
Efficient Execution in an Automated

Reasoning Environment

David A. Greve∗ Matt Kaufmann† Panagiotis Manolios‡

J Strother Moore§ Sandip Ray¶ José Luis Ruiz-Reina‖

Rob Sumners∗∗ Daron Vroon†† Matthew Wilding‡‡

December 18, 2006

Abstract

We describe a method to permit the user of a mathematical logic to
write elegant logical definitions while allowing sound and efficient execu-
tion. We focus on the ACL2 logic and automated reasoning environment.
ACL2 is used by industrial researchers to describe microprocessor designs
and other complicated digital systems. Properties of the designs can be
formally established with the theorem prover. But because ACL2 is also
a functional programming language, the formal models can be executed
as simulation engines. We implement features that afford these dual ap-
plications, namely formal proof and execution on industrial test suites. In
particular, the features allow the user to install, in a logically sound way,
alternative executable counterparts for logically-defined functions. These
alternatives are often much more efficient than the logically equivalent
terms they replace. We discuss several applications of these features.

1 Introduction

This paper is about a way to permit the functional programmer to prove efficient
programs correct. The idea is to allow the provision of two definitions of the
program: an elegant definition that supports effective reasoning by a mechanized
theorem prover, and an efficient definition for evaluation. A bridge of this sort,

∗Rockwell Collins Advanced Technology Center
†Dept. of Computer Sciences, Univ. of Texas at Austin
‡College of Computing, Georgia Institute of Technology
§Dept. of Computer Sciences, Univ. of Texas at Austin
¶Dept. of Computer Sciences, Univ. of Texas at Austin
‖Dep. de Ciencias de la Computación e Inteligencia Artificial, Univ. de Sevilla

∗∗Advanced Micro Devices, Inc.
††College of Computing, Georgia Institute of Technology
‡‡Rockwell Collins Advanced Technology Center

1



between clear logical specifications and efficient execution methods, is sometimes
called “semantic attachment” of the executable code to the logical specification.

We describe an approach that has been implemented to support provably

correct semantic attachment of efficient code within the framework of the ACL2
theorem prover. ACL2 is a logic based on functional Common Lisp [54]. The
logic is supported by a mechanized theorem proving environment in the Boyer-
Moore tradition [9]. The acronym ACL2 stands for “A Computational Logic
for Applicative Common Lisp.” We briefly describe ACL2 and its relationship
to Common Lisp, establishing some relevant background.

It is perhaps surprising to see a focus on semantic attachment in the context
of ACL2 precisely because the logic is based on an efficient functional program-
ming language, where the “default” semantic attachment is provided by the
compiler. But logical perspicuity and execution efficiency are often at odds, as
demonstrated by numerous examples in this paper.

Despite our focus on ACL2, we believe the techniques described here are
of interest to any system that aims to support mechanized reasoning about
programs in a functional programming language. We demonstrate the feasibility
of supporting efficient reasoning about functional programs without having to
give up efficiency.

1.1 A Brief History of ACL2

We briefly describe the history of ACL2 to make three points. First, mecha-
nized formal methods now have a place in the design of digital artifacts. Second,
formal models are much more valuable if they can not only be analyzed but ex-
ecuted. This is a powerful argument for the use of an axiomatically-described
functional programming language supported by a mechanized theorem prover.
Furthermore, industrial test suites put severe strains on the speed and resource
bounds of functional models. Third, the starting point for this work on se-
mantic attachment was a system already honed by decades of focus on efficient
functional execution in a logical setting.

ACL2 descends from the Boyer-Moore Pure Lisp Theorem Prover, produced
in Edinburgh in the early 1970s [6]. That system supported a first-order mathe-
matical logic based on a tiny subset of Pure Lisp. Constants were represented by
variable-free applications of constructor functions like cons, and ground terms
were reduced to constants via an interpreter that doubled as a simplifier for
symbolic expressions. Pressure to handle larger examples, specifically the for-
mal operational semantics of the BDX 930 flight control computer in the late
1970s, led to the abandonment of ground constructor terms as the representa-
tion of constants and the adoption of semantically equivalent quoted constants.
At the same time, automatic semantic attachment was introduced so that recur-
sively defined functions could be evaluated on such constants via the invocation
of code produced by a translator from Boyer-Moore logic into the host Lisp (and
thence into machine code by the resident compiler)[8, 7, 9]. This version of the
Boyer-Moore theorem prover was called Nqthm.

By the mid-1980s the Boyer-Moore community was tackling such problems as

2



the first mechanically checked proof of Gödel’s incompleteness theorem [52] and
the correctness of a gate-level description of an academic microprocessor [26].
These projects culminated in the late 1980s with the “verified stack” of Compu-
tational Logic, Inc., [5], a mechanically checked proof of a hierarchy of systems
with a gate-level microprocessor design at the bottom, several simple verified
high-level language applications at the top, and a verified assembler, linker,
loader, and compiler in between. By the end of the 1980s, researchers in indus-
try were attempting to use Nqthm to describe commercial microprocessor design
components and to exploit those formal descriptions both to verify properties
and to simulate those designs by executing definitions in the Boyer-Moore logic.

In 1989 the ACL2 project was started, in part to address the executability
demands made by the community. Instead of a small home-grown Pure Lisp, the
ACL2 language extends a large subset of applicative (functional) Common Lisp.
It can be built on top of most Common Lisp implementations as of this writing,
and its compiler is the compiler of the underlying Common Lisp. Models of
digital systems written in ACL2 can be analyzed with the mechanical theorem
prover and also executed on constants. This duality has enabled industrial
researchers to use functional Common Lisp to describe designs.

An ACL2 model of a Motorola digital signal processor, which was mechani-
cally verified to implement a certain microcode engine, ran three times faster on
industrial test data than the previous simulation engine [11]. At Advanced Mi-
cro Devices, the RTL for the elementary floating-point operations on the AMD
AthlonTM processor1 was mechanically verified with ACL2 to be IEEE compli-
ant. But before the modeled RTL was subjected to proof it was executed on over
80 million floating-point test vectors and the results were compared (identically)
against the output of AMD’s standard simulator [50]. Subsequently, proofs un-
covered design bugs; the RTL was corrected and verified mechanically before the
processor was fabricated. At Rockwell Collins, Greve et al [24] defined an ACL2
model of the microarchitectural design of the world’s first silicon Java Virtual
Machine which was used as the simulation engine and executed at about 50%
of the speed of the previously written C simulator. Liu and Moore [33] describe
another ACL2 model of the Java Virtual Machine, capable of executing many
bytecode programs and including support for multiple threads, object creation,
method resolution, dynamic class loading, and bytecode verification.

1.2 Syntax and Semantics

Having motivated our interest in an axiomatically described functional program-
ming language supported by a mechanized theorem prover, we now give a brief
introduction to ACL2 as needed for reading this paper. For more thorough
treatments of the ACL2 logic, see [28, 29].

The syntax of the ACL2 logic is that of Lisp. For example, in ACL2 we
write (+ (expt 2 n) (f x)) instead of the more traditional 2n + f(x). Terms
are used instead of formulas. For example,

1AMD, the AMD logo and combinations thereof, and AMD Athlon are trademarks of

Advanced Micro Devices, Inc.

3



(implies (and (natp x) (natp y) (natp z) (natp n) (> n 2))

(not (equal (+ (expt x n) (expt y n))

(expt z n))))

is Fermat’s Theorem in ACL2 syntax. The syntax is quantifier-free. Formulas
may be thought of as universally quantified on all free variables. Fermat’s
Theorem may be read “for all natural numbers x, y, z, and n > 2, xn+yn 6= zn.”
Case is generally unimportant; expt, EXPT and Expt denote the same symbol.
A semicolon (;) starts a comment for the remainder of the current line.

A commonly-used data structure in Lisp is the list, which is represented as
an ordered pair <head, tail>, or in dotted pair Lisp notation, (head . tail).
The Lisp primitive car returns the first component head of an ordered pair or
list, and cdr returns the second component tail of an ordered pair and (hence)
the tail of a list.

ACL2 provides macros whereby the user can introduce new syntactic forms
by providing translators into the standard forms. Macros are functions that
operate on the list structures representing expressions. For example, (list

x1x2 . . . xn) is translated to (cons x1 (cons x2 . . . (cons xn nil). . .)), by
defining list as a macro. Similarly, cond is a macro that translates

(cond (c1 value1)

(c2 value2)

. . .

(ck valuek))

to

(if c1 value1

(if c2 value2

(. . . (if ck valuek nil) . . .))),

which returns valuei for the least i such that ci is true (i.e., any value other
than the “false” value nil), and otherwise returns nil. The expression (let

((var1 form1) ... (vark formk)) expr) represents the value of expr in an
environment where each vari is bound to formi in parallel; and let* is similar,
except that the bindings are interpreted sequentially. The forms mv and mv-let

implement multiple-valued functions in ACL2. In particular, (mv α1 . . . αn)

returns a “vector” of n values and (mv-let (v1 . . . vn) α β) binds the variables
vi to the n values returned by α and then evaluates β. The meanings of most
other Lisp primitives used in this document should be clear from context.

The applicative subset of Common Lisp provides a model of the ACL2 logic.
One of the key attractions of ACL2 is that most ground expressions in the
logic are executable, in the sense that they can be reduced to constants by
direct execution of compiled code for the function definitions as opposed to,
say, symbolic evaluation via the axioms.2 This makes it possible to test ACL2
models on concrete data. Execution times can be roughly comparable to C.

2We say “most” because it is possible to introduce undefined but constrained function

symbols. See Section 4.4.

4



Thus, ACL2 models can often serve as practical simulation engines and can be
formally analyzed to establish properties.

Consider the following recursive definition of a function that computes the
length of a given list. Note that defun is the ACL2 (and Lisp) command
for introducing definitions; here we are defining lng to be a function of one
argument, x, with the indicated body.

(defun lng (x)

(if (endp x) 0 (+ 1 (lng (cdr x)))))

When such a definition is admitted to the logic, a new axiom is added, in this
case:

Definitional Axiom
(equal (lng x) (if (endp x) 0 (+ 1 (lng (cdr x))))).

The so-called definitional principle requires the proof that the recursion in the
definition is well-founded, which in turn establishes that there exists a unique
function satisfying the equation to be added as an axiom. The intention is that
the resulting definition provides a conservative extension of the existing theory,
and hence preserves consistency [29]. This intention explains the purpose of such
a proof obligation. For example, without this check, the following “definition”
with non-terminating recursion could be used to prove a contradiction.

(defun bad (x)

(not (bad x)))

The proof obligation for a recursive definition also establishes that all calls of
the function terminate (provided the machine has sufficient resources). ACL2
uses a default well-founded relation and guesses an appropriate measure to be
applied to the function’s arguments that is to decrease for each recursive call,
but the user is able to override these defaults.

1.3 An Interactive Automatic Theorem Prover

The ACL2 subset of Common Lisp is formalized in a set of axioms and rules
of inference which are in turn implemented in an automatic theorem prover.
The prover applies a variety of symbolic manipulation techniques, including
rewriting and mathematical induction. The theorem prover is automatic in the
sense that no user input is expected once a proof attempt starts.

But in a more fundamental sense, the theorem prover is interactive. Its
behavior is largely determined by the previously proved lemmas in its data base
at the beginning of a proof attempt. The user essentially programs the theorem
prover by stating lemmas for it to prove, to use automatically in subsequent
proofs. For example, an equality lemma can be used as a rewrite rule, an
implication concluding with an equality can be used as a conditional rewrite
rule, etc. Every lemma is tagged with pragmatic information describing how
the lemma is to be used operationally.

5



The theorem prover is invoked by the user to prove lemmas and theorems.
But it is also invoked by the definitional principle, defun, to prove that a mea-
sure decreases in recursion and to establish certain type-like conditions on defi-
nitions, discussed further below. Thus, user guidance, in the form of appropriate
lemma development, plays a role in the definition of new functions.

In an industrial-scale proof project, thousands of lemmas might have to be
proved to lead the theorem prover to the proof of the target conjecture. How-
ever, ACL2 comes with a set of pre-certified “books” (files) containing hundreds
of definitions and thousands of lemmas relating many of them. The user can
include any of these books into a session to help configure the database appro-
priately. Commonly used books include those on arithmetic, finite sets, and
record-like data structures.

Interesting proof projects require that the user intimately understand the
problem being attacked and why the conjecture is a theorem. In short, effective
users approach the theorem prover with a proof in mind and code that proof
into lemmas developed explicitly for the conjecture, while leveraging the pre-
certified books for background information. The theorem prover is more like
an assistant that applies and checks the alleged proof strategy, forcing the user
to confront cases that had escaped preliminary analysis. This process is very
interactive and can be time-consuming. Logs of failed proof attempts lead the
user to discover new relationships and new conditions which often lead to re-
statements of the main conjecture. A successful proof project is essentially a
collaboration between the user and the theorem prover.

1.4 Guards and Guard Verification

A successful ACL2 definition adds a new axiom and defines (and generally com-
piles) the new function symbol in the host Common Lisp. For example, the
above defun for lng is executed directly in Common Lisp. We refer to this
program as the Common Lisp counterpart of the logical definition. Because
Common Lisp is a model of the ACL2 axioms, ACL2 may exploit the Common
Lisp counterpart and the host Lisp execution engine as follows: when a ground
application of the defined symbol arises during the course of a proof or when
the user submits a form to the ACL2 read-eval-print loop, its value under the
axioms may be computed with the Common Lisp counterpart in the host Lisp.
For example, should (lng ’(1 2 3 4 5)) arise in a proof, ACL2 can use the
Common Lisp counterpart of lng to compute 5 in lieu of deriving that value by
repeated reductions using instantiation of the definitional axioms.

This simple story is complicated by the fact that not all Common Lisp
functions are defined on all inputs but the ACL2 axioms uniquely define each
primitive. For example, the function endp is defined in Common Lisp to return
t (“true”) if its argument is the empty list, nil (“false”) if its argument is an
ordered pair, and is not defined otherwise. This allows the Common Lisp im-
plementor to compile the test as a very fast pointer equality (“eq”) comparison
against the unique address of the empty list. However, (endp 7) is undefined
in Common Lisp; implementations typically cause an error or, when code is

6



compiled, may give unexpected results.
The Common Lisp standard [54] implicitly introduces the notion of “in-

tended domain” of the primitives. The intended domain for endp consists of the
ordered pairs and the empty list. ACL2 formalizes this notion with the idea of
guards. The guard of a function symbol is an expression that checks whether
the arguments are in the intended domain. It is permitted for ACL2 to invoke
the Common Lisp counterpart of a function only if the arguments have been
guaranteed to satisfy the guard.

