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Abstract

The functions of proteins is often realized through their mutual interactions. Determining a relative
transformation for a pair of proteins and their conformations which form a stable complex, reproducible
in nature, is known as docking. It is an important step in drug design, structure determination and
understanding function and structure relationships. We provide a model for rigid docking and error-
bounded approximation algorithms to solve the model and predict docking sites. Translational search
is sped up using the Fourier domain. Shape based interactions is shown to give good results for a large
range of pairs of proteins.

1 Introduction

Proteins, together with sugars, fats, oils, RNA and DNA are molecules which form the structural and
functional building blocks in a cell. Through X-ray diffraction we are able to obtain near atomic resolution
information of individual proteins and sometimes complexes of proteins. The RCSB Protein Data Bank
[8] is a database describing proteins and RNA. It usually contains at least a list of atom coordinates and
atom types. Structural interactions between these building blocks and especially between proteins is known
to be responsible for their functions. For example, the actions of inhibitors and enzymes can be described
through structural interactions between proteins. Hence, interactions between potential drugs and proteins or
viruses form an important step in structure-based drug design. Complexes of any required pair of proteins
is hard to create, crystallize and image. Also, proteins are known to be flexible and have been found in
various shapes, usually known as conformations. Hence, we are interested in computationally modeling the
interactions between pairs of proteins. Specifically, we are interested in obtaining the relative transformation
and conformation where two proteins fit best, i.e., have a high affinity to each other. This is known as
the protein-protein docking problem. If we consider large, fairly inflexible proteins, we can perform rigid

protein-protein docking as an initial step. Rigid protein-protein docking based on structure alone has shown
to be adequate for a range of proteins. But there are many other factors which contribute to the formation of
a complex: electrostatics, hydrophobicity, hydrogen bonds, solvation energy etc. These, together with shape
complementarity are known as affinity functions. The docking problem can be considered as a search for
minimum energy complex conformations. The different terms in the energy are the Lennard Jones potential:
p(x) = c1x

−12 − c2x
−6 (x, c1, c2 are the distance between atoms and constants depending on the atom
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type). The electrostatic interaction is modeled through the poisson equation: −∇.(ǫ∇φ = ρ), where φ, ρ
are the potential and charge density at a point. Electrostatics plays a role in long range interaction due to
partially charged protein and solvent atoms. The change in energy due to displacing water molecules from the
interface is known as desolvation energy. It is modeled as the sum of desolvation energies of individual atoms
involved. For moving an atom of charge q, radius r from a region of dielectric ǫ1 to a region of dielectric ǫ2,

the desolvation free energy is given as q2

r ( 1
ǫ1
− 1

ǫ2
). Docking energy computations also involve hydrophobicity

computations, hydrogen bond formation and energies involved in conformational changes. Shape based
complementarity, coupled with electrostatic compatibility is used as an initial step to obtain possible docking
sites. These sites are further ranked using other energy terms. The few remaining potential docking sites
are tested using energy minimization routines. We present a non-equispaced fast Fourier based algorithm
for efficiently computing the initial docking search (based on shape and electrostatics complementarity).
We show that it is able to accurately predict docking sites for proteins extracted from docked complexes
accurately. Specifically, in this paper, we present a sum of Gaussians based model for proteins, and describe a
new specification of the rigid protein-protein docking problem. An error-bounded approximation algorithm is
presented and evaluated over a variety of complexes. We call our software F 2Dock, for Fast and Fourier based
docking. Given 2 proteins with M1,M2 atoms respectively, we present an O(max(M1,M2) + n3 logn+ ρn3)
algorithm to find the top ρ peaks in the docking profile. For rigid docking, both, redocking proteins obtained
from a complex, and docking two proteins have the same computational complexity. We also show that for a
summation of Gaussians model for the molecule where atoms are represented as Gaussian kernels, n3 varies
as O(max(M1,M2)). Our new algorithm is presented in section §3. Compared to traditional grid based
algorithms, we see that our algorithm has lower computational complexity and lower memory requirements
[60]. We have compared our algorithm with a traditional FFT based method on a large list of complexes,
and show that our algorithm works well in practise, and accurately captures docking sites (see section §4).
Our conclusions and future work in section §6.

2 Related work

There have been a wide range of both flexible and rigid docking algorithms, based on geometry or sequence
or both. Some assume that the active sites (regions where other proteins interact) are already known.

