Improving the Interaction between
Overlay Routing and Traffic Engineering

Gene Moo Lee, Tachwan Choi, and Yin Zhang
Department of Computer Sciences,
The University of Texas at Austin
{gene, ctlight, yzhang}@Qcs.utexas.edu

Abstract

Overlay routing has been successful as an incremental method to
improve the current Internet routing by allowing users to select their
logical routing. In the meantime, traffic engineering (TE) techniques
are being used to reduce the network cost by adapting the physical
routing in response to varying traffic patterns. An overlay is interested
in the optimal routes for its own users, whereas TE is to optimize the
whole network performance. Previous studies [1,2] have shown that
the conflict of objectives can cause huge network cost increases and
oscillations to the network.

In this paper, we improve the interaction between overlay routing
and TE by modifying the objectives of both parties. For the over-
lay part, we propose TE-awareness which limits the selfishness by
some bounds so that the action of overlay does not offensively affect
TE’s optimization process. For the TE part, we suggest COPE as a
strong candidate that achieves close-to-optimal performance for pre-
dicted traffic matrices and that handles unpredictable overlay traffic
efficiently. With extensive simulation results, we show the proposed
methods can significantly improve the interaction with lower network
cost and smaller oscillation problems.

1 Introduction

Overlay routing has been proposed as an incremental method to enhance the
current Internet routing without requiring additional functionality from the
IP routers. Overlay techniques have been successful for many applications,
including application-layer multicast [3-5], web content distribution [6], and
overlay routing (7, 8].

In an overlay network, several overlay nodes form an application-layer
logical network on top of the IP layer network. Overlay networks enable
users to make routing decisions at the application layer by relaying traffic
among overlay nodes. We can achieve better route than default IP routing
because some problematic and slow links can be bypassed. In addition, over-
lay routing can take advantage of some fast and reliable paths, which could
not be used in the default IP routing due to the business relationship.

By its nature, overlay routing has selfish behavior. In other words, over-
lay acts strategically to optimize its performance. This nature of overlay
makes impact on the related components of the network. Overlay routing
has wvertical interaction with IP layer’s traffic engineering. Whenever over-
lay network changes its logical routing, the physical traffic pattern changes,
which is observed by the underlay routing. Network operators use traffic en-
gineering techniques [9-11] to adapt the routing to cope with the new traffic
demands. This new routing, in turn, changes the link latency observed by
the overlay network, and then overlay makes another decision to change its
routing. Traffic Engineering cares about the network as a whole, in order to
provide better service to all the users. However, the main objective of overlay
routing is to minimize its own traffic latency. Then an interesting issue is to
understand the interaction between overlay routing and IP routing.

The interaction between overlay routing and traffic engineering was first
addressed by Qiu et al. [1], where the authors investigate the interaction of
overlay routing with OSPF and MPLS traffic engineering. Keralapura et
al. [12] examine the interaction dynamics between the two layers of control
from an ISP’s view. Liu et al. [2] formulate the interaction as a two-player
game, where overlay attempts to minimize its delay and traffic engineering
tries to minimize the network cost. The paper shows that the interaction
causes a severe oscillation problem to each player and that both players gain
little or nothing as the interaction proceeds.

In this paper, we propose TFE-aware overlay routing, which takes the
objective of underlay routing into account, instead of blindly optimizing its

(4,7), 1 physical link
(¢',5") logical link
cap(l) capacity of a physical link /
vst(1) flow of d,; on link {
fse(D) fraction of dy on link [
t(l) traffic rate at link [
dgt total TE demand on physical node pair (s,)
dgryr overlay demand on pair (s',t)
dunder TE demand due to underlay traffic
devertav TE demand due to overlay flow
PG?) set of logical paths from s’ to ¢/
5;'t' path mapping coefficient
hl(flt’) overlay flow on logical path p

Table 1: Notations for vertical interaction

performance. Moreover, we argue that it is better off for both players if the
underlay routing is oblivious to the traffic demands. We suggest COPE [13]
as a strong candidate for this purpose.

The paper is organized as follows. First, we formally describe underlying
model in Section 2. Section 3 formulates the interaction of overlay routing
and traffic engineering as a non-cooperative two-player game. Then various
underlay routing schemes are described in Section 4, and selfish overlay rout-
ing and TE-aware overlay routing are given in Section 5. Section 6 evaluates
the proposed methods with extensive simulation results. Lastly, Section 7
concludes the paper and gives future direction.

2 Model

In this section, we describe the mathematical model, which will be used
throughout the paper. Basically, traffic engineering and overlay have differ-
ent viewpoints of the network. Network operators know all the underlying
structure of the physical network, whereas overlay has a logical view of the
network.

