
Stabilization of Flood Sequencing Protocols in Sensor Networks

Young-ri Choi and Mohamed G. Gouda
Department of Computer Sciences
The University of Texas at Austin
{yrchoi, gouda}@cs.utexas.edu

TR-06-58

Abstract

Flood is a communication primitive that can be used by the base station of a sensor network to send
a copy of a message to every sensor in the network. When a sensor receives a flood message, the
sensor needs to check whether it has received the message for the first time and so the message is
fresh, or it has received the same message earlier and so the message is redundant. In this paper, we
discuss a family of four flood sequencing protocols that use sequence numbers to distinguish between
fresh flood messages and redundant flood messages. They are a sequencing free protocol, a linear
sequencing protocol, a circular sequencing protocol, and a differentiated sequencing protocol. We
analyze the self-stabilization properties of these four flood sequencing protocols. We also compare
the performance of these flood sequencing protocols, using simulation, over various settings of sensor
networks. We conclude that the differentiated sequencing protocol has better stabilization property
and provides better performance than those of the other three protocols.

Key words: Self-stabilization, Flood sequencing protocol, Sequence numbers, Sensor networks

Stabilization of Flood Sequencing Protocols in Sensor Networks

Young-ri Choi and Mohamed G. Gouda
Department of Computer Sciences
The University of Texas at Austin
{yrchoi, gouda}@cs.utexas.edu

Abstract

Flood is a communication primitive that can be
used by the base station of a sensor network to send
a copy of a message to every sensor in the network.
When a sensor receives a flood message, the sensor
needs to check whether it has received the message
for the first time and so the message is fresh, or it
has received the same message earlier and so the mes-
sage is redundant. In this paper, we discuss a family
of four flood sequencing protocols that use sequence
numbers to distinguish between fresh flood messages
and redundant flood messages. They are a sequencing
free protocol, a linear sequencing protocol, a circular
sequencing protocol, and a differentiated sequencing
protocol. We analyze the self-stabilization properties
of these four flood sequencing protocols. We also com-
pare the performance of these flood sequencing proto-
cols, using simulation, over various settings of sensor
networks. We conclude that the differentiated sequenc-
ing protocol has better stabilization property and pro-
vides better performance than those of the other three
protocols.
Key words: Self-stabilization, Flood sequencing pro-
tocol, Sequence numbers, Sensor networks

1 Introduction

Flood is a communication primitive that can be used
by the base station of a sensor network to send a copy
of a message to every sensor in the network. The ex-
ecution of a flood starts by the base station sending a
message to all its neighbors. When a sensor receives a
message, the sensor needs to check whether it has re-
ceived this message for the first time or not. Only if the

sensor has received the message for the first time, the
sensor keeps a copy of the message and may forward
the message to all its neighbors. Otherwise, the sensor
discards the message.

To distinguish between “fresh” flood messages that
a sensor should keep and “redundant” flood messages
that a sensor should discard, the base station selects
a sequence number and attaches it to a flood message
before the base station broadcasts the message. When
a sensor receives a flood message, the sensor deter-
mines based on the sequence number in the received
message if the message is fresh or redundant. The
sensor accepts the message if it is fresh and discards
the message if it is redundant. We call a protocol that
uses sequence numbers to distinguish between fresh
flood messages and redundant flood messages a flood
sequencing protocol.

In a flood sequencing protocol, when a fault cor-
rupts the sequence numbers stored in some sensors in
a sensor network, the network can become in an illegit-
imate state where the sensors discard fresh flood mes-
sages and accept redundant flood messages. There-
fore, a flood sequencing protocol should be designed
such that if the protocol ever reaches an illegitimate
state due to some fault, the protocol is guaranteed to
converge back to its legitimate states where every sen-
sor accepts every fresh flood message and discards ev-
ery redundant flood message.

In this paper, we discuss a family of four flood se-
quencing protocols. They are a sequencing free proto-
col, a linear sequencing protocol, a circular sequenc-
ing protocol, and a differentiated sequencing protocol.
We analyze the stabilization properties of these four
protocols. For each of the protocols, we first com-
pute an upper bound on the convergence time of the

1

protocol from an illegitimate state to legitimate states.
Second, we compute an upper bound on the number
of fresh flood messages that can be discarded by each
sensor during the convergence. Third, we compute an
upper bound on the number of redundant flood mes-
sages that can be accepted by each sensor during the
convergence.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related work and motivation of the
flood sequencing protocols. In Section 3, we present
a model of the execution of a sensor network. In Sec-
tion 4, we give an overview of a flood protocol. We
present the four flood sequencing protocols and ana-
lyze their stabilization properties in Sections 5, 6, 7,
and 8. In Section 9, we show the simulation results of
these protocols. We finally make concluding remarks
in Section 10.

2 Related Work and Motivation

The practice of using sequence numbers to distin-
guish between fresh and redundant flood messages has
been adopted by most flood protocols in the litera-
ture. In other words, most flood protocols “employ”
some flood sequencing protocols to distinguish be-
tween fresh and redundant flood messages. A flood
sequencing protocol can be designed in various ways,
depending on several design decisions such as how the
next sequence number is selected by the base station,
how each sensor determines based on the sequence
number in a received message if the received message
is fresh or redundant, and what information the base
station and each sensor stores in its local memory. Un-
fortunately, flood sequencing protocols have so far not
been studied well in the literature. They have been
used without full investigation of their design deci-
sions.

The flood protocols discussed in [11, 10, 7, 2] as-
sume that when a sensor receives a flood message,
the sensor can figure out whether the sensor has re-
ceived this message for the first time or not, without
specifying any mechanism to achieve this. In [9, 4],
it was suggested to associate a sequence number with
each flood message, but any details on how sequence
numbers are used by sensors (i.e. the design decisions
of their flood sequencing protocols) were not speci-
fied. The flood protocols discussed in [13, 5] pro-

pose to attach a unique identifier to each flood mes-
sage and make each sensor maintain a list of identifiers
that the sensor has received recently. Similarly, it was
suggested in [12] that each sensor maintains a list of
flood messages received by the sensor recently. How-
ever, any details such as how many identifiers or mes-
sages each sensor maintains and when a sensor deletes
an identifier or a message from the list were not dis-
cussed.

