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Abstract
Distributed systems that span multiple administra-
tive domains require protocols that tolerate both
Byzantine and selfish nodes. This paper offers a
theory that can be used to analyze such protocols.
The theory systematically extends traditional game
theory solution concepts through an ex ante analy-
sis that incorporates a rational player’s awareness
of the possible presence of Byzantine players in
the player’s utility function. We illustrate our ap-
proach by modeling synchronous Terminating Reli-
able Broadcast as a game. We show that Dolev and
Strong’s Byzantine TRB protocol with message au-
thentication is not a Nash equilibrium and that ra-
tional deviations from it may lead to violation of
the TRB safety properties. We present a new TRB
protocol with the same asymptotic complexity of
Dolev-Strong and prove it to be a Nash equilibrium.
Finally, we prove that (k-t) robustness, a recently
proposed solution concept for games with Byzantine
and rational players, cannot yield an equilibrium in
games, such as our TRB game, that model systems
where any node may crash and communication is
necessary and incurs cost.

1 Introduction
This paper introduces a new model for constructing
cooperative services that span multiple administra-
tive domains (MADs). Cooperative MAD services
are attractive because their diffused control struc-
ture, where no central authority controls all partici-
pating nodes, may yield services that are potentially
less costly and more democratic than their more cen-
tralized counterparts. Unfortunately, current models
fail to capture critical aspects of MAD systems.

Traditionally, nodes deviate from their specifi-
cation because they are broken (e.g., due to bugs,
hardware failures, configuration errors, or even ma-
licious attacks). MAD systems add a new dimen-
sion: without a central administrator ensuring that
unbroken nodes faithfully follow their assigned pro-

tocol, nodes may also deviate from their specifica-
tion because they are selfish and intent on maximiz-
ing their own utility.

Byzantine Fault Tolerance (BFT) [5, 16, 19]
handles the first class of deviations well. How-
ever, the Byzantine model classifies all deviations
as faults and requires some bound on the number of
faults in the system; this bound is untenable when
all nodes may benefit by deviating from the proto-
col. Conversely, models based on traditional game
theory [26] do account for rational behavior, but
they are brittle: although they handle selfish devi-
ations, they may be vulnerable to arbitrary disrup-
tions if even a single broken node deviates from the
expected rational behavior.

Several recent efforts have attempted to provide
a solid foundation to model and build MAD ser-
vices. In previous work [3, 17, 20], we introduced
the BAR model, named after the three classes of
nodes (Byzantine, Altruistic, and Rational) that it
explicitly considers. Byzantine nodes can deviate
arbitrarily from their specification for any reason.
Altruistic nodes follow their specification faithfully.
Rational nodes behave selfishly and deviate from a
given protocol if and only if doing so improves their
own utility. We demonstrate protocols for state ma-
chine replication [3] and gossip-based multicast [17]
that provably maintain their usual properties when
most or all of the nodes act selfishly and the re-
mainder act maliciously or malfunction in arbitrary
ways. We use these protocols to build practical
MAD services for cooperative backup and media
streaming. These results suggest that BAR can pro-
duce tractable and accurate models of a large class
of practical services under reasonable assumptions,
but they do not establish a formal theory of BAR
games. Moscibroda et al. [22] express formally the
cost of adding Byzantine players to a purely self-
ish environment. They quantify this cost for a sim-
ple inoculation game using a notion of Byzantine
Nash equilibrium in which selfish players maximize
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their worst case outcome, leaving as open questions
the analysis of more complex games such as those
that require communication among nodes. play-
ers. Other recent efforts introduce new solution con-
cepts that accommodate irrationally generous or ma-
licious behaviors [1, 8], but their usefulness for dis-
tributed systems is limited since, as we prove in
this paper, they cannot be used to model systems in
which (a) any node may crash, (b) communication
incurs cost, and (c) communication is necessary.

In this paper, we establish a formally sound
foundation for modeling realistic MAD services.
Our approach is to leverage existing solution con-
cepts, such as Nash equilibria or Pareto optimal-
ity, by providing a systematic method to adapt these
concepts to accommodate Byzantine behavior. We
enrich utility functions to include the model of
Byzantine behavior on which rational players base
their decisions.

We illustrate our approach by revisiting the
classic synchronous Terminating Reliable Broadcast
(TRB) problem [12]. First, we show that Dolev-
Strong’s optimal synchronous TRB solution [7] for
a Byzantine model with message authentication [15]
fails when players are rational: we give an alternate
strategy that is advantageous to each node if all other
nodes follow Dolev-Strong but that violates safety
if all nodes deviate. Then, we develop a novel TRB
protocol that is incentive compatible in the presence
of up to f (f ≤ n − 1) Byzantine players with the
remaining players being either rational or altruistic.

Hence, this paper contains four main contribu-
tions:

• A proof that traditional BFT protocols can
break in a BAR environment.

• A proof that no protocol is (k,t)-robust [1] in
a system where any node may crash and com-
munication is necessary and incurs cost.

• A theory of BAR games that includes a sys-
tematic approach for extending traditional
game theory solution concepts to accommo-
date Byzantine behavior.

• A specification of TRB as a game and an
incentive-compatible synchronous protocol,

BaN TRB, that solves TRB ¡¡¡¡¡¡¡ .mine in
that game. To our knowledge, this is the first
paper to solve TRB in an environment where
some nodes may be Byzantine and the re-
maining may be Rational. ======= in that
game. To our knowledge, BaN TRB is the
first paper to solve TRB in an environment
where some nodes may be Byzantine and the
remaining may be Rational. ¿¿¿¿¿¿¿ .r689

Although we focus on TRB, the approach out-
lined in this paper is general and intended to be used
for analyzing large scale distributed MAD services
like [3, 17].

2 Communication games
This paper considers communication games in
which players perform a distributed computation
via message passing. A game Γ is a 3-tuple
(N ,SN ,U). Let N = {1, . . . , n} be the set of
players in the game. The set Si contains all possible
strategies for player i while SC = ×i∈C Si is the set
of all possible strategies for all players in C ⊆ N . A
strategy σi denotes the strategy for player i. A strat-
egy profile ~σC associates a strategy to each player in
C ⊆ N . We use ~σ to denote ~σN . A utility function
ui defines the utility that player i receives when the
game is played with a specified strategy profile. The
set U contains all such utility functions. The strat-
egy profile determines the outcome, (RES, TRACE),
of the game where RES is the result of the game and
TRACE is the trace of performed actions. In a com-
munication game, TRACE represents the complete
sequence of messages sent from player i to player
j for all pairs of players i 6= j. The utility for player
i is a function of the benefits received from RES and
the costs incurred by sending messages in TRACE.

Mechanism design [9, 21, 24] addresses the
problem of specifying a game Γ and strategy profile
~σ to implement a desired functionality F. A mech-
anism implements F if (a) the result RES of play-
ing Γ with ~σ is F and (b) ~σ is incentive-compatible:
playing σi maximizes ui for all rational players i.
A solution concept is a rule that uses U and SN to
define a game equilibrium. Common solutions con-
cepts from the literature include Nash Equilibrium,
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backwards induction, Pareto optimality, and sub-
game perfect equilibria [26]. Stronger solution con-
cepts impose stricter requirements for a strategy pro-
file to be incentive-compatible. Traditional solution
concepts assume that every player acts rationally—
identifying solution concepts that are applicable
when some players behave irrationally is an impor-
tant problem [1, 8, 22, 29]. In the rest of this section,
we present a theory that incorporates Byzantine be-
havior into existing equilibria and discuss previous
approaches that define new equilibria in the pres-
ence of Byzantine players.

2.1 BAR Game Theory
To analyze Byzantine behavior in a game, we must
account for how Byzantine actions impact rational
players’ utilities. Since these utilities depend on the
number of, composition of, or strategies employed
by Byzantine players, utility functions should ac-
count for these three factors.

We augment traditional utility functions by
defining a Byzantine aware utility function char-
acterized by these factors: size: the number of
Byzantine players,1 play: the distribution of Byzan-
tine players among N , and strat: the strategy pro-
file played by the Byzantine players. We define a
Byzantine aware utility function as follows:

Definition 1 (Byzantine Aware Utility Function).
Let t be the maximum number of Byzantine players
expected in the system and T = {T ⊆ N : |T | ≤
t}. A Byzantine aware utility function is the utility
function:

ūi(~σ) = size
x∈[0...t]

◦ play
T : |T |=x

◦ strat
~τT ∈ST

◦ ui(~σN−T , ~τT )

consisting of size (a function over the expected dis-
tribution of the number of Byzantine players) ap-
plied to play (a function over the expected distribu-
tion of the identity of the Byzantine players) applied
to strat (a function over the expected distribution of
the actions of Byzantine players) applied to ui (a
traditional utility function).

1In this paper we assume the threshold Byzantine model.
Extension to other models [19, 31] is future work.