ACL2 provides a way for the user to declare the guard of a defined function.
In particular, we could define lng as follows.

(defun lng (x)

(declare (xargs :guard (true-listp x)))

(if (endp x) 0 (+ 1 (lng (cdr x)))))

where (true-listp x) is defined to recognize true-lists, which are lists that are
terminated by the empty list, nil.

(defun true-listp (x)

(if (consp x)

(true-listp (cdr x))

(eq x nil)))

ACL2 also provides a means, called guard verification, of proving that the guards
on the input of a function ensure that all the guards in the body are satisfied.
In principle, guard verification consists of two automated steps: (a) generating
the guard conjectures, and (b) proving them to be theorems. The guard on
both (endp x) and (cdr x) is that x is either a cons pair or nil, which we will
write as (cons-or-nilp x). The guard on (+ i j) is (and (acl2-numberp

i) (acl2-numberp j)). The guard conjectures for lng are thus:

(and (implies (true-listp x)

(cons-or-nilp x)) ; from (endp x) and (cdr x)

(implies (and (true-listp x) (not (endp x)))

(true-listp (cdr x))) ; from (lng (cdr x))

(implies (and (true-listp x) (not (endp x)))

(and (acl2-numberp 1) ; from (+ 1 (lng . . .))

(acl2-numberp (lng (cdr x))))))

These are generated and proved after the definition of lng is admitted.
Thus, when the ACL2 theorem prover encounters (lng ’(1 2 3 4 5)) it

checks that the guard for lng is satisfied, i.e., (true-listp ’(1 2 3 4 5)).
Since this is true and the guards for lng have been verified, we know that all
evaluation will stay within the intended domains of all the functions involved.
Thus, ACL2 is free to invoke the Common Lisp definition of lng to compute
the answer 5.

On the other hand, if ACL2 encounters (lng ’(1 2 3 4 5 . 7)), a list
that is terminated with the atom 7 instead of the empty list, the guard check
fails and ACL2 is not permitted to invoke the Common Lisp counterpart. The
value of the term is computed by other means, e.g., application of the axioms

7



during a proof, or by an alternative “safe” Common Lisp function that performs
appropriate run-time guard- and type- checking at the cost of some efficiency.
ACL2 defines such a function in Common Lisp, the so-called executable coun-

terpart.
In general, ACL2 evaluation always calls the executable counterpart to eval-

uate a function call. But if the guard of the function has been verified and the
call’s arguments satisfy the function’s guard, then the executable counterpart
will invoke the more efficient Common Lisp counterpart to do the evaluation.

Note that by verifying the guards of a function it is possible to execute code
that is free of runtime type-checks, without imposing logical or syntactic re-
strictions. However, we have found that it considerably simplifies the reasoning
process to keep guards out of the logic (i.e., out of the definitional axioms).
For further details about guards and guard verification see the ACL2 online
documentation available from the ACL2 home page [30].

Guard verification is but one of several features of ACL2 designed to allow
the efficient execution of ground terms while preserving the axiomatic semantics
of the language. Another such feature is the provision of single-threaded objects
[10], which allow destructive modification of some data structures. Still another
feature, related to guards, is ACL2’s support for Common Lisp inline type decla-
rations (and their proofs of correctness), which permits Common Lisp compilers
to produce more efficient code assuming the declared types for the intermediate
expressions.

1.5 What This Paper Is About

The novel idea in this paper is the use of proof to verify semantic attachments
that are defined by the user. We will see that ACL2’s guard verification mecha-
nism is the vehicle that manages this proof obligation. We introduce constructs
mbe (“must be equal”) and defexec that, while simple, are powerful tools for
separating logical and execution needs. The presence of a general-purpose the-
orem prover allows logical definitions and executable code to be arbitrarily dif-
ferent in form, where one can use the full deductive power of the prover to relate
them.

Suppose we have verified the guards of lng and encounter an application
of lng to a true-list of length 10, 000. The guard check would succeed and the
Common Lisp counterpart would be invoked. But since it is defined recursively,
we are likely to get a stack overflow. While the given definition of lng is
mathematically elegant, for the purpose of efficient execution it would have
been better to define it as follows.

(defun lng (x)

(declare (xargs :guard (true-listp x)))

(lnga x 0))

where

(defun lnga (x a)

(declare (xargs :guard (and (true-listp x) (integerp a))))

8



(if (endp x) a (lnga (cdr x) (+ 1 a)))).

Since the function lnga is tail recursive, good Common Lisp compilers will
compile this function into a simple loop with no stack allocation on recursive
function calls. The first recursive definition of lng we presented in the paper is
not tail recursive and would cause stack allocation on each recursive call.

One of the claimed advantages of ACL2 is that models permit both execution
and formal analysis. But this presents a quandary. If we define lng so as to favor
analysis, we may make it impossible to execute on examples of interesting scale.
And if we define it to favor execution, we complicate formal proofs, perhaps
quite significantly.

This paper presents an approach that allows the ACL2 user to have it both
ways. In particular, we introduce two constructs defexec and mbe in the ACL2
theorem prover, which make it possible to write:

(defexec lng (x)

(declare (xargs :guard (true-listp x)))

(mbe :logic

(if (endp x) 0 (+ 1 (lng (cdr x))))

:exec

(lnga x 0))).

This definition incurs, in addition to normal termination and guard verifica-
tion obligations, an additional proof obligation that the Common Lisp (:exec)
counterpart will return the same answer as the logical (:logic) definition. More
precisely, the guard verification obligation is extended by this additional proof
obligation. Henceforth, when the theorem prover is reasoning about the func-
tion lng it will use the original, elegant definitional equation. But when ground
applications satisfying the guard arise, the tail-recursive “definition” is used
(assuming that guard verification has already been completed).

While at first glance, this may appear to be the only reason to use defexec

and mbe, we will present several other contexts in this paper where the use of
defexec and mbe affords an elegant solution in ACL2. For example, one prob-
lem which arises in the definition of some complex recursive functions is the
need to introduce additional tests for the purpose of proving that the function
terminates on all values of the parameters — a requirement for function admis-
sion in the logic — but these additional tests must be optimized away to permit
efficient execution. Consider the formal definition of an operational semantics
for a non-trivial computing machine. The semantics may be well-defined only
on states satisfying a complicated global invariant, so that invariant must be
checked in the definition to ensure admissibility. But checking the invariant
at every step of subsequent execution is prohibitively expensive. By using the
mechanisms described here, the state invariant can be checked once and then
execution on ground applications no longer does the check — provided the “in-
variant” has been proved to be invariant. We illustrate this point with a simple
pedagogical example in Section4.2. More complex examples may be found in
the linear pathfinding example presented in [23] and a unification algorithm (see
Section 4).

9



1.6 Putting This Work in Context

Weyhrauch [58] coined the term semantic attachment for the mechanism in
the FOL theorem prover by which the user could attach programs to logical
theories. The programs were to be partial models of the theories. Manipulation
of terms in the theories could be guided by computing with their semantic
attachments. Thus, for example, the machine integer 0 could be attached to
the logical constant function zero and the program for adding 1 to an integer
could be attached to the Peano successor function, succ. Then, properties of
succ(succ(zero())) could be computed via these attachments. In its original
implementation, there was no provision for establishing the soundness of the
attachments; the motivation of the work was to explore artificial intelligence
and reasoning in particular.

Semantic attachment was an approach to the more general problem of reflec-

tion, which has come to denote the use of computation in a metatheory to derive
theorems in a theory. Harrison [25] provides an excellent survey of reflection.

For obvious reasons, when soundness is considered of great importance, work
on reflection (which is often computation on ground terms in a formal metathe-
ory) leads to the study of the relation between formal terms and the means to
compute their values. It was in precisely this context that Boyer and Moore [8]
introduced the notion of a program designed to compute the value of a given
defined function on explicit constants. Such a program is now known as the
executable counterpart of the defined function; in ACL2, the executable coun-
terpart calls the Common Lisp counterpart when the guards have been verified.
The need to evaluate verified term transformers (“metafunctions”) on ground
constants, representing terms in the logic, forced the implementors of Nqthm
to provide for both the efficient representation of ground terms (e.g., ’(0 1)

as the “explicit value” of a ground term such as (cons (zero) (cons (succ

(zero)) nil))) and the efficient computation of defined functions on those
values. It was this facility that permitted Nqthm to deal with large constants
and encouraged the development of significant work in the operational seman-
tics of microprocessors, virtual machines and programming languages. These
developments in turn led to increased demand for efficient computation and the
eventual abandonment of the home-grown Nqthm version of Pure Lisp. This
also led to the decision to base ACL2 [27] on Common Lisp [54] with a wide array
of development environments with efficient optimizing compilers. The decision
to build ACL2 on top of Common Lisp created the need for the formulation of
guards as a means to ensure the correspondence between the axioms and the
runtime environment.

Since then, many theorem provers have adopted means of efficient compu-
tation on ground constants (see for example [53, 1, 42, 18, 22]). Generally
speaking, the features described here provide the ACL2 user with finer-grained
control over the code that is executed to compute ground terms. This is not
unexpected, since ACL2 is much more closely integrated to a production pro-
gramming language than the theorem provers cited above and the execution
performance demands made by its industrial users are consequently heavier.

10



Finally, since the initial development of this paper, several other ACL2 ap-
plications have used mbe and defexec. Cowles et al [17] implement fast ma-
trix algebra operations using mbt which is a derivative of mbe. Matthews and
Vroon [40] also use mbt to define an efficient machine simulator. Davis [19]
implements efficient finite set theory operations using mbe.

1.7 Organization of This Paper

The rest of this paper begins with a detailed description of the mbe and defexec

features in the next section. Sections 3 and 4 provide extensive example appli-
cations of mbe and defexec.

The applications we describe in this paper can be broadly divided into two
categories. Section 3 provides applications in which a function’s natural def-
inition is inefficient for execution and hence needs to be replaced suitably to
obtain the desired efficiency. Section 4 provides applications in which a natural
definition is sufficient for execution purposes, but is ineffective for reasoning in
the logic.

We conclude the paper in Section 5.
ACL2 contains input files in support of the applications in this paper, in the

books/defexec/ directory of the ACL2 distribution. The information in this
paper is intended to be consistent with those files, although we take liberties
when appropriate, for example omitting declare forms for brevity.

2 Attaching Executable Counterparts: MBE and

DEFEXEC

Every defined function in ACL2 is automatically given an executable counterpart

based on the definition. As mentioned in the preceding section, the executable
counterpart calls the Common Lisp counterpart when the guards have been
verified.

In the preceding section, we briefly introduced mbe, which allows the user
to attach alternative executable code to logic forms. In this section we describe
mbe in some detail. We also introduce the defexec macro, which provides a way
to prove termination of executable counterparts provided by mbe. Both mbe and
defexec were introduced into Version 2.8 of ACL2 (March, 2004).

We keep the description here relatively brief. For more details we refer the
reader to the hypertext ACL2 documentation available from the ACL2 distribu-
tion and from the ACL2 home page [30]. In particular, the mbe documentation
topic provides a link to documentation for a macro mbt (“must be true”), which
may be more convenient than mbe for some applications.

2.1 MBE

In the logic, (mbe :logic logic code :exec exec code) is equal to logic code;
the value of exec code is ignored. However, in the execution environment of

11



the host Lisp, it is the other way around: this form macroexpands simply to
exec code.

The guard proof obligations generated for the above call of mbe are (equal

logic code exec code) together with those generated for exec code. It follows
that exec code may be evaluated in Common Lisp to yield a result, if evaluation
terminates, that is provably equal in the ACL2 logic to logic code. These proof
obligations can be easy to prove or arbitrarily hard, depending on the differences
between exec code and logic code.

We now illustrate mbe using the following definition of a list length function,
lng. This example was presented in the previous section, except that here we
use defun instead of defexec, the latter being a feature to which we return later.
The function lnga was defined in the previous section using tail recursion.

(defun lng (x)

(declare (xargs :guard (true-listp x)))

(mbe :logic

(if (endp x) 0 (+ 1 (lng (cdr x))))

:exec

(lnga x 0)))

The above definition has the logical effect of introducing the following axiom,
exactly as if the above mbe call were replaced by just its :logic part.

Definitional Axiom
(equal (lng x)

(if (endp x) 0 (+ 1 (lng (cdr x))))).

On the other hand, after guards have been verified for lng, ACL2 will evaluate
calls of lng on true-list arguments by using the following definition in Common
Lisp, obtained by replacing the mbe call above by its :exec part.

(defun lng (x)

(lnga x 0))

Guard verification for lng presents the following proof obligations.

(and (implies (true-listp x)

(true-listp x)) ; from (lnga x 0)

(implies (true-listp x)

(integerp 0)) ; from (lnga x 0)

(implies (true-listp x)

(equal (if (endp x) 0 (+ 1 (lng (cdr x))))

(lnga x 0)))) ; from the mbe call

The first two are trivial to prove. But the third, which comes from the mbe

call, requires a key lemma relating lng and lnga. This lemma cannot even be
stated until lng is admitted. Thus, the guard verification must be postponed
by extending the above declare form:

(declare (xargs :guard (true-listp x) :verify-guards nil))

12



After lng is admitted (without guard verification) the following key lemma can
be stated by the user and is proved automatically by induction.

(defthm lnga-is-lng

(implies (integerp n)

(equal (lnga x n)

(+ n (lng x)))))

Guard verification for lng then succeeds. After guard verification, but only
then, calls of lng in ACL2 generate corresponding calls in Common Lisp of
lng, and hence of lnga. (Before guard verification, calls of lng are evaluated
by interpreting the definitional equation derived from the :logic part of the
mbe.)

Remarks on MBE Implementation

Mbe is defined as a macro. The form (mbe :logic logic code :exec exec code)

expands in the logic to the function call (must-be-equal logic code exec code).
Indeed, the guard we have been referring to for (mbe :logic logic code :exec

exec code) is really the guard for (must-be-equal logic code exec code).
ACL2 gives special treatment to calls of must-be-equal in several places, so

that from the perspective of the ACL2 logic, the ACL2 user is unlikely to see any
difference between (mbe :logic logic code :exec exec code) and logic code.
For example, the proof obligations generated for admitting a function treat the
above mbe term simply as logic code. For those familiar with ACL2, we note
that function expansion, :use hints, :definition rules, induction schemes,
termination (admissibility) proofs, and generation of constraints for functional
instantiation also treat the above mbe call as if it were replaced by logic code.
So, why not simply define the macro mbe to expand in the logic to its :logic

code? We need the call of function must-be-equal for the generation of guard
proof obligations.

Special treatment of must-be-equal is also given in creation of executable
counterparts, evaluation within the ACL2 logic, and signature checking when
translating to internal form. Although the idea of mbe is essentially rather
straightforward, much care has been applied to implement this feature to keep
the user view simple while providing useful heuristics in the prover and sound
implementation for the logic.