Table 1 summarizes the notations for vertical interaction. First, we use
G = (V, E) to denote an underlay network, where V' is the set of physical

traffic demands

Figure 1: vertical interaction game: TE determines the physical routing,
which decides link latency experienced by overlay. Given the observed la-
tency, overlay optimizes its logical routing and changes the physical traffic
demands, which, in turn, affects the underlay routing.

nodes and E is the set of edges between nodes. We use [or (¢, j) to denote
a link and cap(l) to refer the capacity of link [. For the overlay network, we
use G' = (V',E"). In G', we use 7' to represent the overlay node built upon
physical node i in underlay graph G. Overlay node i’ is connected to j' by a
logical link (i, j'), which corresponds to a physical path from i to j in G.
Now, we need to have different notations for overlay and underlay traffic
demands: d,; is used to indicate the total traffic demand from node s to
t, including overlay and non-overlay traffics, and d,; is a sum of d“*¥" and
doveriey - qunder refers to the background traffic by non-overlay demands. Next,
it is important to differentiate d?*"'¥ from dyy: dgy indicates the logical
traffic demand from overlay node s’ to ¢, whereas d2’*'® is the physical
traffic demand on physical node pair (s, t), generated by overlay network. In

other words, d"' is computed by the overlay routing based on the current

logical demand {dyy|Vs',t' € E'}.

The third group of notations is for the overlay routing. P®*) is the set
of logical paths from s’ to ¢'. 5;"“ is the path mapping coefficient, where the
value is 1, if logical link (s',¢') is on logical path p, and 0, otherwise. h,(qslt’)
is the amount of overlay demand d(s't') flowing on logical path p.

3 Vertical Interaction Game

Based on the formulations in the previous section, traffic engineering and
overlay routing are coupled through the mapping from the logical level path
to physical level links. We can formulate the interaction as a non-cooperative
two-player game as described in Figure 1.

The first player is the ISP’s traffic engineering and the second player is

4

the overlay routing for the user’s side. The interaction consists of sequential
moves of the two players. Each player takes turn and makes action to opti-
mize its performance. Based on the overlay demand and flow conditions on
the physical links, overlay calculates the optimal flows on the logical routing.
These logical flows and the underlay background traffic are coupled to form
the total traffic matrix, which is the input for traffic engineering. Then traffic
engineering optimizes its performance by adapting the flows on the physical
links, which in turn affects the delays experienced by the overlay. This in-
teraction continues until the two players come up with the Nash equilibrium
point [14,15].

In game theory, Nash equilibrium is a kind of optimal collective strategy
in a game involving two or more players, where no player has anything to
gain by changing only his or her own strategy. If each player has chosen a
strategy and no player can benefit by changing his or her strategy while the
other players keep theirs unchanged, then the current set of strategy choices
and the corresponding payoffs constitute a Nash equilibrium.

Liu et al. [2] prove the existence of Nash Equilibrium in a simple interac-
tion game, where the topology consists of three nodes and there is a single
demand between two nodes. Even though we might prove the existence of a
convergent point, the interaction process does not guarantee that two play-
ers’ behaviors converge to the Nash equilibrium. Moreover, if the game gets
complicated, it is even harder to anticipate the interaction process. The au-
thors show that in a realistic scenario, both traffic engineering and overlay
routing experience substantial performance loss due to the oscillation.

The main direction of our work is to improve the vertical interaction be-
tween overlay routing and traffic engineering. First, we want the interaction
game to converge faster because the oscillation in this game degrades the per-
formance of both players. Next, we try to reduce the performance variation
in the transient oscillation process.

4 'Traffic Engineering

In this section, we now formulate three traffic engineering schemes: Multi-
Protocol Label Switching (MPLS) [10], oblivious routing [16], and Convex-
hull-based Optimal traffic engineering with Penalty Envelope (COPE) [13].
There are other IP routing protocols not considered in the thesis, such as
Open Shortest Path First (OSPF) [9]. We do not consider this method

because it is shown in [1] the vertical interaction of the scheme is inefficient.

The output of traffic engineering is IP-layer routing, which specifies how
traffic of each Origin-Destination (OD) pair is routed across the network.
Typically, there is path diversity, that is, there are multiple paths for each
OD pair, and each path routes a fraction of the traffic.

4.1 Multi-Protocol Label Switching Traffic Engineer-
ing

Multi-Protocol Label Switching (MPLS) [10] provides an efficient support of
explicit routing, which is the basic mechanism for traffic engineering. Explicit
routing allows a particular packet stream to follow a predetermined path
rather than a path computed by hop-by-hop destination based routing such
as OSPF or IS-IS.