A flood sequencing protocol is important, since the
fault tolerance property of a sensor network is affected
by a flood sequencing protocol used in the network.
When a fault corrupts the sequence number stored
in some sensor in the network, the sensor may dis-
card fresh flood messages and accept redundant flood
messages. The number of fresh flood messages dis-
carded by the sensor and the number of redundant
flood messages accepted by the sensor, before the net-
work reaches a legitimate state, are different depend-
ing on which flood sequencing protocol is used in the
network. Therefore, we need to study various flood se-
quencing protocols and analyze the stabilization prop-
erties of these protocols. The stabilization properties
of the flood sequencing protocols are useful for sen-
sor network designers or developers to select a proper
flood sequencing protocol that satisfies the needs of a
target sensor network.

In practice, a flood sequencing protocol is used with
a flood protocol that may use other techniques to im-
prove the performance of flood such as reliability or
efficiency. In this paper, each of the flood sequenc-
ing protocols is described focusing on how sequence
numbers are used by sensors, and it is not described
as a specific flood protocol. Note that the stabiliza-
tion property of a flood protocol is affected by that of
a flood sequencing protocol used in the flood protocol.
If the flood protocol does not maintain any extra state
such that it is based on probability [4, 10], the stabi-
lization property of the flood protocol is the same as
that of the used flood sequencing protocol. If the flood
protocol maintains extra state such that it is based on
neighbor information [8, 11], the stabilization property
of the flood protocol also depends on how the extra
state in each sensor is stabilized.

2

3 Model of Sensor Networks

In this section, we describe a formal model of the
execution of a sensor network, which was introduced
first in [3]. This model of sensor networks is ab-
stract, but it accommodates characteristics of sensor
networks such as unavoidable local broadcast, prob-
abilistic message transmission, asymmetric commu-
nication, message collision, and timeout actions and
randomization steps. We use this model to specify
our flood sequencing protocols, verify the stabilization
properties of these protocols, and develop our simula-
tion of these protocols.

The topology of a sensor network is a directed graph
where each node represents a distinct sensor in the
network and where each directed edge is labeled with
some probability. A directed edge (u,v), from a sen-
sor u to a sensor v, that is labeled with probability p
(where p > 0) indicates that if sensor u sends a mes-
sage, then this message arrives at sensor v with proba-
bility p (provided that neither sensor v nor any “neigh-
boring sensor” of v sends another message at the same
time).

If the topology of a sensor network has a directed
edge from a sensor u to a sensor v, then u is called an
in-neighbor of v and v is called an out-neighbor of u.

We assume that during the execution of a sensor net-
work, the real-time passes through discrete instants:
instant 1, instant 2, instant 3, and so on. The time peri-
ods between consecutive instants are equal. The differ-
ent activities that constitute the execution of a sensor
network occur only at the time instants, and not in the
time periods between the instants. We refer to the time
period between two consecutive instants t and t + 1 as
a time unit (t, t + 1). (The value of a time unit is not
critical to our current presentation of a sensor network
model, but we estimate that the value of the time unit
is around 100 milliseconds.)

A sensor is specified as a program that has global
constants, local variables, one timeout action, and one
receiving action.

At a time instant t, if the timeout of a sensor u ex-
pires, then u executes its timeout action at t. Executing
the timeout action of sensor u at t causes u to update
its local variables, and to send at most one message at
t. It also causes u to execute the statement “timeout-
after <expression>” which causes the timeout of u to

expire (again) after k time units, where k is the value
of <expression> at the time unit (t, t+1). The timeout
action of sensor u is of the following form:

timeout-expires ->
<update local variables of u>;
<send at most one message>;
<execute timeout-after <expression>>

To keep track of its timeout, each sensor u has an
implicit variable named “timer.u”. In each time unit
between two consecutive instants, timer.u has a fixed
positive integer value. If the value of timer.u is k,
where k > 1, in a time unit (t − 1, t), then the value
of timer.u is k − 1 in the time unit (t, t + 1). On the
other hand, if the value of timer.u is 1 in a time unit
(t − 1, t), then sensor u executes its timeout action at
instant t. Moreover, since sensor u executes the state-
ment “timeout-after <expression>” as part of execut-
ing its timeout action, the value of timer.u in the time
unit (t, t+1) is the value of <expression> in the same
time unit.

If a sensor u executes its timeout action and sends
a message at an instant t, then an out-neighbor v of u
receives a copy of the message at t, provided that the
following three conditions hold.

i. A random integer number is uniformly selected
in the range 0 .. 99, and this selected number is
less than 100 ∗ p, where p is the probability label
of edge (u,v) in the network topology.

ii. Sensor v does not send any message at instant t.

iii. For each in-neighbor w of v, other than u, if w
sends a message at t, then a random integer num-
ber is uniformly selected in the range 0 .. 99, and
this selected number is at least 100∗p′, where p′ is
the probability label of edge (w,v) in the network
topology.

If v sends a message at t, or if w sends a message at
t and for v, selects a random number that is less than
100 ∗ p′, then this message collides with the message
sent by u with the net result that v receives no message
at t.

If a sensor u receives a message at instant t, then u
executes its receiving action at t. Executing the receiv-
ing action of sensor u causes u to update its own local
variables. It may also cause u to execute the statement
“timeout-after <expression>”. The receiving action
of sensor u is of the following form:

3

rcv <msg> ->
<update local variables of u>;
<may execute timeout-after <expression>>

A state of a sensor network protocol is defined by
a value for each variable and timer.u for each sensor u
in the protocol.

During the execution of a sensor network protocol,
several faults can occur, resulting in corrupting the
state of the protocol arbitrarily. Examples of these
faults are wrong initialization, memory corruption,
message corruption, and sensor failure and recovery.
We assume that these faults do not continuously occur
in the network.