2.2 DEFEXEC

Evaluation of functions defined using mbe need not terminate, not even given
unlimited computing resources. Consider the following silly example.

(defun silly (x)

(declare (xargs :guard t))

(mbe :logic (integerp x)

:exec (silly x)))

13



ACL2 has no problem admitting this function. Its guard verification goes
through trivially because the mbe call generates this trivial proof obligation:

(equal (integerp x) (silly x))

However, evaluation of, say, (silly 3) causes a stack overflow, because the
Common Lisp definition of silly is essentially as follows, using the :exec part
of the above definition.

(defun silly (x)

(silly x))

Although it can sometimes be useful to introduce functions that do not termi-
nate on all inputs, even of appropriate “type”, nevertheless one often prefers a
termination guarantee. We turn now to a mechanism that guarantees termina-
tion (given sufficient time and space) even for functions that use mbe.

Definitions made with the defexec macro have the same effect for evalua-
tion as ordinary definitions (made with defun), but impose proof obligations
that guarantee termination of calls of their executable counterparts on their in-
tended domains. For example, if we use defexec instead of defun in the ACL2
definition of silly above that calls mbe, then ACL2 will reject that definition.

Defexec has the same basic syntax as the usual ACL2 definitional command,
defun, but with a key additional requirement: the body of the definition must
be a call of mbe. Defexec then generates an additional proof obligation guar-
anteeing termination of the :exec part under the assumption that the guard is
true. This can be a non-trivial requirement if the definition is recursive.

Consider the following form.

(defexec fn (x)

(declare (xargs :guard guard))

(mbe :logic logic code

:exec exec code))

In addition to the corresponding defun (where defexec above is replaced by
defun), this form generates the following local definition for the ACL2 theorem
prover. Because it is local, the definition is ignored by Common Lisp; it is
used only by the ACL2 logical engine, as described below.

(local (defun fn (x)

(declare (xargs :verify-guards nil))

(if guard exec code nil)))

Thus, ACL2 must succeed in applying its usual termination analysis to exec code,
but where the guard is added as a hypothesis in each case. For example, if
exec code contains a recursive call of the form (fn (d x)), then ACL2 will
have to prove that (d x) is “smaller than” x in the sense of an appropriate
“measure”, under the hypothesis of guard. ACL2 provides default notions of
“smaller than” and “measure”, but these can be supplied for the exec code by
way of an xargs or exec-xargs declaration; we refer the reader to the full
documentation for these and other details.

14



3 Optimizing for Execution

This section focuses on examples where the natural definition is modified in
order to achieve efficient execution. We start by considering a simple list-sorting
problem in Section 3.1; mbe and defexec allow us to use an efficient in-situ
quicksort for execution and a natural insertion sort algorithm for the purpose
of reasoning. In Section 3.2 we then consider uses which optimize certain facets
of functional evaluation. In Section 3.3 we then consider a more elaborate
application, which uses mbe to develop efficient functions for computing results
of ordinal arithmetic.

3.1 Sorting a List

Consider the problem of sorting a list. The standard insertion sort algorithm is
simple but inefficient, while an in-place quicksort can be efficient but complex.
In this section we illustrate the use of mbe to write a sorting function whose
logical definition uses the simpler algorithm and whose definition for execution
uses the more efficient algorithm.

The following simple insertion sort function will serve as the logical view of
sorting a list. Here, << is a total order on the ACL2 universe [34].

(defun insert (e x) ; insert e into sorted list x

(if (or (endp x) (<< e (car x)))

(cons e x)

(cons (car x) (insert e (cdr x)))))

(defun isort (x) ; build up sorted list by insertion

(if (endp x) () (insert (car x) (isort (cdr x)))))

Defining an efficient in-place quicksort requires the fast random access and
fast random (destructive) update of an array. ACL2 supports the use of effi-
cient array operations by the use of so-called single-threaded objects or stobjs [10].
Stobjs are declared by a special form defstobj, which takes a list of field de-
scriptors, where each field can either be a single Lisp object or a resizable array
of Lisp objects. For instance the following declaration creates a stobj named
qstor containing a single array field objs:

(defstobj qstor (objs :type (array t (0)) :resizable t))

A defstobj introduces functions for accessing and updating the fields in the
stobj and resizing array fields. In the logic, these functions are defined as cor-
responding operations on lists representing the stobj array structure. However,
under the hood, these functions perform fast array access and update opera-
tions. ACL2 imposes syntactic restrictions on functions which operate on stobjs
to guarantee that only one reference to the stobj is ever created and that every
function that modifies a stobj returns that stobj. The restrictions ensure that
execution using destructive updates on arrays is consistent with the constructive
list semantics in the logic.

15



Ray and Sumners [45] present an efficient in-place implementation of quick-
sort in ACL2 using stobjs, which is similar to the classical imperative imple-
mentation of the algorithm. In particular, they define a function sort-qs that
takes the above stobj qstor, and two indices lo and hi and sorts the portion of
the array in the objs field of qstor between lo and hi (inclusive). Given this
implementation, we can define a function qsort as follows, which implements
an efficient quicksort on lists.

(defun qsort (x)

(with-local-stobj qstor

(mv-let (result qstor)

(let* ((size (length x))

(qstor (resize-array size qstor))

(qstor (load-list x 0 size qstor))

(qstor (sort-qs 0 (1- size) qstor))

(result (extract-list 0 (1- size) qstor)))

(mv result qstor)) ; must return modified stobj

result)))

The function qsort creates a “local” stobj qstor, allocates the stobj array,
loads the array with the elements of the list, calls sort-qs to sort the array
recursively in-place, and finally copies the sorted array back to a list which
it then returns. The form with-local-stobj creates a stobj locally inside a
function call, freeing the memory when the function returns.

The functions isort and quicksort are equal under the assumption that
the list being sorted is a true-list.

(defthm qsort-equivalent-to-isort

(implies (true-listp x)

(equal (qsort x)

(isort x))))

With this theorem proven, we can now define our intended defexec function
named sort-list for sorting lists with a guard assuming that the input list is
a true-list.

(defexec sort-list (x)

(declare (xargs :guard (true-listp x)))

(mbe :logic (isort x) :exec (qsort x)))

Thus while the optimized qsort is used for execution, the simple isort function
is used for logical purposes. Using the logical definition, it is straightforward
to prove that the function does indeed sort, that is, returns an ordered per-
mutation of its input. To prove a theorem about sort-list we simply prove
the corresponding theorem about isort without considering the efficient im-
plementation. For example, the following theorem specifies that sort-list is
idempotent and is trivial to prove.

(defthm sort-list-idempotent

(equal (sort-list (sort-list x)) (sort-list x)))

16



The price we pay for getting both execution speed and logical elegance is the
proof of equivalence — a non-trivial one-time cost. Also, one can implement
even more efficient versions for execution purposes to handle situations when
the in-place quicksort becomes costly, for instance by optimizing for cases when
the list is almost sorted. Mbe allows us to optimize the :exec body for these
cases without affecting the logical view of sort-list and the resulting proofs
involving sort-list.

List sorting, of course, is one very trivial instance of the general approach
in which defexec is used for separation of concerns which allows the use of an
optimized definition for execution while still making it possible to use a logically
simple definition for reasoning purposes. The approach has also been applied
to define a propositional satisfiability checker in ACL2, where the logical view
of the checker is provided by simply characterizing the notion of satisfiability
using quantification while the executable definition is implemented using Binary
Decision Diagrams [55].

3.2 Fine-grained Optimization using defexec

In this section we show that mbe and defexec can also be used as effective tools
for providing fine-grained optimizations. In particular, we will use them to
implement function inlining, result memoization, and fast simulation of models
of computing systems in ACL2.

3.2.1 Inlined Functions

Executing a function call incurs the overhead for managing a call stack which
stores the values of parameters, results, and local variables. While the penalty
for a single function call is nominal, the total cost for all of the function calls
in an execution can be substantial. Most modern compilers provide support
for inlining function calls. Inlining a function is essentially the replacement of
the call of a function with the body of the function under a substitution of
parameters.

There is a standard approach to achieve the effect of inlining in ACL2.
Consider a non-recursive function f whose execution suffers from the cost of
function call overheads. Instead of defining this function, one can define a macro

with a body that produces the code for f . Since a macro is expanded before
logical processing by the theorem prover or execution by the host Common Lisp,
this removes the cost of function calls for execution. However, this approach
is inefficient for reasoning in the logic because unlike functions, macros are
“syntactic sugar” to the logic. If an algorithm is modeled as a function then
the user can prove lemmas about that function and use them to guide proofs.
On the other hand, macros are immediately expanded when a form is processed
and thus never appear in the logic. For instance, in the case of f above, suppose
we want to define a new function g that calls f , and assume that we want to
prove a lemma L about g that does not require reasoning about the code for f .

17



If f were defined as a function, we could then instruct the theorem prover not
to expand its body while proving L; however, if f is a macro then we lose such
control.

The dichotomy between the needs to inline function calls for execution and
to preserve function calls for reasoning is resolved with the use of defexec.
To support function inlining, we implement two macros defun-inline and
defun-exec. Users use defun-inline instead of defun if they intend for the
function to be inlined, and defun-exec in place of defun otherwise. The two
macros generate mbe forms allowing us to preserve both logical and execution
needs.

How are the macros implemented? We first define a function exec-term that
takes a term and replaces every function call (fn ...) with (fn-exec ...).
The defun-inline and defun-exec macros called with name fn and body bdy

generate a defexec form with name fn, whose :logic definition is exactly bdy,
and :exec definition is the result of applying exec-term to bdy. The forms also
generate a macro with the name fn-exec, but in the case of defun-exec, this
new macro simply expands to a call of fn, while for defun-inline, it expands
to the application of exec-term to bdy.

Using defun-inline and defun-exec macros, a user can limit the cost of
function calls during execution without losing the flexibility to control term
expansion during proofs. As an example, consider the following definitions of
functions foo and bar where we wish to inline all calls of foo. Then we can
write the following two forms.

(defun-inline foo (x) (f (h x)))

(defun-exec bar (x) (foo x))

This generates the following functions and macros which achieve the intended
effect of removing the function call of foo in the execution bodies of functions
which call foo while leaving foo as a function in the logic. We assume that f

and h have already been defined using defun-inline or defun-exec.

(defun foo (x)

(mbe :logic (f (h x)) :exec (f-exec (h-exec x))))

(defmacro foo-exec (x)

(list ’f-exec (list ’h-exec x)))

(defun bar (x)

(mbe :logic (foo x) :exec (foo-exec x)))

(defmacro bar-exec (x)

(list ’bar x))

3.2.2 Function Memoization

Another common optimization encountered in functional languages is the mem-
oization of function results. Function memoization entails the efficient storage
and retrieval of the results of previous function calls and requires the ongo-
ing access and maintenance of a table storing previous results. For efficiency,

18



we will use a stobj named memo-tbl in order to store previously computed re-
sults. The details of the implementation of the stobj and the functions to store
and retrieve results from the stobj are not relevant to this paper. Instead, we
will focus on the usage of defexec in supporting memoization through an ab-
straction (macro) defun-memo, which generates two defuns along with several
additional definitions and theorems to prove relevant properties of the func-
tions. Defun-memo, when called with argument fn, generates a function named
fn-memo which includes an additional parameter, namely the stobj memo-tbl.
fn-memo returns the result of the computation and a memo-tbl, which has been
updated to incorporate this result if it is not found in the existing memo-tbl

using macro previous-rslt. The memo functions which are generated only
call other memo functions in order to pass the memo-tbl around to each func-
tion. We tie these memo functions with the logical definitions by generating a
defexec which creates a local memo-tbl stobj and calls the corresponding memo

function. For instance, the call (defun-memo foo (x) (f (h x))) generates
the following definitions (among many other theorems and definitions):

(defun foo-body (x memo-tbl)

(mv-let (r memo-tbl) (h-memo x memo-tbl)

(f-memo r memo-tbl)))

(defun foo-memo (x memo-tbl)

(mv-let (exists rslt) (previous-rslt (foo x) memo-tbl)

(if exists (mv rslt memo-tbl)

(mv-let (r memo-tbl) (foo-body x memo-tbl)

(let ((memo-tbl (update-rslt (foo x) r memo-tbl)))

(mv r memo-tbl))))))

(defexec foo (x)

(mbe :logic (f (h x))

:exec (with-local-stobj memo-tbl

(mv-let (rslt memo-tbl)

(foo-body x memo-tbl)

rslt))))

The function foo-body performs the evaluation of the body of foo with the
additional access and update of previously computed results in the memo-tbl.
The foo-body and foo-memo functions will call other memo-tbl functions for
functions which the user specifies for memoization. The defexec form for each
function uses a local stobj memo-tbl for the execution body, but has the desired
body on the logical side.

3.2.3 Efficient Machine Simulators

As a final application of defexec for providing fine-grained user control, we
discuss its use for generating appropriate logical and executable definitions for

19



a simple simulator for computing system models. To facilitate this we define
a macro called defsimulator which takes a list of state variables along with
terms defining the next-state value for each variable. We illustrate its use with
an example. Consider the following call of the macro defsimulator which
defines a simple system.

(defsimulator simple (pc ra rb)

(next-pc (cond ((and (eq (instr pc) ’bra) (= rb 0)) ra)

(t (1+ pc))))

(next-ra (cond ((eq (instr pc) ’add) (+ ra rb))

((integerp (instr pc)) (instr pc))

(t ra)))

(next-rb (cond ((eq (instr pc) ’mov) ra)

((eq (instr pc) ’cmp) (if (> ra rb) 1 0))

(t rb))))

Here (instr pc) defines some mapping from program counter values to instruc-
tions which serves as the definition of the program which will execute on the
simple system. This example simple system has three state variables named
pc, ra, and rb. This is a trivial processor model with a program counter pc and
two registers ra and rb. Each variable stores an integer counter value which
is updated at every step to be the value defined by evaluating the next-pc,
next-ra, or next-rb term using the current values for the state variables pc,
ra, and rb. For the sake of reasoning in the logic, we prefer to define the state
variables as functions of time — where time in this case is natural-valued and
specified by the parameter n. The following is generated for the :logic code
of an mbe call, and the mutual-recursion wrapper informs ACL2 that, as the
name implies, the functions defined within its scope are mutually recursive.