The combination of MPLS technology and its traffic engineering capa-
bilities enable the network operator to adaptively load-balance the traffic
demands to optimize the network performance. There are two possible ways
to describe the network performance: maximum link utilization and total
link latency.

First, network operators sometimes worry about over-loaded links, be-
cause these links can be a bottleneck for the whole network performance.
A slight change of the traffic pattern may overload the over-utilized links.
Therefore, we want to minimize the maximum link utilization.

Given the traffic demand matrix {d|Vs,t € V'}, the goal of MPLS traffic
engineering is to choose a physical link flow allocation {f(1)|Vs,t € V,VI €
E} which minimizes the maximum link utilization. The Linear Program
model is given as follows:

min 7
subject to fy(l) is a routing
Vlink 1) fo(l) de/cap(l) < r
s,t

Here, the first constraint ensures that the given routing satisfies the flow
conservation constraints. Basically, for each router, total incoming traffic
should be equal to total outgoing traffic. It can be described as the following

equations:

1 if y =t,
Z fst(l) — Z fse(l) =< =1 ify=s,
fldstt)=y Horell)=y 0 otherwise

for each OD pair s,t. Here, l|dst(l) = y indicates all links destined to y, and
[|sre(l) = y means all links sourced from y.

Secondly, we can use total link latency as the network performance metric,
and we want to minimize the total link latency throughout the network. We
use the M/M/1 delay formula to calculate link cost. For a physical link /
with capacity cap(l), if its traffic rate is #(), the total delay experienced by
traffic engineering on the links is %.

Given the traffic demand matrix {ds|Vs,t € V'}, the goal of traffic engi-
neering is to choose a physical link flow allocation {fy(l)|Vs,t € V,Vl € E}
that minimizes network costs:

: t(1)
mit 2 Gl a0
subject to fy(l) is a routing

Vlink [: t(l) = Zfst(l) gt

Note that the link latency function is non-linear, which makes the optimiza-
tion process to be time-consuming. The cost of a link is modeled with a
piecewise-linear, increasing, convex function following [17,18]. We will use
this linear function to calculate the latency for overlay routing in Section 5.

4.2 Oblivious Routing

One of the important components of traffic engineering is to understand
the traffic low. Previously discussed MPLS traffic engineering optimizes
the paths based on the currently observed traffic matrix. Unfortunately,
measuring and predicting traffic demands are really difficult problems. Flow
measurements are rarely available on all links and Ingress/Egress points.
Moreover, demands change over time on special eventssuch as DoS attac,
flash crowds, and internal /external network failures. It seems that the most

one can hope is some approximate picture of demands, not necessarily the
very current one.

Oblivious routing [16] is proposed to resolve this issue. It calculates an
optimal routing which performs reasonably well independently of traffic de-
mands. In other words, this “demand oblivious” routing is designed with
little knowledge of the traffic matrix (TM), taking only the topology along
with link capacities into account.

4.3 Convex-Hull-Based Optimal Traffic Engineering with
Penalty Envelope

MPLS Traffic Engineering can be regarded as an extreme case of online adap-
tation. An advantage of this scheme is that it achieves the best performance
for the current traffic demand. However, if there are significantly fast traffic
changes, such method can suffer a large transient penalty. Oblivious routing
is a way to handle unpredicted traffic spikes. However, a potential drawback
of completely oblivious routing is its sub-optimal performance for the normal
traffic demand.

Convex-hull-based Optimal traffic engineering with Penalty Envelope (COPE)
[13] is proposed as a hybrid combination of predication-based optimal rout-
ing and oblivious routing. COPE handles both dynamic traffic and dynamic
inter-domain routes and, at the same time, achieves close-to-optimal perfor-
mance for normal, predicted traffic matrices.

COPE optimization can be obtained by adding penalty envelope con-
straints to MPLS Linear Programming. The penalty envelope constraint
restricts that the routing f has maximum performance ratio less than or
equal to 7. This can be formalized as the following set of linear constraints:

V link [: Z cap(m) ™(l,m) <T

V link [,V pair s — ¢ : fs(1)/cap(l) < py(s,t)
V link [,V node s,V edgee =t — v :

(1, link-of(e)) + p;(s,t) — py(s,v) > 0

V link I,m : w(l,m) >0

V link ,V node s : py(s,s) =0

V link [,V node s,t : p;(s,t) > 0

The convex-hull-based Linear Program takes the input as a set of possible
traffic matrices. In our simulation, however, we use a single currently ob-
served traffic matrix. Still, COPE is shown to make an excellent performance
for the dynamic change of the traffic patterns.