Rigid docking approaches Contact surfaces between domains of methemoglobin was studied in [30] and
proposed as a affinity function to use in docking. A rigid docking search carried out in [39], resulting in the
program DOCK, which has evolved over the years [59] to include flexibility docking and other functions.
They used spheres to represent grooves in one protein and the density of the other. It was later used in a
geometric hashing scheme [23, 50, 51, 22, 18] extended to a parallel version [43]. A search strategy based
on matching pairs of consistent spheres, one from each protein was used, instead of a full combinatorial
search. The combinatorial search is reduced to a clique finding problem by constructing a graph of distances
between atom pairs in [38]. Another graph based approach was studied in DOCK 4.0 [19]. A knob and
hole detection and matching algorithm [16] was used to successfully redock the α, β subunits of hemoglobin.
This was extended in [62] to allow for a further sampling along the axis containing the matched knob and
hole. He performs an optimization using a grid-based double skin layer approach in 2D. We will further
discuss this double skin layer approach later as we use a variation of it in our algorithm. A full 6D grid
based search was used in [32]. They also provide a method to uniformly sample 3D rotational space. The
grid based double skin layer approach was sped up using the Fast Fourier Transform in [35], and became
the base of many variations and softwares [26], DOT [45], ZDOCK [12, 11, 13] RDOCK [44]. Hydrogen
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bonds were used [46] to reduce the rotational sampling space and improve the scoring function. Spherical
harmonics based approached were studied in [55, 56, 57] and [37, 36]. We have compared our algorithm to
previous grid based Fourier transform and Spherical harmonics approaches in [60]. There have also been
other approaches: including building webs over the surfaces and matching them using least squares fit [3], a
slice based matching scheme [61], mapping surfaces to 2D matrices and detection of matching sub matrices
[31] and fixing anchors and searching over other degrees of freedom: TreeDock [20]. A simulated annealing
method, by choosing angles in discrete 45 degree steps and translations of 2A is used in [65] to perform a
random walk and dock proteins. In [14], residues are approximated as spheres and the docking broken down
as finding 5 rotations and a translation. The rotational space is sampled using simulated annealing.

Flexible docking approaches Many proteins are known to be flexible (see [15] for an example of the
HIV-1 protease flexibility simulation). Global search methods : Global search strategies have been based on
energy minimizations, heuristics based search methods, and geometric identifications of cavities indicating
possible active sites. In DOCK [39] and later [17], receptor binding sites were identified as cavities and the
complementary space represented as spheres. Fragments of the ligand1 were separately bound to the active
site using various distance heuristics between atoms and spheres. Fragments were then incrementally selected
to form the entire ligand. An incremental approach based on shape [41], [64](HammerHead) and properties
of the molecules FLEXX [54] is used to dock fragments, pruning the exponential search by retaining only
a fixed set of possible conformers at each step. Other global search techniques include hydrogen bond
pattern based search [47], genetic algorithms [33](GOLD), [25, 52, 34], monte-carlo/simulated annealing
[29](AUTODOCK),[9],[2], molecular dynamics [49] and evolutionary programming [28]. See [48] for the
performance of different algorithms in AUTODOCK. Steered molecular dynamics, using a visualization and
feedback toolkit has also been studied in SMD [42]. Backbone and domain movements : Hinge bending in
either protein or ligand is also used in docking in [58], accounting for domain movements. Conformations
are sampled using a coarse set of values for torsion angles of rotating bonds in [63]. Those conformations
which are sterically correct are used in a rigid body docking. Torsion and bond angles are sampled and
matched using the α-shapes of the molecules [4]. Side chain: Using rotamer libraries, and a greedy heuristic
or branch and cut algorithm, [1] performs docking of proteins with flexible side chains as a second step
to rigid docking. Similar discrete side chain conformations were searched in [40]. A combination of the
pseudo-brownian Monte Carlo minimization followed by flexible side chain docking using ICM was tested on
a variety of bound and unbound complexes in [21]. Apart from backbone and side chain movements, loop
flexibility at known active sites is handled using a Monte carlo, simulated annealing based docking approach
in [7]. See the connexions project at http://cnx.rice.edu/content/m11464/latest/ for a summary of flexible
docking.

3 Algorithm details

Consider two proteins A and B, with M1,M2 atoms respectively. We represent the molecules using Gaussian
kernels, construct the double skins used for complementary space docking and derive a new model for docking.

3.1 Affinity functions

The affinity functions are modeled as Radial Basis Functions (RBFs) to facilitate using Fourier transforms
to efficiently solve the docking problem.

1Often, one of the proteins is smaller and termed as a ligand, and generally taken to be more flexible.
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Molecule representation We use the sum of Gaussian’s representation to model our proteins. An atom
centered at xc, with a van der Waal’s radius of r, is modeled as an isotropic Gaussian kernel: g(x) =

e−β( (x−xc)2

r2 −1). The decay rate of the kernel is controlled by β. A value of 2.3 is used in the literature [27]
to approximate the solvent excluded surface at an isovalue of 1. By lowering this parameter, we can model
molecules at lower resolutions [5].

3.1.1 Shape complementarity

Core
Surface atomsPseudo atoms

Skin

(a) (b)

Figure 1: (a) Skin and Core regions for complementary space docking. Atoms are drawn as solid circles.
The skins regions are colored while the core regions are white. (b) A possible docking of the molecules show
a large overlap between the grown layer of the first and the surface atoms of the second.

For shape based docking we will try to maximize the overlap of the surface of protein B with the
complementary space of A. The double skin layer approach is used here. It was introduced in [62] for 2D,
[32] for 3D, sped up using Fast Fourier Transforms in [35], and extended to complex space in [11]. We define
two skin regions : 1). The surface skin of B, which is the density function of the set of surface atoms of B, and
2). The complementary region of A, defined by a grown skin region, by introducing a 1-layer of pseudo-atoms
on the surface of A. The atoms of A and the inner atoms of B form core regions. These regions are shown
in figure 1. We used an adaptive grid based algorithm to construct these regions [60]. To maximize skin
overlaps and to minimize overlaps of the cores, we assign positive imaginary weights to the core atoms and
positive real weights to the skin atoms/pseudo-atoms. An integral of the superposition of the molecules has
two real contributions: the core overlaps contribute negatively and the skin overlaps contribute positively.
Since the symmetry is broken in the imaginary part of the integral (one contribution is due to atom - atom
overlap and another from pseudo-atom - atom overlap), we currently do not use this value, although others in
the literature assign this a ‘smaller’ negative potential. The weighted sum of Gaussians function definition
of a molecule (of M atoms), with its associated skin region can be expressed as a sum of two functions:

fSC(x) = fRe(x) + f Im(x) =
MRe
∑

k=1

cReg(x− xRe,k) +
MIm
∑

k=1

cImg(x− xIm,k) =
M
∑

k=1

ckg(x− xk). Here, g is the

Gaussian function located at each atom (or pseudo atom) and (SC) stands for shape complementarity. The
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weights {ck ∈ {cIm, cRe}, k = 1..M} are either positive imaginary or positive real. See [13] for an extension
to shape complementarity to pairwise shape complementarity.