4 Overview of a Flood Protocol

In this section, we give an overview of a flood pro-
tocol that is used with our flood sequencing protocols.
Consider a network that has n sensors. In this network,
sensor 0 is the base station and can initiate floods over
the network. To initiate the flood of a message, sen-
sor 0 sends a message of the form data(hmax), where
hmax is the maximum number of hops to be made by
this data message in the network.

If sensor 0 initiates one flood and shortly after ini-
tiates another flood, some forwarded messages from
these two floods can collide with one another causing
many sensors in the network not to receive the mes-
sage of either flood, or (even worse) not to receive the
messages of both floods.

To prevent message collision across consecutive
flood messages, once sensor 0 broadcasts a message,
it needs to wait enough time until this message is no
longer forwarded in the network, before broadcasting
the next message. The time period that sensor 0 needs
to wait after broadcasting a message and before broad-
casting the next message is called the flood period. The
flood period consists of f time units. (A lower bound
on the value of f is computed below.) Thus, after sen-
sor 0 broadcasts a message, it sets its timeout to expire
after f time units in order to broadcast the next mes-
sage.

When a sensor receives a data(h) message, the sen-
sor decides whether the sensor accepts the message
and forwards it as a data(h − 1) message, provided
h > 1. To reduce the probability of message colli-
sion, any sensor u, that decides to forward a message,

chooses a random period whose length is chosen uni-
formly from the range 1..tmax, and sets its timeout to
expire after the chosen random period, so that u can
forward the received message at the end of the random
period. This random time period is called the forward-
ing period.

Next, we compute the lower bound of the flood pe-
riod f .
Theorem 0:

f ≥ (hmax − 1) ∗ tmax + 1

Due to space limit, the proofs of the theorems in this
paper are discussed in Appendix.

To analyze each of the four flood sequencing pro-
tocols, we use the following value for the flood period
f .

f = hmax ∗ tmax + 1

(We choose this value for f , instead of the minimum
value (hmax − 1) ∗ tmax + 1, to keep our proofs of
the stabilization properties simple.)

Note that the above flood period is computed to
guarantee that no two consecutive flood messages ever
collide with each other. In a typical execution of the
protocol, each sensor chooses its forwarding period
at random in the range 1..tmax, and so most sensors
likely receive the flood messages within (hmax−1)∗
tmax/2 time units, instead of (hmax−1)∗tmax time
units. Therefore, the half (or even less) of the flood pe-
riod may be used without significantly degrading the
stabilization property and performance of a flood se-
quencing protocol.

5 First Protocol: Sequencing Free

In this section, we discuss a first flood sequencing
protocol where no sequence number is attached to each
flood message, and so a sensor cannot distinguish be-
tween fresh and redundant flood messages, resulting
that the sensor accepts every received message. This
protocol is called the sequencing free protocol.

To initiate the flood of a new message, sensor 0
sends a data(hmax) message, and then sets its time-
out to expire after f time units to broadcast the next
message. A formal specification of sensor 0 is given
in Fig. 1. Note that sensor 0 does not receive any mes-
sages.

4

1: sensor 0 {base station}
2: const hmax : integer, {max hop count}
3: f : integer {flood period}
4: begin
5: timeout-expires → {generate new msg}
6: send data(hmax);
7: timeout-after f
8: end

Figure 1. A specification of sensor 0 in the
sequencing free protocol

Each sensor u that is not sensor 0 maintains a vari-
able called new. The value of new is true only when
u is in the forwarding period (i.e. u has a flood mes-
sage that has been received earlier but has not been
forwarded yet). When sensor u receives a data(h) mes-
sage, u always accepts the message. Sensor u forwards
the message as data(h − 1), if h > 1 in the received
message and new = false in u. A formal specifica-
tion of sensor u is given in Fig. 2. (Each sensor u also
maintains a received data message that u will forward
later, even though this is not explicitly specified in the
specification.)

1: sensor u:1 .. n − 1
2: const hmax : integer, {max hop count}
3: tmax : integer {max forwarding period}
4: var h,hlast : 1 .. hmax, {rcvd,last hop count}
5: new : boolean {true if u has msg to forward}
6: begin
7: timeout-expires → if new → new := false;
8: send data(hlast)
9: [] ¬ new → skip
10: fi; timeout-after random(1,tmax)

11: [] rcv data(h) → {accept msg}
12: if h>1 ∧ ¬ new →new := true;
13: hlast := h − 1
14: [] h≤ 1 ∨ new → skip
15: fi
16: end

Figure 2. A specification of sensor u in the
sequencing free protocol

Note that in all the flood sequencing protocols pre-

sented in this paper, the value of timer.0 is at most f
time units, and the value of timer.u is at most tmax.
This is maintained by the executions of all the proto-
cols.

A state S of the sequencing free protocol is legiti-
mate iff either S is a state where the predicate
(timer.0= 1) ∧ (for all u, u �= 0, new.u=false)
holds or S is a state that is reachable from a state,
where this predicate holds, by some execution of the
protocol.

It follows from this definition that if the protocol
is executed starting from a legitimate state, then ev-
ery time sensor 0 initiates a new flood, previous flood
messages (whether initiated by sensor 0 legitimately
or other sensors illegitimately due to some fault) are
no longer forwarded in the network.

The stabilization property of the sequencing free
protocol can be stated by the following three theorems.
Theorem 1A gives an upper bound on the convergence
time of the protocol from an illegitimate state to le-
gitimate states. Theorem 1B gives an upper bound on
the number of fresh messages that can be discarded
by each sensor during the convergence. Theorem 1C
gives an upper bound on the number of redundant mes-
sages that can be accepted by each sensor during the
convergence. (In general, the stabilization property of
each of the other three protocols can be stated by three
theorems: Theorem iA, Theorem iB, and Theorem iC,
where i=2,3, and 4.) In proofs below, we use the nota-
tion <var>.u to denote the value of variable <var> in
a sensor u.