5 Overlay Routing

In this section, we formulate the objective functions for overlay routing. We
start with the default overlay routing, which we term selfish overlay routing.
Given the current underlay routing and experienced link latency, selfish over-
lay tries to minimize its total latency by changing the loads for each logical
path in the overlay network.

Then, we propose a variation of overlay routing. Basically, we include
additional constraints to the original overlay optimization so that overlay
takes the presence of traffic engineering into account. We term this as TE-
aware overlay routing.

5.1 Selfish Overlay Routing

The overlay routing algorithm determines a logical path flow allocation {h;’t' Vs’ t' e
V' ¥p € P'*)} that minimizes the average delay experienced by the overlay
users, whereas traffic engineering determines the physical flow. By h;’t', we
denote the logical overlay demand from s’ to t' allocated to path p.

Individual overlay users may choose their routes independently by prob-
ing the underlay network. However, we assume that a centralized entity
calculates routes for all overlay users. Given the physical network topology,
underlay routing, and experienced latency for each link, optimal overlay rout-
ing can be obtained by solving the following non-linear optimization problem:

) t(l)overlay
min —_—
e e
subject to h;'t' is a logical routing

Vlink I :t(l) = Z Foe(1)(durder 4 dggerlay)
s,t

¥ link £ : ¢(1)°er'90 =3 dZ £, (1)

s,t

Vs, t €V 1 doerlo = Z 55 R

I t’,p

The first constraint ensures that the logical routing satisfies the logical flow
conservation constraints. This can be expressed as follows:

vt eV Y AT =4t
pEP(SIt’)

VstEV"h >0

Note that the main objective of problem is non-linear. But we can again
linearize the non-linear part of the program by using the same technique used
for the traffic engineering optimization. Refer to the Section 4 for details.

5.2 TE-Aware Overlay Routing

Based on the selfish overlay routing, we can include additional constraints to
ensure the overlay is TE-aware. By TE-awareness, we mean the selfishness
of the overlay is limited by some bound so that the action of overlay does
not offensively affect the traffic engineering’s optimization process.

The basic idea is this: (1) when the current latency is below the average
latency, the overlay tries to minimize its own traffic amount, given that the
current latency is preserved (load-balancer). (2) If the latency is above the
average, then overlay changes the logical routing to improve the latency, but,
at the same time, it avoids a specific link to be overloaded (limited-optimizer).

The first part, load-balancer, can be formalized as the following Linear
Program model:

min 2 : doverlay

subject to h;t is a logical routing

Vlink [: t(l) = Z Fa(D)(dvnder 4 dgzerlay)
V link [: ¢(1)°erov = Z 4oty £ (1)

Vs,t €V : oo = Z 55 hY)

s'\t',p

10

Figure 2: 14-node Tier-1 backbone topology: each node represents a Point-
of-Presence (POP) and each link represents the aggregated connectivity be-
tween the routers belonging to a pair of adjacent POPs. Four POPs (3,6,7,11)
are used as overlay nodes.

t(l)overlay
2 Caplty =0 = ©

Here, the main objective is to minimize the total overlay traffic amount. The
last constraint guarantees that the current latency is preserved. (© in the
last constraint indicates the current latency.)

Secondly, limited selfish overlay routing can be defined by adding a con-
straint to the default selfish overlay routing:

Vlink 11 fo(l) d' < 6

8,t

0 = max{t(1)*¢""*¥|V link [}
Here, # is the maximum link load that the overlay generates in the past run.

The additional contraint limits the selfishness of overlay and prevents specific
links to be overloaded.

6 Simulation

This section describes the simulation results of vertical interactions. We
first compare MPLS and COPE as the underlay traffic engineering schemes.

11

Then we evaluate and compare TE-aware overlay routing and selfish overlay
routing.

6.1 Data Set Description

We perform extensive experiments on a 14-node Tier-1 POP topology de-
scribed in [19]. The underlay network topology is given in Figure 2. We have
done experiments with other topologies and observed qualitatively consistent
results. On top of the physical network, we made up a four-node full-meshed
overlay network of node 3, 6, 7, and 11. For the traffic matrix, we generate
synthetic traffic demands using gravity model [19].

6.2 Implementation

We use General Algebraic Modeling System [20] to implement various op-
timization procedures for the experiments. Then the interaction between
optimization programs is implemented by connecting the inputs and outputs
of the GAMS programs through Perl scripts. Given that we run the opti-
mization process for more than hundred iterations, we need a support of Con-
dor [21], which is a specialized workload management system for compute-
intensive jobs.