(mutual-recursion

(defun pc (n)

(if (zp n) (initial-pc)

(let ((pc (pc (1- n))) (ra (ra (1- n))) (rb (rb (1- n))))

(cond ((and (eq (instr pc) ’bra) (= rb 0)) ra)

(t (1+ pc))))))

(defun ra (n)

(if (zp n) (initial-ra)

(let ((pc (pc (1- n))) (ra (ra (1- n))) (rb (rb (1- n))))

(cond ((eq (instr pc) ’add) (+ ra rb))

((integerp (instr pc)) (instr pc))

(t ra)))))

(defun rb (n)

(if (zp n) (initial-rb)

(let ((pc (pc (1- n))) (ra (ra (1- n))) (rb (rb (1- n))))

(cond ((eq (instr pc) ’mov) ra)

((eq (instr pc) ’cmp) (if (> ra rb) 1 0))

(t rb)))))

)

20



(defun machine-state (n)

(list (pc n) (ra n) (rb n)))

The function (machine-state n) returns a list composed of the value of
each state variable at time n. In systems with larger numbers of state variables,
this approach to defining state variables as functions of n affords more read-
able terms involving state variables and efficient, elegant reasoning about the
properties of individual state variables which only require the expansion of the
function definitions for the state variables upon which the property depends;
see for example [49] for a non-trivial example. The use of functions of time
to represent the values of state variables can also be extended with additional
parameters to handle elegantly arrays and hierarchy.

While the definition of state variables as functions of time is effective in the
logic, it is inefficient for the purpose of execution. For execution, it is preferable
to update an array storing the values of the state variables at each step and to
iterate through the desired number of steps for a given run up to time n. This
preference leads to the following efficient execution definition of the function
(machine-state n), which uses a stobj to store the values of pc, ra, and rb

at each step.

(defstobj state-vars pc-val ra-val rb-val)

(defun step-state-vars (state-vars)

(let* ((pc (pc-val state-vars))

(ra (ra-val state-vars))

(rb (rb-val state-vars))

(next-pc (cond ((and (eq (instr pc) ’bra) (= rb 0)) ra)

(t (1+ pc))))

(next-ra (cond ((eq (instr pc) ’add) (+ ra rb))

((integerp (instr pc)) (instr pc))

(t ra)))

(next-rb (cond ((eq (instr pc) ’mov) ra)

((eq (instr pc) ’cmp) (if (> ra rb) 1 0))

(t rb)))

(state-vars (update-pc-val next-pc state-vars))

(state-vars (update-ra-val next-ra state-vars))

(state-vars (update-rb-val next-rb state-vars)))

state-vars))

(defun run-state-vars (n state-vars)

(if (zp n) state-vars

(let ((state-vars (step-state-vars state-vars)))

(run-state-vars (1- n) state-vars))))

(defun run-state (n state-vars)

(let* ((state-vars (update-pc-val (initial-pc) state-vars))

21



(state-vars (update-ra-val (initial-ra) state-vars))

(state-vars (update-rb-val (initial-rb) state-vars)))

(run-state-vars n state-vars)))

The macro defsimulator creates the desired logic and executable definitions
(and proofs showing their correspondence). The final “result” of this expansion
of the defsimulator macro is the definition of machine-state given below.
In the logic, machine-state computes a simple list composed of the values of
pc, ra, and rb at time n. The execution body of machine-state includes the
creation of a local stobj and the appropriate call of run-state and accumulation
of the results into a list matching the result defined in the logic.

(defexec machine-state (n)

(mbe :logic (list (pc n) (ra n) (rb n))

:exec (with-local-stobj state-vars

(mv-let (rslt state-vars)

(let ((state-vars (run-state n state-vars)))

(mv (list (pc-val state-vars)

(ra-val state-vars)

(rb-val state-vars))

state-vars))

rslt))))

3.3 Efficient Ordinal Arithmetic

In this section we will consider a more elaborate example of the use of mbe,
namely in building an efficient and powerful library for reasoning about ordinal
arithmetic. The ordinal numbers are an extension of the natural numbers into
the transfinite. They were introduced by Cantor over 100 years ago and are at
the core of modern set theory [12, 13, 14]. The ordinal numbers are important
tools in logic, e.g., after Gentzen’s proof of the consistency of Peano arithmetic
using the ordinal number ǫ0 [21], proof theorists routinely use ordinals and
ordinal notations to establish the consistency of logical theories [51, 57].

In computing science, the ordinals are used to prove termination of systems,
an important component of total correctness proofs for transformational sys-
tems [2]. Even in the context of reactive systems, non-terminating systems that
engage in on-going interactions with an environment (e.g., operating systems
and network protocols), termination proofs are important as they are used to
prove liveness properties, i.e., that some desired behavior is not postponed for-
ever. Proving termination amounts to showing that a relation is well-founded
[3]. From a basic theorem of set theory, the Axiom of Choice implies that every
well-founded relation can be extended to a total order that is isomorphic to an
ordinal. Thus, the ordinal numbers provide a general setting for establishing
termination proofs.

22



The ACL2 system makes critical use of the ordinals: every function defined
using the definitional principle must be shown to terminate using the ordinals
up to ǫ0. Up through Version 2.7, the ACL2 system provided a notation for rep-
resenting these ordinals, a function to check if an object represents an ordinal
in this notation, and a function for comparing the magnitude of two ordinals,
but had only very limited support for reasoning about and constructing ordi-
nals. In fact, while the set theoretic definitions of arithmetic operations were
given by Cantor in the 1800’s, algorithms for arithmetic operations on ordi-
nal notations were not studied in any comprehensive way until recently, when
Manolios and Vroon provided efficient algorithms, with complexity analyses, for
ordinal arithmetic on the ordinals up to ǫ0, using a notational system that is
exponentially more succinct than the one used in ACL2 Version 2.7 [36, 39].
The above notations and algorithms were implemented in the ACL2 system,
their correctness was mechanically verified, and a library of theorems developed
that can be used to significantly automate reasoning involving the ordinals [37].
The library substantially increases the extent to which ACL2 can automatically
reason about the ordinals, e.g., it has been used to give a constructive proof of
Dickson’s lemma [56].

Starting with ACL2 Version 2.8, ordinals are now denoted using the new
notation (which we introduce below) and a new, improved library for reason-
ing about the ordinals is provided [38]. The new library allows us to discharge
automatically all the proof obligations involving the ordinals in the proof of
Dickson’s lemma, mentioned previously. There are many issues in developing
such a library, but here we focus on the following very important consideration.
The definitions of the ordinal arithmetic operations serve two purposes. They
are used to reason about expressions in the ground (variable-free) case, by com-
putation, and they are used to develop the various rewrite rules appearing in
the libraries. In the first case, the definitions are used for computation, whereas
in the second case, we use the definitions to reason symbolically. We use mbe

in a way that allows us to compute efficiently in the ground case and to reason
effectively in the general case. Here we discuss how this is accomplished. To
keep the presentation here self-contained, we first provide a brief overview of
ordinals and recount the current ordinal notations in ACL2. We then show
how mbe allows us to use simple definitions of ordinal arithmetic operations for
reasoning purposes and algorithmically more efficient ones for computation.

3.3.1 Set Theoretic Ordinals

We start with a brief review of the theory of ordinals [20, 32, 51]. A relation, ≺,
is well-founded if every decreasing sequence is finite. A woset is a pair 〈X,≺〉,
where X is a set, and ≺ is a well-ordering, a total, well-founded relation, over
X. An ordinal is a woset 〈X,≺〉 such that for all a ∈ X, a = {x ∈ X | x ≺ a}.
It follows that if 〈X,≺〉 is an ordinal and a ∈ X, then a is an ordinal and that
≺ is equivalent to ∈. We will use lower case Greek letters to denote ordinals
and < to denote the ordering.

Given two wosets, 〈X,≺〉 and 〈X ′,≺′〉, a function f : X → X ′ is said to be

23



an isomorphism if it is a bijection and for all x, y ∈ X, x ≺ y iff f(x) ≺′ f(y).
Two wosets are said to be isomorphic if there exists an isomorphism between
them. A basic result of set theory states that every woset is isomorphic to a
unique ordinal. Given a woset 〈X,≺〉, we will denote the ordinal to which it is
isomorphic as Ord(X,≺). Since every well-founded relation can be extended to
a woset, we see that the theory of the ordinals is the most general setting for
proving termination.

Given an ordinal, α, we define its successor, denoted α′ to be α∪{α}. There
is clearly a minimal ordinal, ∅, which is commonly denoted by 0. The next
smallest ordinal is 0′ = {0} and is denoted by 1. Next we have 1′ = {0, 1},
which is denoted by 2. Continuing in this manner, we obtain all the natural
numbers. A limit ordinal is an ordinal > 0 that is not a successor. The set of
natural numbers, denoted ω, is the smallest limit ordinal.

3.3.2 Ordinal Arithmetic

In this section we define addition, subtraction, multiplication, and exponentia-
tion for the ordinals. A discussion of these operators and their properties can
be found in texts on set theory [20, 32, 51]. We start by defining ordinal addi-
tion. Informally, the idea is that α + β corresponds to the ordinal obtained by
appending a copy of β after α.

Definition 1 α + β = Ord(A,<A) where A = ({0}×α)∪ ({1}× β) and <A is

the lexicographic ordering on A.

Note that addition is not commutative, e.g., 1 + ω = ω, whereas ω < ω + 1.
We now define ordinal multiplication. Informally, the idea is that α · β

corresponds to the ordinal obtained by making β copies of α.

Definition 2 α ·β = Ord(A,<A) where A = β ×α and <A is the lexicographic

ordering on A.

Note that commutativity and distributivity from the right do not hold for
multiplication, e.g., 2 · ω = ω, whereas ω < ω · 2; also, (ω + 1) · ω = ω · ω,
whereas ω · ω < ω · (ω + 1) = ω · ω + ω.

We define ordinal exponentiation using transfinite recursion. There are three
cases: either the exponent is 0, or it is a successor ordinal, or it is a limit ordinal.

Definition 3 Given any ordinal, α, we define exponentiation using transfinite

recursion: α0 = 1, αβ+1 = αβ · α, and for β a limit ordinal, αβ =
⋃

ξ<β αξ.

Using the ordinal operations, we can construct a hierarchy of ordinals:
0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, . . . , ω2, . . . , ω3, . . . , ωω, . . . , and so
on. The ordinal ωωω

...

is called ǫ0, and it is the smallest ordinal, α, for which
ωα = α; such ordinals are called ǫ-ordinals.

24



3.3.3 Ordinal Notations

The theory of ordinal notations was initiated by Church and Kleene [15] and
is recounted in Chapter 11 of Roger’s book on computability [46]. A system of
notations for ordinals up to some ordinal α consists of a constructive, syntactic
way of denoting each and every ordinal less than α. Since we require notations to
be strings from a countable alphabet, by a simple counting argument we see that
if there is a system of notations for ordinal α, then α is countable. Notations
are important in proof theory because they are used to obtain constructive
proofs [51, 57]. Notations are important for our purposes because they allow us
to compute.

The notations we consider deal with the ordinals less than ǫ0 and are based
on the Cantor’s normal form theorem for the ordinals [51]. It states that for
every ordinal α 6= 0, there are unique α1 ≥ α2 ≥ · · · ≥ αn (n ≥ 1) such that
α = ωα1 + · · · + ωαn . For every ordinal α < ǫ0, we have that α < ωα, as ǫ0
is the smallest ǫ-ordinal. Therefore, we can add the restriction that α > α1

for such ordinals. This is essentially the representation of the ordinals used
in ACL2 Version 2.7 [27]. However, since ωα · k + ωα = ωα · (k + 1), we can
collect like terms, giving us a more compact normal form. More specifically,
for every ordinal α ∈ ǫ0, there are unique n, p ∈ ω, α1 > · · · > αn > 0, and
x1, . . . , xn ∈ ω\{0} such that α > α1 and α = ωα1x1 + · · · + ωαnxn + p.

This is the representation of the ordinals that is used in ACL2 as of Version
2.8. It is exponentially more succinct than ACL2’s previous notation, as can
be seen by considering ordinals of the form ω · k, where k ∈ ω. The previous
notation requires O(k) bits to represent such an ordinal, whereas our notation
requires O(log k) bits.

The reason why a succinct notation is important is that we are interested in
efficient algorithms. If the number of bits required to represent ordinals in one
notation is potentially exponentially greater than the number of bits required
with an alternate notation, then even linear time algorithms for the first notation
can take longer to run than polynomial time algorithms for the second notation.

3.3.4 Ordinals in ACL2

Cantor Normal Form gives us a natural way to define ACL2 ordinals, our
representation of the (set-theoretic) ordinals in ACL2: as lists of exponent-
coefficient pairs. More precisely, given an ordinal α with Cantor Normal Form
∑n

i=1
ωαiki + p, the function CNF , below, returns the corresponding ACL2 or-

dinal, where make-ord, is an ACL2 function that constructs an infinite ACL2
ordinal, given its first exponent, its first coefficient and the rest of it.

CNF (α) =

{

p if n = 0
(make-ord CNF (α1) k1 CNF (

∑n
i=2

ωαiki + p)) otherwise

Descriptions of make-ord and other functions used to define the ACL2 ordi-
nals are given in Figure 1. The definitions of these functions are not given here,
but are covered in an earlier paper [37].

25



Function Description

(natp x) true iff x is a natural number.
(posp x) true iff x is a positive integer.
(finp x) true iff x is a finite ordinal.
(infp x) true iff x is an infinite ordinal.
(o-first-expt x) given CNF (

∑n

i=1
ωαixi + p), returns CNF (α1).

(o-first-coeff x) given CNF (
∑n

i=1
ωαixi + p), returns x1.

(o-rst x) given CNF (
∑n

i=1
ωαixi + p), returns CNF (

∑n

i=2
ωαixi + p).

(make-ord x k y) returns the ordinal ωxk + y in our notation.
(omega-term x k) returns the ordinal ωxk in our notation.
(first-term x) given CNF (

∑n

i=1
ωαixi + p), returns CNF (ωα1x1).

(natpart x) given CNF (
∑n

i=1
ωαixi + p), returns p.

(limitpart x) given CNF (
∑n

i=1
ωαixi + p), returns CNF (

∑n

i=1
ωαixi).

(limitp x) true iff x represents a limit ordinal.
(o< x y) true iff α < β, where CNF (α) = x and CNF (β) = y.
(o<= x y) true iff α ≤ β, where CNF (α) = x and CNF (β) = y.
(ocmp x y) returns lt, gt, or eq if x is <, >, or = y, respectively.

Figure 1: Basic Ordinal Functions

In the next section, we will give the complexity of various operations on
ACL2 ordinals. We have disregarded the time complexity of operations on
natural numbers in our analysis in order to focus on the interesting aspects of
our algorithms, namely those pertaining to the structure of the ACL2 ordinals.
The following two functions will play an important role in this regard.