Risk-Averse Players and Nash Equilibria. In this
paper we focus on a Byzantine aware utility function
for risk-averse players. Risk-averse players identify
the worst-case utility without restricting the actions
of Byzantine players [3, 17, 20, 22]. The Byzantine
aware utility function for risk-averse player i is:

ūi(~σ) = min
x∈[0...t]

◦ min
T : |T |=x

◦ min
~τT ∈ST

◦ ui(~σN−T , ~τT )

In this paper we employ the Nash equilibrium solu-
tion concept [23] to evaluate strategy profiles:

∀i ∈ N ,∀φi ∈ Si : ūi(~σ) ≥ ūi(~σN−{i}, φi)

Intuitively, a strategy profile is a Nash equilib-
rium if no player i can increase its utility by unilat-
erally deviating from the protocol. We consider any
protocol that is a Nash equilibrium to be incentive-
compatible.

A General Theory. Although the protocol defini-
tion and analysis in the rest of this paper focus on
a specific Byzantine aware utility function (risk-
averse) and solution concept (Nash equilibrium),
our formulation represents a general theory. Our
theory allows for different Byzantine aware utility
functions to be applied to different solution con-
cepts. For example, in some environments it may
be rational for players to maximize their expected
utility given some model of the probabilities of dif-
ferent scenarios; in such an environment a Byzan-
tine aware utility function would be expressed as
ūi(~σ) =

∑
x∈[0...t] Pr(x) ◦

∑
T :|T |=x Pr(T ) ◦∑

~τT ∈ST Pr(~τT ) ◦ ui(~σN−T , ~τT ).
Just as we can use different Byzantine aware

utility functions, we can also use different solution
concepts. In this paper, we focus on Nash equilib-
ria, although we can extend our framework to en-
compass other concepts. As an example, we can uti-
lize Bayesian Nash Equilibrium, in which players
are allowed to adjust their strategies based on ob-
servations K of previous instances, by instantiating
an appropriate Byzantine aware utility function that
leverages these observations [20]:

ūr(~σ,K) = min(x∈[0,t])|K ◦min(T ∈N )|K ◦
min(~τT ∈ST )|K ◦ ui(~σN−T , ~τT ,K)
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The flexibility to combine the range of Byzantine
aware utility functions with the range of existing so-
lution concepts allows us to trade accuracy in our
model of rational players for tractability in the se-
lected solution concept. This contrasts with previ-
ous approaches [1, 8, 22] that provide narrow point
solutions that do not explicitly generalize to other
solution concepts. Unfortunately, as we show in the
next section, two of these concepts though tractable,
are inapplicable to an important class of distributed
protocols.

2.2 k-FTNE and (k, t)-Robustness
Eliaz [8] introduced the k fault-tolerant Nash equi-
librium (k-FTNE) to guarantee that a certain strat-
egy is in a player’s best interest even if at most k
players are Byzantine. Abraham et al. [1] generalize
k-FTNE with the (k, t)-robust equilibrium to incor-
porate collusion among a group of rational players
in addition to the Byzantine behavior of other play-
ers. Specifically, for (a) a given strategy profile ~σ,
(b) a coalition of players C of size at most k2 fol-
lowing a coalition strategy profile ~φC , and (c) a set
of Byzantine players of size at most t following a
Byzantine strategy profile ~τT , no rational player i in
the coalition can obtain better utility than when the
coalition follows the given strategy profile ~σC . We
give the formal definition from [1]:

Definition 2 ((k, t)-robust equilibrium). A strategy
profile ~σ ∈ SN is a (k, t)-robust equilibrium if
for all C, T ⊆ N , C ∩ T = ∅, |C| ≤ k, and
|T | ≤ t, ∀~τT ∈ ST , ∀~φC ∈ SC , ∀i ∈ C we have
ui(~σN−T , ~τT ) ≥ ui(~σN−(C∪T ), ~φC , ~τT )

Although a (k, t)-robust equilibrium provides an
attractive set of strong properties, we show that it
is inapplicable to a broad class of games that en-
capsulate important properties of fault tolerant sys-
tems. We call such games fault-tolerant communi-
cation games and characterize them with three prop-
erties: (FT1) any single player can crash without
preventing the desired outcome, (FT2) communi-
cation has cost, and (FT3) direct communication
between at least two players is necessary. Fault-

2Eliaz considers up to k faults, implicitly assuming |C| = 1.

tolerant communication games encapsulate the con-
cerns of a broad class of distributed systems prim-
itives, like TRB, where reducing classical message
complexity and tolerating crashes are important con-
cerns [18, 10] as well as large-scale applications
where free-riding to reduce communication costs is
a significant concern [11, 6, 3, 17].

Definition 3 (Fault tolerant communication game).
ΓFT is a fault tolerant communication game iff
(FT1) ∀i ∈ N , ∃~σ ∈ S such that ~σ achieves func-
tionality F and in which i neither sends nor receives
a message by playing σi (FT2) sending a message
incurs non-zero cost; and (FT3) ∀~σ ∈ SN that
achieve F ∃a, b ∈ N such that a sends a message to
b.

Abraham et al. [1] show a secret sharing game to
be (k, t)-robust. However, the game does not fulfill
the requirements of a fault tolerant communication
game. FT2 is implicitly violated by an assumption
that benefit is based solely on the result of the pro-
tocol, independent of the steps taken to reach that
result. Either FT1 or FT3 is violated by reliance on
a distinguished entity, called a central mediator, that
presides over all communication; either the media-
tor is a player that cannot crash (violating FT1) or
the mediator is not a player and no pair of players
communicates directly (violating FT3). We conse-
quently argue that (k, t)-robustness is too strong for
any real system that is a fault tolerant communica-
tion game. For example, TRB as described in Sec-
tion 3 is a fault tolerant communication game.

Theorem 1. There is no (k, t)-robust strategy pro-
file that achieves F for a fault tolerant communica-
tion game when k > 0 and t > 0.

Proof. We proceed by contradiction. Assume there
exists a strategy profile ~σ that is (k, t)-robust and
achieves F for a fault tolerant game Γ. By FT3
there exist two nodes i and j such that i sends a mes-
sage to j. A (k, t)-robust strategy profile has max-
imal utility regardless of the composition of C and
T . Let i ∈ C and j ∈ T for |C| = 1, |T | = 1, and
C∩T = ∅ as noted by the definition of (k, t)-robust.
Further, let j follow the crash strategy ψj posited
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by property FT1 and i follow a strategy φi obtained
from σi assigned in ~σN by removing all messages
that i sends to j. Since j does not send or receive
any messages, the result(~σN−{i,j}−T , φi, ψj , ~τT )
= result(~σN , ~τT ). It follows from FT2 that
ui(~σN−T , ~τT ) < ui(~σN−({i}∪T ), φi, ~τT ), which
contradicts our initial assumption that ~σN was
(k, t)-robust.

3 TRB
We illustrate the analysis and design of incentive-
compatible communication games using Termi-
nating Reliable Broadcast (TRB)—a fundamental
primitive in distributed computing. In our context
of BAR games, a TRB instance has four properties:
(TRB1: Validity) If the leader is non-Byzantine and
broadcasts value v, then each non-Byzantine pro-
cesses eventually delivers v; (TRB2: Integrity) Each
non-Byzantine process delivers at most one value,
and if it delivers v 6= sender faulty (SF) then the
leader broadcast v; (TRB3: Agreement) If a non-
Byzantine process delivers v, then all non-Byzantine
processes eventually deliver v; (TRB4: Termina-
tion) Each non-Byzantine process eventually deliv-
ers a value.

The infinite-horizon [26] TRB game, ΓTRB =
(N ,SN ,U), consists of an infinite sequence of TRB
instances3 in which player i is instance x’s leader,
denoted leaderx, if and only if (x mod n) + 1 = i
where x > 0. A strategy σi describes the pro-
tocol that player i follows to determine its actions
during each instance of TRB in ΓTRB. We assume
at most f Byzantine players with unknown identi-
ties and that players communicate over reliable syn-
chronous links. We also assume authenticated mes-
sages [15], meaning that (a) players sign messages
and (b) signatures are unforgeable. A strategy pro-
file ~σ achieves functionality FTRB if and only if
playing ΓTRB with ~σ results in an infinite sequence
of instances that all satisfy TRB1–4.

In the game ΓTRB, we define a rational player
3We assume 128 bits are sufficient to count the instances

in our infinite horizon game. In practice, cosmological events
become important considerations before 2128 instances can be
completed.

i’s benefits when ~σ is played as follows. In in-
stances k in which i is not leader, benefitsk

i (~σ) = $
if TRB2–4 hold. In each instance l where i is the
leader benefitsl

i(~σ) = β +$ if TRB1–4 hold and i
broadcast v, benefitsl

i(~σ) = $ if TRB2–4 hold and
TRB1 does not. In all instances h, if any of TRB2–4
do not hold then benefitsh

i = 0. Note that we permit
$ = 0 (only the leader achieves a benefit for any
given instance, but all nodes eventually may achieve
benefit since leadership rotates) or β = 0 (all nodes
achieve benefit each instance, with no special benefit
for the leader). We require some combination of β
and $ to exceed the expected communication costs
in order to entice rational players to participate.