Theorem 1A: In the sequencing free protocol, start-
ing from any illegitimate state, the protocol reaches a
legitimate state within 2 ∗ f time units, and continues
to execute within legitimate states.

Theorem 1B: In the sequencing free protocol, start-
ing from any illegitimate state, every sensor discards
no fresh message (before the protocol converges to a
legitimate state).

Note that starting from any legitimate state, every
sensor discards no fresh message, since the sensor ac-
cepts every received message.

Theorem 1C: In the sequencing free protocol, start-
ing from any illegitimate state, every sensor accepts
at most 2 ∗ f redundant messages (before the protocol

5

converges to a legitimate state).

Note that even starting from any legitiamte state, the
sensor cannot distinguish between fresh and redundant
flood messages. The number of redundant copies of
the same message accepted by a sensor u depends on
the value of hmax and the network topology. In worst
case, u can accept a redundant copy of the same mes-
sage at each time instant during the flood period of the
message. Thus, starting from any legitimate state, ev-
ery sensor accepts at most f redundant copies of the
same message.

6 Second Protocol: Linear Sequencing

In this section, we discuss a second flood se-
quencing protocol where each flood message carries
a unique sequence number that is linearly increased,
and so a sensor accepts a flood message that has a se-
quence number larger than the last sequence number
accepted by the sensor. This protocol is called the lin-
ear sequencing protocol.

1: sensor 0 {base station}
2: const hmax : integer, {max hop count}
3: f : integer {flood period}
4: var slast : integer {last seq number}
5: begin
6: timeout-expires → {generate new msg}
7: slast := slast + 1;
8: send data(hmax,slast);
9: timeout-after f
10: end

Figure 3. A specification of sensor 0 in the
linear sequencing protocol

Each flood message in this protocol is of the form
data(h,s), where field h is the remaining number of
hops to be made by this message, and field s is the
unique sequence number of this message.

Whenever sensor 0 broadcasts a new message, sen-
sor 0 increases the sequence number of the last mes-
sage by one, and attaches the increased sequence num-
ber to the message. A formal specification of sensor 0
is given in Fig. 3.

Each sensor u that is not sensor 0 keeps track of

the last sequence number accepted by u in a variable
called slast. When sensor u receives a data(h, s) mes-
sage, sensor u accepts the message if s > slast, and
forwards the message if h > 1. A formal specification
of sensor u is given in Fig. 4.

A state S of the linear sequencing protocol is legit-
imate iff either S is a state where the predicate
(timer.0= 1) ∧
(for all u, u �= 0, new.u=false ∧ slast.u ≤ slast.0)
holds or S is a state that is reachable from a state,
where this predicate holds, by some execution of the
protocol.

It follows from this definition that if the protocol
is executed starting from a legitimate state, then ev-
ery time sensor 0 initiates a new flood, previous flood
messages are no longer forwarded in the network, and
the new flood message has a sequence number that is
larger than every slast.u in the network, so that every
u accepts the message.

1: sensor u:1 .. n − 1
2: const hmax : integer, {max hop count}
3: tmax : integer {max forwarding period}
4: var h,hlast : 1 .. hmax, {rcvd,last hop count}
5: s, slast : integer, {rcvd,last seq number}
6: new : boolean {true if u has msg to forward}
7: begin
8: timeout-expires → if new → new := false;
9: send data(hlast, slast)
10: [] ¬ new → skip
11: fi; timeout-after random(1,tmax)

12: [] rcv data(h, s) → if s > slast →{accept msg} slast := s;
13: if h>1 → new := true;
14: hlast := h − 1
15: [] h≤ 1 → skip
16: fi
17: [] s ≤ slast → {discard msg} skip
18: fi
19: end

Figure 4. A specification of sensor u in the
linear sequencing protocol

Let k be the maximum value between 1 and k′,
where k′ is the maximum difference slast.u− slast.0
for any sensor u in the network at an initial state. Note

6

that the value of k is finite but it is unbounded.

Theorem 2A: In the linear sequencing proto-
col, starting from any illegitimate state, the protocol
reaches a legitimate state within (k +1)∗f time units,
and continues to execute within legitimate states.

Theorem 2B: In the linear sequencing protocol,
starting from any illegitimate state, every sensor dis-
cards at most (k + 1) ∗ f fresh messages (before the
protocol converges to a legitimate state).

Theorem 2C: In the linear sequencing protocol,
starting from any illegitimate state, every sensor ac-
cepts at most n − 1 redundant messages (before the
protocol converges to a legitimate state).

The linear sequencing protocol requires sensors to
use unbounded sequence numbers. Thus, this proto-
col is very expensive to implement for sensor networks
that have limited resources. However, once the proto-
col starts its execution from any legitimate state, every
sensor accepts every fresh message and discards every
redundant message under any degree of message loss.

7 Third Protocol: Circular Sequencing

In this section, we discuss a third flood sequencing
protocol where each flood message carries a sequence
number that is circularly increased within a limited
range, and so a sensor accepts a flood message that has
a sequence number “logically” larger than the last se-
quence number accepted by the sensor. This protocol
is called the circular sequencing protocol.

Each flood message is augmented with a sequence
number that has a value in the range 0 .. smax, where
smax > 1. We assume that smax is an even number
(to keep our presentation simple).

Whenever sensor 0 broadcasts a new message, sen-
sor 0 increases the sequence number of the last mes-
sage by one circularly within the range 0 .. smax, i.e.
slast := (slast + 1) mod (smax+1), and attaches the
increased sequence number to the message.

From the viewpoint of each sequence number s in
the range 0 .. smax, the range can be divided into
two subranges, where one subrange consists of the se-
quence numbers that are logically “smaller” than s,
and the other subrange consists of the sequence num-
bers that are logically “larger” than s. Thus, sequence
number s has smax

2 numbers logically smaller than it

and smax
2 numbers logically larger than it. For exam-

ple, if smax = 8, number 0 is logically smaller than
1, 2, 3, and 4, and is logically larger than 5, 6, 7, and
8.