(defun len (x)

(if (finp x)

0

(+ 1 (len (o-rst x)))))

(defun sz (x)

(if (finp x)

1

(+ (sz (o-first-expt x))

(sz (o-rst x)))))

By this standard, the first ten functions listed in Figure 1 run in constant
time, natpart, limitpart, and limitp run in linear time in (len x), and o<,
o<=, and ocmp run in time O(min((sz x), (sz y))) [36].

3.3.5 Attaching Executable Functions to Definitions of Ordinal Op-

erations

We show how to attach efficient executable functions to simple definitions of
ordinal operations, using mbe. The operations we consider are ordinal multipli-
cation and exponentiation, and we compare the simple :logic definitions, used
for symbolic manipulation, with the efficient :exec definitions, used for compu-
tation. To simplify the presentation we ignore guards and their verification (see
Section 1.4).

26



(defun ob+ (x y)

(let* ((fe-x (o-first-expt x)) (fco-x (o-first-coeff x))

(fe-y (o-first-expt y)) (fco-y (o-first-coeff y))

(cmp-fe (ocmp fe-x fe-y)))

(cond ((and (finp x) (finp y)) (+ x y))

((or (finp x) (eq cmp-fe ’lt)) y)

((eq cmp-fe ’gt) (make-ord fe-x fco-x (ob+ (o-rst x) y)))

(t (make-ord fe-y (+ fco-x fco-y) (o-rst y))))))

(defun dropn (n a)

(cond ((or (finp a) (zp n)) a)

(t (dropn (1- n) (o-rst a)))))

(defun count1 (x y)

(cond ((finp x) 0)

((o< (o-first-expt y) (o-first-expt x))

(+ 1 (count1 (o-rst x) y)))

(t 0)))

(defun count2 (x y n) (+ n (count1 (dropn n x) y)))

(defun padd (x y n)

(cond ((or (finp x) (zp n)) (o+ x y))

(t (make-ord (o-first-expt x) (o-first-coeff x)

(padd (o-rst x) y (1- n))))))

(defun pmult (x y n)

(let* ((fe-x (o-first-expt x)) (fco-x (o-first-coeff x))

(fe-y (o-first-expt y)) (fco-y (o-first-coeff y))

(m (count2 fe-x fe-y n)))

(cond ((or (equal x 0) (equal y 0)) 0)

((and (finp x) (finp y)) (* x y))

((finp y) (make-ord fe-x (* fco-x fco-y) (o-rst x)))

(t (make-ord (padd fe-x fe-y m)

fco-y

(pmult x (o-rst y) m))))))

(defun ob* (x y)

(mbe

:logic (let ((fe-x (o-first-expt x)) (fco-x (o-first-coeff x))

(fe-y (o-first-expt y)) (fco-y (o-first-coeff y)))

(cond ((or (equal x 0) (equal y 0)) 0)

((and (finp x) (finp y)) (* x y))

((finp y) (make-ord fe-x (* fco-x fco-y) (o-rst x)))

(t (make-ord (o+ fe-x fe-y) fco-y (ob* x (o-rst y))))))

:exec (pmult x y 0)))

Figure 2: Ordinal Multiplication

27



Ordinal multiplication is presented in Figure 2. Multiplication depends on
ob+, a function that adds ACL2 ordinals, i.e., if x equals CNF (α) and y equals
CNF (β), then (ob+ x y) equals CNF (α + β). Given arguments x and y, ob+
traverses x until an exponent is found in x that is less than or equal to the
first exponent of y. Note that the complexity of (ocmp x y) is O(min((sz x),

(sz y))) [36]. Therefore, the running time of ob+ is O(min((sz x), (len x) ·
(sz (o-first-expt y)))), because in the worst case we have to compare every
exponent of x with the first exponent of y. In addition to ob+, we define o+,
a macro that accepts an arbitrary number of arguments and macro-expands to
calls of ob+. Similarly, we have o* for ob* and oˆ for obˆ.

Now consider the running time of the :logic definition of (ob* x y). In the
worst case, x and y are both infinite ordinals. When this happens, we traverse
y, adding the first exponent of x with each exponent of y. Thus, the running
time of this algorithm is

O(min((len (o-first-expt x))·(sz y), (len y)·(sz (o-first-expt x))))

This algorithm is inefficient. The problem arises because we are adding on the
left some ordinal, c (the first exponent of x), to each of a decreasing sequence
of ordinals (d1, d2, . . . , dn) (the exponents of y). Using the addition algorithm,
we find that for each di, (o-first-expt di) is compared to each exponent of
c until the first exponent of c such that (o-first-expt di) is ≥ this exponent
is found. But since the di’s are decreasing, we know that (o-first-expt di)

≥ (o-first-expt di+1). Therefore, if the jth exponent of c is greater than
(o-first-expt di), it must be greater than (o-first-expt di+1). This means
that simply adding each element of the decreasing sequence to c is inefficient. If
we can keep track of how many exponents of c we went through before adding
di, we can just skip over those when we add di+1. This is what padd allows
us to do. We take advantage of padd in the :exec version of ob*, which calls
pmult, which in turn calls padd. The function (padd x y n) appends the first
n elements of x to the result of adding the rest of x to y. Comparing this to
ob+, it is easy to see that if the first n exponents of x are greater than the first
exponent of y, (padd x y n) = (ob+ x y).

The complexity of (pmult x y s) is O((len (o-first-expt x))·(len y)+
(sz (dropn (o-first-expt x) s))+(sz y)) when s ≤ (count1 x y). Thus
the complexity of the :exec version of (ob* x y) is O((len (o-first-expt x))·
(len y) + (sz (o-first-expt x)) + (sz y)) [36].

Improving the complexity of ordinal exponentiation is somewhat more dif-
ficult. The definition of exponentiation is given in Figure 3. The inefficiency
in the :logic version is due to the repeated use of multiplication. Since we
know some very specific things about the ordinals we are multiplying, we can
find more efficient ways of calculating these products (as was the case with the
sums calculated in multiplication).

For example, consider the case where x is infinite and y is finite. By the
:logic definition of obˆ, we multiply x by (obˆ x (1- y)). But notice that
(ob* a b) traverses b, adding the first exponent of a to every exponent of b

28



(defun oˆ1 (x y)

(cond ((finp y) (expt x y))

((equal (o-first-expt y) 1)

(omega-term (o-first-coeff y) (expt x (o-rst y))))

(t (let ((fe-y (o-first-expt y))

(fco-y (o-first-coeff y))

(z (oˆ1 x (o-rst y))))

(omega-term (make-ord (o- fe-y 1) fco-y (o-first-expt z))

(o-first-coeff z))))))

(defun oˆ2 (x y)

(cond ((zp y) 1)

((= y 1) x)

(t (o* (omega-term (o* (o-first-expt x) (1- y)) 1) x))))

(defun oˆ3h (a p n q)

(cond ((zp q) p)

(t (padd (o* (oˆ2 a q) p) (oˆ3h a p n (1- q)) n))))

(defun oˆ3 (x q)

(cond ((= q 0) 1)

((= q 1) x)

((limitp x) (oˆ2 x q))

(t (let ((z (limitpart x))

(n (len x)))

(padd (oˆ2 z q) (oˆ3h z (natpart x) n (1- q)) n)))))

(defun oˆ4 (x y)

(o* (omega-term (o* (o-first-expt x) (limitpart y)) 1)

(oˆ3 x (natpart y))))

(defun obˆ (x y)

(mbe :logic (let ((fe-x (o-first-expt x))

(fe-y (o-first-expt y))

(fco-y (o-first-coeff y)))

(cond ((or (and (finp y) (not (posp y))) (equal x 1)) 1)

((equal x 0) 0)

((finp y) (o* x (obˆ x (1- y))))

((finp x)

(if (equal fe-y 1)

(o* (omega-term fco-y 1) (obˆ x (o-rst y)))

(o* (omega-term (omega-term (o- fe-y 1) fco-y) 1)

(obˆ x (o-rst y)))))

(t (o* (omega-term (o* fe-x (first-term y)) 1)

(obˆ x (o-rst y))))))

:exec (cond ((or (equal y 0) (equal x 1)) 1)

((equal x 0) 0)

((and (finp x) (finp y)) (expt x y))

((finp x) (oˆ1 x y))

((finp y) (oˆ3 x y))

(t (oˆ4 x y)))))

Figure 3: Ordinal Exponentiation
29



until we get to the natural number at the end of b. Now suppose x is a limit
ordinal. That is, suppose that the natural number at the end of x is 0. Then
multiplying x by itself y times simply amounts to adding the first exponent
of x to every exponent in x, y-1 times. By the left distributive property of
ordinal multiplication over ordinal addition, we can pull out the y-1 copies of
(o-first-expt x). This is what oˆ2 does.

When x is not a limit ordinal, but y is still finite, things get a little more
involved. Since x is not a limit ordinal, (obˆ x (1- y)) is not a limit ordi-
nal. Hence, when we multiply x by (obˆ x (1- y)), we eventually need to
deal with the case where we are multiplying an infinite ordinal and a natu-
ral number. When this happens, we leave the first exponent of x the same,
multiply the first coefficient of x by the natural number, and append the rest
of x. Thus, every time we multiply by x, we multiply x by the limitpart of
(obˆ x (1- y)) (like we do in oˆ2), and then add the product of x and the
natpart of (obˆ x (1- y)). This is what oˆ3 does.

The case where x is a positive natural number and y is an infinite ordinal is
straightforward and is handled by oˆ1.

Finally, when we are raising an infinite successor ordinal to an infinite succes-
sor ordinal power, we take advantage of the following property: αβ+γ = αβαγ .
We break up y into the sum of a limit ordinal and a natural number. The
correctness of oˆ4 is then apparent from the definition of multiplication.

Using several results about len and sz applied to (ob* a b) and (obˆ a b),
we can show that the complexity of the :logic definition of exponentiation,
when using the efficient :exec version of ob* is as follows.

O

(

(natpart b) · (len a) · (len b)·
[(sz (o-first-expt (o-first-expt a))) · (len b) + (sz a) + (sz b)]
+(natpart b)2[(sz (o-first-expt a)) · (len a) + (sz a)]

)

On the other hand, Manolios and Vroon [36] show that the complexity of the
:exec version of obˆ is

O

(

(natpart b)[(len a) · (len b) + (len (o-first-expt a)) · (len a)

+(sz a)] + (sz (o-first-expt (o-first-expt a))) · (len b) + (sz b)

)

This is a significant improvement in performance.
Thus by using mbe, each operation can have two definitions associated with

it. The :logic definitions tend to be simple, easy to reason about, and ideally
suited for symbolic reasoning, whereas the :exec definitions tend to be algo-
rithmically more efficient, but also more complicated. ACL2 allows us to use
the :logic definitions for reasoning and the :exec definitions for computation,
all in a seamless, provably sound way.

4 Optimizing for Proof

In the applications of defexec presented above, the primary goal was to retain
a natural and logically elegant definition of a function for reasoning in the logic,

30



while attaching a more efficient definition for execution. Other situations exist
in which the more natural definition is efficient, but needs to be modified in
order to facilitate logical reasoning. In such situations, mbe can be used to
preserve the use of the natural definition for execution purposes.

Section 4.1 gives an example showing how an efficient executable partial
function can be extended to a less efficient total function that has nicer prop-
erties in the logic. Because of mbe, the logical definition can be executed using
the efficient (partial) definition.

Section 4.2 then shows how to admit a so-called “reflexive” function by
adding necessary termination tests to the logical definition. For a more elaborate
example, see the discussion of a linear path-finding algorithm in [23].

Section 4.3 presents a unification algorithm with supporting functions whose
termination proofs rely on guarding each recursive call of the logical definition
with an expensive check, for example that a graph is acyclic. Such examples
thus add extra tests to the logic definition in order to prove termination, as
for reflexive functions mentioned above, except that the motivation is partiality
rather than reflexivity.

Finally, we return in Section 4.4 to the theme of executable partial functions
by giving a generic method for admitting those that are tail-recursive.

4.1 Normalized Association Lists

Our first first example illustrates how the logical definitions of functions might
be cluttered for the purpose of deriving nice algebraic properties. Consider
the problem of defining functions mget and mset for accessing and updating
elements in an association list. An association list in Lisp is essentially a list of
pairs (key . value), which can be thought of as a finite function mapping each
key to the corresponding value. The function (mget a m) takes a key a and
a mapping m and returns the value currently associated with a in m or returns
nil if no value is associated with a in m. The function (mset a v m) returns a
new mapping which associates the key a with value v but otherwise preserves
all associations in the mapping m.

For logical reasoning, it is convenient if we can define mget and mset such
that the following are theorems.

1. (defthm mget-of-mset

(equal (mget a (mset b v m))

(if (equal a b) v (mget a m))))

2. (defthm mset-eliminate

(equal (mset a (mget a m) m) m))

3. (defthm mset-subsume

(equal (mset a u (mset a v m))

(mset a u m)))

31



4. (defthm mset-normalize

(implies (not (equal a b))

(equal (mset b v (mset a u m))

(mset a u (mset b v m)))))

Notice that the conditions 1-3 have no hypothesis and none of the theorems
contains a hypothesis restricting m to be a well-formed association list. The
theorems can thus be treated as elegant rewrite rules.

However, defining mget and mset so that these conditions are theorems is
non-trivial. Here we provide an overview of the steps involved in the definitions.

In order to get the last three properties above, we need a normalized rep-
resentation for the finite mappings. We define a well-formed mapping to be a
list of key-value pairs where the keys are strictly ordered by the total order <<
(cf. Section 3.1). Further, in order to satisfy mset-eliminate, we add the re-
quirement that no key-value pair may have the value of nil — where nil is the
default return value for mget. This notion of well-formed mapping is recognized
by the following function well-formed-map:

(defun well-formed-map (m)

(declare (xargs :guard t))

(or (null m)

(and (consp m)

(consp (car m))

(well-formed-map (cdr m))

(cdar m)

(or (null (cdr m))

(<< (caar m) (caadr m))))))

It is straightforward to define recursive functions mset-wf and mget-wf which
satisfy the desired properties with the additional hypothesis of (well-formed-map
m). Each function recurs through the list of pairs until it finds the position in the
list where the key fits (relative to the << order on keys) and performs the appro-
priate return of associated value or update of the mapping. Finally, to remove
this additional “well-formedness” hypothesis, we use a generic method discov-
ered by Sumners [31]. The method involves defining two functions acl2->map

and map->acl2, so that acl2->map transforms an ACL2 object into a well-
formed map and map->acl2 inverts this transformation. The paper shows how
to use these transformations to define functions which satisfy the desired theo-
rems.