If ~σ is played, let sentk
i→j(~σ) be the sequence of

messages sent by player i to j during instance k and
sentk

i (~σ) be the sequence of all messages i sends
during instance k. Player i incurs csnd(m) cost from
sending each message m ∈ sentk

i (~σ), and we as-
sume that csnd(m) is proportional to length(m). We
do not incorporate other costs like storage and com-
putation, which are future work. We define the costs
for player i in instance k to be

costsk
i (~σ) =

∑
m∈sentk

i (~σ)

csnd(m)

We define i’s utility in the the k-th TRB instance
to be uk

i (~σ) = benefitsk
i (~σ)−costsk

i (~σ). We evaluate
player i’s utility for a game if ~σ is played using the
expected average utility over all TRB instances [26]:

ûi(~σ) = lim
m→∞

m∑
k=1

uk
i (~σ)
m

We define a Byzantine aware utility function for
risk-averse player i that identifies the worst case util-
ity for any possible population of Byzantine players
and selection of Byzantine strategies as follows:

ūi(~σ) = min
t∈[0...f ]

◦ min
T : |T |=t

◦ min
~τT ∈ST

◦ ûi(~σN−T , ~τT )

4 BFT 6=⇒ Incentive-Compatible
We now show that traditional BFT implementations
of TRB are vulnerable to the tragedy of the com-
mons [13]: if non-Byzantine players are rational,
then each player has an incentive to defect, but if
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all rational players defect then FTRB is not met.
For concreteness, we consider Dolev and

Strong’s synchronous TRB protocol (D-S TRB) [7].
In our context, running D-S TRB corresponds to as-
signing rational players a strategy profile ~δ. Each in-
stance of D-S TRB proceeds through f + 1 rounds.
A valid message for pj in round i has the form
m = 〈VALUE, v, k〉p1,...,pi where v is a value, k
an instance number, the signatures p1, . . . , pi come
from players distinct from each other and from pj ,
and p1 is leaderk. In round one, the leader broad-
casts a signed message m containing a value v. In
subsequent rounds, a non-leader player signs and
forwards any valid message m containing a previ-
ously unobserved value v to all players that have not
signed a message containing v with the optimization
that a player forwards at most two unique values. In
the last round, each player delivers v if v was the
only value observed and delivers SF otherwise.

Consider an alternate lazy strategy λ that ratio-
nal nodes may adopt. The lazy strategy is identical
to δr except that in round i ≤ f , rather than send-
ing valid message m to all players as in δr, player
r playing λr sends m to f + 1 − s players who,
to r’s knowledge, have not signed a valid message
containing v where s is the number of players r has
already observed to sign a message containing v. In
round f+1, λr is identical to δr. Note that, if f = 0
or f + 1 ≤ n ≤ f + 2, λr reduces to δr.

The following Theorem 2 says that a single ra-
tional player r continues to receive the benefits that
come from fulfilling FTRB despite adopting λr.
Theorem 3 states that since r incurs lower costs with
λr than with δr, a rational player can achieve higher
benefit by unilaterally deviating from ~δ. Theorem 4
shows that if all rational nodes try to improve their
utility by employing λ, no player receives benefit
as Byzantine players can force TRB3 to fail in ev-
ery instance. Proofs of Theorems 2– 4 appear in the
Appendix.

Theorem 2 (Lazy Safety and Liveness (TRB1-4)).
For all T ⊆ N , |T | ≤ f , and ∀~τT ∈ ST , if ~σ =
(~δN−T −{r}, λi, ~τT ) is played for ΓTRB then TRB1-
4 are fulfilled.

Theorem 3 (Not a Nash Equilibrium). Consider
ūr defined for a risk averse rational player r:
ūr(~δN−T ,{r}, λr) > ūr(~δ) when n > f + 2.

Theorem 4 (Failed Agreement). If all non-
Byzantine players follow strategy profile ~λN−T ,
|T | ≤ f , f > 1 and n > f +2 then TRB3 can fail
in all instances of ΓTRB.

The breach of safety shown in Theorem 4 high-
lights a key contribution of this paper: we address
communication games in which sending messages
incurs cost. This influences our theory and impacts
protocol design. For example, in games where send-
ing messages is free (i.e., FT2 does not hold), a
wide variety of protocols, including D-S TRB, are
incentive-compatible.

Theorem 5 (Zero Cost D-S TRB). D-S TRB is
(k, t)-robust if csnd(m) = 0 for all messages m.

Proof-sketch (see Appnedix). Since D-S TRB ful-
fills FTRB , ~σ maximizes benefit. Since csnd(m) =
0, ~σ has zero cost which cannot be further re-
duced.

5 BaN TRB
In this section, we present Byzantine aware Nash
TRB (BaN TRB)—an incentive-compatible exten-
sion of D-S TRB for rational, risk-averse players.
An instance k of BaN TRB proceeds as D-S TRB
through a series of f + 1 rounds where the leader,
leaderk, is player i if and only if (k mod n)+1 = i.

BaN TRB is based on three key ideas: pre-
dictable message sequences, expensive dummy
messages, and punishments of violators. First, BaN
TRB specifies predictable message sequences to en-
able a receiver to detect deviations such as omitted
messages. Second, to make message sequences pre-
dictable, BaN TRB specifies that dummy messages
sometimes be sent. Dummy message are structured
to be expensive so that rational nodes prefer send-
ing useful messages whenever possible. Third, if a
receiver detects that a partner has sent a message se-
quence that departs from an expected pattern, the re-
ceiver shuns the sender, preventing the sender from
benefitting from such deviations. This punishment
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message content csnd

VALi 〈VALUE, k, v〉leaderk
,s2,...,si−1,r

γ

VAL⊥ 〈VALUE, k,⊥{1,2}〉r γ
PNCx 〈PENANCE, k, x〉r κx

Table 1: Costs and contents of specific messages sent by
player r in instance k.

mechanism is commonly referred to as ∞-tit-for-tat
or grim trigger [4].

Table 1 describes messages used in BaN TRB.
Value messages, denoted VALi in round i, corre-
spond to the valid messages sent in D-S TRB. Ad-
ditionally, the special values ⊥1 and ⊥2, sent in a
VAL⊥ dummy value message, are used to ensure
that a player can send two value messages in ev-
ery instance, whether or not the leader of that in-
stance is faulty. BaN TRB also specifies a dummy
penance message to discourage unilateral devia-
tions. A penance message m = 〈PENANCE, k, t〉q
is well-formed if it contains an instance number k,
a size indication t, is signed by the sender q, and
csnd(m) ≥ κt. A valid penance message, denoted
PNCt, is received in round f + 1 of an instance k
and is sent in two cases: if a VAL1 message is not
sent during k, or if a penance message was sent dur-
ing instance (k − n)—the last instance that had the
same leader as instance k.

Figure 1 shows the BaN TRB protocol. Each
player r maintains a set, denoted shunr, across all
instances of BaN TRB containing players that r has
observed to deviate, and the protocol specifies that
r sends no messages to members of shunr. We use
~ρ to denote the strategy profile given by BaN TRB
and ρr to denote player r’s strategy in ~ρ. In the first
round, leaderk selects a value v and forms an appro-
priate VAL1 message. The leader r then sends the
message to all non-shunned players. All players that
receive appropriate VAL1 messages from the leader
extract the corresponding values and prepare to re-
lay them with the restriction that at most two dis-
tinct values sent by the (obviously deviating) leader
are extracted. If a player p 6= leaderk does not re-
ceive a VAL1 message from the leader or has sent
a penance message for leaderk in a previous round,
then p constructs an appropriate PNCx message (to

1 P r o t o c o l i n i t i a l i z a t i o n f o r p r o c e s s p :
2 shunp := ∅
3 foreach a ∈ N
4 penDuring[a] := ∅ ; recvdSeq[a] := ∅

6 I n i t i a l i z a t i o n f o r p r o c e s s p i n i n s t a n c e k > 0 :
7 extracted := ∅ ; relay := ∅ ; penance := ∅
8 leader := k mod |N|

10 Round 1 , f o r p = leader , and v a l u e v :
11 send 〈VALUE, k, v〉p t o q ∈ N − shunp − {p}
12 extracted := {v}

14 Round 1 , f o r p 6= leader :
15 when r e c e i v e m = 〈VALUE, k, v〉leader
16 i f leader /∈ penDuring[p] then
17 i f v /∈ extracted ∧ |extracted| < 2 then
18 relay ∪= {m}
19 extracted ∪= {v}
20 recvdSeq[leader]∪= {m}
21 i f extracted = ∅ then
22 penDuring[p]∪= {leader} ; shunp ∪= {leader}
23 penance := {〈PENANCE, k, |penDuring[p]|〉p}

25 Round i , 2 ≤ i ≤ f f o r p :
26 foreach m = 〈VALUE, k, v〉leader,...,si−1

∈ relay

27 send 〈m〉p t o q ∈ N − shunp − {p}
28 relay := ∅
29 when r e c e i v e m = 〈VALUE, k, v〉leader,...,si
30 i f v /∈ extracted ∧ |extracted| < 2 then
31 relay ∪= {m}
32 extracted ∪= {v}
33 recvdSeq[si]∪= {m}

35 Round f + 1 , f o r p :
36 i f f > 0 then
37 foreach m = 〈VALUE, k, v〉leader,...,sf

∈ relay

38 send 〈m〉p t o q ∈ N − shunp − {p}
39 relay := ∅
40 i f |extracted| < 2 then
41 send 〈VALUE, k,⊥1〉p t o q ∈ N − shunp − {p}
42 i f |extracted| < 1 then
43 send 〈VALUE, k,⊥2〉p t o q ∈ N − shunp − {p}
44 i f penance 6= ∅ then
45 send m ∈ penance t o q ∈ N − shunp − {p}
46 when r e c e i v e m = 〈VALUE, k, v〉leader,...,sf+1
47 i f v /∈ extracted ∪ {⊥1,⊥2} then
48 extracted ∪= {v}
49 recvdSeq[sf+1]∪= {m}
50 when r e c e i v e m = 〈PENANCE, k, t〉q
51 penDuring[q]∪= {leader}
52 i f t = |penDuring[q]| then
53 recvdSeq[q]∪= {m}
54 foreach q ∈ N − shunp − {p}
55 i f recvdSeq[q] /∈ Mk

q→p then
56 shunp ∪= {q}
57 i f |extracted| = 1 then
58 d e l i v e r v ∈ extracted
59 e l s e
60 d e l i v e r SF
61 shunp ∪= {leader}

Figure 1: BaN TRB for instance k > 0.

be sent later) where 0 ≤ x < n is the number of
distinct leaders up to and including instance k that
have forced p to send a penance message.