6.3 MPLS and COPE with Selfish Overlay

We start with the comparison between MPLS and COPE in the operator’s
viewpoint. We fix the overlay routing to be selfish and compare the perfor-
mance of MPLS and COPE.

For the COPE, we need a prespecified penalty envelope value. We first
calculate the value (1.9969) by running oblivious routing, which finds the
optimal routing which minimizes the oblivious ratio. This can be calculated
without any information about traffic demands because oblivious routing
only depends on the network topology information. Then by multiplying 1.1
to the optimal oblivious ratio, we set the penalty envelope value.

First, we set 10% of the total traffic demand to be operated by the selfish
overlay routing. We set the load scale factor to be 0.3, 0.5, and 0.7. This
means that the maximum link utilization is 30%, 50%, and 70%, respectively,
when all the demands use the default underlay routing without overlay’s
action.

12

The experiment results are shown in Figure 3. Regardless of the load scale
factor, we can observe that the COPE makes better interaction with selfish
overlay. In all cases, MPLS traffic engineering suffers from substantially large
oscillation throughout the interaction, where COPE achieves almost stable
performance with its maximum link utilization. Similarly, the dynamics of
overlay latency is quite stable with the interaction of COPE. Moreover, the
average latency sometimes gets improved by using COPE.

For the next experiment, we want to explore the impact of the overlay
fraction to the vertical interaction. Now, we fix the load scale factor and
change the fraction of overlay traffic (10%, 30%, 50%) in the experiment.
We set the load scale factor to be 0.9 in Figure 4.

Again, we can observe that COPE makes better interaction with selfish
overlay routing than MPLS does. As we increase the fraction of overlay traf-
fic, the oscillation of maximum link utilization gets larger, which follows our
intuition. However, the performance of overlay latency seems to be indepen-
dent of how much portion overlay routing operates.

With the extensive simulation, we find COPE as a strong traffic engi-
neering technique which achieves stable performance even the selfish overlay
traffic dominates a significant portion of the total traffic demand.

6.4 TE-Aware Overlay and Selfish Overlay with MPLS

Now, we evaluate the TE-aware overlay routing by comparing it to the selfish
overlay routing. For the underlay routing, we again use MPLS and COPE.
We first start the evaluation by comparing two overlay routings on top of
MPLS traffic engineering.

In Figure 5, we set 10% of the traffic to be operated by overlay routing and
increase the load scale factor (0.3, 0.5, 0.7). Considering the overlay latency,
TE-aware overlay routing achieves more stable performance. Moreover, in the
case where the load scale factor is 0.5 and 0.7, the average latency experienced
by TE-aware overlay is lower than selfish overlay. We can see that overlay
routing can achieve better and stable routing by understanding the objective
of underlay routing.

Considering the traffic engineering side, selfish overlay routing makes sig-
nificant burden to the underlay routing because it generates substantially
large amount of additional traffic. Thus, we can observe sudden increase of
the maximum link utilization in all cases. However, TE-aware overlay limits
its selfishness and tries to avoid a specific link to be over-loaded by its own

13

O T CoPEvsselish ——
MPLS vs selfish -~
55
Py >
2 2
g S0 g
g g
g g
T % %
> >
o o
40
|
gl gl
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
run run
(a) Load Scale Factor 0.3 (b) Load Scale Factor 0.5
X T T T T T T T T T 4 T T T T T T T T T
086 X COPE vs selfish y—— 048 COPE vs selfish ——
0.84 i PLS vs selfish - 0.46 MPLS vs selfish -+
082 044 I:
08 042
2 om 2
i} A _
2 2 038
076 036
0.74 0.34
072 fill 032 |
o7l 03 P et
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
un run
(c) Load Scale Factor 0.7 (d) Load Scale Factor 0.3
. T T T T T T T T T 1 T T T T T T T T T
08 COPE vs selfish —— 8 COPE vs selfish ——
MPLS vs selfish ---x-—- 170 MPLS vs selfis|
075 i
160
>
0 2 150
2 oss g
= 3
06 g 130
120
055 110

05

0 10 20 30 40 50 60 70 80 90 100
un

0 10 20 30 40 50 60 70 80 90 100
run

(e) Load Scale Factor 0.5

Figure 3: MPLS and COPE with selfish overlay. 14-node topology with a
4-node overlay network, overlay fraction = 10%.