3.1.2 Electrostatics interactions

Similar to the procedure used for shape complementarity, Gabb et. al. [26] have shown how to introduce
the electrostatics term. The first protein’s electric potential is computed and matched against the charges
in the other. This can also be sped up using a Fourier based algorithm. Charge assignments are made using
APBS [6]. A new affinity function f1

E is defined as
∑

k

qk
1

E(x−xk)(x−xk) , where E(x) is the distance dependent

dielectric constant [26]. The corresponding function for the second protein is f2
E =

M2
∑

k=1

qkδ(x − xk). In [11],

they use these functions multiplied with a imaginary and a negative imaginary weight respectively.

3.2 Rigid docking model specification

Let A,B’s affinity functions sum be denoted as f1, f2, (f = fSC + fE , or f = fSC depending on whether
we use electrostatic interactions or not.) and T,∆ be translational and rotational operators. If the user
considers a potential docking site as one where the overlap potential is over a threshold τ , then the rigid
protein-protein docking solution, using our affinity functions definition, is expressed as the set of triplets:

{(t, r, s) : (s = Re(

∫

x

f1(x)Tt(∆r(f2(x)))dx)) ≥ τ} (3.1)

3.3 Search

We solve equation (3.1) using Fourier series expansions. First, we express the integral as a uniform sum of
compactly supported functions and provide an adaptive algorithm to search for regions where the scoring
function exceeds the threshold provided by the user.

3.3.1 Fourier series expansions

Any periodic bounded function can be expanded as a Fourier series. For example, a periodic function in

[−1/2, 1/2] can be expressed as: q(x) =
∞
∑

j=−∞

ωje
2πijx, where the coefficients ωj =

1/2
∫

−1/2

q(x)e−2πijxdx.

Let In denote a 3D grid of indices: {k : [−n/2..n/2)3, k ∈ I}. Let us expand the kernel function in its

fourier series form: g(x − xk) =
∑

ω∈I∞

Gωe
2πi(x−xk).ω. Hence, the affinity function f(x) =

M
∑

k=1

ckg(x −

xk) can be expressed as f(x) =
M
∑

k=1

ck(
∑

ω∈I∞

Gωe
2πi(x−xk).ω). Rearranging terms, we obtain: f(x) =

∑

ω∈I∞

Gωe
2πix.ω

M
∑

k=1

cke
−2πixk.ω. Let us denote the second terms by Cω. Hence, f(x) =

∑

ω∈I∞

GωCωe2πix.ω.

Similarly: f(x− y) =
∑

ω∈I∞

GωCωe2πi(x−y).ω.

Expanding f1, f2 using the above series, for a given rotation, with the molecules scaled to lie in π3 =
(−0.5..0.5]3 for simpler mathematical notation, the scoring integral in equation (3.1) reduces to
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n̂ grid points
New points added by adaptive subdivision

Approximate profile f̂

φ, here m = 2

Possible peak is located

n̂− 1 n̂

g4

τ

Figure 2: The docking peak search can be represented as finding the peak positions and values in a grid of
overlapping splines.

∫

y∈π3

f1(y)(∆Rf
(f2))(x − y)dy, ∀ x =

∫

y∈π3

∑

ω1∈I∞

Gω1Cω1e
2πiy.ω1

∑

ω2∈I∞

Gω2C
′

ω2
e2πi(x−y).ω2dy. Since

1/2
∫

−1/2

e2πiy(a−b) = 1 if a = b and 0 otherwise, the integral reduces to
∑

ω∈I∞

G2
ω
CωC

′

ω
e2πix.ω.

3.3.2 Approximations

We make three approximations in computing the above coefficients. Since the truncated Gaussian is a
decaying kernel, we choose to compute only the first (−n/2..n/2]3 Fourier coefficients. The parameter n
is chosen to satisfy a user required accuracy in the docking profile. If we include electrostatics, the decay
should be even slower, and hence, the same bounds derived for shape complementarity should be sufficient.
The current analysis, though, is based on shape complementarity. The Fourier coefficients of the atoms
centers, Cω, C

′

ω
are approximated as Ĉω, Ĉ

′

ω
, computed using a Non-equispaced Fourier Transform (NFFT)

algorithm given in [53] (Very briefly, the NFFT algorithm computes an approximation to Fourier coefficients
when input data is not uniformly sampled). The truncated Gaussian is a tensor product kernel. We compute
the Fourier coefficients of a 1D Gaussian kernel of size n using MAPLE numerically. The Fourier coefficients
of the truncated Gaussians are now approximated as the tensor product Ĝω. Hence, we approximate the
scoring integral as