However, what about execution efficiency? The definitions of functions
mset-wf and mget-wf are not optimized for execution, and the additional calls
of the translation functions acl2->map and map->acl2 are expensive. However,
we needed these transition function because we wanted the theorems above to
hold unconditionally; for execution, we can avoid them by placing appropriate
conditions on the guard. The guard is defined as follows. We choose a “bad”
key that we never expect to arise in the use of mget and mset. We then de-
fine two predicates good-key and good-map as follows: (good-key a) returns

32



T if and only if a is not the single bad key chosen; (good-map m) is essen-
tially (well-formed-map m) with the additional requirement that none of the
keys are the bad key. Under these hypotheses, we can show that the functions
acl2->map and map->acl2 are identity functions; we therefore can define effi-
cient versions mget-fast and mset-fast that take advantage of this efficient
guard to treat m essentially as an already normalized association list. Finally,
we define mget and mset with mbe as follows, to achieve both the algebraic
properties and efficient execution:

(defun mget (a m)

(declare (xargs :guard (good-map m)))

(mbe :logic (mget-wf a (acl2->map m))

:exec (mget-fast a m)))

(defun mset (a v m)

(declare (xargs :guard (and (good-key a) (good-map m))))

(mbe :logic (map->acl2 (mset-wf a v (acl2->map m)))

:exec (mset-fast a v m)))

The guard obligation for mbe (cf. Section 2.1) produces the following proof
obligation for the definitions above, which are easy to discharge based on the
above argument.

(implies (good-map x)

(equal (mget-wf a (acl2->map x))

(mget-fast a x)))

If the domain of application allows us to strengthen further the guards for
mset and mget, then many further optimizations would be possible. For exam-
ple, if the domain were restricted to mapping with keys which were numbers,
then we could use faster tests for equality and the ordering << would reduce to
< on numbers which is a much faster test to compute. If we could assume that
the key passed into mset was less than the least key in m, then we could simplify
mset to be the following:

(defun mset-new (a v m)

(declare (xargs :guard (and (good-key a) (good-map m)

(or (null m) (<< a (caar m))))))

(mbe :logic (mset a v m) :exec (cons (cons a v) m)))

4.2 Reflexive Functions: Adding Tests for Termination

In the preceding section, we saw how it can be useful to clutter function def-
initions in order to obtain elegant logical properties of those functions. By
contrast, we now study a class of function definitions whose very admission to
the ACL2 logic requires cluttering them with extra tests. Consider the following
definition.

33



(defun weird-identity (x)

(if (and (integerp x) (< 0 x))

(+ 1 (weird-identity (weird-identity (- x 1))))

0))

As discussed in Section 1.2, there is a termination proof obligation that requires
(weird-identity (+ -1 x)) to be suitably smaller than positive integer x.
Unfortunately, it is clearly impossible to carry out any such proof until this
definition has been admitted, i.e., until the following axiom has been added:

(equal (weird-identity x)

(if (and (integerp x) (< 0 x))

(+ 1 (weird-identity (weird-identity (- x 1))))

0))

The definition above is reflexive: it contains a recursive call with an argu-
ment that itself contains a recursive call. As seen above, that inner recursive
call can occur in the proof obligation for admitting this function.

The experienced ACL2 user knows that a solution to this problem is to add
an extra test for termination, as follows.

(defun weird-identity-logic (x)

(if (and (integerp x) (< 0 x))

(let ((rec-call (weird-identity-logic (- x 1))))

(if (and (integerp rec-call)

(<= 0 rec-call)

(< rec-call x))

(+ 1 (weird-identity-logic rec-call))

’do-not-care))

0))

However, we would prefer to evaluate calls of a reflexive function without the
additional termination tests. We realize this preference by using mbe as follows.

(defun weird-identity (x)

(declare (xargs :guard (and (integerp x) (<= 0 x))))

(mbe :logic

(weird-identity-logic x)

:exec

(if (and (integerp x) (< 0 x))

(+ 1 (weird-identity (weird-identity (- x 1))))

0)))

The necessary proof obligations above are easily discharged once we have proved
the following lemma.3

(implies (and (integerp x) (<= 0 x))

(equal (weird-identity-logic x)

3ACL2 does all proofs automatically for the two definitions and the lemma.

34



x))

Note of course, that the example above is merely pedagogical; the :exec code
for weird-identity could have simply been x, as in fact the proof obligation
above demonstrates. However, non-trivial reflexive definitions arise in practice.
The TR describes such a case study, namely a sophisticated implementation of
a unification algorithm using term dags [48]. Furthermore, authors Greve and
Wilding describe the use of the same approach in an efficient implementation
of a path finding algorithm in a graph [23].

Finally, we return to a point made about invariants in Section 1.5. The
extra test in the definition of weird-identity-logic can be viewed as an
invariant on the “state” x, assuming that the initial state satisfies the guard.
The lemma above is sufficient to guarantee that this is truly an invariant, and
hence can be optimized away for execution on states x satisfying the guard.
See the aforementioned examples of linear pathfinding and unification for more
elaborate examples of the insertion of invariants for termination.

4.3 Unification on Term Dags

The next example shows a verified ACL2 implementation of a syntactic first-
order unification algorithm that uses directed acyclic graphs to represent terms.
There exist several previously published unification algorithms verifications (see
[43, 47], for example) but none of them use directed acyclic graphs. In this
implementation, some of the auxiliary functions involved in the algorithm need
computationally expensive conditions in their logical definitions, which can be
safely removed for execution on their intended domains (by means of defexec
and mbe).

We start with a brief overview of unification. An equation is a pair of first-
order terms, denoted as t1 ≈ t2, and a system of equations is a finite set of
equations. A substitution σ is a solution of t1 ≈ t2 if σ(t1) = σ(t2) and it is
a solution of a system of equations S if it is a solution of every equation in
S. Given two substitutions σ and δ, we say that σ is more general than δ if
there exists a substitution γ such that δ = γ ◦ σ (here ◦ denotes functional
composition). A most general solution of a system S is a solution of S that it
is more general than any other solution. We say that two terms t1 and t2 are
unifiable if there exists a solution (called a unifier) of the system {t1 ≈ t2}. A
most general unifier (mgu in the sequel) of t1 and t2 is a most general solution
of that system. A unification algorithm is an algorithm that decides whether
two given terms are unifiable, and in that case it returns a most general unifier.
A complete description of the theory of unification can be found in [4].

The unification algorithm implemented is based essentially on the relation
⇒u given by the transformation rules in Figure 4 (known as the Martelli-

-Montanari transformation system). This set of rules acts on pairs of systems
of equations of the form S;U (what we call a unification problem). Intuitively,
the system S can be seen as a set of equations still to be solved, and the sys-

35



Delete: {t ≈ t} ∪ R; U ⇒u R; U
Occur-check: {x ≈ t} ∪ R; U ⇒u ⊥ if x ∈ V(t) and x 6= t
Eliminate: {x ≈ t} ∪ R; U ⇒u θ(R); {x ≈ t} ∪ θ(U)

if x ∈ X, x /∈ V(t) and θ = {x 7→ t}
Decompose: {f(s1, ..., sn) ≈ f(t1, ..., tn)} ∪ R; U ⇒u {s1 ≈ t1, ..., sn ≈ tn} ∪ R; U
Clash: {f(s1, ..., sn) ≈ g(t1, ..., tm)} ∪ R; U ⇒u ⊥ if n 6= m or f 6= g
Orient: {t ≈ x} ∪ R; U ⇒u {x ≈ t} ∪ R; U if x ∈ X, t /∈ X

Figure 4: Martelli–Montanari transformation system

tem U as a (partially) computed unifier4. The symbol ⊥ represents unification
failure. Beginning with the unification problem S; ∅, these rules can be applied
iteratively (in a “don’t care” nondeterministic manner), until either ⊥ or a pair
of systems of the form ∅;U is obtained. It can be proved that this process must
terminate and that S has a solution if and only if ⊥ is not derived; in that case U

is a most general solution of S. Thus, a unification algorithm can be designed by
choosing a suitable data structure to represent first-order terms, and a strategy
to apply the rules, beginning with the unification problem {t1 ≈ t2}; ∅ (where
t1 and t2 are the input terms).

In order to implement a unification algorithm in ACL2, a naive repre-
sentation for terms could be to use lists denoting the terms in prefix nota-
tion (except variables, represented by atomic objects). For example, the term
f(x, f(g(x), f(x, y)))) is represented by the list ’(f x (f (g x) (f x y))).
Nevertheless, with this prefix representation a unification algorithm may be
inefficient in some situations. Note that every application of the Eliminate

rule to a unification problem represented in prefix form needs to reconstruct
the instantiated systems of equations, and the problem can be even worse if
the system contains repeated variables. The standard approach to deal with
this problem is to use directed acyclic graphs (dags in the following) to rep-
resent terms. For example, the graph in Figure 5 represents the equation
f(x, f(g(x), f(x, y)))) ≈ f(g(y), f(u, f(g(y), y))). Nodes are labeled with func-
tion and variable symbols, and outgoing edges connect every non-variable node
with dags representing its immediate subterms. We can naturally identify the
root node of a term dag with the whole term. Note also that there is a certain
amount of structure sharing, at least for the repeated variables:

To implement a unification algorithm with this term dag representation, the
main idea is never to build new terms but only to update pointers destructively.
In particular, the Eliminate rule can be implemented by adding a pointer
linking the variable with the term to which this variable is bound; in that way

4We will identify a system of equations of the form {x1 ≈ t1, . . . , xn ≈ tn}, where the xi

are variables, with the substitution {x1 7→ t1, . . . , xn 7→ tn}. If none of the xi appear in any

of the tj , we say that the system is in solved form. Note that every system in solved form is

an mgu of itself.

36



f

fg

g

x f

y

g f

f

f

u

Figure 5: Dag representation of f(x, f(g(x), f(x, y)))) ≈
f(g(y), f(u, f(g(y), y)))

no reconstruction of the term is required in the application of a substitution. In
the graph above, these pointers are represented by dashed arrows. The binding
for a variable can be determined by following the pointers traversing the graph
depth first, from left to right. In this case, the substitution represented is
{x 7→ g(y), u 7→ g(g(y))}, which is an mgu of both terms.

4.3.1 A Formally Verified ACL2 Implementation

We now describe the ACL2 implementation of a unification algorithm on term
dags, which is mainly based on the Pascal implementation given in section 4.8
of Baader and Nipkow’s book [3], which in turn is based on the exposition by
Corbin and Bidoit [16]. The main difference is that instead of using records with
pointers, we use a single-threaded object. It should be noted that this imple-
mentation, although linear in space, may still require exponential time in some
cases. For the sake of clarity, we will not introduce the technical improvements
that can make the algorithm quadratic in time. The interested reader may
consult [48], where the complete development of a formally verified quadratic
unification algorithm is described.

The stobj used is a structure called terms-dag with only one field: an array
called dag, whose size can be modified dynamically. This array is used to store
the unification problem in dag form:

(defstobj terms-dag

(dag :type (array t (0)) :resizable t))

Once the terms-dag stobj is defined, the expressions (dagi i terms-dag)

and (update-dagi i v terms-dag) respectively access and update (with value
v) the i-th cell of the dag array. These operations are done in constant time
and the update is destructive (at the price of syntactic restrictions on the use of
terms-dag). Each node in the graph is represented by a cell in the dag array of
the stobj. Therefore, a node in the graph can be identified with an array index.
Each cell stores the label and the successors of each node, in the following way:

37



• If node i represents an unbound variable x, then the i-th cell of the array
contains an ordered pair of the form (x . t).

• If node i represents an instantiated variable, then the i-th cell of the array
contains an index n pointing to the root node of the term to which the
variable is bound.

• If node i is the root node of a non-variable term f(t1, . . . , tn), then the
i-th cell of the array contains an ordered pair of the form (f . l), where
l is the list of the indices corresponding to the root nodes of t1, . . . , tn.

For example, if we store the term equ(f(x, f(g(x), f(x, y))), f(g(y), f(u, f(g(y), y))))
in the stobj, the cells of the dag array are:

10

(EQU . (1 9)) (F . (2 3)) (X . T)

2

(F . (4 6)) (G . (5)) (F . (7 8))2 2 (Y . T)

(F . (10 12)) (G . (11)) 8 (F . (13 14)) (U . T) (F . (15 17)) (G . (16)) 8 8

3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

We can naturally identify an array index with the term represented by the
subgraph whose root node is stored in the corresponding array cell. Taking
advantage of this idea, we define a function dag-transform-mm-st in Figure 6
that applies one step of the transformation relation ⇒u to a unification problem
in dag form.

Let us explain the behavior of dag-transform-mm-st, although in the next
subsection we will describe some of its auxiliary functions. In addition to the
stobj, the function receives as input a non-empty system S of equations to be
unified and a substitution U partially computed. The key point here is that
S and U only contain indices pointing to the terms stored in terms-dag. In
particular, S is a list of pairs of indices, and U is a list of pairs of the form (x

. n) where x is a variable symbol and n is an index pointing to the node for
which the variable is bound. We say that S is an indices system and U an indices

substitution, and both together with the contents of terms-dag form what we
call a dag unification problem. Depending on the pair of terms pointed to by the
indices of the first equation of S, one of the rules of ⇒u is applied. The function
returns a multivalue (mv ...) with the following components, obtained as a
result of the application of one step of transformation: the resulting indices
system of equations to be solved, the resulting indices substitution, a boolean
(if ⊥ is obtained, this value is nil, else t) and the stobj terms-dag. Note that
only when Eliminate is applied is the stobj updated, causing the corresponding
variable to point to the corresponding term.

With dag-transform-mm-st as its main component, we can define the uni-
fication algorithm. In short, the main function, called dag-mgu and omitted
here, receives as input two terms in prefix form and uses terms-dag as a
local stobj; after storing these terms as directed acyclic graphs in the stobj
(previously resizing the dag array properly), it iteratively applies the function
dag-transform-mm-st until either non-unifiability is detected or there are no
more equations to be solved. In this last case, the returned substitution (in

38



(defun dag-transform-mm-st (S U terms-dag)

(declare (xargs :stobjs terms-dag))

(let* ((equ (car S)) (R (cdr S))

(t1 (dag-deref-st (car equ) terms-dag))

(t2 (dag-deref-st (cdr equ) terms-dag))

(p1 (dagi t1 terms-dag))

(p2 (dagi t2 terms-dag)))

(cond

((= t1 t2) (mv R U t terms-dag)) ;DELETE

((dag-variable-p p1)

(if (occur-check-st t1 t2 terms-dag)

(mv nil nil nil terms-dag) ;OCCUR-CHECK

(let ((terms-dag (update-dagi t1 t2 terms-dag)))

;ELIMINATE

(mv R (cons (cons (dag-symbol p1) t2) U) t terms-dag))))

((dag-variable-p p2)

(mv (cons (cons t2 t1) R) U t terms-dag)) ;ORIENT

((not (eql (dag-symbol p1) (dag-symbol p2)))

(mv nil nil nil terms-dag)) ;CLASH1

(t (mv-let (pair-args bool)

(pair-args (dag-args p1) (dag-args p2))

(if bool ;DECOMPOSE

(mv (append pair-args R) U t terms-dag)

(mv nil nil nil terms-dag))))))) ;CLASH2

Figure 6: One step of transformation for unification

39



prefix form) is built from the final contents of dag, following the pointers of the
instantiated variables.