(f) Load Scale Factor 0.7

14

overlay latency

overlay latency

MLU

300 ————

COPE vs selfish ——
MPLS vs selfish -

180

0 10 20 30 40 50 60 70 80 90 100
run

(a) Overlay Fraction 10%

1200 —

COPE vs selfish ——
MPLS vs selfishy -

1150 ¥
1100
1050
1000
950
900 %
850

00 [T e
0 10 20 30 40 50 60 70 80 90 100
run

(c) Overlay Fraction 50%

0.96

" COPE s seffish ——
TMPT vs,selfish -y
x

0.94 | ¥ I

0.92

0.9

0.88

0.86

0.84

82 R S
0 10 20 30 40 50 60 70 80 90 100
run

(e) Overlay Fraction 30%

overlay latency

MLU

MLU

1400 —
1350
1300 ¢

COPE Vs selfish ——
MPLS vs selfish -+

1200
1150
1100
1050
1000

950

0 10 20 30 40 50 60 70 80 90 100
run

(b) Overlay Fraction 30%

0.98

T T 7 COPEvsselfish ——
097 MPLS vs selflsI'T e |
096
095

0.9

0.93

0.92

0.91 P S
0 10 20 30 40 50 60 70 80 90 100
un

(d) Overlay Fraction 10%

0.98
0.97
0.96
0.95
0.94
0.93
0.92
091

0.9 ri
0.89

" COPE Vs selfish ——
MPLS vs selfish -1

88
0 10 20 30 40 50 60 70 80 90 100
run

(f) Overlay Fraction 50%

Figure 4: MPLS and COPE with selfish overlay. 14-node topology with a
4-node overlay network,load scale factor = 0.9.

15

traffic. Thus, the fluctuation of maximum link utilization is smaller when
the overlay is TE-aware.

Next, we fix the load scale factor to be 0.9, and change the overlay frac-
tion: 10%, 30%, and 50% (Figure 6). The experiments are conducted where
the network is substantially congested (90% - 120%). Still, the proposed
method makes better interaction than selfish overlay does.

With the extensive experiment results, we come up with the conclusion
that TE-aware overlay routing generally makes stable interaction with MPLS
traffic engineering. Selfish overlay routing experiences less predictable la-
tency and it makes significantly large maximum link utilization of the net-
work. However, we can achieve either convergence or regular pattern with
the overlay latency when TE-awareness is used in overlay routing. Moreover,
the network overhead to the traffic engineering is reduced by using the pro-
posed overlay routing. Thus, TE-awareness obtains win-win game for each
player in the presence of MPLS traffic engineering.

6.5 TE-Aware Overlay and Selfish Overlay with COPE

For the last experiment, we examine the interaction between TE-aware over-
lay and selfish overlay on top of the COPE traffic engineering. In the previ-
ous experiments comparing COPE and MPLS, we have observed that COPE
achieves better interaction with selfish overlay routing. Now, the question is
how much gain we can get by using TE-aware overlay with COPE.

Figure 7 describes the experiment results, where 10% of the traffic is
routed by overlay routing. We again use three load scale factors (0.3, 0.5,
0.7). Different from the experiments with MPLS, the achievement we get
from TE-awareness is limited. When the load scale factor is 0.3 and 0.5,
the TE-aware overlay routing converges fast with good latency, but the pro-
posed method shows a small oscillation in the last case. However, comparing
to the oscillation in MPLS experiments, we can see the performance varia-
tion is negligible. Similar patterns can be observed with the maximum link
utilization.

In Figure 8, we fix the load scale factors to be 0.9 and change the fraction
of overlay traffic (10%, 30%, 50%). General observation is that as the link
gets more utilized, the performance gain from TE-awareness is substantially
large.

Considering the overlay side, in all experiments, the latency experienced
by TE-aware overlay is better than that of selfish overlay. The maximum link

16

BT T T S vs selfsh —— T oG eyl
70 MPLS vs TE-aware - 105 MPLS Vs TEfawale 1| 4
- 100
> >
£ 60 i 5 95
E ol g %
g g &
g %0 2w
45 75
40 70
S gl .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
run run
(a) Load Scale Factor 0.3 (b) Load Scale Factor 0.5
B T T T ipLS v bl O b S s sfsh
170 MPLS vs TE-awarg - 0.46 MPLS vs TE-aware - 4
160 0.44 [
>
2 150 042
£ 3 o
g KA T s 038
g w0 036
120 03 |
e oaz gl AR
ob— .. 03 e s e
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
run run
(c) Load Scale Factor 0.7 (d) Load Scale Factor 0.3
O T b S Vs sefish O T b S s seifsn
075 MPLS vs TE-aware - 0.84 MPLS yvs TE-aware - |
0.82]
07 |
2 oss 2
s v s
R »
05 P : o7l ..
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
un run
(e) Load Scale Factor 0.5 (f) Load Scale Factor 0.7

Figure 5: TE-aware overlay and selfish overlay on MPLS. 14-node topology
with a 4-node overlay network, overlay fraction = 10%.