∑

ω∈In

Ĝ2
ω
ĈωĈ

′

ω
e2πix.ω =

∑

ω∈In

F̂ωe
2πix.ω.
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3.3.3 Inverse peak search

Given the function f̂(x) =
∑

ω∈In

F̂ωe
2πix.ω, we are required to compute {(x, s) : s = Re(f̂(x)) ≥ τ}. A

3D IFFT of F̂ω yields the docking profile f̂(x) at a uniform sampling. If we have prior knowledge on the
smoothness of the profile, we can zero pad F̂ω (if necessary) and obtain the profile at a sufficient sampling.
This would generally lead to high computational and memory requirements. Instead, we perform an adaptive
computation of F̂ω, progressively zooming in on regions where the threshold τ is satisfied. Using the NFFT
algorithm in [53], we make the following approximation: f̂(x) ≈ ĝ(x) =

∑

k∈In̂,m(ωj)

gkφ(ωj − k/n̂), (j ∈

In, n̂ = αn, α ≈ 2, In̂,m(ωj) = {j ∈ In̂ : n̂ωj − m ≤ j ≤ n̂ωj + m}). This is schematically represented
in 1D in figure 2. Obtaining regions which are above a certain threshold is now reduced to finding roots
of the previous polynomial. If we use a cubic bspline function for φ with a support width of 5, it requires
the root of a 7x7x7 system of degree 5 equations. We instead adaptively compute regions which satisfy our
docking threshold using an adaptive search algorithm. We initially start with the n̂3 grid of φ as a set of
intervals. We determine using a simple procedure if any interval can potentially contain a value greater than
the docking threshold and, if so, subdivide and recursively search the sub intervals. Consider any interval
I. There are multiple φ functions whose summation determine the function in I. If we change these φ, such
that positive ones centered outside I come closer by one interval width, negative ones shift away from I by
one interval width and positive ones centered inside I are given its maximum value, the sum of the new
function at the interval endpoints defines an upper bound for the true function inside I. This gives us a
criterion as to whether we need to further subdivide and check an interval or not.

Using a FFT for the 1st step: The docking profile is usually a thin closed surface with zeros on the
outside and large negatives on the inside. Hence, in the very first step of the algorithm, a large number
of regions are removed from further consideration. We are able to convert the algorithm in the first level
into an FFT of size n3. This is an efficient way of speeding up algorithm 1. We provide the analysis in
1D, which can be easily extended to 3D. Consider an interval [i, i + 1], with gaussian functions φk, where
i−m ≤ k ≤ i+ 1 +m, both positive and negative. Let the extent of the φk be m on each side of k. Let us
construct a new function ψk by raising the value of φk to max(φk, φk+1, φk−1) on the n̂3 grid. This gives us
the following simple observation:

Lemma The summation of the ψ at a point k in the low resolution grid of the gaussian centers is always
greater than the summation of φ at any point in any interval which includes k.

The summation of functions ψ does not include any shifts. Hence, we can consider this as a convolution
of ψ with g, the input to algorithm 1. Convolutions can be quickly computed in O(n3 logn) using the FFT
in a single step. This step eliminates most regions outside the overlap of molecules and core clashes from the
docking profile. Hence, the adaptive search is limited to a narrow region where the surface contacts occur.

3.4 Error and complexity analysis

The exact docking profile is given as
∑

ω∈I∞

G2
ω
CωC

′

ω
e2πix.ω while we compute

∑

ω∈In

Ĝ2
ω
ĈωĈ

′

ω
e2πix.ω approxi-

mately using the NFFT. Given a user defined error ǫ, we derive the value of n such that ||
∑

ω∈I∞

G2
ω
CωC

′

ω
e2πiω.x−

∑

ω∈In

Ĝ2
ω
ĈωĈ

′

ω
e2πiω.x + ǫ1||2 ≤ ǫ. The error ǫ1 is due to the NFFT algorithm, which converges exponentially
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Algorithm 1 Inverse adaptive peak search

1: Inputs are:
2: -n̂3: number of frequencies
3: -h: accuracy of peak position
4: -φ: Compactly supported smooth decaying function at each k ∈ In̂
5: -gk: coefficients of φ
6: -τ : threshold for docking score
7: -{(val, pos)}: Current output peak regions and scores.
8: Preprocessing: [Interval set: I = intervals(k)]
9:

10: while I 6= ∅ do

11: interval ← I.next()
12:

13: if interval.isLowRes() then

14: t← 0
15: {φ} ← interval.overlappingφ()
16:

17: for φ ∈ {φ} do

18: if interval.isOutside(φ) then

19: if φ > 0 then

20: t← t+ φ(interval.cIdx(φ.center))
21: else

22: t← t− φ(interval.fIdx(φ.center))
23: end if

24: else

25: if φ > 0 then

26: t← t+ φmax

27: else

28: t← t− φ(interval.fIdx(φ.center))
29: end if

30: end if

31: end for

32:

33: if (t > τ) then

34: I ← I ∪ interval.subIntervals()
35: end if

36: else

37: update({(val, pos)}, interval)
38: end if

39:

40: end while

41:

42: Output: [{(val, pos)}]
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in their sampling parameters. Since for docking, we are satisfied with errors around 1% to 0.1%, we do not
consider the cost due to sampling. From [5], lemma 1, the number of Fourier coefficients n required for a
relative accuracy ǫ is:

n = min(n̂) :
∑

ω∈In̂

G4
ω
≥

V

2π
−
Mminj(|(cAcB)j |2)V

||cAcB||21
(
ǫ

3
)2, V =

∫

g2 in (−0.5..0.5]3, M = max(M1,M2)