When a sensor u receives a data(h, s) message, sen-
sor u checks if s is logically larger than slast. Sensor
u calls the function “Larger(s, slast)” that returns true
if s is logically larger than slast, and otherwise returns
false. Sensor u accepts the message if Larger(s, slast)
returns true, and forwards it if h > 1. Otherwise, sen-
sor u discards the message.

To prove the stabilization property of the circu-
lar sequencing protocol, we make an assumption of
bounded message loss as follows:

• Bounded message loss: Starting from any state, if
sensor 0 broadcasts smax

2 consecutive flood mes-
sages, then every sensor in the network receives
at least one of those flood messages.

Two explanations concerning the above assumption
are in order. First, the protocol may not be self-
stabilizing without any bound on message loss. For
example, consider a scenario where smax=8. Assume
that sensor 0 sends a flood message with sequence
number 0 and a sensor u accepts the message. If sensor
u does not receive the next 4 (i.e. smax

2) consecutive
messages with sequence numbers 1, 2, 3 and 4, and
later receives a fresh message with sequence number
5, it discards the message since sequence number 5 is
not logically larger than sequence number 0. Sensor
u also discards the next flood messages with sequence
numbers 6, 7, 8, and 0, if it receives them. In this sce-
nario, if sensor u does not receive the flood messages
with sequence numbers 1, 2, 3 and 4, it keeps discard-
ing fresh flood messages. Thus, some assumption of
bounded message loss is necessary for the stabilization
property of the protocol.

Second, the above assumption becomes acceptable
if the value of smax is reasonably large enough for a
given network setting. Selecting an appropriate value
for smax depends on the size of the network, the
topology of the network, and a flood sequencing pro-
tocol used in the network. (In Section 9, we show how
different values are selected for smax depending on
these factors.)

A state S of the circular sequencing protocol is le-
gitimate iff either S is a state where the predicate

7

(timer.0=1) ∧
(for all u, u �= 0,

(new.u=false) ∧
(slast.u = slast.0 ∨
slast.u = (slast.0−1) mod (smax+1) ∨
...
slast.u = (slast.0− smax

2 +1) mod (smax+1)
)

) ∧
(sensor 0 has already initiated at least smax

2 +2 floods)
holds or S is a state that is reachable from a state,
where this predicate holds, by some execution of the
protocol.

It follows from this definition that if the protocol
is executed starting from a legitimate state, then every
time sensor 0 initiates a new flood, previous flood mes-
sages are no longer forwarded in the network, and the
new flood message has a sequence number that is log-
ically larger than every slast.u in the network, so that
every u accepts the message.

Theorem 3A: In the circular sequencing proto-
col, starting from any illegitimate state, the protocol
reaches a legitimate state within (smax + 2) ∗ f time
units, and continues to execute within legitimate states.

Theorem 3B: In the circular sequencing protocol,
starting from any illegitimate state, every sensor dis-
cards at most (smax + 2) ∗ f fresh messages (before
the protocol converges to a legitimate state).

Theorem 3C: In the circular sequencing protocol,
starting from any illegitimate state, every sensor ac-
cepts at most f + 1 redundant messages (before the
protocol converges to a legitimate state).

Note that starting from any legitimate state, every
sensor accepts every fresh message and discards every
redundant message under the assumption of bounded
message loss.

8 Fourth Protocol: Differentiated Sequenc-
ing

In this section, we discuss the last flood sequencing
protocol where the sequence numbers of flood mes-
sages are in a limited range, similar to the circular se-
quencing protocol. However, in this protocol, a sen-
sor accepts a flood message if the sequence number of

the message is different from the last sequence num-
ber accepted by the sensor. This protocol is called the
differentiated sequencing protocol.

Each flood message is augmented with a sequence
number that has a value in the range 0 .. smax, where
smax > 0. We assume that smax is an even number
(to keep our presentation simple).

Sensor 0 in this protocol is identical to the one in the
circular sequencing protocol. However, when a sensor
u receives a data(h, s) message, sensor u accepts the
message if s is different from slast, i.e. s �= slast,
and forwards the message if h > 1. Otherwise, sensor
u discards the message.

Similar to the circular sequencing protocol, if a sen-
sor does not receive a large number of consecutive
flood messages, the differentiated sequencing proto-
col may not be self-stabilizing. Thus, the proofs of
the stabilization property of this protocol are based on
the assumption of bounded message loss described in
Section 7.

A state S of the differentiated sequencing protocol
is legitimate iff either S is a state where the predicate

(timer.0=1) ∧
(for all u, u �= 0,

(new.u=false) ∧
(slast.u = slast.0 ∨
slast.u = (slast.0−1) mod (smax+1) ∨
...
slast.u = (slast.0− smax

2 +1) mod (smax+1)
)

)

holds or S is a state that is reachable from a state,
where this predicate holds, by some execution of the
protocol.

It follows from this definition that if the protocol
is executed starting from a legitimate state, then every
time sensor 0 initiates a new flood, previous flood mes-
sages are no longer forwarded in the network, and the
new flood message has a sequence number that is dif-
ferent from every slast.u in the network, so that every
u accepts the message.

Theorem 4A: In the differentiated sequencing pro-
tocol, starting from any illegitimate state, the proto-
col reaches a legitimate state within (smax

2 + 2) ∗ f
time units, and continues to execute within legitimate

8

states.

Theorem 4B: In the differentiated sequencing proto-
col, starting from any illegitimate state, every sensor
discards at most (smax

2 +2)∗f fresh messages (before
the protocol converges to a legitimate state).

Theorem 4C: In the differentiated sequencing proto-
col, starting from any illegitimate state, every sensor
accepts at most f + 1 redundant messages (before the
protocol converges to a legitimate state).

Note that starting from any legitimate state, every
sensor accepts every fresh message and discards every
redundant message under the assumption of bounded
message loss.