In rounds 2 through f , each player p after receiv-
ing any VALi−1 messages, forwards VALi messages
containing distinct values received to other players
with the restriction that at most two values are for-
warded over all the rounds. If p does not receive at
least one VAL2 message from player q 6= leaderk in
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round 2, then p expects a penance message from q
in round f + 1. Intuitively, a penance message is a
more costly replacement for the missing value mes-
sage.

In the final round f + 1, player p first sends
VALf+1 messages to other players for any VALf

messages received such that p sends only two dis-
tinct values over all rounds. If p has not then sent
two values, p sends VAL⊥ messages containing the
placeholder values ⊥1 or ⊥2 as needed to ensure
that two distinct values are sent. Specifying ex-
actly two value messages in all instances provides
a predictable sequence of messages between play-
ers. If p created a PNCx message in round 1, then
p sends that message to other players. At the end
of round f + 1, if p has extracted exactly one value
v /∈ {⊥1,⊥2} then p delivers v; otherwise p deliv-
ers SF. Additionally, p shuns any player that sent an
unacceptable message sequence to p.

In order to distinguish deviations from ~ρ to im-
plement shunning, we define the message sequence
sent from r to p when ~σ is played through instance
k: seqk

r→p(~σ) =
⋃

h∈[1,k] senth
r→p(~σ). A message

sequence is acceptable if it could have been sent by
a player r following ρr. Formally,

Definition 4 (Acceptable Message Sequence). A
message sequence from r to j through instance k is
acceptable if and only if that sequence is in the set:

Mk
r→j =

⋃
∀C ⊆ N − {r, j},

∀~σC ∈ SC

seqk
r→j(~ρN−C , ~σC)

For simplicity, Mr→j ≡M∞
r→j .

An acceptable message sequence for an execu-
tion of BaN TRB consists of two valid value mes-
sages for each instance and if no VAL1 message is
sent in an instance k, a penance message for every
instance i ≥ k where leaderi = leaderk. Further,
for any two penance messages 〈PENANCE, j, x〉q
and 〈PENANCE, k, y〉q, if j < k then x ≤ y.

As discussed above, BaN TRB closely resem-
bles D-S TRB. Consequently, the following Theo-
rem holds that BaN TRB, like D-S TRB, maintains
TRB1-4. The proof appears in the Appendix.

Theorem 6. For all T ⊆ N , |T | ≤ f , and ∀~τT ∈
ST , let ~σ = (~ρN−T , ~τT ). TRB1− 4 hold in all
instances of ΓTRB when ~σ is played.

6 BaN TRB Analysis
The Byzantine aware utility of a strategy profile for
the game ΓTRB is defined over the average utility of
an instance of the TRB protocol. We determine the
average utility by characterizing strategy profiles ac-
cording to a distinguished player’s view of the game
when the profile is played. The use of shunning and
penance messages naturally divides a player’s view
of other nodes into three classes, friends, ex-friends,
and enemies, that we use to classify strategies that a
rational player might explore. A friend of r main-
tains good relations with r by sending acceptable
message sequences, while ex-friends do not. If r
plays ρr, then an ex-friend of r is in shunr. Not all
ex-friends are created equal, though. When a leader
does not send a VAL1 message, it not only becomes
an ex-friend of r, but forces r to send penance mes-
sages to friends, incurring extra costs. We thus call
this subset of ex-friends, enemies, because they im-
pose extra overhead by their actions.

Definition 5 (Friends). The friends of a player r at
instance k when ~σ is played are Fk

r (~σ) = {p ∈ N −
{r} : seqk

r→p(~σ) ∈Mk
r→p ∧ seqk

p→r(~σ) ∈Mk
p→r}.

Definition 6 (Ex-friends). The ex-friends of a player
r at instance k when ~σ is played are Xk

r (~σ) = N −
Fk

r (~σ)− {r}.

For simplicity, our analysis further differentiates
between Byzantine, XBYZ

r (~σ) ⊆ Xr(~σ) ∩ T , and
non-Byzantine, XNON

r (~σ) ⊆ Xr(~σ)−T , ex-friends.

Definition 7 (Enemies). The enemies of player r at
instance k when ~σ is played are Ek

r (~σ) = Ek−1
r (~σ)∪

{p = leaderk : 〈VALUE, k, v〉p /∈ sentk
p→r(~σ)}

where trivially, E0
r(~σ) = ∅.

For simplicity, Fr(~σ) ≡ F∞r (~σ), Xr(~σ) ≡
X∞

r (~σ), and Er(~σ) ≡ E∞r (~σ). The following Lem-
mas describe useful properties of friends: (a) if two
players play ~ρ, they remain mutual friends and (b) a
player r that plays ρr is either a friend or enemy of
another player. Proofs appear in the Appendix.
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Lemma 1. Suppose two players p and q play ρp and
ρq, respectively. For all ~υN−{p,q} ∈ SN−{p,q}, let
~σ = (~ρ{p,q}, ~υN−{p,q}). p ∈ Fq(~σ).

Lemma 2. Suppose player p plays ρp. For all
~υN−{p} ∈ SN−{p}, let ~σ = (ρp, ~υN−{p}). If q ∈ N
and p /∈ Fq(~σ), then p ∈ Eq(~σ).

We identify a steady state behavior in the infinite
ΓTRB with respect to a player’s ex-friends and en-
emies to simplify calculating the average expected
utility.

Definition 8 (Steady state). A game execution with
strategy profile ~σ is in the steady state at instance k
if and only if Ek

r (~σ) = Er(~σ) ∧Xk
r (~σ) = Xr(~σ).

Every game eventually reaches the steady state
because both Xk

r (~σ) and Ek
r (~σ) are non-decreasing

sets (as k grows) that are bounded in size by N .
The steady state condition holds true for an infi-
nite suffix of the TRB game and thus determines the
average expected utility. We define costsr(~σ) and
benefitsr(~σ) to be the cost and benefit received by r
over n consecutive instances in the steady state of ~σ.

In the remaining analysis, we consider only the
case where n > f +1, f > 0 and address the corner
cases where n = f + 1 or f = 0 in the Appendix.

6.1 Utility of Playing ρ

To prove that ~ρ is a Nash Equilibrium for risk-averse
players, we first place a lower bound on the Byzan-
tine aware utility that a player expects from playing
the recommended strategy ~ρ; in the next section, we
then show that the lower bound of ~ρ corresponds to
an upper bound on the utility a player expects from
unilaterally deviating from ~ρ.

The aware utility ūr(~ρ) identifies a rational
player r’s worst-case utility when every non-
Byzantine player follows ~ρN−{p}−T and the Byzan-
tine players follow arbitrary strategies ~τT ∈ ST . In
the steady state, we establish a lower bound on r’s
benefit and an upper bound on r’s cost as a func-
tion of the friends and enemies of r to calculate the
worst-case utility of following ~ρ.

Benefits. By proving BaN TRB is a Byzantine fault-
tolerant TRB protocol, we show that r receives full

benefit when (~ρ−T , ~τT ) is played. The following
Lemma is thus direct from Theorem 6:

Lemma 3. For all ~τT ∈ ST , T ⊆ N , |T | ≤ f , let
~σ = (~ρN−T , ~τT ). ∀r /∈ T : benefitsr(~σ) = β+n$.

Costs. The costs of each TRB instance are deter-
mined by the number of PNC and VAL messages r
sends to its friends (ex-friends are in shunp). In the
steady state, the number of friends and enemies is
constant. We thus define costsr(~σ) over the num-
ber of friends and enemies of r. To simplify the
discussion, we further define the cost of friendship,
C(x, y) to be the cost to a player r of following ρr

where ∀~υN−{r} ∈ SN−{r}, x = |Fr(ρr, ~υN−{r})|,
y = |Er(ρr, ~υN−{r})|.

Specifically, C(x, y) = x(yκy + 2nγ) where
n = |N |. In n instances of TRB, BaN TRB specifies
that a player r send to all players not in shunr (that
is, to x friends): (a) two value messages (costing
2nγ) and (b) a penance message of size κy where y
is the number of enemies of r each time a member
of enemies is leader (costing yκy).