17

M ————— 40 ————————————————
MPLS vs selfish —— MPLS vs selfish ——
MPLS vs TE-aware - MPLS vs TE-aware -
1350
X
o . 1300
o Q
@ 8
T K 1250
> >
& & 1200
o o
> >
° © 1150
i \) 1 A |
1100 ! l | l
A 050 L e
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
run run
(a) Overlay Fraction 10% (b) Overlay Fraction 30%
121 T T T T T T T T T . T T T T T T T T T
00 MPLS vs selfish —— 098 MPLS vs selfish ——
1150 MPLS vs TE-aware - 097 MPLS vs TE-aware- - |
.. 1100 0.96
o
5 \
£ 1050 5 0% \‘\ |
> L
S 1000 YR T
o
>
© 950 0.93
900 4 0.92
ol o 091
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
un run
(c) Overlay Fraction 50% (d) Overlay Fraction 10%
098 ——r— 096 — "+
MPLS vs selfish —— MPLS vs selfish ——
0.96 MPLS vs TE-aware - 0.95 PLS vs TE-apre - |
0.94 0.94
0.92 0.93 1“ ‘ ‘ 1
2 o9 2 0w ‘“}“‘}
= . = . B " 1 \\ i
0.88 091 Al e
o.8s [l IR IR | 09 it
0.84 0.89
L 088 L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
un run
(e) Overlay Fraction 30% (f) Overlay Fraction 50%

Figure 6: TE-aware overlay and selfish overlay on MPLS. 14-node topology
with a 4-node overlay network,load scale factor = 0.9.

18

BT T T CoPEvsselish —— O T T CopEusselish ——
COPE vs TE-aware -~ COPE vs TE-aware -—»--
54
> >
2 2
g 53 g
s k|
g E)
5 %2 [}
> >
o o
51
50 L L L L L L L L L 80 ihy L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
run un
(a) Load Scale Factor 0.3 (b) Load Scale Factor 0.5
12 T T T T T T T T T . T T T T T T T T T
5 COPE vs selfish —— 05 COPE vs selfish ——
COPE vs TE-aware - COPE vs TE-aware -——»--
124
o oo oo o bt 045
> e 00 0 S Je ek ek e ud et et e et et ek e ek et e
o
§ 123
g 2 o
g =
5 12
>
o
0.35 Hillt1 el e b el e e e el e
121 i
D 03
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
run run
(c) Load Scale Factor 0.7 (d) Load Scale Factor 0.3
. T T T T T T T T T .72 T T T T T T T T T
056 COPE vs selfish —— 0 COPE vs selfish ——
COPE vs TE-aware - COPE vs TE-aware -—»--
055 0.718
054
0.716
2 o0ss 2
s s
0.714
052
051 0.712
o5l o7
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
un run
(e) Load Scale Factor 0.5 (f) Load Scale Factor 0.7

Figure 7: TE-aware overlay and selfish overlay on COPE. 14-node topology
with a 4-node overlay network,overlay fraction = 10%.

19

latency experienced by selfish overlay is sometimes twice larger than average
latency. In some scenario, the selfish overlay latency keeps increasing as the
interaction with underlay proceeds. TE-aware overlay shows similar pattern
but makes convergence at considerably lower latency. Looking at the traffic
engineering side, TE-awareness obtains either similar or better performance
than selfishness.

Summarizing the interaction experiments with COPE, we can achieve
considerably good interaction for both selfish overlay and TE-aware overlay.
But, TE-aware overlay performs slightly better than selfish overlay routing.

7 Conclusion and Future Direction

In this paper, we improve the vertical interaction between overlay routing
and traffic engineering by modifying the objectives of both parties. Over-
lay changes the physical traffic demands by the logical routing decisions,
and dynamically changing traffic demands affect the performance of under-
lay routing. Specifically, network operators use traffic engineering techniques
to adapt IP layer routing to cope with the new traffic matrix. We propose
TE-aware overlay routing, which takes traffic engineering’s objective into ac-
count in overlay routing decision. Then we also suggest COPE as a strong
traffic engineering technique, which makes a good interaction with the un-
predictable overlay traffic demands. We show the feasibility of the proposed
methods with extensive simulation results.

So far, our model only captures interactions within a single domain. Then
a future direction will be to extend the arguments to inter-domain level. In
this scenario, overlay nodes are spread across several ASes and cooperate each
other. Then the action of overlays will make interaction with inter-doman
routing algorithms. Another direction is to explore the vertical interaction
in more realistic scenario. For example, we do not consider link failures in
the scenario. It will be interesting to see the interactions after a specific link
failed.