We compare the stabilization properties of the four
flood sequencing protocols in Table 1. We also com-
pare the properties of the flood sequencing protocols
after convergence (or starting from a legitimate state)
in Table 2. We call these properties the stable proper-
ties of the protocols. In Tables 1 and 2, “free”, “lin”,
“cir”, and “dif” represent the sequencing free, linear
sequencing, circular sequencing, and differentiated se-
quencing protocols, respectively. We conclude that the
differentiated sequencing protocol has better stabiliza-
tion property than those of the other three protocols.

9 Simulation Results

We have developed a simulator that can simulate the
execution of the four flood sequencing protocols. In
this simulator, a network is an N ∗ N grid where N is
the number of sensors in each side of the grid, and the
distance between a sensor (i, j) and each of (i + 1, j),
(i, j + 1), (i − 1, j), and (i, j − 1), if it exists, where
0 ≤ i, j < N , is 1.

For the purpose of simulation, sensor 0 is (0,0)
which is located at the left-bottom conner in a grid,
and the following two types of topologies that have
different network density were used.

• A topology for a sparse network:
The edge probability between two sensors is la-
beled with a high probability 0.95 if their distance
is at most 1, and with a low probability 0.5 if their
distance is larger than 1 and less than 2. Other-
wise, there is no edge between the two sensors.
In this topology, each sensor (i,j) that is not on

or near the boundary of the grid generally has 8
neighbors.

• A topology for a dense network:
The edge probability between two sensors is la-
beled with probability 0.95 if their distance is at
most 1.5, and with probability 0.5 if their distance
is larger than 1.5 and less than 3. Otherwise, there
is no edge between the two sensors. In this topol-
ogy, each sensor (i,j) that is not on or near the
boundary of the grid generally has 24 neighbors.

(The used probabilities, 0.95 and 0.5, were chosen
based on some experiments on sensors. We refer the
reader to [3] for details.)

The performance of a flood sequencing protocol can
be measured by the following two metrics:

i. Reach: The percentage of sensors that receive a
message sent by sensor 0.

ii. Communication: The total number of messages
forwarded by all sensors in the network.

We ran simulations of the four flood sequencing
protocols, and measured the above two metrics in
10*10 and 20*20 grids for both sparse and dense
network topologies. (In the figures and tables be-
low,“free”, “lin”, “cir”, and “dif” represent the se-
quencing free, linear sequencing, circular sequencing,
and differentiated sequencing protocols, respectively.)
In our simulations, we do not consider other tech-
niques that can improve the performance of a flood
protocol based on extra information such as probabil-
ity, location, and neighbor information.

First, we studied the performance of the sequenc-
ing free protocol and the linear sequencing protocol
starting from a legitimate state. The result of each
simulation in this study represents the average value
over the simulations of 100,000 floods. Staring from
a legitimate state, the linear sequencing protocol never
discards fresh messages and never accepts redundant
messages under any degree of message loss, and so we
consider its performance as the ideal one for flood se-
quencing protocols that attach a sequence number to a
flood message. Note that when the value of smax is
reasonably large for a given network setting, the per-
formance of the circular sequencing and differentiated

9

Table 1. Stabilization Properties of the Flood Sequencing Protocols
Convergence time Max # of fresh Max # of redundant Stabilization

(time units) msgs discarded by msg accepted by property
u until convergence u until convergence

free 2 ∗ f 0 2 ∗ f good
lin unbounded unbounded n − 1 bad
cir (smax + 2) ∗ f (smax + 2) ∗ f f + 1 good
dif (smax

2 + 2) ∗ f (smax
2 + 2) ∗ f f + 1 good

Table 2. Stable Properties of the Flood Sequencing Protocols
Max # of fresh msgs Max # of redundant copies of Stable

discarded by u the same msg accepted by property
after convergence u after convergence

free 0 f bad
lin 0 0 good
cir 0 0 good
dif 0 0 good

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=18
dif smax=4 reach(%)

(a) A 10*10 network

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=34
dif smax=4 reach(%)

(b) A 20*20 network

Figure 5. Reach of the circular and differentiated sequencing protocols starting from an illegitimate
state in a sparse network

sequencing protocols becomes same as that of the lin-
ear sequencing protocol.

Tables 3 and 4 show the reach and communication
of the sequencing free protocol and the linear sequenc-
ing protocol in a sparse network and in a dense net-
work, respectively. Also the value of hmax used in
each network setting is specified in these tables. In
these simulations, tmax = 6 was used for a sparse
network, and tmax = 7 was used for a dense net-
work. From the above results, one can observe that
the sequencing free protocol requires the sensors to

send much more messages than those that the linear
sequencing protocol does. Specially in a sparse 20*20
network where a large value needs to be selected for
hmax (i.e. hmax = 27), the communication of the
sequencing free protocol is around 7.39 times that of
the linear sequencing protocol.

Next, we studied the stabilization properties of the
circular sequencing and differentiated sequencing pro-
tocols, and their performance while stabilizing. We
simulated the sequences of floods starting from 1000
different illegitimate states, and computed the average

10

Table 3. Sequencing free and linear sequencing protocols in a sparse network
A 10*10 network A 20*20 network

hmax Reach Comm. hmax Reach Comm.

free 13 99% 351.3 27 99.2% 2885.7
lin 15 98.5% 97.8 28 98.5% 390.3

Table 4. Sequencing free and linear sequencing protocols in a dense network
A 10*10 network A 20*20 network

hmax Reach Comm. hmax Reach Comm.

free 7 99.8% 200.5 13 99% 1262
lin 7 98.5% 87.5 14 98.8% 376.4

reach for each i-th flood. We attempted to select an ap-
propriate value of smax for each network setting such
that the assumption of bounded message loss becomes
acceptable, while the convergence time of each proto-
col is minimized.