We structure PNC messages so the cost κy in-
creases with y, the number of enemies, to guaran-
tee that a player cannot reduce costs by gaining ene-
mies. Although r saves the cost of sending (a) y− 1
penance messages to n − y players (each costing
κy−1) and (b) 2n value messages to the new enemy
(each costing γ), the savings are eroded by distribut-
ing these savings over the y new PNC messages to
n− y − 1 players (each costing κy). We thus define
κy as

κy =

{
(n−y)(y−1)κy−1+2nγ

y(n−y−1) , y ∈ [1, n− 2]
0, otherwise

From the definitions of C(x, y) and κy, we provide a
Lemma to describe their properties: (a) it costs more
to keep the same set of friends while making more
enemies; (b) it costs more to have a player as an
enemy than it does to keep him as a friend; and (c)
costs are trivially minimized by having no friends:

Lemma 4. Let x ∈ [0, n− 1], y ∈ [0, n− x− 2].
(a) x > 0 ⇒ C(x, y) ≤ C(x, y + 1).
(b) x > 0 ⇒ C(x, y) ≤ C(x− 1, y + 1).
(c) x = 0 ⇒ C(x, y) = 0.
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The next Lemma bounds the maximum costs us-
ing the cost of friendship in the steady state when
rational players follow ~ρ.

Lemma 5. Let n > f + 1, f > 0. For all T ⊆
N , |T | ≤ f , and ∀~τT ∈ ST , ∀r /∈ T , let ~ϕ =
(~ρN−T , ~τT ). costsr(~ϕ) ≤ C(n− f − 1, f)

Proof. It follows from Lemma 1 that |Fr(~ϕ)| ≥
n−f−1 and |Er(~ϕ)| ≤ f . It follows from Lemma 4
that C(x, y) is maximized when x = f . Since
C(x, y) is defined for ρ, costsr(~ϕ) ≤ C(n − f −
1, f).

Utility. Using the bounds on steady state benefit and
cost we provide a lower bound on Byzantine aware
utility.

Lemma 6. Let n > f + 1 and f > 0. ∀r ∈ N :
ūr(~ρ) ≥ (β+n$)−C(n−f−1,f)

n

Proof. The Byzantine aware utility under the risk-
averse rational model depends upon the worst-case
average expected utility. Let ~ϕ = (~ρN−T , ~τT ),
∀T ⊆ N , |T | ≤ f . The average expected
utility for any r ∈ N − T is determined by
the costs and benefits of the steady state, lead-

ing to ûr(~ϕ) = benefitsr(~ϕ)−costsr(~ϕ)
n . Substi-

tuting according to Lemmas 3 and 5, we obtain
ûr(~ϕ) ≥ (β+n$)−C(n−f−1,f)

n for any Byzantine be-
havior, which gives the specified aware utility.

6.2 Utility of Deviating
We now show that there exists a spiteful strategy
for Byzantine players to follow that places an up-
per bound on a rational player r’s average expected
utility, irrespective of r’s unilateral deviation. This
upper bound matches the lower bound for ūr(~ρ) and
demonstrates that BaN TRB is a Nash equilibria for
risk-averse players.

We define the spiteful strategy ~ς r
T such that

Byzantine players follow ~ρT , but collude against r
by inserting r into shunq for all q ∈ T . We first
show that spiteful players are enemies of r:

Lemma 7. For all T ⊆ N , |T | ≤ f , and ∀r /∈ T ,
let ~o = (σr, ~ρN−T −{r}, ~ς

r
T ). T ⊆ Er(~o)

Proof. Any player p playing ςrp sends no messages
to r and is thus in Er(~σ) by definition.

Benefits. We demonstrate an upper bound on the
benefit of any unilateral deviation by r.

Lemma 8. Let n ≥ f + 1, f ≥ 0. For all
T ⊆ N , |T | ≤ f and ∀σr ∈ Sr, ∀r /∈ T , let
~o = (σr, ~ρN−T −{r}, ~ς

r
T ). benefitsr(~o) ≤ β + n$

Proof. Direct from benefits defined for ΓTRB.

A Lemma is required for the special case of de-
viations that result in r having no friends.

Lemma 9. Let n ≥ f + 1, f > 0. For all
T ⊆ N , |T | ≤ f , and ∀σr ∈ Sr, ∀r /∈ T ,
let ~o = (σr, ~ρN−T −{r}, ~ς

r
T ). If |Fr(~o)| = 0 and

|XNON
r (~o)| > 0, then benefitsr(~o) ≤ $

Proof sketch (Complete proof in Appendix).
Without friends, r cannot learn the values proposed
by other players and must deliver SF, violating
TRB3. When r is leader, it does not send a value
message to other players, violating TRB1. Finally,
since all other players will deliver SF when r is
leader, as a special case r can obtain $ by also
delivering SF.

Costs. We next derive a lower bound on r’s cost
when f Byzantine players follow the spiteful strat-
egy and r pursues any unilateral deviation. For de-
viations that maintain a non-zero number of friends,
the following Lemma bounds the minimum cost of
deviation:

Lemma 10. Let n ≥ f + 1, f > 0. For all
T ⊆ N , |T | = f and ∀σr ∈ Sr, ∀r /∈ T , let
~o = (σr, ~ρN−T −{r}, ~ς

r
T ). If |Er(~o)| < n − 1 then

costsr(~o) ≥ C(n− f − 1, f).

Proof. Lemmas 7 and 2 imply that Xr(~o) = Er(~o)
so that a player is either a friend or enemy. Lemma 4
rule (b) then states that C(x, y) is minimized for
min(x). Given the lower bound of |Er(~o)| deter-
mined by |T | = f , minimal costs are attained for
C(n− f − 1, f).

For deviations by player r described by ~o that
maintain zero friends, that is, where Fr(~o) = ∅, we
note that r is not required to send any messages so
that trivially, costsr(~o) ≥ 0.
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Utility. Using the bounds on benefit and cost in the
steady state, we prove an upper bound on r’s utility.

Lemma 11. Let n > f + 1 and f > 0.
∀r /∈ T , ∀σr ∈ Sr: ūr(~ρN−{r}, σr) ≤
max{ (β+n$)−C(n−f−1,f)

n , $
n }

Proof. To find the Byzantine aware utility under the
risk-averse rational model, we find the worst-case
average expected utility. For all T ⊆ N − {r},
|T | = f , let ~o = (~ρN−T −{r}, σr, ~ς

r
T ). The average

expected utility for any r ∈ N −T is determined by
the costs and benefits of the steady state, leading to

ûr(~o) = benefitsr(~o)−costsr(~o)
n .

Consider first the case where |Er(~o)| < n−1. It
follows from Lemma 10 that costsr(~o) ≥ C(n−f−
1, f). Finally, ūr(~o) ≤ (β+n$)−C(n−f−1,f)

n using
the upper bound on benefits provided by Lemma 8.

Assume |Er(~o)| = n − 1. It follows from
Lemma 9 that benefitsr(~o) ≤ $ and as argued
above, that costsr(~o) ≥ 0. Hence, ūr(~o) ≤ $

n .

6.3 BaN TRB Is a Nash Equilibrium
We prove that ~ρ is a Byzantine aware Nash Equi-
librium using the bounds on Byzantine aware util-
ity proved in the previous sections. In the presence
of Byzantine behavior, we show that the minimum
expected utility of executing BaN TRB is the max-
imum expected utility of any unilateral deviation
strategy profile.

Before we prove the theorem, we first discuss
the assumption that the protocol is worth playing
when everyone cooperates. A sufficient condition
for participating is that a player expects the benefits
of running the protocol (successful agreements and
proposals) to exceed the cost of doing so (messages)
for the proposed protocol ρ. We state this assump-
tion as β + (n− 1)$ ≥ C(n− f − 1, f).

Theorem 7. Let n > f + 1 and f ≥ 0. Using the
risk-averse rational model, ~ρ is a Nash equilibrium
if β + (n− 1)$ ≥ C(n− f − 1, f).

Proof. It suffices to show ∀i ∈ N ,∀σi ∈
Si, ūi(~ρ) ≥ ūi(~ρN−{i}, σi). It follows from

Lemma 6 that ūi(~ρ) ≥ β+n$−C(n−f−1,f)
n

and from Lemma 11 that ūi(~ρN−{i}, σi) ≤
max{β+n$−C(n−f−1,f)

n , $
n }. By our assumption

that β + (n − 1)$ ≥ C(n − f − 1, f), ūi(~ρ) ≥
ūi(~ρN−{r}, σi), completing the proof.

Price of Byzantine Anarchy and Malice. The
Price of Byzantine Anarchy (PoB(f)) quantifies
the cost imposed by Byzantine players compared to
the optimal strategy, whereas the Price of Malice
(PoM(f)) quantifies the cost imposed by f Byzan-
tine players compared to no Byzantine players [22].
When f = 0, we can solve TRB in a single round
where the leader broadcasts value v to all partici-
pants. The average utility of following this opti-
mal protocol when there are no Byzantine players is
β+n$−(n−1)γ

n . Theorem 8 states the Price of Byzan-
tine Anarchy and Price of Malice for BaN TRB,
which follow directly from the utility of the optimal
TRB protocol and the best and worst case utilities of
following BaN TRB.