Size and resolution vs. cost: The size of the molecule and the resolution we are interested affects the cost of
the algorithm. We propose to do a hierarchical search using multiple resolutions. The resolution parameter
can affect the rate of decay of the Gaussian (b) and the number of centers being considered. Using [5],
lemma 3, n varies as M1/3

√

b/2ǫ3/2.
Cost of the algorithm: The Fourier coefficients of the truncated GaussianGω are precomputed to full precision
using MAPLE. The NFFT algorithm has been implemented to compute Cω, C

′

ω
, the Fourier coefficients of the

sum of centers in O(M1 +n logn), O(M2 +n logn), respectively, where n, computed using our error analysis,

is shown to be O(max(M
1/3
1 ,M

1/3
2 )). Computation of the product of the coefficients is costs O(n3). An

IFFT of the product yields the docking profile on a n3 resolution grid and costs n3 logn. To obtain the
peaks in a higher resolution, without using a larger grid, we can perform the inverse peak search algorithm
described in §3.3.3. If there are η regions which satisfy the threshold τ in the docking profile, they can be
located and computed in a grid of size 2h in O(ηhn). Hence, the computational cost of our docking algorithm
grows linearly with the number of atoms in the molecules. Since each rotation is performed independently,
the total cost is O(max(M1,M2)N

3
R), where N3

R is the number of sampled rotations. The memory cost
is O(max(M1,M2)). Compared to traditional grid based algorithms, we see that our algorithm has lower
computational costs and lower memory requirements [60].

4 Results

We have computed the docking predictions for a set of 71 complexes using different affinity functions and
flexible models. We have also taken a set of three test cases to compare, at each step, with a traditional grid
based approach. The three complexes we use to compare are: Hyhel-5 fab complexed with bobwhite quail
lysozyme (PDB:1BQL.PDB), Idiotype-anti-idiotype fab complex (PDB: 1IAI. PDB) and an influenza virus
hemagglutinin complexed with a neutralizing antibody (PDB: 2VIR .PDB). We will simply refer to these
complexes as complex 1, complex 2, complex 3 respectively (see figure 3).

5 Soft Docking

For soft docking, we first use shape complementary as the only affinity function in scoring. Then we inves-
tigate the effects of introducing electrostatics interactions.

5.1 Comparison with Grid-based FFT Algorithm

Difference in docking profiles: We compared the difference in the energy of the docking profile we
obtain to that obtained from a 2563 grid. From tables 5.1.1,5.1.2 and 5.1.3, we see that the differences are
very small for relatively fewer Fourier coefficients. A slice from the docking profiles the two methods are
shown in figure 4. From the figure, we can see that the shape of the profile and the location of the peaks are
well conserved in our algorithm.
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(a) An immunoglob-
ulin from the
influenza virus
(IGG1, LAMBDA)
(PDB:2VIR.PDB)

(b) Hemag-
glutinin
(PDB:2VIR.PDB)

(c) Complex 3:influenza
virus hemagglutinin
complexed with a
neutralizing antibody
(PDB:2VIR.PDB)

(d) Idiotypic FAB
730.1.4 (IGG1) of
virus neutralizing anti-
body(PDB:1IAI.PDB)

(e) Anti-Idiotypic
Fab 409.5.3
(Igg2A)(PDB:1IAI.PDB)

(f) Complex 2:Idiotype-
anti-idiotype fab com-
plex(PDB:1IAI.PDB)

(g) Hyhel-5 FAB
(PDB:1BQL.PDB)

(h) Bob-
white Quail
Lysozyme
(PDB:1BQL.PDB)

(i) Complex 1:Hyhel-5 fab
complexed with bobwhite quail
lysozyme (PDB:1BQL.PDB)

Figure 3: The three complexes we have used as test cases. In the first column, we show one protein of the
complex with the grown surface in red. The second column shows the surface atoms in light brown. We
show a cut away to reveal the two skins. In the last column, the complexed structures are shown. The first
molecule is colored using standard atom colors while the atoms in the second molecule are colored by their
residue type to differentiate the two molecules in the complex. The three molecules/skins in the first column
had 3263/4519, 3342/4555, 3243/4308 atoms/kernel centers respectively. In the second column, there were
988/1087, 4956/1719 and 5293/469 surface and interior atoms respectively.
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Figure 4: Comparison of a slice from our docking profile compared with that of a FFT based algorithm on
a 2563 grid. The shape and location of peaks is shown to be well conserved.