Figures 5 and 6 show the reach of the circular
sequencing and differentiated sequencing protocols
starting from an illegitimate state in a sparse network
and in a dense network, respectively. From these re-
sults, one can observe the followings for the circular
sequencing protocol. For a sparse network, a large
value needs to be selected for smax such as smax =
18 in a 10*10 network and smax = 34 in a 20*20
network. Also the size of a network affects selecting a
value for smax. On the contrary, for a dense network,
a relatively small value can be selected for smax, re-
gardless of a network size (whether 10*10 or 20*20).
During the convergence time, each sensor has a higher
probability to receive a (fresh) flood message from one
of its neighbors in a dense network than that in a sparse
network, since the number of its neighbors in a dense
network is larger than that in a sparse network. Thus,
this protocol converges faster to a legitimate state in a
dense network than in a sparse network.

In the differentiated sequencing protocol, a small
value can be selected for smax, regardless of a net-
work size (whether 10*10 or 20*20) in both sparse
and dense networks. During the convergence time,
each sensor has a higher probability to accept a re-
ceived fresh message in the differentiated sequencing
protocol (where it accepts a message if the message
has a different sequence number than its last sequence

number) than that in the circular sequencing protocol
(where it accepts a message if the message has a log-
ically larger sequence number than its last sequence
number). Thus, this protocol generally reaches a legit-
imate state faster than the circular sequencing protocol
does.

In summary, starting from a legitimate state, the
performance of any flood sequencing protocol that at-
taches a sequence number to a flood message is better
than that of the sequencing free protocol in terms of
communication. Starting from an illegitimate state, the
differentiated sequencing protocol converges to a legit-
imate state quickly in all simulated network settings.
Thus, we conclude that the differentiated sequencing
protocol has better stabilization property, and provide
better performance compared to those of the other
three protocols.

10 Concluding Remarks

In this paper, we discussed a family of the four
flood sequencing protocols that use sequence numbers
to distinguish between fresh flood messages and re-
dundant flood messages. The members of our family
are the sequencing free protocol, the linear sequenc-
ing protocol, the circular sequencing protocol, and the
differentiated sequencing protocol. We analyzed the
stabilization and stable properties of these four proto-
cols, and also studied their performance, using simu-
lation, over various settings of sensor networks. We
concluded that the differentiated sequencing protocol
has better overall performance in terms of communi-

11

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=6
dif smax=2reach(%)

(a) A 10*10 network

0 10 20 30 40 50

i-th flood

0

20

40

60

80

100

cir smax=6
dif smax=2reach(%)

(b) A 20*20 network

Figure 6. Reach of the circular and differentiated sequencing protocols starting from an illegitimate
state in a dense network

cation and stabilization and stable properties compared
to those of the other three protocols.

It was mentioned that the flood period is computed
to guarantee that no two consecutive flood messages
ever collide with each other. Thus, in practice, the half
(or even less) of the flood period may be used without
significantly degrading the stabilization property and
performance of a flood sequencing protocol. More-
over, each of the flood sequencing protocols can be
extended to support multiple floods within one flood
period.

A spanning tree can be used to distinguish fresh
flood messages and redundant flood messages [1, 6].
Flood protocols using a spanning tree require extra
overheads to build and maintain the spanning tree.
When sensors are mobile, the spanning tree needs to
keep changed. Thus, these protocols may not be suit-
able for some sensor networks.

References

[1] B. R. Bellur and R. G. Ogier. A Reliable, Efficient
Topology Broadcast Protocol for Dynamic Networks.
In INFOCOM, pages 178–186, 1999.

[2] D. Ganesan, B. Krishnamurthy, A. Woo, D. Culler,
D. Estrin, and S. Wicker. An Empirical Study of Epi-
demic Algorithms in Large Scale Multihop Wireless
Networks. IRP-TR-02-003, 2002.

[3] M. Gouda and Y. Choi. A State-based Model of
Sensor Protocols. In Proceedings of 9th Interna-
tional Conference on Principles of Distributed Sys-
tems (OPODIS 2005), December 2005.

[4] M. Heissenbttel, T. Braun, M. Waelchli, and
T. Bernoulli. Optimized Stateless Broadcasting in
Wireless Multi-hop Networks. In IEEE INFOCOM,
2006.

[5] D. B. Johnson and D. A. Maltz. Dynamic source rout-
ing in ad hoc wireless networks. In T. Imielinski and
H. Korth, editors, Mobile Computing, volume 353,
chapter 5, pages 153–181. Kluwer Academic Publish-
ers, 1996.

[6] T. Korkmaz and M. Krunz. Hybrid flooding and tree-
based broadcasting for reliable and efficient link-state
dissemination. In Proceedings of the IEEE GLOBE-
COM 2002 Conference - High-Speed Networks Sym-
posium, Taiwan, November 2002.

[7] J. Li and P. Mohapatra. A Novel Mechanism for
Flooding Based Route Discovery in Ad Hoc Net-
works. In Proceedings of the IEEE Global Telecom-
munications Conference, 2003.

[8] H. Lim and C. Kim. Multicast Tree Construction and
Flooding in Wireless Ad Hoc Networks. In Proceed-
ings of the ACM International Workshop on Model-
ing, Analysis and Simulation of Wireless and Mobile
Systems (MSWIM), 2000.

[9] S. Ni, Y. Tseng, Y. Chen, and J. Sheu. The Broadcast
Storm Problem in a Mobile Ad Hoc Network. In Pro-
ceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking (MOBICOM),
pages 151–162, 1999.

[10] Y. Sasson, D. Cavin, and A. Schiper. Probabilistic
broadcast for flooding in wireless mobile ad hoc net-
works. In Proceedings of IEEE Wireless Communi-
cations and Networking Conference (WCNC 2003),
2003.

[11] I. Stojmenovic, M. Seddigh, and J. Zunic. Domi-
nating sets and neighbor elimination based broadcast-
ing algorithms in wireless networks. IEEE Transac-

12

tions on Parallel and Distributed Systems, 13(1):14–
25, January 2002.

[12] M. Sun, W. Feng, and T. Lai. Location Aided Broad-
cast in Wireless Ad Hoc Networks. In Proceedings
of the IEEE Global Telecommunications Conference,
pages 2842–2846, November 2001.