Theorem 8. Consider ΓTRB instantiated to toler-
ate f failures. If n > f + 1, f > 0 and all non-
Byzantine players play BaN TRB then
(a) PoB(f) = β+n$−C(n−f−1,f)

β+n$−(n−1)γ

(b) PoM(f) = β+n$−C(n−f−1,f)
β+n$−2n(n−1)γ .

An interesting question that we leave to future
work is quantifying the Price of Selfishness–the ad-
ditional cost required to achieve functionality F in a
fault tolerant communication game when non-faulty
players may be rational.

7 Related Work
Both game theory [23, 26] and Byzantine fault tol-
erance [5, 7, 16, 19, 31] have been extensively stud-
ied in isolation. Recent work applies theory to fault
free distributed systems [2, 9, 14, 25, 27, 28, 30], but
only limited efforts addressed faulty environments.

Recent work attempts to bridge the gap between
these approaches. Aiyer et al. [3] and Li et al. [17]
focus on practical considerations of building sys-
tems under the BAR model. Moscibroda et al. [22]
express formally the cost of adding Byzantine play-
ers to a purely selfish environment for a simple
inoculation game in which rational and Byzantine
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players choose between two strategies—inoculate or
not—and in which there is no communication be-
tween nodes. Our goals differ in that we focus on
showing that a specific strategy profile (a) meets a
specified functionality FTRB and (b) is also a Nash
Equilibrium, while they focus on analyzing the ad-
ditional costs Byzantine players are able to impose
on the system.

Eliaz [8] defines k-FTNE to provide an appeal-
ing equilibrium concept in the presence of at most k
faulty players. Eliaz analyzes an important problem
in economics, the constrained Walrasian function.

Abraham et al. [1] generalize k-FTNE to (k, t)-
robustness, which accomodates collusion in addi-
tion to faulty behavior, and analyze a protocol for re-
silient secret sharing with a centralized, failure-free,
mediator with free communication.

8 Conclusion
In this paper we present a theory of BAR games that
provides for the analysis of games when some subset
of the players are irrational, and we analyze a novel
protocol for Terminating Reliable Broadcast in the
context of this theory.
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1 I n i t i a l i z a t i o n f o r p r o c e s s p i n i n s t a n c e k > 0 :
2 leader := k mod |N|
3 extracted := ∅
4 relay := ∅

7 Round 1 , f o r p = leader , and v a l u e v :
8 extracted := {v}
9 send 〈VALUE, k, v〉p t o q ∈ N − {p}

11 Round 1 , f o r p 6= leader :
12 when r e c e i v e 〈VALUE, k, v〉leader
13 i f v /∈ extracted ∧ |extracted| < 2 then
14 relay ∪= {〈VALUE, k, v〉leader}
15 extracted ∪= {v}

18 Round i , 2 ≤ i ≤ f f o r p :
19 foreach 〈VALUE, k, v〉leader,...,si−1

∈ relay

20 send 〈VALUE, k, v〉leader,...,si−1,p t o

q ∈ N − sigsv − {p}
21 relay := ∅
22 when r e c e i v e 〈VALUE, k, v〉leader,...,si
23 i f v /∈ extracted ∧ |extracted| < 2 then
24 relay ∪= 〈VALUE, k, v〉leader,...,si
25 sigsv := {leader, . . . , si}
26 extracted ∪= {v}
27 e l s e i f v ∈ extracted then
28 sigsv ∪= {leader, . . . , si}

30 Round f + 1 f o r p :
31 foreach 〈VALUE, k, v〉leader,...,sf

∈ relay

32 send 〈VALUE, k, v〉leader,...,sf ,p t o q ∈ N − sigsv − {p}

33 relay := ∅
34 when r e c e i v e 〈VALUE, k, v〉leader,...,sf+1
35 i f v /∈ extracted ∧ |extracted| < 2 then
36 extracted ∪= {v}
37 i f |extracted| = 1 then
38 d e l i v e r v ∈ extracted
39 e l s e
40 d e l i v e r SF

Figure 2: Dolev-Strong protocol for instance k > 0.

A BFT 6⇒ IC
We present psuedocode for D-S TRB [7] as de-
scribed in Section 4 in Figure 2. Figure 3 displays
pseudocode for the lazy protocol described in Sec-
tion 4.

In the following Lemmas, we show that n play-
ers can still achieveFTRB even when one player fol-
lows λr while all remaining players follow ~δ. Simi-
lar proofs for ~δ appear in [7]. As a notational aid, we
say that a player p extracts m when p inserts m into
the set extracted. According to the pseudocode for
Dolev-Strong and the lazy strategy, non-Byzantine
players only extract valid messages.

Lemma 12 (Lazy Agreement). Suppose non-
Byzantine players follow strategy profile
(~δN−T −{r}, λr) and that |T | ≤ f . If a non-
Byzantine processes delivers m, then all non-

1 I n i t i a l i z a t i o n f o r p r o c e s s p i n i n s t a n c e k > 0 :
2 leader := k mod |N|
3 extracted := ∅
4 relay := ∅

7 Round 1 , f o r p = leader , and v a l u e v :
8 extracted := {v}
9 R ⊆ N − {p} : |R| = f + 1

10 send 〈VALUE, k, v〉p t o q ∈ R

12 Round 1 , f o r p 6= leader :
13 when r e c e i v e 〈VALUE, k, v〉leader
14 i f v /∈ extracted ∧ |extracted| < 2 then
15 relay ∪= {〈VALUE, k, v〉leader}
16 extracted ∪= {v}

19 Round i , 2 ≤ i ≤ f f o r p :
20 foreach 〈VALUE, k, v〉leader,...,si−1 ∈ relay

21 R ⊆ N − sigsv − {p} : |R| =min(n − 1, f + 1)− |sigsv|
22 send 〈VALUE, k, v〉leader,...,si−1,p t o q ∈ R

23 relay := ∅
24 when r e c e i v e 〈VALUE, k, v〉leader,...,si
25 i f v /∈ extracted ∧ |extracted| < 2 then
26 relay ∪= 〈VALUE, k, v〉leader,...,si
27 sigsv := {leader, . . . , si}
28 extracted ∪= {v}
29 e l s e i f v ∈ extracted then
30 sigsv ∪= {leader, . . . , si}

32 Round f + 1 f o r p :
33 foreach 〈VALUE, k, v〉leader,...,sf

∈ relay

34 send 〈VALUE, k, v〉leader,...,sf ,p t o

q ∈ N − sigsv − {p}
35 relay := ∅
36 when r e c e i v e 〈VALUE, k, v〉leader,...,sf+1
37 i f v /∈ extracted ∧ |extracted| < 2 then
38 extracted ∪= {v}
39 i f |extracted| = 1 then
40 d e l i v e r v ∈ extracted
41 e l s e
42 d e l i v e r SF

Figure 3: Lazy variation of Dolev-Strong.

Byzantine processes eventually deliver m.

Proof. We only consider the case where f > 0 and
n > f + 2 where λr and δr differ.

Let i be the earliest round in which some non-
Byzantine process q extracts m in instance k. Since
there are at most f Byzantine nodes and a message
is extracted only if it is valid, i ≤ f . We show that
all non-Byzantine players either extract m by round
f + 1 or extract at least 2 distinct values m′ 6= m′′

such that m /∈ {m′,m′′}.
Consider i = 0, implying leaderk = q. If q is

following λq then q sends the value message to f+1
nodes in the first round, one of which, say node c,
must be non-Byzantine and following δc since n >
f + 2. In round 2, c forwards the message to all
other players and all non-Byzantine players extract
m in round 2 ≤ f + 1 since f > 0, unless they have

13



already extracted two values. If q instead follows δq,
then q sends the message to n− 1 other nodes in the
first round and all non-Byzantine players extract the
value m in round 1 ≤ j < f + 1 or two distinct
values m′,m′′ by round j.

Consider 0 < i ≤ f , implying leaderk 6= q.
If q follows δq or i = f (implying δq = λq in this
round), then q forwards the message to n − f − 1
other nodes in the following round, i ≤ f + 1, and
we reach our conclusion. Otherwise, q follows λq

and i < f . In this case, q forwards the message to
f+1−s players in round i+1 ≤ f where s ≥ i since
the extracted message contains at least i signatures.
Round i is the first round in which a non-Byzantine
player extracts m so that only f − i of these play-
ers may be Byzantine. Hence, at least one player c
to which q forwards the message is non-Byzantine.
Player c must follow δc because we assumed only q
follows λq. In the following round i+ 2 ≤ f + 1, c
sends m to all remaining non-Byzantine nodes, and
they either extractm in round i+2 or have extracted
disinct two values m′ 6= m′′ by round i+ 2.

If any non-Byzantine player extracts m, then all
non-Byzantine players extract m or two distinct val-
ues m′ 6= m′′ by round f + 1. All non-Byzantine
players thus have identical extracted sets and deliver
the same value at the end of round f + 1.