Number of freq. β = −0.5 β = −1
l2 l∞ l2 l∞

163 6.3364 3.0409 9.9454 3.5909
203 3.9761 1.2994 7.9016 1.7434
323 1.1991 0.2889 5.3285 0.5909

Table 5.1.1: Difference in energy, in %, for complex 1, with α = m = 2 as the NFFT parameters

Number of freq. β = −0.5 β = −1
l2 l∞ l2 l∞

163 4.5203 3.5743 6.8897 4.2208
203 2.5131 1.4592 5.1096 1.8793
323 0.8462 0.2480 3.6941 0.5297

Table 5.1.2: Difference in energy, in %, for complex 2, with α = m = 2 as the NFFT parameters

Number of freq. β = −0.5 β = −1
l2 l∞ l2 l∞

163 4.8228 2.0457 7.7806 2.3983
203 2.7570 0.8029 6.0601 1.0721
323 0.9504 0.2017 4.6343 0.4111

Table 5.1.3: Difference in energy, in %, for complex 3, with α = m = 2 as the NFFT parameters
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Comparison with FFT grid-based algorithm using larger set of complexes: We compare results
for redocking 71 complexes using shape complementarity to a traditional, expensive 1283 grid FFT based
docking. We find where the true position lies in our ranking of peaks. We use an accuracy of 2 Åbetween
what we have and the true docked complex position while searching for the peaks. We see that the best
results are obtained with a rate of decay around the recommended value of -2.3. These results have been
plotted for comparison in figures 5, 6 and 7. Our new algorithm uses far lesser time and memory than the
FFT grid-based method. In this experiment, we used Euler angles as they are used by many groups who
perform the FFT grid-based docking search.

Figure 5: Comparison with docking with various rates of decay using 12 degrees rotational sampling, 32
fourier coefficients and a 1283 FFT

Figure 6: Comparison with docking with various rates of decay using 12 degrees rotational sampling, 32
fourier coefficients and a 1283 FFT

For comparisons to other grid based methods, please see [60].
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Figure 7: Comparison with docking with various rates of decay using 12 degrees rotational sampling, 32
fourier coefficients and a 1283 FFT

5.2 Redocking

In redocking, the two proteins taken from the bound complex are computationally docked. From the list
of 71 complexes, 1E96.PDB and 1F51.PDB could not be assigned charges using APBS [6] and were not
considered any further. Our results for redocking, using shape complementarity is shown in tables 5.2.1,
5.2.2. We used a rotational sampling of 20◦. The number of Fourier coefficients were around 323, which
is seen to retain around 95% of the energy in the docking profile. From the table, we see that we were
able to predict good peaks in the top 2000 for 38 complexes, and could not predict any good positions for
1VFB.PDB, 1EER.PDB, 1E6J.PDB and 1HE8.PDB. We present the results sorted according to the surface
area of the complex. It is interesting to note that smaller surface areas resulted in more number of good
predictions. To compute the RMSD, we used all atoms of the ligand in the interface. The cutoff RMSD used
was 5Å. But 22 complexes were found within 2ÅRMSD, 47 within 3Åand 58 within 4Å. In this thesis, we
do not further refine the search from these set of peaks to predict an actual complex using energetics.

5.3 Bound-unbound Docking

Since we are interested in flexible protein-protein docking, we first consider the effectiveness of soft docking
on bound-unbound docking. For this set of experiments, we take one protein from the docked complex and a
known independent structure of the other protein. On doing an analysis of the interface of the files obtained
from APBS, we found that 1EAW, 1BVK, 1ATN, 1EZU, 2BTF, 2VIS, 1KXP and 1BGX had too many
missing atoms in the region. Hence, we removed them from the list of 69 complexes and present results for
the remaining in tables 5.3.1 and 5.3.2. We used the same parameters as the redocking case. Out of the
60 complexes tested, soft docking found peaks (within 5ÅRMSD) for 23 within the top 2000 predictions, 39
within the top 10000, 53 within the top 50000 and failed for 8 cases (1GCQ, 1I2M, 1DQJ, 1FAK, 1EER,
1ML0, 2HMI and 1N2C). Unlike redocking, we get only 2 complexes with peaks within 5ÅRMSD of the
actual, 23 within 3Åand 42 within 4Å.
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PDB ID Rank N Peaks Best RMSD PDB ID Rank N Peaks Best RMSD

1GCQ 12 22 2.159996 1AVX 6931 5 2.442265
1AY7 484 20 1.664378 1BUH 282 7 2.709604
1PPE 15 12 1.703695 1GRN 167 6 2.641065
1KTZ 539 22 2.008881 1EWY 793 11 2.065424
1QA9 1877 7 2.355009 1F34 1 3 3.562068
7CEI 2419 12 1.297948 1B6C 154 9 2.197851
1D6R 114 9 2.007833 1IJK 4423 4 1.838018
1HIA 249 12 1.545003 1BVN 827 8 2.572958
1CGI 53 9 1.96838 1A2K 2165 6 2.092011
1EAW 73 4 2.380758 1TMQ 1624 7 1.992915
2SNI 0 12 1.556862 1GHQ 1611 2 3.700142
1UDI 262 10 2.188662 1M10 1029 1 4.026118
1KAC 5967 8 1.685013 1FQJ 395 6 2.61232
2SIC 22 16 1.81577 1I2M 67 15 1.903976
1HE1 2 12 1.023882 1WQ1 22 3 3.372812
1VFB - 0 5.527322 1KXQ 105 2 2.524465
1AK4 1146 11 1.148174 2BTF 21725 1 3.261152
1BVK 6957 1 4.543537 1MAH 7466 1 4.040359

Table 5.2.1: Protein-protein redocking results using shape complementarity ..1. ‘Rank’ is the best rank
among all predicted positions whose RMSD was less than 5Å. ‘N Peaks’ is the number of peaks in the
predicted set which were less than 5ÅRMSD from the known position. ‘Best RMSD’ is the lowest RMSD
among all the peaks that were shortlisted. If there were no good predictions in the top 50,000 that we choose
to keep, we enter a ‘-’ in the column for ‘Rank’. The proteins are ranked by their surface areas.
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PDB ID Rank N Peaks Best RMSD PDB ID Rank N Peaks Best RMSD