Lastly, we use average latency as an indicator of decision for overlay.
In reality, this may not be available. We may use scheme similar to TCP
congestion control mechanism. In other words, overlay additively increases
the selfishness until some congestion, and exponentially back off to ease the
congestion level. Other possibility is to consider oblivious overlay routing,
which guarantees overlay performance for every possible underlay routing.

20

overlay latency

overlay latency

MLU

206 ————

COPE vs selfish ——
COPE vs TE-aware -~

204

196 P S
0 10 20 30 40 50 60 70 80 90 100

run

(a) Overlay Fraction 10%

826 — T T
COPE vs selfish ——

824 CPPE vs TE-aware ——

822

820

818

816

814

812

810

808

06 S S

0 10 20 30 40 50 60 70 80 90 100

run

(c) Overlay Fraction 50%

1.05 — T T T
COPE vs selfish ——

COPE vs TE-aware -

"0 10 20 30 40 50 60 70 80 90 100
run

(e) Overlay Fraction 30%

overlay latency

MLU

MLU

30 40 50 60 70 80 90 100
un

(b) Overlay Fraction 30%

0.95 ——
0.945
0.94
0.935
0.93
0.925
0.92
0.915
0.91 1
0.905 1

" COPE vs selfish ——
COPE vs TE-aware -

0.9
0 10 20 30 40 50 60 70 80 90
run

(d) Overlay Fraction 10%

1 T T T T T T T T T
COPE vs selfish ——
COPE vs TE-aware -

0.98

0.96

0.94

0.92

0.9

s,

0.88 P S
0 10 20 30 40 50 60 70 80 90 100

run

(f) Overlay Fraction 50%

Figure 8: TE-aware overlay and selfish overlay on COPE. 14-node topology
with a 4-node overlay network,load scale factor = 0.9.

21

References

1]

2]

[5]

[10]

[11]

L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On selfish routing in
Internet-like environments,” in Proceedings of ACM SIGCOMM, Karl-
sruhe, Germany, august 2003, pp. 151-162.

Y. Liu, H. Zhang, W. Gong, and D. Towsley, “On the interaction be-
tween overlay routing and traffic engineering,” in IEEE Conference on
Computer Communications (INFOCOM), 2005.

Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “Enabling conferencing
applications on the internet using an overlay muilticast architecture,” in
Proceedings of ACM SIGCOMM, 2001, pp. 55—67.

J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. O. Jr,
“Overcast: Reliable multicasting with an overlay network,” in Proceed-

ings of Symposium on Operating Systems Design and Implementation
(0SDI), 2000, pp. 197-212.

L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “OverQoS:
An overlay based architecture for enhancing internet QoS,” in Proceed-

ings of the First Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2004, pp. 71-84.

“Akamai Technologies, Inc. http://www.akamai.com.”

D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Re-
silient overlay networks,” in Proceedings of Symposium on Operating
Systems Principles (SOSP), 2001, pp. 131-145.

S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Za-

horjan, “Detour: a case for informed internet routing and transport,
Tech. Rep. TR-98-10-05, 1998.

“OSPFv3 overview,” 2003.

J. Ruela and M. Ricardo, “MPLS - Multi-Protocol Label Switching,” in
The Industrial Information Technology Handbook, 2005, pp. 1-9.

J. W. Stewart, III, BGP4: inter-domain routing in the Internet.
Addison-Wesley, 1999.

22

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

R. Keralapura, N. Taft, C.-N. Chuah, and G. Iannacco, “Can ISPs take
the heat from overlay networks?” in Proceedings of the Third Workshop
on Hot Topics in Networks, November 2004.

H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: Traffic engineering in dynamic networks,” in Proceedings of
ACM SIGCOMM, 2006.

P. K. Dutta, “Strategies and games: Theory and practice,” 1999.

7

J. Nash, “Non-cooperative games,
286295, September 1951.

The Annals of Mathematics, pp.

D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain trafficc demands: Understanding fundamental
tradeoffs,” in Proceedings of ACM SIGCOMM, 2003, pp. 313-324.

B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with tra-
ditional IP routing protocols,” IEEE Communications Magazine, pp.
118-124, October 2002.

B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proceedings of IEEE International Conference of
Computer Communications (INFOCOM), 2000, pp. 519-528.

A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: existing techniques and new directions,” in
Proceedings of ACM SIGCOMM, 2002, pp. 161-174.

“General Algebraic Modeling System. http://www.gams.com.”

“Condor. http://www.cs.wisc.edu/condor.”

23