[13] B. Williams and T. Camp. Comparison of Broad-
casting Techniques for Mobile Ad Hoc Networks. In
Proceedings of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing.

Appendix

The proof of Theorem 0:

When sensor 0 broadcasts a data(hmax) message at
time t, an out-neighbor u of sensor 0 can receive the
message at t and choose the maximum possible value
tmax for the forwarding period. At time t + tmax, u
forwards the message as data(hmax − 1). Similarly,
an out-neighbor u′ of sensor u can receive the message
at t + tmax and choose tmax for the forwarding
period. This forwarding process continues until
this message makes hmax hops. Therefore, some
sensor u can receive the last data(1) message at time
t + (hmax − 1) ∗ tmax in the worst case. Thus, the
flood period needs to be at least (hmax−1)∗tmax+1
time units to guarantee that no forwarded messages
from two consecutive floods collide with one anther.

�

The proof of Theorem 1A:

(Sketch) Starting from any state, any flood initiated by
some sensor u due to wrong initial values of new and
hlast in u will be terminated within f time units. This
is because sensor u will timeout within tmax time
units, and the maximum lifetime of a flood message
is (hmax − 1) ∗ tmax time units. After all wrongly
initiated floods are terminated, new.u for every sensor
u always becomes false when timer.u=1. The value
of timer.0 becomes 1 again within 2 ∗ f time units.
Thus, the protocol reaches a legitimate state within
2 ∗ f time units, and continuously stays in legitimate
states. �

The proof of Theorem 1C:

A sensor u can receive at most one message at each
time instant. Thus, in the worst case, u can accept
a redundant message at each time instant during the
convergence time, and so the maximum number of re-
dundant messages accepted by u until convergence is
2 ∗ f . �

The proof of Theorem 2A:

(Sketch) There are two cases to consider. In the first
case, initially slast.0 is larger than or equal to each
slast.u in the network, so that k′ < 1 and k = 1.
In the second case, initially slast.0 is less than some

13

slast.u in the network, so that k′ ≥ 1 and k ≥ 1. In
the first case of k′ < 1 and k = 1, the proof is similar
to that of Theorem 1A. The protocol reaches a legiti-
mate state within 2∗f time units. Consider the second
case of k′ ≥ 1 and k ≥ 1. Let s be the value of slast.0
at the initial state. After f time units, new.u for every
sensor u always becomes false when timer.0=1. When
the value of timer.0 becomes 1 again, say in time unit
(t − 1,t), within 2 ∗ f time units, slast.0 is at least
s + 1. Sensor 0 broadcasts a message with sequence
number s + 2 at t. If k′ = 1, then s + 2 is larger than
each slast.u in the network. Thus, in this case, the
protocol reaches a legitimate state within 2 ∗ f time
units. If k′ > 1, then sensor 0 broadcasts a message
with sequence number s+3 at t+f and so on. Finally
at t + (k − 2) ∗ f , sensor 0 broadcasts a message with
sequence number s + k and the flood of this message
will be terminated by t + (k − 1) ∗ f . Thus, the
protocol reaches a legitimate state within (k + 1) ∗ f
time units, and continuously stays in legitimate states.

�

The proof of Theorem 2C:

Assume that the protocol starts from a state where
new.u for every sensor u is true. In this case, every
sensor u can initiate a flood of the previous accepted
message. Thus, sensor u can accept at most n − 1
redundant messages from every other sensor in the net-
work. �

The proof of Theorem 3A:

(Sketch) After f time units, new.u for every sensor u
always becomes false when timer.0=1. The value of
timer.0 becomes 1 again, say in (t − 1, t) time unit,
within 2 ∗ f time units, and then sensor 0 broadcasts
a flood message at t. By the assumption of bounded
message loss, every sensor u is guaranteed to receive
at least one (fresh) flood message by t + smax

2 ∗ f .
When u receives a message, u computes whether the
message is fresh or redundant based on the values of
the received sequence number and slast.u. Because
of message loss and/or wrong initial value of slast.u,
u may compute that the received message is redun-
dant. Assume that in (t + smax

2 ∗ f − 1, t + smax
2 ∗ f),

the value of slast.0 is s and the value of slast.u for
some sensor u is equal to (s + smax

2) mod (smax+1).

At t + (smax− 1) ∗ f , sensor 0 broadcasts a message
with sequence number (s+ smax

2) mod (smax+1), and
this flood message will be terminated by t+smax∗f .
Therefore, the protocol reaches a legitimate state
within (smax + 2) ∗ f time units, and continuously
stays in legitimate states. �

The proof of Theorem 3C:

(Sketch) During the first f time units, any flood initi-
ated by some sensor u due to wrong initial values of
new and hlast in u can exist in the network, and sen-
sor u can accept at most f redundant messages. After
f time units, sensor u can accept one redundant mes-
sage initiated by sensor 0, and then u will not accept
any redundant message any more. Thus, the maximum
number of redundant messages accepted by sensor
u is f +1. �

The proof of Theorem 4A:

(Sketch) After f time units, new.u for every sensor
u always becomes false when timer.0=1. The value
of timer.0 becomes 1 again, say in time unit (t − 1,t),
within 2 ∗ f time units. Assume that sensor 0 broad-
casts a new message with sequence number s at t.
Then, sensor 0 broadcasts a new message with se-
quence number (s + smax

2 − 1) mod (smax+1) at
t + (smax

2 − 1) ∗ f . In time unit (t + smax
2 ∗ f − 1,t +

smax
2 ∗ f), every slast.u has one of the values in s ..

(s+ smax
2 −1) mod (smax+1), since u receives at least

one of those sequence numbers by the assumption of
bounded message loss. Thus, the protocol reaches a
legitimate state within (smax

2 + 2) ∗ f time units, and
continuously stays in legitimate states. �

14

	ssfloodtechcover.ps
	ssflood2.ps