1FQ1 933 7 2.005644 1EER - 0 8.973606
1DFJ 0 11 1.80656 1RLB 13822 2 1.174494
1SBB 3139 10 1.528597 1IB1 3910 2 3.451666
1DQJ 4432 2 1.907411 1AKJ 886 7 1.110888
2MTA 2266 5 2.753511 2VIS 16781 4 2.465282
1EZU 39397 1 2.363247 1K5D 120 4 2.453245
1IQD 10752 5 3.519911 1H1V 1962 4 1.288332
1K4C 11343 4 2.095662 1E6J - 0 5.554778
1FAK 17 6 1.588706 1NCA 5692 5 2.245905
1E6E 18 5 2.605772 1ML0 32582 1 4.319139
1ATN 2815 5 1.767566 1KXP 236 4 3.785924
1NSN 31399 1 4.938059 1HE8 - 0 6.315094
1KKL 11 2 1.919542 1BGX 43 1 3.330236
1I4D 17649 2 4.391554 1DE4 28305 2 3.448057
1JPS 1327 3 2.838963 2HMI 47242 1 3.468522
1KLU 11294 7 2.061819 1N2C 4929 2 4.784001
1BJ1 17946 1 3.221278

Table 5.2.2: Protein-protein redocking results using shape complementarity..2. ‘Rank’ is the best rank among
all predicted positions whose RMSD was less than 5Å. ‘N Peaks’ is the number of peaks in the predicted set
which were less than 5ÅRMSD from the known position. ‘Best RMSD’ is the lowest RMSD among all the
peaks that were shortlisted. If there were no good predictions in the top 50,000 that we choose to keep, we
enter a ‘-’ in the column for ‘Rank’. The proteins are ranked by their surface areas.
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PDB ID Rank N Peaks Best RMSD PDB ID Rank N Peaks Best RMSD

1GCQ - 0 - 1AK4 354 8 2.257936
1AY7 2758 14 2.579163 1AVX 42215 1 4.285829
1PPE 61 22 2.823658 1BUH 773 5 2.471546
1KTZ 12874 10 3.418981 1GRN 3218 1 4.973951
1QA9 3192 3 4.286313 1EWY 446 8 3.288623
7CEI 99 15 2.663766 1F34 4 2 3.923744
1D6R 4383 9 2.399734 1B6C 571 5 2.589875
1HIA 2902 28 2.943805 1IJK 9540 3 3.40416
1CGI 9488 1 4.497934 1BVN 1382 3 4.057453
2SNI 2 8 1.637314 1A2K 1137 3 3.538182
1UDI 15306 5 3.524703 1TMQ 499 2 2.616295
1KAC 6659 4 3.198683 1GHQ 16520 4 4.210506
2SIC 9 10 2.057806 1M10 11367 2 3.410315
1HE1 1 9 2.770525 1FQJ 5862 6 3.556944
1VFB 24581 2 3.448647 1I2M - 0 -

Table 5.3.1: Bound-unbound docking results using shape complementarity..1. ‘Rank’ is the best rank among
all predicted positions whose RMSD was less than 5Å. ‘N Peaks’ is the number of peaks in the predicted set
which were less than 5ÅRMSD from the known position. ‘Best RMSD’ is the lowest RMSD among all the
peaks that were shortlisted. If there were no good predictions in the top 50,000 that we choose to keep, we
enter a ‘-’ in the column for ‘Rank’. The proteins are ranked by their surface areas.
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PDB ID Rank N Peaks Best RMSD PDB ID Rank N Peaks Best RMSD

1WQ1 34 5 2.422902 1JPS 9655 5 2.807827
1KXQ 86 2 2.694885 1KLU 16336 10 2.598834
1MAH 26 5 2.486886 1BJ1 17610 1 3.300814
1FQ1 345 3 3.59622 1EER - 0 -
1DFJ 38 6 3.405731 1RLB 16708 3 3.499713
1SBB 491 7 1.878689 1IB1 1047 1 4.426045
1DQJ - 0 - 1AKJ 9009 4 3.14449
2MTA 2489 4 2.255889 1K5D 4714 2 3.937634
1IQD 40224 1 3.324618 1E6J 14233 3 2.838202
1K4C 18016 6 2.286136 1NCA 24641 1 4.647226
1FAK - 0 - 1ML0 - 0 -
1E6E 26 3 3.238776 1HE8 29673 1 3.445586
1NSN 214 45 2.157744 1DE4 30009 1 4.606551
1KKL 1722 3 4.509084 2HMI - 0 -
1I4D 3036 1 4.605807 1N2C - 0 -

Table 5.3.2: Bound-unbound docking results using shape complementarity..2. ‘Rank’ is the best rank among
all predicted positions whose RMSD was less than 5Å. ‘N Peaks’ is the number of peaks in the predicted set
which were less than 5ÅRMSD from the known position. ‘Best RMSD’ is the lowest RMSD among all the
peaks that were shortlisted. If there were no good predictions in the top 50,000 that we choose to keep, we
enter a ‘-’ in the column for ‘Rank’. The proteins are ranked by their surface areas.
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5.4 Electrostatics Interactions

Electrostatics based affinity function is defined using a model by Gabb [26]. The dielectric value is set as 4
for distances less than 6 Åfrom the center of atoms, 80 for ¿ 8 and a linear interpolation in between. We add
this term to our docking score and tabulate the new results in tables 5.4.1 and 5.4.1. For each complex, we
used a cutoff of 5Åas the RMSD required between the locations of ligand interface atoms in the predicted
position vs the known crystal structure. This time, we use a more reasonable cutoff of 4000 positions only.
Similar values of 4000, 4000-7000 have been cited in [21, 10]. We see that adding electrostatics enables us
to get hits in the top 4000 positions, reducing the computations required in finer docking stages.

