent excluded surface, constructed as an isocontour with isovalue 1.4 from our adaptive grid.

2. A sum of Gaussians, computed using a discrete set of radii, with rate of decays (B) of:
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(a) B = −2.3 : This value is used in the literature as one which gives a good approximation of the volume enclosed
[43].

(b) B = −1.0 : By reducing the value of B, the Gaussian is made smoother, leading to a lower resolution map.

(c) B = −3.0 : We look at a sharper Gaussian to study the trend of properties as we move about the standard value
of -2.3.

Datasets: We use a set of 71 complexes. Properties are computed and compared of both the complex and its two individual
proteins. Hence, overall, we use 213 proteins in our dataset. The complex’s Id in the figures is appended with a ’C’, while
the two proteins in it are appended with ’1’ and ’2’.

7.1 Geometric comparison

The geometry of the surface plays an important role in its structural and functional properties. Two of the geometric
properties we consider are areas and volumes:

• Area of the surface: The area of the surface is computed using a simple approximation by summing the area of
triangles contained in the isocontours. MSMS [45] computes a analytical solution to the solvent excluded surface area.
We compare our results with theirs.

• Volume enclosed by the surface: The volume enclosed is computed by summing partial or full contributions of
voxels in the grid. If n, n ≤ 8 grid corners are included in the volume, then n/8 of the voxels volume is counted.

In figures 8 and 9, we plot the areas (in Å2) of five different surfaces (our four and the numerical value computed by
MSMS) with the analytical solvent excluded surface area given by MSMS. While using MSMS, we set the probe radius to
1.4 and do not change the default values of grid spacing etc. From the figures, we see that the adaptive grid and the MSMS
numerical values are just slightly lower than the analytical value. Among the sum of Gaussian surfaces, a rate of decay of
1.0, which provides a smooth surface was seen to be a good approximation, while sharper Gaussians tends to increase the
surface area due to the increase in ‘bumps’ and ‘valleys’.

Volumes (in Å3) enclosed by the solvent excluded surface are compared in figures 10 and 11. The adaptive grid algorithm
and sums of sharper Gaussians, including rates of decay of −2.3,−3, are seen to be close to the numerical value computed
by MSMS. Unfortunately, the volume under the smoother surface defined by a Gaussian sum with decay rate of −1.0 is seen
to overestimate the volume, as expected.

8 Conclusion

The new adaptive grid algorithm computes a family of surfaces for a given molecule, regions of interest and aids in computing
areas, volumes and other geometrical properties. Unlike traditional techniques of computing molecular surfaces that involve
complex data structures, we show how smooth approximations with no self intersections can be obtained using a more
conventional adaptive grid data structure.
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(a) An acetylcholine esterase (1C2B.PDB). It is
shown in its tetramer form. Each unit, containing
4172 atoms each, is colored with a different color.

(b) The nicotinic acetyl-
choline receptor with over
14,000 atoms (2BG9.PDB).
It has 5 chains, shown in dif-
ferent colors.

(c) The large ribosomal subunit (1JJ2.PDB) has
almost 100,000 atoms. The main RNA chain (in
brown) and other chains are shown.

(d) The tobacco mosaic virus, a helical virus
(1EI7.PDB). The repeating subunits, each con-
taining 2806 atoms, are shown.

Figure 4: The solvent excluded surfaces of four different molecules.
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(a) Isovalue=0 yields the SAS (b) Intermediate surface at isovalue 0.8

(c) Intermediate surface at isovalue 1.1 (d) At isovalue 1.4 (probe radius), we obtain the
SES.

Figure 5: Our signed distance function based definition yields a family of surfaces which we can extract using a novel adaptive
grid based algorithm.
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(a) Hemagglutinin (b) Anti-Idiotypic Fab (c) Bob-white quail lysosyme

Figure 6: Surface atoms of three complexes shown in orange over the interior atoms which are colored by their residue type.

(a) Immunoglobulin from in-
fluenza virus

(b) Idiotypic fab of virus neu-
tralizing antibody

(c) Hylel 5 Fab

Figure 7: Surface atoms of three complexes shown in orange over the interior atoms which are colored by their residue type.
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Figure 8: Area comparisons 1,2,3. We compare the areas (in Å2) of surfaces of molecules computed using our adaptive grid
algorithm (yellow), the analytical surface area by MSMS (dark blue), MSMS numerical surface area (pink) and the sum of
Gaussians method with three different rates of decay (light blue, purple and brown).
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Figure 9: Area comparisons 4,5,6: We compare the areas (in Å2) of surfaces of molecules computed using our adaptive grid
algorithm (yellow), the analytical surface area by MSMS (dark blue), MSMS numerical surface area (pink) and the sum of
Gaussians method with three different rates of decay (light blue, purple and brown).
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Figure 10: Volume comparisons 1,2,3: We compare the volumes (in Å3) enclosed by surfaces of molecules computed using our
adaptive grid algorithm (pink), MSMS numerical volume (dark blue) and the sum of Gaussians method with three different
rates of decay (yellow, light blue and brown).
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Figure 11: Volume comparisons 4,5,6: We compare the volumes (in Å3) enclosed by surfaces of molecules computed using our
adaptive grid algorithm (pink), MSMS numerical volume (dark blue) and the sum of Gaussians method with three different
rates of decay (yellow, light blue and brown).
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