Lemma 13 (Lazy Integrity). Suppose non-
Byzantine players follow strategy profile
(~δN−T −{r}, λr) and that |T | ≤ f . Every
non-Byzantine process delivers at most one mes-
sage, and if it delivers m 6= SF then some process
must have broadcast m.

Proof. Both strategies specify a single message is
delivered only during round f + 1. If m 6= SF, then
m must have been extracted in round i ≤ f + 1.
Only valid messages are extracted, and a message is
valid only if it contains the signature of the leader.
As signatures are unforgeable, the leader must have
broadcast the message m.

Lemma 14 (Lazy Validity). Suppose non-Byzantine
players follow strategy profile (~δN−T −{r}, λr) and
that |T | ≤ f . If the leader is non-Byzantine
and broadcasts m, then all non-Byzantine processes

eventually deliver m.

Proof. A valid message requires a signature by the
leader. A non-Byzantine leader following either
strategy broadcasts a single value m so that there
is only one valid value that is signed by m. Hence,
for the leader, extracted = {m}, and the leader de-
livers m in the final round. By Lemma 12 all other
non-Byzantine players also deliver m.

Lemma 15 (Lazy Termination). Suppose
non-Byzantine players follow strategy profile
(~δN−T −{r}, λr) and that |T | ≤ f . Every
non-Byzantine process eventually delivers some
message.

Proof. All strategies terminate in round f + 1 with
a value delivered.

Theorem 2 (Lazy Safety and Liveness (TRB1-4))
For all T ⊆ N such that |T | ≤ f , for all ~τT ∈ ST ,
if ~σ = (~δN−T −{r}, λi, ~τT ) is played for ΓTRB then
TRB1-4 are fulfilled.

Proof. Follows from Lemmas 13, 14, 12, and 15.

The proof that D-S TRB is not a Nash equi-
librium relies on the observation that a single node
following the lazy protocol does not violate safety
(and thus does not adversely impact benefit) while
requiring the lazy node to pay fewer costs in some
instances.

Theorem 3 (Not a Nash Equilibrium) Consider
ūr defined for a risk averse rational player r:
ūr(~δN−T ,{r}, λr) > ūr(~δ) if n > f + 2.

Proof. It follows from Theorem 2 that TRB1-4 are
all maintained and thus benefitsk

r (~δN−{r}, λr) =
benefitsk

r (~δ) for all |T | ≤ f and for all ~τT ∈ ST .
Worst-case Byzantine behavior for a specified

strategy ~σ ∈ SN minimizes utility as defined
by the risk averse ūr by maximizing costsk

r (~σ),
which depends upon sentk

r (~σ). We show that
sentk

r (~δN−{r}, λr) ⊆ sentk
r (~δ) for all k > 0, f ≥

0, |T | ≤ f , and ~τT ∈ ST . If leaderk = r, then both
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protocols specify the same message m, but λr spec-
ifies fewer when n > f + 2 by sending m to f + 1
players while δr specifies n − 1. If leaderk 6= r,
then sent~σr→k(f)or some profile ~σ ∈ SN depends
upon the set of messages received since messages
are never replied to (that is, a message with value v
is not sent to members of sigv). As all other players
follow the same profile ~δN−{r} in either case, player
r receives the same set of messages in either ~δ or
(~δN−{r}, λr). The set of messages sent in each pro-
file is identical though λr specifies fewer messages
containing each value to be sent. Indeed, λr speci-
fies min(n−1, f+1)−smessages while δr specifies
n− 1− s messages, implying sentk

r (~δN−{r}, λr) ⊂
sentk

r (~δ) when n > f + 2. Hence, when n > f + 2,
costsk

r (~δN−{r}, λr) < benefitsk
r (~δ).

The proof that the lazy protocol is not a viable
alternative to D-S TRB if all players follow it is
based on exhibiting an execution in which TRB3 is
violated.

Theorem 4 (Failed Agreement) If non-Byzantine
players follow strategy profile ~λN−T , |T | ≤ f ,
f > 1 and n > f + 2 then TRB3 can fail in all
instances of ΓTRB.

Proof. Suppose a non-Byzantine player r is the
leader. In the first round, r sends the broadcast value
〈VALUE, v, k〉r to f + 1 other players. WLOG, as-
sume f of these players are Byzantine players that
never forward f in order to reduce uk

r , and the re-
maining player p is non-Byzantine. Since f > 1
there are guaranteed to be at least three rounds. In
the second round, p also sends 〈VALUE, v, k〉r,p to
f + 1 players. Because sigsm = {r} for this mes-
sage, p sends the message to only f other players,
which may be the same set of Byzantine players
chosen by r. Thus, the value is again not forwarded
to any other players. Since n > f + 2 there exists a
third non-Byzantine player g that never receives m
while r and p both deliver m in the final round.

We now provide the complete proof that D-S
TRB is (k, t)-robust. if csnd(m) = 0.

Theorem 5 (Zero Cost D-S TRB) D-S TRB is
(k, t)-robust if csnd(m) = 0 for all messages m.

Proof. The function uj
i (~δN−T , ~τT ) for any instance

j of ΓTRB is defined as benefitsj
i (~δN−T , ~τT ) −

costsj
i (~δN−T , ~τT ). By assumption costsj

i (~δN−T ,
~τT )=0 for all j>0. In [7], Dolev and Strong prove
that ~δN−T fulfills FTRB by meeting TRB1–4 for
all |T | ≤ t and for all ~τT ∈ ST , implying for any
strategy profile ~σ ∈ SN for ΓTRB, benefitsj

i (~σN−T ,

~τT )≤ benefitsj
i (~δN−T , ~τT ). Hence, any coali-

tion strategy ~φC∈SC for C⊆N such that C∩T =∅
and |C|≤k must result in at most utility uj

i (~δN−T ,

~τT ) implying that uj
i (~δN−T , ~τT )≥uj

i (~δN−(C∪T ),
~φC , ~τT ) for all j>0.

B BaN TRB
BaN TRB is very closely related to D-S TRB. The
close relationship between the two protocols leads to
the following Lemma. The intuition for the Lemma
is that the same set of VAL messages are forwarded
by a collection of players playing ~ρas would be for-
warded by players plaing ~δ.

Lemma 16. If all non-Byzantine players follow the
BaN TRB protocol, then they deliver the same values
that they would deliver if they ran D-S TRB instead.

Proof. It follows from Lemma 1 that every pair of
non-Byzantine players are friends.

Consider the case with a non-Byzantine leader.
The leader sends exactly one value v to all non-
Byzantine players in round 1 of both protocols, so
every non-Byzantine player receives v in both pro-
tocols and delivers it in round f + 1.

With a Byzantine leader, if any non-Byzantine
player delivers v broadcast by the leader, then some
non-Byzantine player received any value broadcast
by the sender by round f at the latest (since there
are at most f Byzantine players). Both protocols
specify that any non-Byzantine player forward the
first 2 values it receives in an instance to all other
players. So at the end of round f + 1 all players
will have received either the same unique value v,
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or at least two values, or no value. Non-Byzantine
players all deliver SF in the latter two cases or the
unique value v in the first case.

Theorem 6 For all T ⊆ N such that |T | ≤ f , for
all ~τT ∈ ST , if ~σ = (~ρN−T , ~τT ), then TRB1− 4
hold in all instances of ΓTRB when ~σ is played.

Proof. Follows from Lemma 16 and D-S TRB
maintains TRB1− 4.

C BaN TRB Analysis
In Section 6 we defined friends, ex-friends, and en-
emies. Here we prove properties relating these sets
to strategy profile ~σ.

Lemma 1 Suppose two players p and q play ρp and
ρq, respectively. For all ~υN−{p,q} ∈ SN−{p,q}, let
~σ = (~ρ{p,q}, ~υN−{p,q}). p ∈ Fq(~σ).

Proof. By definition, for all k > 0, seqk
p→q(~σ) ∈

Mk
p→q, implying p ∈ Fq(~σ).

Lemma 2 Suppose player p plays ρp and for all
~υN−{p} ∈ SN−{p}, let ~σ = (ρp, ~υN−{p}). If q ∈ N
and p /∈ Fq(~σ), then p ∈ Eq(~σ).

Proof. Since p follows ρp, p by definition sends
an acceptable message sequence to players not in
shunp. By the assumption that p /∈ Fq(~σ), we
infer that q ∈ shunp, and thus p does not send
a VAL1 message to q when p is leader. Hence,
p ∈ Eq(~σ).

C.1 Faithful Utility
We address the corner cases of n = f + 1, f > 0
and f = 0 that we omitted in Section 6. The proofs
for the former case are similar in flavor to those for
the case when n > f + 1, f > 0, differing only in
the fact that |T | = f − 1 rather than f .
C.1.1 f > 0 and n = f + 1
In the first corner case in which n = f + 1 and f >
0, r pays a steady state cost of at most C(n−f, f−1)
and ūir~ρ = (β+n$)−C(n−f−1,f)

n .

Lemma 17. Let n = f + 1 and f > 0. For all T ⊆
N , |T | ≤ f and ∀~τT ∈ ST , let ~ϕ = (~ρN−T , ~τT )
and rational player r /∈ T . costsr(~ϕ) ≤ C(n −
f, f − 1)

Proof. It follows from the definition of ~ϕ and
Lemma 1 |Fr(~ϕ)| ≥ n − f and |Er(~ϕ)| ≤ f − 1.
It follows from Lemma 4 that C(x, y) is maximized
when x = f − 1. Since C(x, y) is defined for ρ,

costsr(~ϕ) ≤ C(n− f, f − 1).