PDB ID Rank N Peaks Best RMSD PDB ID Rank N Peaks Best RMSD

1GCQ 788 5 4.410048 1AK4 2641 9 2.105113
1AY7 473 16 2.660349 1AVX 588 2 3.300274
1PPE 1677 12 2.858134 1BUH 299 6 2.857323
1KTZ 822 11 3.367324 1GRN - 0 -
1QA9 41 7 3.695077 1EWY 463 9 3.258474
7CEI 1532 11 2.118427 1F34 643 3 3.879021
1D6R 1413 6 2.522827 1B6C 804 7 2.342338
1HIA 73 11 2.120566 1IJK 419 6 2.530123
1CGI 2974 1 4.757587 1BVN 1894 3 3.729099
2SNI 392 11 1.892177 1A2K 330 5 3.103228
1UDI 3603 8 3.123136 1TMQ 59 7 2.068443
1KAC 2615 7 2.097499 1GHQ 1636 2 3.876798
2SIC 58 15 2.332064 1M10 399 1 4.582629
1HE1 4 11 2.314517 1FQJ 577 5 3.346168
1VFB - 0 - 1I2M - 0 -

Table 5.4.1: Bound-unbound docking results using electrostatics and shape complementarity..1. ‘Rank’ is
the best rank among all predicted positions whose RMSD was less than 5Å. ‘N Peaks’ is the number of peaks
in the predicted set which were less than 5ÅRMSD from the known position. ‘Best RMSD’ is the lowest
RMSD among all the peaks that were shortlisted. If there were no good predictions in the top 4,000 that
we choose to keep, we enter a ‘-’ in the column for ‘Rank’. The proteins are ranked by their surface areas.

5.5 Timing

We compare the time taken to perform the convolutions using our Fourier method vs a FFT method using
1283 and 2563 grids in table 5.5.1. We see that computing approximate Fourier coefficients outperforms the
traditional FFT algorithm. The number of coefficients tabulated correspond to those used in showing the
error in table 5.1.1
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PDB ID Rank N Peaks Best RMSD PDB ID Rank N Peaks Best RMSD

1WQ1 97 1 3.897003 1JPS 2538 3 3.095251
1KXQ 1492 2 3.168111 1KLU 124 6 2.75031
1MAH 1094 1 4.654828 1BJ1 1121 1 3.071451
1FQ1 52 3 3.168911 1EER - 0 -
1DFJ 288 7 2.555477 1RLB 2182 2 2.293018
1SBB 1011 7 2.157762 1IB1 1 2 4.703256
1DQJ 1923 1 3.19577 1AKJ 2159 1 2.951469
2MTA 627 5 2.723326 1K5D 266 2 4.417297
1IQD 120 4 3.334374 1E6J - 0 -
1K4C 783 4 2.105856 1NCA 139 10 2.801303
1FAK - 0 - 1ML0 - 0 -
1E6E 135 4 3.228511 1HE8 - 0 -
1NSN 1016 1 4.203168 1DE4 - 0 -
1KKL 2421 1 3.711123 2HMI - 0 -
1I4D 1010 2 4.441025 1N2C - 0 -

Table 5.4.2: Bound-unbound docking results using electrostatics and shape complementarity..2. ‘Rank’ is
the best rank among all predicted positions whose RMSD was less than 5Å. ‘N Peaks’ is the number of peaks
in the predicted set which were less than 5ÅRMSD from the known position. ‘Best RMSD’ is the lowest
RMSD among all the peaks that were shortlisted. If there were no good predictions in the top 4,000 that
we choose to keep, we enter a ‘-’ in the column for ‘Rank’. The proteins are ranked by their surface areas.

Frequencies, (α, β) α = 2, β = 2 FFT(2563)
4096 0.114369 16.798823
8000 0.170260 16.798823

Table 5.5.1: Time in seconds taken to estimate Fourier coefficients with the NFFT′ for different over-sampling
factors α and β for a molecule with 1100 atoms. The time to perform the FFT for a 2563 grid is also given.
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5.6 Memory cost

The experimental results closely followed the theoretical memory requirement (linear in the number of
centers). We used a memory over-sampling factor of 2 in the NFFT steps. Hence for our three test cases
which had 10000 to 15000 atoms, we needed approximately 5MB of space. This is in contrast to 268 MB for
a 2563 grid for the FFT Grid Based approaches. For comparisons to other grid based methods, please see
[60].

6 Conclusion

Our main contribution lies in expressing the docking of proteins as a convolution of functions, and providing
approximation algorithms to find peaks in the docking score. Both shape complementarity and electrostatics
were used to obtain the docking positions. Our experiments show that the model accurately predicts docking
sites for a large number of protein pairs. We used the FFTW package [24] for computing FFT and the inverse
FFT.
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