Thus, the function dag-mgu returns two values: the first output value is a
boolean indicating whether the terms are unifiable or not and, in case of unifi-
ability, the second is the mgu. For example (dag-mgu ’(f x (f (g x) (f x

y))) ’(f (g y) (f u (f (g y) y)))) returns the multivalue (t ((u . (g

(g y))) (x . (g y)))) and (dag-mgu ’(f y x) ’(f (k x) y)) returns (nil
nil).

The guard of the function dag-mgu is very simple, and it only requires that
the two input terms have to be ACL2 objects representing well-formed terms
in prefix form. This well-formedness property is defined by a function called
term-p. The following theorems are proved in ACL2, showing that the function
dag-mgu computes the most general unifier of two terms if and only if the
terms are unifiable. Here the function instance implements the application of
a substitution to a term, and subs-subst implements the “more general than”
relation between substitutions:

(defthm dag-mgu-completeness

(implies (and (term-p t1) (term-p t2)

(equal (instance t1 sigma) (instance t2 sigma)))

(first (dag-mgu t1 t2))))

(defthm dag-mgu-soundness

(implies (and (term-p t1) (term-p t2)

(first (dag-mgu t1 t2)))

(equal (instance t1 (second (dag-mgu t1 t2)))

(instance t2 (second (dag-mgu t1 t2))))))

(defthm dag-mgu-most-general-solution

(implies (and (term-p t1) (term-p t2)

(equal (instance t1 sigma) (instance t2 sigma)))

(subs-subst (second (dag-mgu t1 t2)) sigma)))

Note that the theory used to state the properties deals with terms repre-
sented in prefix notation. Also the input and the output of the function dag-mgu

are terms and substitutions in prefix notation. But it has to be emphasized that
internally, the main process is carried out on term dags. A description of the
formal proof of these theorems in ACL2 can be found in [48].

4.3.2 Attaching Executable Functions

Although the algorithm described above terminates for every pair of ACL2 ob-
jects representing terms in prefix form (i.e., on the intended domain described
by its guard), some of the auxiliary functions used by the algorithm are not
terminating in general. Consider, for instance the process of dereferencing the

40



(defexec dag-deref-st (h terms-dag)

(declare (xargs :stobjs terms-dag

:guard (and (natp h)

(< h (dag-length terms-dag))

(term-graph-p-st terms-dag)

(dag-p-st terms-dag)) ...) ...)

(mbe :logic

(if (dag-p-st terms-dag)

(let ((p (dagi h terms-dag)))

(if (integerp p) (dag-deref-st p terms-dag) h))

’undef)

:exec

(let ((p (dagi h terms-dag)))

(if (integerp p) (dag-deref-st p terms-dag) h))))

Figure 7: Dereferencing

pair of indices corresponding to the selected equation in the transformation step
(Figure 6). This process is implemented by the function dag-deref-st, where
(dag-deref-st i terms-dag) is the result of following a chain of instantiated
variable nodes in the graph stored in terms-dag, starting in node i, until an
unbound variable node or a non-variable node is found. Clearly, there are situa-
tions in which this process may not terminate, as a consequence of the possibility
of the existence of cycles (the simplest case is that the i-th cell could contain
the number i). As discussed at the end of Subsection 1.2, a non-terminating
process cannot be directly defined as a function in ACL2.

Consequently, in order to get the function admitted in the ACL2 logic we
must explicitly introduce in its logical definition a condition that ensures its
termination. This condition is implemented by a function dag-p-st checking
whether the graph stored in the stobj is acyclic. Roughly speaking, the function
dag-p-st does a depth-first search for cycles in a similar way to the linear
pathfinding algorithm presented in the previous section. Having defined the
function dag-p-st, we may now define the function dag-deref-st by means of
defexec, as shown in Figure 7.

Note that the logical definition of the function includes the condition (dag-

-p-st terms-dag), needed to be accepted by the ACL2 principle of definition.
This test is computationally expensive and, even worse, it would have to be
evaluated in every recursive call of the function dag-deref-st, making the
logical definition impractical for execution. The use of mbe guarantees that
once the guards are verified, the :exec body, without the expensive acyclicity
test, can be safely used for execution when the function is called on arguments

41



satisfying its guard.
The guard of the function ensures that the cells of the dag array have contents

of one of the three expected types described in the previous subsection (this
condition is implemented by the function term-graph-p-st). The guard also
requires the graph stored in the stobj to be acyclic. Since the graph is not
updated during the process performed by dag-deref-st, and the guard trivially
implies the condition (dag-p-st terms-dag) removed in the :exec body, then
the guard verification of the function dag-deref-st is straightforward.

The call to defexec also generates proof obligations that ensure the termi-
nation of the :exec body on the domain specified by its guard. In this case,
this proof obligation is similar to the one generated to show termination of the
logical definition. This termination proof is not trivial and it is necessary to pro-
vide a measure (omitted here) that decreases in every recursive call. Roughly
speaking, this measure counts the number of reachable nodes from the given
node h.

There are two other auxiliary functions used by the unification algorithm
that traverse the graph stored in the stobj. One of them is the function
occur-check-st that decides if a given variable occurs in the term pointed by
a given index. The other is the function that in the final step of the algorithm
reconstructs the mgu in prefix form, following the pointers of the instantiated
variables. Both functions are defined using defexec in a similar way to the
above definition of dag-deref-st, including the acyclicity check in the logical
definition and removing it in the executable body.

But non-termination situations can arise even if no traversal of the graph
is performed. Consider a dag unification problem having ’((0 . 1)) as the (in-
dices) system of equations to be solved, and such that (dagi 0 terms-dag)=’(f

. (0)) and (dagi 1 terms-dag)=’(f . (1)). In this case, the function dag-

-transform-mm-st of Figure 6 would apply the Decompose rule, obtaining the
same dag unification problem, and thus an iterative application of that function
would not terminate on this example.

Nevertheless, it is possible to define conditions on the dag unification prob-
lem that prevent these non-terminating situations. Essentially, these conditions
ensure that the initial dag unification problem represents a corresponding uni-
fication problem represented in prefix form. These considerations lead to the
definition of a function dag-solve-system-st (Figure 8) that iteratively ap-
plies dag-transform-mm-st until either non-unifiability is detected or there are
no more equations to be solved.

The condition (well-formed-upl-st S U terms-dag) checks the well-for-
medness properties of the input dag unification problem and it is sufficient
to prove termination of the function. The definition of well-formed-upl-st,
omitted here, includes the term-graph-p-st and the dag-p-st conditions on
the term-dag stobj. It also ensures that the variables of the graph are shared,
and that S and U are, respectively, a well-formed indices system and an indices
substitution. As in the previous cases, this condition is computationally expen-
sive and makes the logical definition of the function impractical for execution.
Fortunately, we can safely remove this expensive well-formedness condition in

42



(defexec dag-solve-system-st (S U bool terms-dag)

(declare (xargs :stobjs terms-dag

:guard (well-formed-upl-st S U terms-dag)

...)...)

(mbe :logic

(if (well-formed-upl-st S U terms-dag)

(if (or (not bool) (endp S))

(mv S U bool terms-dag)

(mv-let (S1 U1 bool1 terms-dag)

(dag-transform-mm-st S U terms-dag)

(dag-solve-system-st S1 U1 bool1

terms-dag)))

(mv nil nil nil terms-dag))

:exec

(if (or (not bool) (endp S))

(mv S U bool terms-dag)

(mv-let (S1 U1 bool1 terms-dag)

(dag-transform-mm-st S U terms-dag)

(dag-solve-system-st S1 U1 bool1 terms-dag)))))

Figure 8: Solving dag unification problems

43



the executable body, by means of mbe.
In this case the guard verification is more difficult than in the previous case.

The reason is that one step of transformation could apply the Eliminate rule
and change the contents of the stobj. Thus, it has to be proved that the well-
formedness condition of the dag unification problem is preserved by the rules of
transformation, as established by the following theorem. Note that in particular,
this theorem requires a proof that the updated graph obtained after applying
the Eliminate rule is still acyclic:

(defthm well-formed-upl-st-preserved-by-dag-transform-mm-st

(implies (and (well-formed-upl-st S U terms-dag) (consp S))

(mv-let (S1 U1 bool1 terms-dag)

(dag-transform-mm-st S U terms-dag)

(well-formed-upl-st S1 U1 terms-dag)))

The termination proofs for both the logical definition and the executable
body of dag-solve-system-st are the same: they can be achieved by explic-
itly providing a measure (omitted here) on the dag unification problem, that
decreases with respect to a lexicographic well-founded relation. Essentially, the
measure constructs the associated unification problem in prefix form and ap-
plies a measure that was previously proved suitable for the prefix version of the
algorithm. See [48] for details.

Finally, it is worth pointing out that although some guards of the auxiliary
functions presented here are computationally expensive (since they contain the
acyclicity test), the guard of the main function dag-mgu is very simple and only
checks that the two input ACL2 objects are well-formed terms in prefix form. So
only this initial check has to be done: the guard verification mechanism ensures
that subsequent calls of the auxiliary functions are on arguments satisfying their
guards, so no subsequent guard checking is done at run time and the tests for
cycles are never evaluated.

4.4 Executable Tail-Recursive Partial Functions

As a final application of mbe and defexec in optimizing natural executable
definitions for logical reasoning, we will consider its use in efficiently execut-
ing tail-recursive partial functions. Lisp programmers often write tail-recursive
functions that terminate only on some specific intended domain. In this sec-
tion, we show how to preserve the natural (partial) definition of tail-recursive
equations by using mbe to associate it with an appropriate function introduced
for the logic.

Consider the problem of introducing the following “definition” of tail-recursive
factorial.

(equal (trfact n a)

(if (equal n 0)

a

(trfact (- n 1) (* n a)))

44



Notice that the equation uniquely specifies the value of the trfact if and only if
n is a non-negative integer; the recursion does not terminate if n is a negative in-
teger, a non-integral rational, or non-numeric. However, recall from Section 1.2,
that the definitional principle of ACL2 can be used to introduce a recursive
definition if and only if the recursion is well-founded, that is, terminates for all

inputs. Hence we cannot use this principle to introduce the equation above as
a definitional axiom.

Such non-terminating tail-recursive equations can arise in non-trivial con-
texts, for example in formalizing microprocessor interpreters or low-level proce-
dural programming languages [41]. For example, the formal language interpreter
is often defined in ACL2 by specifying a function step such that, given a ma-
chine state s, (step s) returns the state after executing one instruction from
state s. One might then wish to formalize execution of the interpreter by the
function stepw as follows:

(equal (stepw s)

(if (halted s)

s

(stepw (step s))))

The equation above defines a unique value of (stepw s) only for those machine
states s for which the interpreter terminates (i.e., , reaches a halted state).

ACL2 provides a generic mechanism, called the encapsulation principle to
introduce functions with axioms that do not fully specify the return value for all
inputs. For instance, we can use encapsulation as follows to introduce a unary
function foo constrained only to return a natural number:

(encapsulate

(((foo *) => *))

(local (defun foo (x) 1))

(defthm foo-is-natural

(natp (foo x))))

The first line (((foo *) => *)) in the form above specifies that foo is a func-
tion of a single argument and returns a single value. The defthm command
specifies the formula (natp (foo x)) as a constraint on foo. To ensure con-
sistency, one must exhibit that there exists some function, called a local wit-

ness, that satisfies the alleged constraints; in this case, the function that always
returns 1 serves as a local witness. Once the encapsulate event has been ex-
ecuted, the local witness is “forgotten” and foo is axiomatized to be a unary
function satisfying only the specified constraints.

The encapsulation principle can be used to introduce tail-recursive partial
functions in ACL2. In particular, Manolios and Moore [35] show that given
any tail-recursive equation, one can always define a local witness constrained to
satisfy the equation. Using this observation, they define a macro called defpun

which makes it possible to introduce equations such as trfact above as follows:

(defpun trfact (n a)

45



(if (equal n 0)

a

(trfact (- n 1) (* n a))))

The macro expands into an encapsulate form that introduces a local witness
constrained to satisfy the defining equation. Unfortunately, however, because
of the use of encapsulation, the defining equation is introduced as a property

or constraint on the function trfact; no meaningful executable counterpart is
provided to the host Common Lisp. Thus, even for arguments on which the
recursion terminates, one cannot evaluate the function other than possibly by
symbolic expansion of the defining equation. We remedy this situation with mbe

and defexec.
Our solution is to define a new macro defpun-exec [44] that allows us to

write the following form:

(defpun-exec trfact (n a)

(if (equal n 0)

a

(trfact (- n 1) (* n a)))

:guard (and (natp n) (natp a)))

In the logic, the effect is the same as that of defpun above, namely the introduc-
tion of function trfact constrained to satisfy its defining equation. However, for
arguments satisfying the guard, defpun-exec enables evaluation of the equa-
tion. Thus we can evaluate (trfact 3 1) to 6.

How does defpun-exec work on the above example? First it introduces a
new function trfact-logic using defpun.

(defpun trfact-logic (n a)

(if (equal n 0)

a

(trfact-logic (- n 1) (* n a))))

Next, it introduces the following form via defexec.

(defexec trfact (n a)

(declare (xargs :guard (and (natp n) (natp a))

(mbe :logic (trfact-logic n a)

:exec (if (equal n 0) a (trfact (- n 1) (* n a)))))

The use of defexec rather than defun generates proof obligations that ensure
the termination of the :exec body on the domain specified by its guard. With
this form, the definitional axiom of trfact is merely the following:

(equal (trfact n a) (trfact-logic n a))

Since trfact-logic is constrained to satisfy exactly the same tail-recursive
equation as the :exec code for trfact above, the guard obligation for mbe,
namely that the :logic and :exec forms be provably equal, is trivial. Finally,
defpun-exec introduces the following trivial-to-prove theorem, which verifies
that trfact also satisfies the desired defining equation.

46



(defthm trfact-def

(equal (trfact n a)

(if (equal n 0)

a

(trfact (- n 1) (* n a))))

:rule-classes :definition)

The keyword :definition in the :rule-classes argument for the defthm

command is a directive to the ACL2 theorem prover asking it to use this theorem
as a defining equation for trfact for reasoning purposes. On the other hand,
since trfact is defined rather than constrained, we can now perform efficient,
non-looping evaluation of trfact calls on inputs that satisfy its guard, using
the :exec code in the underlying Common Lisp.