Ultimately, the Byzantine aware utility for
the case when n = f + 1 and f > 0 is
(β+n$)−C(n−f,f−1)

n .

Lemma 18. Let n = f + 1 and f > 0. For all
r ∈ N , ūr(~ρ) = (β+n$)−C(n−f,f−1)

n

Proof. It follows from Lemma 17 that costsr(~ϕ) ≤
C(n − f, f − 1) for ~ϕ = (~ρN−T , ~τT ) for all T ⊆
N − {r} such that |T | ≤ f − 1, for all ~τT ⊆ ST .

It follows from Lemma 3 that the steady state
utility for r is at most β + n$ − C(n − f, f − 1).
Division by n completes the proof.

C.1.2 f = 0
The special case when f = 0 is slightly more inter-
esting as it does not follow the same structure as the
two f > 0 cases. One primary difference is the cost
required to maintain friends changes since only the
leader is required to send messages.

Lemma 19. Let f = 0. For all r ∈ N , costsr(~ρ) =
(n− 1)γ.

Proof. It follows from Lemma 1 that N − {r} =
Fr(~ρ). The protocol requires a single message to
each other participant only during instances when r
is leader, so the cost to r is (n− 1)γ.

The Byzantine aware utility for following the
profile when f = 0 is (β+n$)−(n−1))γ

n .

Lemma 20. Let f = 0. For all r ∈ N , ūr(~ρ) ≥
(β+n$)−(n−1))γ

n .

Proof. Since f = 0 the only strategy profile to be
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considered is ~ρ. It follows from Lemma 19 that
costsr(~ρ) ≤ (n − 1)γ. It follows form Lemma 3
that the steady state utility for r is at most β +
n$ − C(n − f, f − 1). Division by n completes
the proof.

C.2 Deviant Utility
First, we dispatch a Lemma that was only sketched
in the main sections. The following Lemma shows
that a rational player with no friends cannot obtain
more than $ benefit.

Lemma 9 Let n ≥ f + 1, f > 0. For all
T ⊆ N , |T | ≤ f and ∀σr ∈ Sr, ∀r ∈ N − T ,
let ~o = (σr, ~ρN−T −{r}, ~ς

r
T ). If |Fr(~o)| = 0 and

|XNON
r (~o)| > 0, then benefitsr(~o) ≤ $

Proof. The spiteful profile ~ς r
T is similar to ~ρT , but

shuns r. Further, by Lemma 2, XNON
r (~o) ⊆ Er(~o),

implying ∀q ∈ XNON
r (~o) : r ∈ shunq. Hence, all

players besides r send a single value to all other
players except r. The lower bound on XNON

r (~o)
implies at least one other non-Byzantine player q
receives the single value in each instance from all
leaders other than r and delivers the value in the
last round. Player r instead receives no messages
and thus delivers SF, violating TRB3 when r is not
leader, implying no benefit is obtained for these in-
stances. When r is leader, it sends no messages.
All other players, receiving no messages, deliver
SF, which violates TRB3 unless r also delivers SF.
Since r can never deliver a value 6= SF and guaran-
tee TRB3, the β benefit cannot be obtained so that
benefitsr(~o) ≤ $.

Addressing the deviations is more complicated
in the corner cases as there are multiple types of de-
viations that a rational player may try in order to
increase cost.
C.2.1 n = f + 1 and f > 0
When n = f + 1, the proof structure is identical to
the case when n > f + 1 except that the optimal
number of Byzantine players is f − 1 rather than f .

Lemma 21. Let f > 0, n = f + 1. For all
T ⊆ N , |T | = f − 1 and ∀r /∈ T , ∀σr ∈ Sr,

let ~o = (σr, ~ρN−T −{r}, ~ς
r
T ). If |Er(~o)| < n − 1,

then costsr(~o) ≥ C(n− f, f − 1).

Proof. It follows from Lemma 7 that T ⊆ Er(~o)
and from Lemma 2 that ∀p ∈ N , /∈ T − {r} =⇒
p /∈ Xr(~o) − Er(~o). Hence |Er(~o)| ≥ f , |Fr(~o)| ≤
n−f , and |Fr(~o)|+ |Er(~o)| = n−f−1. It thus fol-
lows from Lemma 4 that C(|Fr(~o)|, |Er(~o)|) is min-
imized when |Fr(~o)| = n − f . Thus, costsr(~o) ≥
C(n− f, f − 1).

Lemma 22. Let f > 0, and n = f +
1. For all r ∈ N , ūr(~ρN−{r}, σr) ≤
max{ (β+n$)−C(n−f,f−1)

n , $
n }

Proof. There exists strategy profile ~o =
(~ρN−T −{r}, σr, ~ς

r
T ) such that T ⊆ N − {r}

and |T | = f − 1.
Consider the case where |Er(~o)| < n−1. It fol-

lows from Lemma 21 part 1 that costsr(~o) ≥ C(n−
f, f−1). It follows from the definition of benefits in
ΓTRB that the steady state benefits for r of ~o are at
most β + n$. Hence ūr(~o) ≤ (β+n$)−C(n−f,f−1)

n .
Consider the case where |Er(~o)| = n − 1. It

follows Lemma 9 that benefitsr(~o) ≤ $. Hence
ūr(~o) ≤ $

n .
Combining the two cases, ūr(~ρN−{r}, σr) ≤

max{ (β+n$)−C(n−f,f−1)
n , $}.

C.2.2 f = 0
The cost a deviant player must pay is proportional to
the number of friends the player maintains.

Lemma 23. Let f = 0. For all r ∈ N , ∀σr ∈ Sr,
let ~o = (~ρN−{r}, σr). costsr(~o) ≥ |Fr(~o)|γ

Proof. It follows from Lemma 1 that r must send
one VAL message to each p ∈ Fr(~o) during each in-
stance that r is leader in order to maintain the friend-
set, incurring cost at least |Fr(~o)|γ.

Now we can figure out the aware utility.

Lemma 24. Let f = 0. For all r ∈ N , let ~o =
(~ρN−{r}, σr). ūr(~o) ≤ max{β+n$−(n−1)γ

n , $
n }
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Proof. Consider the case where |Er(~o)| < n − 1.
It follows from β + n$ being the maximal bene-
fit achievable in the game and from Lemma 23 that
ūr(~o) ≤ β + n$ − (n− 1)γ.

Consider the case where |Er(~o)| = 0. It follows
from Lemma 9 that benefitsr(~o) ≤ $ and conse-
quently that ūr(~o) ≤ learn.

And finally we can show that the protocol is a
Nash equilibrium.
C.2.3 n = 1
For completeness we observe that n = 1 is trivial
and non-interesting.

C.3 Nash Equilibria
We can finally show that BaN TRB is a Nash Equi-
librium when n = f + 1 and f > 0.

Theorem 9. Using the risk-averse rational model,
~ρ is a Nash equilibrium if β + (n − 1)$ ≥ C(n −
f, f − 1), n = f + 1 and f ≥ 0.

Proof. It suffices to show ∀i ∈ N ,∀σi ∈ Si
ūi(~ρ) ≥ ūi(~ρN−{i}, σi).

It follows from 18 that ūi(~ρ) ≥
β+n$−C(n−f,n−f−1)

n and from 22 that
ūi(~ρN−{i}, σi) ≤ max{β+n$−C(n−f,f−1)

n , $
n }.

It thus follows from our assumption that
β + (n − 1)$ ≥ C(n − f, f − 1) that
ūi(~ρ) ≥ ūi(~ρN−{r}, σi), completing the proof.

And for f = 0.

Theorem 10. Let f = 0 and n > 1. Using the
risk-averse rational model, ~ρ is a Nash equilibrium
if β + (n− 1)$ ≥ (n− 1)γ.

Proof. It suffices to show ∀i ∈ N ,∀σi ∈ Si
ūi(~ρ) ≥ ūi(~ρN−{i}, σi).

It follows from 18 that ūi(~ρ) ≥
max{β+n$−(n−1)γ

n , $
n } and from 24 that

ūi(~ρN−{i}, σi) ≤ max{β+n$−(n−1)γ
n , $

n }. It thus
follows from our assumption that β + (n − 1)$ ≥
(n − 1)γ that ūi(~ρ) ≥ ūi(~ρN−{r}, σi), completing
the proof.

Cost of Byzantine Anarchy and Malice. When
n = f+1 and f > 0, PoB(f) = β+n$−C(n−f,f−1)

β+n$−(n−1)γ

and PoM(f) = β+n$−C(n−f,f−1)
β+n$−2n(n−1)γ . When f = 0,

PoB(f) = PoM(f) = 1, both by definition. In
general, the Price of Malice is ūir[~ρ] divided by the
optimal cost of the trivial 1 round 0 fault tolerant
TRB protocol. This reflects the additional cost ra-
tional players have to pay when faulty players are
allowed into the system.. While the Price of Byzan-
tine Anarchy
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