5 Conclusion

In this paper we have discussed the need to combine efficient functional pro-
gramming constructs with mechanized proof support. Our motivating examples
come from industrial applications of the ACL2 system, in which hardware and
software of industrial interest have been formally modeled. Those models have
been used as efficient simulation engines or rapid prototypes and have also
been subjected to mechanically checked proofs to establish properties of inter-
est. The dual use of formal models — execution and proof — increases their
value but puts great stress on the programming/logical language because there
is frequently a tension between logical elegance and execution efficiency.

The main point of this paper is to show the utility of the feature mbe (“must
be equal”), which allows the user to define a function in two different but prov-
ably equivalent ways to resolve this tension between execution and proof. Be-
cause of the presence of a theorem prover within the system, the two alternatives
may be arbitrarily different as long as the user can guide the system to a proof
of their equivalence under the hypotheses governing their use.

The obvious application of mbe is to provide both elegant and efficient def-
initions of elementary functions such as length, factorial, list reverse, and list
sorting, and on more interesting applications such as ordinal arithmetic and
record structure operations. Mbe is often so used.

But this paper has highlighted less obvious uses. In particular, we noted that
the principle of definition, which is necessary to guard against the introduction
of unsoundness, may require the inclusion of runtime tests that can be shown
to be unnecessary once the properties of the newly defined concept have been
established. Using the new feature we showed how such runtime tests can be
eliminated after the fact.

As another highlighted use of mbe we showed how it can be used to pro-
vide executable counterparts for some partially defined constrained functions.
Until the introduction of mbe into the ACL2 system, it was not possible to
compute the values of any constrained functions (except by symbolic deduc-
tion). In particular, we showed how executable counterparts can be provided

47



for partial tail-recursive functions. This is an important class of functions: most
operational models of state machines, microprocessors, and low-level procedural
programming languages are given by an iterated state-transition system that can
naturally be expressed tail-recursively and whose termination is not guaranteed.
We anticipate that the provisioning of partial functions with executable coun-
terparts will hasten their adoption by the ACL2 community and will simplify
system modeling in ACL2.

The most important lesson of this paper is perhaps that functional program-
ming languages can benefit greatly from a focus on mechanically checked proofs.
First, such a focus enables the dual use of functional formal models and thus
encourages the adoption of functional programming by user communities (such
as microprocessor design teams) that do not traditionally use the paradigm.
Second, the presence of a mechanical theorem prover can allow the user great
flexibility in attaining efficient code while presenting correct definitions.

Acknowledgements

This material is based upon work supported by DARPA and the National Sci-
ence Foundation under Grant No. CNS-0429591, as well as the National Science
Foundation under Grant Nos. ISS-0417413, CCF-0429924, and CCF-0438871.
The work of the sixth author is partially supported by the Spanish Ministry of
Education and Science project TIN2004-03884, which is cofinanced by FEDER
funds. We thank Vernon Austel for a key idea that helped in the design of mbe.
We also thank the anonymous referees of the corresponding paper for helpful
expository suggestions.

References

[1] S. Allen, R. Constable, D. Howe, and W. Aitken. The semantics of reflected
proof. In J. Mitchell, editor, Fifth Annual IEEE Symposium on Logic in

Computer Science, pages 95–105. IEEE Computer Society Press, 1990.

[2] K. R. Apt and E. Olderog. Verification of Sequential and Concurrent Pro-

grams. Springer–Verlag, 1991.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[4] F. Baader and W. Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 8, pages 445–532. Elsevier Science, 2001.

[5] W.R. Bevier, W. A. Hunt, Jr., J S. Moore, and W. D. Young. Special
issue on system verification. Journal of Automated Reasoning, 5(4):409–
530, 1989.

48



[6] R. S. Boyer and J S. Moore. Proving theorems about pure Lisp functions.
Journal of the ACM, 22(1):129–144, 1975.

[7] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press,
1979.

[8] R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and
using them efficiently as new proof procedures. In R. S. Boyer and J S.
Moore, editors, The Correctness Problem in Computer Science, pages 103–
184. Academic Press, 1981.

[9] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic
Press, second edition, 1997.

[10] R. S. Boyer and J S. Moore. Single-threaded objects in ACL2. In
S.Krishnamurthi and C. R. Ramakrishnan, editors, Practical Aspects of

Declarative Languages : 4th International Symposium, PADL 2002, vol-
ume 2257 of Lecture Notes in Computer Science, pages 9–27. Springer-
Verlag, 2002. See URL http://www.cs.utexas.edu/users/moore/-

publications/stobj/main.ps.Z.

[11] B. Brock and W. A. Hunt, Jr. Formal analysis of the Motorola CAP DSP.
In Mike Hinchey and Jonathan Bowen, editors, Industrial-Strength Formal

Methods in Practice, pages 81–116. Springer-Verlag, 1999.

[12] G. Cantor. Beiträge zur begründung der transfiniten mengenlehre. Math-

ematische Annalen, 46:481–512, 1895.

[13] G. Cantor. Beiträge zur begründung der transfiniten mengenlehre. Math-

ematische Annalen, 49:207–246, 1897.

[14] G. Cantor. Contributions to the Founding of the Theory of Transfinite

Numbers. Dover Publications, Inc., 1955. Translated by Philip E. B. Jour-
dain.

[15] A. Church and S. C. Kleene. Formal definitions in the theory of ordinal
numbers. Fundamenta Mathematicae, 28:11–21, 1937.

[16] J. Corbin and M. Bidoit. A rehabilitation of Robinson’s unification algo-
rithm. Information Processing, 83:909–914, 1983.

[17] J. Cowles, R. Gamboa, and J. van Baalen. Using ACL2 arrays to
formalize matrix algebra. In W. A. Hunt, Jr., M. Kaufmann, and
J S. Moore, editors, Proceedings of the 4th International Workshop

on the ACL2 Theorem Prover and Its Applications, 2003. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

[18] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluat-
ing, testing, and animating PVS specifications. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, CA, 2001. See URL
http://www.csl.sri.com/users/rushby/papers/attach.pdf.

49



[19] J. Davis. Finite set theory based on fully ordered lists. In M. Kaufmann
and J S. Moore, editors, Proceedings of the 5th International Workshop on

the ACL2 Theorem Prover and Its Applications, 2004. See URL http://-

www.cs.utexas.edu/users/moore/acl2/workshop-2004/.

[20] K. Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory.
Springer-Verlag, second edition, 1992.

[21] G. Gentzen. Die widerspruchsfreiheit der reinen zahlentheorie. Mathema-

tische Annalen, 112:493–565, 1936. English translation in Szabo, M.E. (ed),
The Collected Works of Gerhard Gentzen, 132-213, North Holland, 1969.

[22] M. Gordon, J. Hurd, and K. Slind. Executing the formal semantics of the
Accellera property specification language by mechanised theorem proving.
In D. Geist, editor, Proceedings of the 12th International Conference on

Correct Hardware Design and Verification Methods, volume 2860 of Lecture

Notes in Computer Science, pages 200–215. Springer-Verlag, 2003.

[23] D. Greve and M. Wilding. Using MBE to speed a verified
graph pathfinder. In W. A. Hunt, Jr., M. Kaufmann, and J S.
Moore, editors, Proceedings of the 4th International Workshop on

the ACL2 Theorem Prover and Its Applications, 2003. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

[24] D. Greve, M. Wilding, and D. Hardin. High-speed, analyzable simulators.
In M. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-Aided

Reasoning: ACL2 Case Studies, pages 113–136. Kluwer Academic Press,
2000.

[25] J. Harrison. Metatheory and reflection in theorem proving: A
survey and critique. Technical Report CRC-053, SRI International
Cambridge Computer Science Research Centre, 1995. See URL
http://www.cl.cam.ac.uk/users/jrh/papers/reflect.html.

[26] W. A. Hunt, Jr. FM8501: A Verified Microprocessor, volume 795 of Lecture

Notes in Artificial Intelligence. Springer-Verlag, 1994.

[27] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:

An Approach. Kluwer Academic Press, 2000.

[28] M. Kaufmann and J S. Moore. A precise description of the ACL2 logic.
Technical report, Department of Computer Sciences, University of Texas
at Austin, 1997. See URL: http://www.cs.utexas.edu/users/moore/-
publications/acl2-papers.html#Foundations.

[29] M. Kaufmann and J S. Moore. Structured theory development for a mech-
anized logic. Journal of Automated Reasoning, 26(2):161–203, 2001.

[30] M Kaufmann and J S. Moore. ACL2 Home Page, 2006. See URL http://-

www.cs.utexas.edu/users/moore/acl2.

50



[31] M. Kaufmann and R. Sumners. Efficient rewriting of data struc-
tures in ACL2. In D. Borrione, M. Kaufmann, and J S.
Moore, editors, Proceedings of the 3rd International Workshop on

the ACL2 Theorem Prover and Its Applications, 2002. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2002/.

[32] K. Kunen. Set Theory - An Introduction to Independence Proofs, volume
102 of Studies in Logic and the Foundations of Mathematics. Elsevier, 1980.

[33] H. Liu and J S. Moore. Executable JVM model for analytical reasoning:
A study. In IVME ’03: Proceedings of the 2003 Workshop on Interpreters,

Virtual Machines and Emulators, pages 15–23. ACM Press, 2003.

[34] P. Manolios and M. Kaufmann. Adding a total order to
ACL2. In D. Borrione, M. Kaufmann, and J S. Moore, ed-
itors, Proceedings of the 3rd International Workshop on the

ACL2 Theorem Prover and Its Applications, 2002. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2002/.

[35] P. Manolios and J S. Moore. Partial functions in ACL2. Journal of Auto-

mated Reasoning, 31(2):107–127, 2003.

[36] P. Manolios and D. Vroon. Algorithms for ordinal arithmetic. In Franz
Baader, editor, 19th International Conference on Automated Deduction –

CADE-19, volume 2741 of Lecture Notes in Artificial Intelligence, pages
243–257. Springer–Verlag, 2003.

[37] P. Manolios and D. Vroon. Ordinal arithmetic in ACL2. In W. A. Hunt, Jr.,
M. Kaufmann, and J S. Moore, editors, Proceedings of the 4th International

Workshop on the ACL2 Theorem Prover and Its Applications, 2003. See
URL http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

[38] P. Manolios and D. Vroon. Integrating reasoning about ordinal arithmetic
into ACL2. In Proceedings of the 5th International Conference on For-

mal Methods in Computer-Aided Design – FMCAD 2004, volume 3312 of
Lecture Notes in Computer Science. Springer–Verlag, 2004.

[39] Panagiotis Manolios and Daron Vroon. Ordinal arithmetic: Algorithms
and mechanization. Journal of Automated Reasoning, pages 1–37, 2006.

[40] J. Matthews and D. Vroon. Partial clock functions in ACL2. In M. Kauf-
mann and J S. Moore, editors, Proceedings of the 5th International Work-

shop on the ACL2 Theorem Prover and Its Applications, 2004. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2004/.

[41] J S. Moore. Inductive assertions and operational semantics. In D. Geist
and E. Tronci, editors, Correct Hardware Design and Verification Methods

– CHARME 2003, volume 2860 of Lecture Notes in Computer Science,
pages 289–303. Springer-Verlag, 2003.

51



[42] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system
Coq. Journal of Symbolic Computation, 15:607–640, 1993.

[43] Lawrence C. Paulson. Verifying the unification algorithm in LCF. Science

of Computer Programming, 5(2):143–169, 1985.

[44] S. Ray. Attaching efficient executability to partial functions in ACL2. In
M. Kaufmann and J S. Moore, editors, Proceedings of the 5th International

Workshop on the ACL2 Theorem Prover and Its Applications, 2004. See
URL http://www.cs.utexas.edu/users/moore/acl2/workshop-2004/.

[45] S. Ray and R. Sumners. Verification of an in-place quick-
sort in ACL2. In D. Borrione, M. Kaufmann, and J S.
Moore, editors, Proceedings of the 3rd International Workshop on

the ACL2 Theorem Prover and Its Applications, 2002. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2002/.

[46] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
MIT Press, 1987.

[47] J.L. Ruiz-Reina, J.A. Alonso, M.J. Hidalgo, and F.J. Mart́ın. Mechanical
verification of a rule-based unification algorithm in the Boyer-Moore the-
orem prover. In AGP’99 Joint Conference on Declarative Programming,
pages 289–304, 1999.

[48] J.L. Ruiz-Reina, J.A. Alonso, M.J. Hidalgo, and F.J. Mart́ın. Formal cor-
rectness of a quadratic unification algorithm. Journal of Automated Rea-

soning, pages 1–26, 2006. Accepted for publication, published Online First.

[49] D. Russinoff, M. Kaufmann, E. Smith, and R. Sumners. Formal verifica-
tion of floating-point rtl at amd using the acl2 theorem prover. In Nikolai
Simonov, editor, Proceedings of the 17th IMACS World Congress on Sci-

entific Computation, Applied Mathematics and Simulation, July 2005. See
URL http://sab.sscc.ru/imacs2005/papers/T2-I-94-1021.pdf.

[50] D. M. Russinoff and A. Flatau. RTL verification: A floating-point multi-
plier. In M. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-

Aided Reasoning: ACL2 Case Studies, pages 201–232. Kluwer Academic
Publishers, 2000.

[51] K. Schütte. Proof Theory. Springer–Verlag, 1977. Translation from the
German by J. N. Crossley. The book is a completely rewritten version of
Beweistheorie, Springer–Verlag, 1960.

[52] N. Shankar. Metamathematics, Machines, and Gödel’s Proof. Cambridge
University Press, 1994.

[53] N. Shankar. Efficiently executing PVS, 1999. Project report, Computer
Science Laboratory, SRI International, Menlo Park, CA, November, 1999.

52



[54] G. L. Steele, Jr. Common Lisp The Language. Digital Press, second edition,
1990.

[55] R. Sumners. Correctness proof of a BDD manager in the
context of satisfiability checking. In M. Kaufmann and J S.
Moore, editors, Proceedings of the 2nd International Workshop on

the ACL2 Theorem Prover and Its Applications, 2000. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2000/.

[56] M. Sustik. Proof of Dickson’s lemma using the ACL2 theorem prover
via an explicit ordinal mapping. In W. A. Hunt, Jr., M. Kaufmann,
and J S. Moore, editors, Proceedings of the 4th International Workshop

on the ACL2 Theorem Prover and Its Applications, 2003. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

[57] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, second edition, 2000.

[58] R. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning.
Artificial Intelligence Journal, 13(1):133–170, 1980.

53


